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Abstract 

The shift towards biomass and lower quality fossil fuel feedstocks will require new conversion 
approaches.  Catalysis will be critical in the processing of these new feedstocks.  By studying 
catalysis at industrially relevant conditions, it may be possible to reduce the time and cost of 
developing new catalyst systems.  Microreactors enable the study of multiphase catalyst 
systems at pressures that were previously difficult to attain on the laboratory scale.  The 
reduced length scales, characteristic of microchemical systems, provide additional benefits such 
as enhanced heat and mass transfer and a reduction of hazardous waste.  The improved heat 
and mass transfer allow for kinetics to be probed at isothermal conditions in the absence of 
complicating mass transfer effects.   

A high-pressure microreactor system for catalyst study was designed, fabricated, and tested.  
The system allows for the multiphase study of homogenously and heterogeneously catalyzed 
systems, with a unique reactor designed for each application.  A multicomponent gas phase is 
delivered simultaneously with a liquid stream, resulting in regular segmented (slug) flow.  The 
isobaric system is operated at pressures of up to 100 bar.  Gas and liquid flow rates, and 
therefore residence time, are specified independently of pressure.  The system is capable of 
being operated at temperatures of up to 350 °C and residence times of up to 15 minutes.  Inline 
analysis, using an attenuated total reflection FTIR flow cell, and sample collection for offline 
analysis can be performed simultaneously.   

Both homogeneous and heterogeneous catalysis were demonstrated in the high-pressure 
system.  A kinetic expression was derived for the homogeneous hydroformylation of terminal 
alkenes, catalyzed by Wilkinson’s catalyst.  The empirical reaction orders for the dependence on 
catalyst, hydrogen, and carbon monoxide were determined, along with the activation energy 
and pre-exponential factor.  These results were then reconciled with a mechanistic model.  The 
hydrogenation of cyclohexene over platinum catalysts was chosen to demonstrate the 
performance of the heterogeneous reactor.  This reaction proceeded rapidly allowing mass 
transfer to be characterized in the microreactor.  Observed mass transfer rates were two orders 
of magnitude higher than in traditional systems. 

Thesis Supervisor:  Klavs F. Jensen 
Title:   Department Head, Chemical Engineering 
   Warren K. Lewis Professor of Chemical Engineering 
   Professor of Materials Science and Engineering 
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Chapter 1. Introduction 

1.1. Alternate Energy Sources will Require New Catalyst Approaches 

For over a century, the United States has relied predominantly on fossil fuels as an energy 

source.  Petroleum provides heating, electricity, and most importantly transportation fuels to 

an increasingly energy intensive country.  Natural gas consumption has increased as a cleaner 

alternative for heating and electricity production.  Domestic production of petroleum and 

natural gas has declined as consumption increased.  Currently, 85% of United States energy 

comes from fossil fuels.  The United States imports 61% of the petroleum and 17% of the 

natural gas that it consumes.1  

Rapid economic growth in the developing world is sharply increasing overall demand for 

petroleum and natural gas, increasing the real cost of these feedstocks.  The supply of 

recoverable reserves is not expected to increase significantly in the coming years.  Currently, 

recoverable reserves contain 190 billion tons of oil and 140 billion tons of natural gas, including 

recent shale gas discoveries.2  At current consumption rates, the reserve life is 55 years for oil 

and 110 years for natural gas.  Coal, on the other hand, has recoverable reserves of 925 billion 

tons (carbon basis) which is projected to last 400 years at current consumption levels. 

Given the world’s strong demand for fossil fuels and how limited petroleum is in particular, the 

energy landscape is going to undergo significant change in the coming decades.  As oil becomes 

more expensive and begins to be phased out, new sources and forms of energy will be required 

to replace light petroleum.  The world will turn to ever heavier feedstocks such as heavy oils, tar 
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sands, and coal.  These feedstocks contain increased amounts of nitrogen and sulfur, as well as 

higher carbon to hydrogen ratios.  This higher carbon content also represents a strong 

regulatory risk because the world is becoming increasingly concerned with carbon dioxide 

emissions and it is likely that these emissions will come under stricter control.  Methane, the 

lightest component of natural gas, produces 53 kg of carbon dioxide per million BTU of heat, 

whereas coal combustion produces over >90 kg of carbon dioxide to produce the same heat.3  

Biomass is an increasingly popular alternative source of energy.  Biomass production captures 

atmospheric carbon dioxide and is often considered approximately carbon neutral.  Recently, 

the United States was found to have the capacity to replace 30% of gasoline using biomass 

grown and converted domestically.4  Biomass presents a challenge because it is chemically 

different from fossil fuels.  Cellulosic and lignin-derived biomass is abundant but requires the 

development of new techniques and infrastructure to process it.  For example, for biomass 

derived fuels to have the same energy density as gasoline, oxygen must be removed and is 

typically replaced with hydrogen.   

The shift towards biomass and lower quality fossil fuel feedstocks will require new approaches 

during conversion to the desired products.  Catalysis will be critical in the processing of these 

new feedstocks, much as it has been in the processing of petroleum and natural gas.  However, 

catalysts will now have to deal with complex polyaromatic molecules and enable pathways for 

producing smaller molecules that have been traditionally found in light petroleum.  This will 

mean increasing the average hydrogen-carbon ratio and removing metals, sulfur, and nitrogen.  

Novel catalysts will also be required to process lignocellulosic biomass into fuels that are 
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compatible with current infrastructure, such as ethanol and butanol.  Catalysis will be the 

enabling technology, allowing the world to continue consuming energy during the transition 

away from light petroleum.  But before tackling a problem on such a large scale, one must first 

think small: catalysis development begins in the laboratory. 

1.2. Laboratory-based Research and Development 

When studying a chemical system, it makes the most sense to start at the laboratory scale.  A 

lot of information can be gathered at this scale, such as identifying the optimal system to 

complete the desired chemistry at the lowest cost possible.  In the case of chemical catalysis, 

development consists of three distinct steps.  The first stage is the laboratory phase during 

which a catalyst is discovered, studied, and optimized.  The second step is proving the catalyst 

in a pilot plant under commercially realistic, albeit harsh conditions.  A pilot plant operates very 

similar to a final commercial solution, but at a smaller scale.  This step is much more expensive 

than laboratory research due to the required scale of operation.  Finally, the catalyst is 

introduced to a commercial system.  At this point, significant capital has been dedicated to this 

catalyst system and there is very little left to be learned about it.  Catalyst development 

typically takes 3-5 years at a cost of $2-3 million.5  Since laboratory research is the least 

expensive type of research, as much information as possible should be gathered at this stage.  

Specifically, there are four general goals for studies of chemical systems in laboratories: new 

compound discovery, parameter screening, chemical kinetic determination, and chemical 

mechanism understanding. 
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1.2.1. New Compound Discovery 

One goal of chemical research is to develop new, more economical ways of making a desired 

compound.  An alternative goal might be to produce new, innovative materials.  In the context 

of catalysis, this type of research could attempt to form a known product with a new reactant 

or involve creating a new catalyst that would enable the desired product to be produced faster 

and at lower cost. 

There are two general strategies for chasing new discoveries.  The first is to use a strong 

understanding of chemical fundamentals to direct experimentation towards reactants and 

catalysts that make the desired product.  This knowledge is often acquired through an 

understanding of chemistry fundamentals and by looking at the rich chemical literature.  Some 

understanding can also be provided through increasingly complex chemical simulations, such as 

density functional theory (DFT) calculations6 which have been enabled using modern 

information technology.  Recent efforts have included using DFT to inform solid catalyst 

designs.7  The second strategy is to develop large libraries of potential reactants and catalysts.  

This technique does not rely on a researcher’s intuition.  Instead it uses quick, cheap 

experiments to screen thousands of possible combinations and hopefully discover a 

combination that makes the desired catalyst or product.8  Commercial systems are available to 

automate this process.  For example, instruments from Symyx have been used to discover and 

optimize new olefin polymerization catalysts.9  While most discoveries have historically been 

accidental, these two techniques hope to improve the probability of discovery.   
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1.2.2. Parameter Screening 

Once a reaction has been identified, the goal often shifts to finding a set of conditions that 

optimizes a certain objective.  One approach to this optimization is to perform many 

experiments varying the relevant parameters.  For example, reactant concentrations, 

temperature, solvent, stoichiometric ratios and other process parameters can all be varied.  

From these reactions, a set of conditions can be selected that best satisfies the design 

objective.  These methods have found wide application in catalysis, from polymer research10 to 

enantioselective catalyst development.11  Parameter screenings are typically cheap and quick to 

perform, but do not provide very much information about the chemical system other than a 

performance surface related to the optimization.  Parameter studies are most useful when 

performed in the final system.  They are not sophisticated enough to separate system effects 

from chemistry effects. 

1.2.3. Kinetic Study 

Performing a kinetic study is similar to parameter screening but aims to provide a model of the 

system.12  Parameter screening is a simpler challenge because the desired outcome is only an 

optimized set of conditions.  Kinetic studies, on the other hand, attempt to provide a 

mathematical expression that relates reaction rate to all of the parameters that influence it, 

such as pressure, temperature, and concentration.  There are two types of kinetic expressions 

that can be commonly found in the literature: empirical or mechanistically based.  Empirical 

rate laws are fit to a well-designed set of experiments using regression analysis.13  The validity 

of empirical rate laws is limited to the range of experimental conditions.  The second method 

uses an understanding of the chemical mechanism to formulate a series of elementary rate 
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expressions.  By making assumptions about the nature of the rate determining step, it is often 

possible to arrive at a kinetic expression that captures a substantial part of the variability of the 

data.14  Kinetic information is often used to design bigger systems for performing a given 

chemistry, a process known as scale-up. 

1.2.4. Understanding Chemical Mechanisms 

The final goal of chemical research is to understand the mechanism of chemical reactions. Even 

for the simplest overall reaction, the identity of intermediate steps is initially unknown.  

Intermediates are typically short-lived and are difficult to observe.  Understanding a kinetic 

mechanism can help design a better chemical system.  For example, during the water gas shift 

reaction over platinum, carboxyl (COOH) was found to be the key intermediate rather than 

formate (HCOO).15  Identifying a desirable reactant characteristic could enable the design of 

better reagents.  Alternately, a catalyst could be designed that lowers the transition state 

energy required to break the key bond.  Mechanistic understanding can also lead to more 

accurate and robust kinetic expressions. 

1.3. Historic Methods for Catalyst Screening 

Catalysts come in one of two main types, homogeneous and heterogeneous.16  Homogeneous 

catalysts react in the same phase as the reactants and are typically found in the liquid phase.  

Homogeneous reactions have typically been studied in batch.  Heterogeneous catalysts react in 

a separate phase.  These catalysts are often solid and immobilized in a reactor.  As the 

complexity of the chemistries studied increases, new demands are placed on experimental 

setups that begin to expose the limitations of the current systems.   
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1.3.1. Common System Limitations 

Batch catalyst screening has typically been carried out in laboratories at conditions accessible in 

glass vessels.  Glass round-bottom flasks have been the tool of choice for carrying out batch 

experiments for years because they have excellent chemical compatibility and are visibly 

transparent, enabling researchers to observe the reaction as it progresses.  Glass is a cheap 

material and flasks have been devised for all types of purposes, including the rigorous exclusion 

of air or the ability to operate at reflux.   

Batch operation allows for studying time dependent reactions, but requires that every 

experiment be run independently of the previous.  For example, a typical kinetic study requires 

that a number of parameters be varied, such as temperature, concentrations, and pressure.  A 

typical factorial design of experiment17 with four parameters (concentrations of two reactants, 

temperature, and pressure) at each of three conditions would require 34 = 81 experiments.  

Between each experiment the reactor must be cleaned and prepped for the next experiment.  

Results from batch reactions are also subject to more variability between experiments since all 

results are transient.  This variability highlights the need for repeat experiments, which only 

magnifies the inefficiency of batch experimentation.  Through clever design of experiments, it is 

possible to reduce the number of required experiments while minimizing the lost information.17  

It is also possible to increase the efficiency of batch experiments by running them in parallel, 

which requires devoting substantial resources to the task.   

Heterogeneous catalysis has been traditionally studied under continuous flow conditions in 

stainless steel tubes filled with packed catalyst beds.  These systems require significantly more 
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infrastructure than glass flasks, but are more versatile.  Tubular reactors are run continuously, 

enabling reactions samples to be collected more quickly.  However, continuous operation at the 

laboratory scale can require larger quantities of expensive reagents than would be required in 

batch.   

Traditional systems often suffer from mass transfer limitations.  For most chemical reactions to 

occur, two species must interact.  This simple step is known as an elementary reaction.  

Reactions require two things to happen: the reacting atoms must be in close proximity and the 

reaction must be thermodynamically favorable.  The proximity requirement is tied to the idea 

of mass transfer.  Mass transfer is a function of reactor design and geometry, while reaction 

kinetics are a function of parameters such as temperature and pressure.  Mass transfer 

limitations occur when all species are neither well mixed nor at uniform concentration.  For 

these limitations to occur, the rate of mass transfer must be slower or similar to the rate of 

reaction.  These gradients result in reaction conditions that vary spatially.  When mass transfer 

limitations are present, the results reflect mixing rather than reaction rate.  Since the mixing 

rate is related to the geometry of the reactor, attempting to scale up the process using these 

results would fail.   

Batch reactions carried out in stirred glass flasks are particularly susceptible to mass transfer 

limitations.  The surface area of the phase interface is small relative to the volume of the 

reacting phase.  Flow reactors, with length scales on the order of ¼ inch, are only likely to 

experience mass transfer limitations when the reaction is rapid.  In general, better mass 

transfer is observed in flow reactors than in batch reactors. 
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Heat transfer limitations also exist in traditional laboratory scale reactors.  Similar to 

concentration gradients, temperature gradients can form.  Reaction rates are typically very 

sensitive to the local temperature.  For batch experiments, temperature control is provided by 

submerging a glass flask in a temperature bath.  This bath is then held at a constant 

temperature.  Heat transfer into the reaction vessel occurs across the glass walls.  This heat 

transfer scales with the surface area of the vessel which is proportional to the square of the 

radius.  Since the volume of the fluid scales with the cube of radius, the efficiency of heat 

transfer decreases as the vessel increases in size.  The scale of a typical flask can support 

gradients within the fluid.  Additionally, glass has a low thermal conductivity, restricting the 

magnitude of the heat flux.  For heterogeneous experiments, heat transfer once again occurs 

across the walls of the reactor.  Metal displays improved heat transfer and the length scales 

over which heat transfer occurs are reduced when compared to a glass flask.  Even so, heat 

transfer limitations may be observed during rapid reactions.  For this reason, very fast, 

energetic reactions are challenging to study.  If the heat is not removed from the system, a 

runaway reaction could result from the temperature increase.  At the very least, gradients 

would likely exist in the system making gathering kinetic data difficult. 

1.3.2. Addressing Pressure Limitations 

An additional challenge in typical chemical research is the operation at high temperature and 

pressure.  Chemical reactions typically take place more quickly at higher temperature and 

pressure making it possible to increase efficiency by raising the temperature and pressure of an 

experiment.  In practice, many homogeneous reactions in the laboratory become limited to the 

conditions that can be run in glass.  If the vessel could be pressurized, the same solvent could 
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be used at higher temperature without boiling.  In fact, most industrial gas-liquid processes are 

run under pressure.  Higher pressures increase the concentration of dissolved gases in the 

liquid phase, which typically increases the reaction rates.  Low pressure gas reactors must also 

be very large, which is not economically practical.18  Given the commercial importance of 

chemical systems, it is advantageous to study them in the laboratory at similar conditions.   

Alternate techniques have addressed this need.  High pressures have been accessible in the 

laboratory setting using traditional bomb type batch reactors.  Bomb reactors are operated 

similarly to glass bottom flasks, but at high pressure.  Jessop et al.19 describe a typical bomb 

system (Figure 1.1), which is built around a 50 ml stainless steel reactor.  The reactor is placed 

in a furnace to control the temperature.  During operation, the liquid phase is charged to the 

reactor.  Gas is then loaded on top of the liquid phase to pressurize the system.  A reservoir is 

 

Figure 1.1. Typical system setup for a bomb reactor capable of high-pressure 

experimentation.  The contents of the reactor are magnetically stirred and the temperature is 

controlled by an oven.  The liquid is loaded first and then pressurized with gas. From Jessop et 

al.19 
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present upstream of a pressure regulator to ensure that the pressure in the reactor remains 

constant as gas is consumed by the reaction.  To address mass transfer limitations, a magnetic 

stir bar is used to stir the reacting liquid phase. 

While this system is able to reach high pressures and temperature due to its stainless steel 

construction, it still has many of the same challenges that were described above in Section 

1.3.1.  The system has similar mass transfer limitations and can be subject to very high heat 

transfer limitations given the thick walls required to support the pressure.  Batch operation also 

reduces throughput by requiring experimentation downtime when conditions are varied.  The 

reactor is no longer transparent, so observation of the reaction becomes more limited.  Precise 

sampling is also more challenging than in a glass flask. 

Heterogeneous continuous flow systems have typically been able to operate at high pressure.20  

Stainless steel tubing is strong and can withstand pressure with relatively thin walls.  The 

maximum operating pressure for tubing is a function of tube diameter, with large tubing having 

a lower maximum pressure.  The ability of tubular reactors to operate at high pressure is a 

welcome benefit of the material selection. 

A number of commercial systems have been developed for high pressure catalyst screening.  In 

general, they are targeted at heterogeneous continuous flow catalyst systems where catalyst 

particles can be loaded into the system.  Fewer systems target homogenous continuous flow 

catalysts because catalyst recovery is challenging and catalyst costs can make these systems 

unattractive.  Instead, systems with parallel batch reactors and a common head space have 

been developed for high-pressure homogeneous catalysis.  Symyx has developed a system for 
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screening 100-150 samples at a time.21  Symyx has also developed a platform for the complete 

heterogeneous catalysis workflow.22  These systems include software to design experiments, 

catalyst synthesis automation, batch and flow reactors to test chemistry, and software to 

analyze results.  The system to prepare catalyst has a volume on the order of 10 ml, while the 

reactor volumes are 65-250 µl per channel.  ThalesNano has an alternate bench top system for 

catalyst testing.23  Catalyst is loaded into cartridges and the system’s volume is 6 ml.  The 

system is capable of handling liquid and gas feeds at pressures up to 100 bar.  The HEL Group 

has developed a range of products for heterogeneous catalysis, from low cost, batch-mode 

catalyst screening in parallel to flow chemistry systems.24  The volumes of the flow system are 

on the order of milliliters and can be used at pressures of up to 100 bar.  All of these systems 

provide off the shelf ease of use, but most do not have scales small enough to enjoy all of the 

microscale benefits.  Many of these systems allow for parallel experimentation to address the 

required down time between experiments. 

It is desirable to design new systems that do not suffer from the mass and heat transfer 

limitations of traditional systems and allow for continuous operation at industrially relevant 

temperatures and pressures.  The system must still be chemically inert and provide optical 

transparency.  Microreactors provide a platform for such a system. 

1.4. Microreactors 

1.4.1. Overview 

Research into the field of microreactors began in earnest in the 1990s to address limitations in 

traditional chemistry methods.25, 26  While the earliest microreactors were constructed before 
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this period, technological advances in supporting fields, such as silicon computer chip 

manufacturing, enabled microreactor technologies.  The term microreactor (Figure 1.2) is 

typically applied to devices that have features that are sub-millimeter in scale, on the order of 

50-500 microns.  Microreactors, a subset of a class known as microdevices, enable chemical 

reaction.  Other microdevices include detection devices and separators.  Microreactors are 

often compact with external dimensions on the order of centimeters, and depths are often sub 

millimeter.  The defining features of a microreactor are channels, which could be a single long, 

serpentine channel or perhaps many short channels fed using a manifold.  Depending on the 

overall length of the channel, volumes of up to hundreds of microliters can be attained with 

high surface area and small cross-sectional areas.   

1.4.2. Material Considerations 

Microreactors have been constructed from a variety of materials, allowing the cost and ease of 

production to be optimized to the application.28  Polymeric materials such as 

polydimethylsiloxane (PDMS)29-31 and Poly(methyl methacrylate) (PMMA)32, 33 have found wide 

use as cheap materials for the production of microreactors.  Disposable PDMS microdevices 

have found use in biological research.  However these materials are not well suited to harsh 

 

Figure 1.2. A typical silicon microreactor. From Ratner et al.27 
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chemicals or elevated pressure.  Glass,34 silicon,35 metal,36 and ceramic37 have all been used to 

fabricate more robust microreactors.   

Ultimately, the choice of materials comes down to competing interests of chemical 

compatibility, ease of machinability, strength, and thermal conductivity.  Table 1.1 summarizes 

the most common material options.  While glass is generally desirable, it suffers from very low 

thermal conductivity.  Stainless steel is difficult to micromachine and there is no way to observe 

the interior of the reactor during operation.  Silicon microreactors make the fewest 

compromises in these parameters.   

Silicon and Pyrex (borosilicate glass) were chosen as the microreactor materials for the work in 

this thesis.  Silicon’s chemical compatibility can be improved through surface coatings of silicon 

oxide or silicon nitride.  Silicon has a high thermal conductivity, and when paired with Pyrex, 

allows for observation of the internal volume of the microreactor.  Silicon micromachining is 

very established, allowing for a great deal of flexibility in design.39  Designs that can be 

imagined and represented in two dimensions can be etched into a third dimension with very 

high aspect ratios using standard photolithography40 and deep reactive ion etching (DRIE)41 

techniques.  Depending on the requirements, a unique microreactor can be designed for each 

application.   

 Silicon Stainless Steel Glass 
Thermal Conductivity (W/m-K)38  (153)  (17)  (1.1) 
Strength    
Observable  (Pyrex cap)   
Ease of Micromachining    

Table 1.1. Comparison of common microreactor materials capable of pressurized operation 

and exposure to organic solvents. 
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1.4.3. Benefits Realized in Silicon Microreactors 

Microreactors excel in a number of dimensions such as improved mass and heat transport, 

ability to access high pressures, and improved safety.42  These benefits have led microreactors 

to augment traditional techniques.  Specifically, microreactors can be used to directly address 

each of the traditional limitations outlined in section 1.3.1 above.  Most benefits originate from 

the small sizes inherent to microreactor technology.43   

1.4.3.1. Mass Transport 

Mass transport limitations remain one of the challenges of traditional systems.  Microreactors 

allow much faster reactions to be studied before encountering mass transfer limitations.  Fast 

mixing and diffusion can be achieved in microreactors due to reduced characteristic length 

scales.  Diffusion must only occur across sub millimeter distances.  Micromixers44 can also be 

designed to further enhance mixing.  Interdigitated micromixers have been developed which 

split and recombine streams to reduce diffusional length scales.45, 46 Active micromixing has also 

been explored using such techniques as acoustic and periodic flow switching.47  For reactions 

that are mass transfer limited in traditional systems, the improved mass transfer can lead to 

higher observed reaction rates and process intensification.48  

Mixing has also been shown to improve through the addition of a second immiscible phase.  

Under specific ratios of the flow rates of the two phases, a stable segmented (slug) flow can be 

achieved.  Segmented flow is shown in Figure 1.3.  In the presence of a second phase, internal 

recirculation has been observed in the liquid slugs, which increases mixing.48  The addition of 

meandering sections in the channel can further increase this mixing.49, 50  Segmented flow also 
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reduces axial dispersion in the flow.50  This effect can easily be shown using residence time 

distribution (RTD) techniques.51  Even though the system is operating in flow, the reduced axial 

dispersion allows results to be approximated using an ideal plug flow reactor (PFR) model, 

which is highly analogous to a batch model. 

1.4.3.2. High Pressure 

The yield strength of a material is an intrinsic property.  However, the maximum operating 

pressure of a reactor is a function of both material properties and the reactor’s design.  By 

reducing the internal volume, less force is loaded on the reactor’s walls, enabling higher 

pressure operation.  This reduction of force reduces the required thickness of the wall and also 

reduces the risks associated with catastrophic failure.  Microreactors are an extreme example 

of small volume reactors and are able to withstand very high pressures.  The high mechanical 

strength of silicon, combined with sub-millimeter channels, has enabled extreme conditions 

 

Figure 1.3. Segmented flow in a meandering serpentine microchannel.  Gas bubbles, with 

rounded caps, are dispersed in the continuous liquid phase. 
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such as super critical water (250 bar and 400 °C) to be achieved in microreactors.52  The 

accessibility of these conditions have allowed quantum dots to be synthesized in microreactors 

in both pressurized53 and supercritical54 fluids.  A number of techniques have been developed 

for interfacing silicon microreactors to external systems at high pressure including solder and 

compression schemes.35, 52, 55 

1.4.3.3. Heat Transfer and High Temperature Operation 

The temperature in reactors is controlled by transferring heat across boundaries to the internal 

fluid.  Microreactors benefit from high surface area to volume ratios, which increase the area 

available for heat transfer to occur.  In addition, silicon has a high thermal conductivity 

(151 W/m K), further improving heat transfer.  When high-temperature operation is combined 

with high-pressure operation, reactions can be studied at temperatures above the normal 

solvent boiling point.  Since high-temperature operation is often associated with faster reaction 

rates, more reaction pathways become accessible in the laboratory.   

Removing heat transfer limitations in reactors has two benefits: safe operation of highly 

exothermic reactions and isothermal operation.  Isothermal operation is a common goal during 

quantitative study of chemical reactions because it simplifies the extraction of kinetic data.   

1.4.3.4. Improved Safety 

Microreactors are safer to operate than similar traditional systems for two reasons.  First, the 

required amount of any hazardous chemicals is significantly smaller than would be required at 

the laboratory scale.  This reduction is beneficial when the reaction contains hazardous 

reactants, intermediates, or waste.  The safety of the reaction of chlorine, a hazardous gas, to 
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form phosgene has been improved in microreactors by limiting the amount of chlorine gas in 

the system.56  Secondly, good process temperature control enables operation of highly 

exothermic reactions.  If sufficient heat is not removed from the system, the temperature rise 

in the reactor could lead to a runaway reaction.  Direct fluorination57, 58 is a highly exothermic 

reaction that would be particularly dangerous to run without sufficient cooling.  Chemistries 

with highly energetic intermediates also have been successfully studied in microreactors.59  

These intermediates would have posed an explosion risk had they been formed in higher 

quantities in a traditional system.   

1.4.3.5. Continuous Operation 

Continuous operation of a microreactor reduces the time required to perform an additional 

experiment.  The system does not have to be stopped and cleaned after each experiment.  With 

the addition of real-time analytic equipment, continuous operation allows a parameter to be 

varied, the system to be monitored until steady state is reached, and a sample to be collected 

in the minimum possible time.  Concentration and temperature are particularly easy to vary in a 

well-designed system.  In addition, there is less ambiguity during scale up to industrial scale.  

Most industrial processes are operated continuously, making continuous results more desirable 

than batch results.   

1.4.4. Microreactor Applications 

Micro total analysis systems have been used in research for a number of different applications 

including portable energy,60-62 biological analysis of cells,63 and assays of proteins.64  In the 

chemistry realm, microreactors have enabled high throughput screening of a variety of 
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compounds.65 They have also been employed for kinetic and mechanistic studies.66-68 

Optimization,69, 70 including the use of automation,71 has been efficiently explored in 

microreactors.  Reactions could also be run sequentially to build libraries of known compounds 

and catalysts.72, 73  Single microreactors also have been paired to extend to multiple reactions74 

in miniature chemical plants.   

Separation is another realm where the benefits of the microscale can complement with 

traditional techniques.  Techniques such as distillation75 and crystallization76 have been 

demonstrated at the microscale.  Electrophoretic separation has been applied to charged 

molecules, such as protein, to develop new separation techniques.77, 78  Additionally, 

membranes have been integrated into microreactors during fabrication.79-83  The absence of 

gravity-based phase separation required new techniques to be developed for the microscale.  

Phase separation has been enabled by leveraging the increased importance of surface 

phenomena, such as surface tension, at the microscale.84, 85 

Analysis of chemical species has long been a challenge for microreactor systems due to the 

small volume of samples produced.  A variety of schemes has been introduced over time to 

integrate analytical equipment both inline and onchip.  A number of chemical systems have 

been successfully integrated with micro reactors including ultraviolet/visible spectroscopy,86 

Raman spectroscopy,87 attenuated total reflectance infrared (ATR-IR) spectroscopy,67 and 

nuclear magnetic resonance (NMR).88  Temperature sensors, which can also act as resistive 

heaters, have also been integrated onchip,89, 90 as have microflow91-93 and pressure94 sensors. 
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To date, microreactors have been primarily used as research tools.  However, there has been 

interest in commercializing microreactor technology.  Rather than scaling up a reaction that had 

been successfully studied in a microreactor, the concept of scaling out or numbering up was 

developed.  This concept achieves increased production at the performance of a single 

microreactor through replication of individual microreactor units.  This increased production 

comes at great cost and control complexity.  Bulk chemical production and the challenges 

facing the energy industry will be difficult to solve using scale out techniques.  Microreactors 

have also been used for production where small quantities of products are required, such as in 

the pharmaceutical and specialty chemical industries and when safety is a particular   

concern.95, 96  Finally, microreactors have become a preferred technology for process 

intensification.97  During process intensification, the size of a plant is shrunk by one to two 

orders of magnitude while maintaining desired production levels.  Switching from batch to 

continuous operation and reducing the number and size of required units are examples of 

methods that lead to process intensification.   

1.5. Motivation 

As the world’s energy mix shifts towards more challenging feedstocks, there will be a need for 

new catalyst systems to be identified, studied, and applied to commercial production.  

Improvements to the traditional methods for catalyst study are possible.  These traditional 

methods excel at providing experimental methods that are widely applied across many types of 

chemistries.  Their largest drawback is the limited range of conditions that can be accessed 

efficiently in the system.  A large gap exists between laboratory conditions and ultimate 

commercial operation.  Once a catalyst is optimized at standard conditions, testing is conducted 
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at the pilot plant scale at increased cost.  Shifting more experimentation to the laboratory could 

greatly reduce the cost of catalyst development. 

Even the initial optimization can require hundreds of experiments that take substantial time 

when conducted in batch.  Shifting homogeneous catalysis to continuous flow operation can 

reduce the time required to perform these experiments.  Further driving interest in continuous 

flow experiments is the increased automation that can be achieved.  Non-parallelized batch 

experimentation requires manual labor to clean and restart the reactor between each 

experiment.  The study of heterogeneous catalysts has benefited from continuous flow for 

decades.   

Advances in catalysis will require a number of different approaches.  Both homogeneous and 

heterogeneous catalysts will be needed.  Kinetic modeling of reactions is required to 

understand the rate behavior of chemical reactions.  The kinetics of a catalyst system are scale 

independent and therefore form the core of scale-up reaction-engineering studies.  While the 

kinetics of heterogeneously catalyzed systems are often studied, only limited information exists 

for the homogeneous kinetics.98  Instead, studies focus on the chemical aspects of the catalysts, 

such as ligand selection.99  Typical homogeneous catalysts are organometallic compounds 

whose activity is greatly affected by the attached ligands.  Different products can be formed 

from a single substrate and metal center by varying the attached ligand.100  Homogeneous 

catalysts often have higher activity and selectivity than their heterogeneous counterparts.  

Many novel homogeneous catalysts are being developed in chemistry laboratories because of 

the wide availability of ligands that can be tuned to particular applications.  Homogeneous 
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catalysts in continuous flow systems are at a distinct disadvantage due to the difficulty recycling 

them.  Heterogeneous catalysis has been preferred industrially due to its lower cost and ability 

to stay confined to the reactor.  These catalysts have traditionally consisted of metal alloys, 

oxides, or sulfides on a porous support.  Enzymes are sometimes considered a separate group 

since they possess characteristics of both homogeneous and heterogeneous catalysts.101  An 

ideal analysis system would be able to support both types of catalyst.  In either homogeneous 

or heterogeneous catalysis, the reaction can involve more than one phase.  Many liquid phase 

reactions that upgrade biomass require hydrogen gas.  Microreactors have far higher 

multiphase mass transfer ensuring that the kinetics can be observed directly. 

Microreactors have been previously used to study catalysis, but at lower pressures than are 

used industrially.  Many of the inherent capabilities of microreactors make them well suited to 

catalytic analysis, but the systems that support the microreactors remain a hidden challenge.  It 

is nontrivial to interface a microreactor with fluid delivery and analysis systems.  Overcoming 

these limitations remains an interesting research area.  In particular, high-pressure fluid-

delivery systems remain orders of magnitude larger than the microreactor that they support.  

There is an opportunity to design a system that takes new approaches to enable rapid 

experimentation. 

For any reaction studied, catalyzed or not, the goal is to collect correct information, irrespective 

of the system used.  Limitations of the experimental apparatus cannot cause any artifacts in the 

data.  The goal of an experimental setup is to be transparent to the researcher, neither 

obfuscating the data nor preventing experimentation at the desired conditions.  Both within 
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academia and in industry, there is a strong desire for such systems that reliably probe the 

kinetics and mechanisms of catalytic systems.  Thus there is a need to develop a laboratory 

system capable of reliable kinetic study, in multiple phases, at industrially relevant conditions. 

1.6. Thesis Objectives and Overview 

To address the need for new systems that enable the study of catalysis, a system was designed, 

constructed, and demonstrated on both homogeneous and heterogeneous catalysts.  The 

system is capable of study at industrially relevant conditions, such as temperatures from room 

temperature to 350 °C and pressures from atmospheric to 100 bar.  It has been built around 

multiple analysis techniques that provide complementary information.  The system is designed 

to enable very fast mass transfer to ensure that the observed reaction rates are kinetically 

limited.  This system is capable of more efficient kinetic experimentation than traditional batch 

systems and is more versatile than commercially available catalyst screening systems. 

Principles of microreactor design and their application to two and three phase microreactors 

are discussed in detail in Chapter 2.  A discussion of the final system components, construction, 

and their interactions are discussed in Chapter 3.  Chapter 4 contains details of the system 

operation and analytic infrastructure. 

The completed system was validated by studying homogeneously catalyzed hydroformylation 

of alkenes to aldehydes by Wilkinson’s catalyst.  The conditions for this chemistry were well 

within the capabilities of the designed system and fully explore its capabilities with multiphase 

operation.  A kinetic expression for the hydroformylation of 1-octene along with mechanistic 

and system insights are presented in Chapter 5. 
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The system was further expanded to study heterogeneous catalysis.  The system was 

demonstrated on the very rapid hydrogenation of alkenes to alkanes.  A 5% platinum on 

alumina catalyst and a 5% platinum on silica catalyst were synthesized, studied, and compared.  

These results are summarized in Chapter 6.   

In the final chapter, Chapter 7, the work and its contributions are summarized.  In addition, 

characteristics of chemistries suitable to be studied in microreactors are discussed.  Areas for 

future research are also indicated. 
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Chapter 2. Microreactor Design and Construction 

At the core of the high-pressure analysis system lies the microreactor.  Microreactors, due to 

their characteristic length scales, can leverage improved heat and mass transfer and high-

pressure operation, which have been highlighted in detail in Section 1.4.3.  The microreactor 

must be designed intelligently to take advantage of these benefits, requiring an understanding 

of the specific phenomenon that will be harnessed.  For multiphase operation, segmented flow 

provides the advantage of improved mass transfer but also the challenge of maintaining stable 

flow.  An understanding of segmented flow enables efficient design and operation.  To study 

heterogeneous catalysis, a packed bed is often used which ultimately requires new reactor 

designs.  A set of reactors were designed for homogeneous catalysis as well as heterogeneous 

catalysis.  All reactors were then fabricated using standard MEMS (microelectromechanical 

systems) fabrication techniques. 

2.1. Segmented Flow 

Segmented flow refers to a distributed flow with a continuous wetting phase and an immiscible 

dispersed phase (Figure 2.1a).  It occurs when the flow rates of the wetting and non-wetting 

phases are of similar order.  The dispersed phase forms bubbles that span the width of the 

channel.  A slug is found in the continuous phase between two consecutive bubbles.  

Segmented flow is not the only flow regime that can be observed in laminar multiphase 

reactors.  Figure 2.1 shows photographic examples and a flow map of the various flow regimes.  

Bubbly flow occurs when the flow rate of the wetting phase is much larger than the flow rate of 

the non-wetting phase.  Droplets form with a diameter less than the channel width.  Annular 
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flow represents the other extreme.  It occurs when the flow rate of the wetting phase is much 

smaller than the flow rate of the non-wetting phase.  Under this regime, the wetting phase is 

confined to the region adjacent to the walls while the non-wetting phase populates the center 

of the channel.  Depending on the shape of channel cross-section, significant non-uniformity 

might exist in the wetting phase thickness.   

2.1.1. Formation 

Segmented flow typically forms at a T-junction in a microdevice.  The continuous phase flows 

down a straight channel, while the non-wetting phase impinges perpendicularly on this flow.  

Capillary instability leads to the formation of segmented flow.  Garstecki et al. identified four 

stages in the formation of segmented flow: (1) the disperse phase enters the main channel, (2) 

the disperse phase completely blocks the main channel, (3) the bubble elongates down the 

length of the main channel, and (4) the bubble separates from inlet stream.104  They also 

demonstrated a simple scaling expression for the length of a bubble, 

 

Figure 2.1. (a) Photographic examples of the three flow regimes typically found in multiphase 

laminar flow.102  (b) An example flow map of the various flow regimes as functions of liquid 

and gas velocities.85 From Hessel.103 
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 α= +1 dB

c

QL
w Q  (2-1) 

where LB is the bubble length, w is the width of the channel, Qc/d are the flow rates of the 

continuous and dispersed phases, and α is a fitted constant of order 1. 

Geometry plays a large role in the ultimate size of the bubbles and slugs, which is not captured 

in Equation 2-1.  For example, significant leakage occurs in the corner of square channels as 

bubbles form, which elongates the final bubble.105  Fries et al. developed a correlation for 

determining slug and bubble length to improve estimates for square channels and when the 

flow rate of gas is greater than the liquid flow rate.106  It extends Equation 2-1 by estimating a 

value for α based on geometric considerations 

 α γ β− −= 1 0.517.2131  (2-2) 

where γ is the ratio of the width of the main channel to the gas inlet width (w/wgas) and β is the 

impingement angle (see Figure 2.2).  While traditional junctions to form segmented flow are T-

shaped, this correlation allows the gas to impinge at an arbitrary angle β.   

Liquid slug length has traditionally been calculated from the bubble length using the simple 

scaling ratio, 

 

Figure 2.2. Geometric scheme used in empirical slug flow size prediction. From Fries et al.106 
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However, this fails to account for the liquid that wets the corners of a square channel alongside 

a gas bubble.  A typical bubble cross section can be found in Figure 2.3.  Thus, to develop an 

estimate of the length of liquid slugs, a separate correlation is required that can take fluid 

properties into account, since they affect the shape of the bubble, specifically Rc.  Fries et al. 

developed the following correlation for liquid slug length 
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where Re is the Reynolds number, Ca is the capillary number, Dh is the hydraulic diameter, ε *
L  is 

the ratio of liquid to total volumetric flow, ρ is the density, V is the superficial bubble velocity, µ 

is the fluid viscocity, γcd is the surface tension between the continuous and dispersed phases, 

and ratio w and h are the channel width and height.  For the case of a square channel, the 

hydraulic diameter is equal to width of the channel. 
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From these correlations, a number of trends can be identified.  For example, the liquid slug 

length increases when surface tension increases or viscosity decreases.  The unit cell length - 

the total length of one bubble and slug unit - increases as liquid holdup decreases, the gas inlet 

width increases, and the inlet angle β decreases.  The unit cell length is also directly 

proportional to the channel width.   

A theoretical, closed-form expression for the size of bubbles was recently proposed by van 

Steijn et al.107  The expression is based on continuity, geometry, and an understanding of the 

mechanism of droplet formation.  The expression was validated using experimental results and 

provides an alternative to the correlation above for determining bubble size.   

2.1.2. Mixing and Residence Time Distribution 

Segmented flow enhances mixing in the continuous phase by introducing recirculating flow.  

The recirculation results from the different boundary conditions in the slug: nonslip at the walls 

and slip at the dispersed/continuous phase boundary.  A stagnation point can be observed at 

the phase boundary on the symmetry line (Figure 2.4).  When the average velocity is subtracted 

 

Figure 2.3. Cross section of a dispersed gas bubble in a continuous liquid phase.  The liquid 

fills the corners of the square channel, reducing the expected length of the liquid slug and 

enabling diffusion between adjacent slugs. 
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from the flow field, recirculation cells are visible around the line of symmetry.  This recirculation 

aids mixing and multiphase mass transfer. 

 

Mixing could be further improved if flow could be induced to cross over the symmetry line in 

the center of the channel.  Gunther et al. demonstrated that undulating channels, as opposed 

to straight channels, break the symmetry and enhance mixing.50  This enhancement can be 

readily seen from streamlines in both straight and curved channels (Figure 2.5).  Curvature 

leads the inner meniscus to become thinner than the outer meniscus, leading to a break in 

symmetry.108  Thus, undulating channels enhance mixing by varying which wall has the smaller 

 

Figure 2.4. Micro particle image velocimetry (PIV) measurements of a 2D velocity field 

showing recirculation motion inside a liquid slug after the average velocity was subtracted 

from flow field. From Gunther et al.49 

 

Figure 2.5. Comparison of streamlines for straight (left) and curved (right) channels showing 

that the center line of symmetry is disturbed in curved channels. From Gunther et al.50 
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radius of curvature and enabling flow across the midpoint of the channel.  For optimal mixing, 

an undulating channel should be placed after streams are combined to quickly achieve 

homogeneity.  

In segmented flow, adjacent slugs appear to be isolated by the dispersed phase.  However, a 

meniscus exists around the dispersed, non-wetting phase that allows communication between 

adjacent slugs.  In effect, segmentation only reduces axial dispersion in the continuous phase.  

In square channels, a substantial layer of the continuous phase exists in the corners of the 

channel (Figure 2.3).  Residence time distribution (RTD) analysis can be used to study how much 

diffusion occurs between adjacent slugs.  Kreutzer et al. injected a tracer into single phase and 

segmented flows to demonstrate the reduced dispersion in segmented flow (Figure 2.6).109  The 

 

Figure 2.6. Residence time distribution for a tracer injected into (a) single phase flow and (b) 

segmented flow.  The residence time in both cases was comparable. From Kreutzer et al.109 
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peak width in the segmented flow scenario reduced the peak width by a factor of 5.  In 

addition, they found that dispersion decreases with increasing velocity, but at a less than linear 

rate.  Decreasing the gas-to-liquid ratio was also shown to reduce dispersion for a constant 

linear velocity.  Reduced transport between adjacent slugs is a key advantage of multiphase 

microfluidic systems. 

The mass transport benefits associated with segmented flow diminish if the flow is unsteady 

and the lengths of the bubbles and slugs increase due to coalescence.  Specifically, the axial 

diffusion length for mass transfer increases while the phase boundary surface area decreases.  

These changes will affect the rate of mass transport which can introduce erroneous results to 

kinetic experimentation. 

2.1.3. Stability of Segmented Flow 

Once formed, segmented flow has the potential to remain stable for long periods of time.  

Therefore, observed instabilities are manifestations of problems around the junction where the 

flow forms.  Semi-stable bubbles can coalesce if given enough time.  When designing a 

microreactor that will have residence times on the order of minutes, these instabilities might 

have enough time to manifest.  Galbiati et al. demonstrated how disturbances in the inlet 

region can greatly change the flow regime.110  In addition, they observed that, given a long 

enough channel length, small disturbances were magnified and led to coalescence.   

Many disturbances in microreactor systems come from pressure fluctuations.  External pressure 

fluctuations are very common primarily due to fluid distribution systems.  Kraus et al. 

performed a statistical study of gas-liquid segmented flow and determined the probability 
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density function of gas bubble dwell times.93  They used three different methods to drive the 

liquid segmented flow: a Harvard PHD2000 syringe pump, an Inotech syringe pump, and a 

pressurized tank.  While all three pumps were operating at the same average flow rate, 

differences in the probability density functions were observed.  This suggests that the way that 

the pumps operate, likely due to pressure pulses, affects the characteristics of segmented flow.  

These pressure pulses likely extend to segmented flow stability. 

The origin of fluctuations in pressure caused by syringe pumps is related to the two ways in 

which mechanically driven flow differs from pressure driven flow.  First, the motor in 

mechanically driven flow introduces a characteristic step motion as the screw turns.  Secondly, 

the elasticity of the fluid leads to a phenomenon known as the “bottleneck” effect.111  As a fluid 

is compressed in a syringe, the diameter of the syringe is much larger than the exit 

microchannel.  This results in a very long transient before steady pressurization is achieved.  

This phenomenon is not observed in the absence of a microchannel, which is small relative to 

the syringe diameter.  Another source of pressure instability comes from the elastic behavior of 

some types of tubes, resulting in very long transients.112   

The addition of hydrodynamic resistance upstream of the segmented flow junction has been 

shown to improve the stability of segmented flow.  De Mas et al. found that to stably operate a 

slug flow reactor, a hydrodynamic resistance is required in the inlet channel that is larger than 

the pressure drop in the remainder of the reactor.57  They found that this result was particularly 

true when multiple parallel channels were fed by the same feed line.  Pressure fluctuations 

have also been shown to cause oscillatory bubbling.113  Khan et al. developed an ‘electrical-
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hydraulic’ model before testing it experimentally.  Oscillatory bubbling was observed when 

flexible tubing was placed in series with a large diameter (500 µm ID) rigid 

polyetheretherketone (PEEK) tube.  However, once the PEEK tube was replaced with a narrow 

diameter tube (65 µm), regular, monodisperse bubble sizes were observed.  Thus, careful 

consideration must be given to fluid delivery lines to ensure stable flow; specifically, the 

pressure drop in the inlet tube/channel must be larger than the pressure drop in the channel.   

Bubble coalescence is one of the most observable forms of segmented flow disturbance.  

Oztaskin et al. studied the stability of segmented flow in square microchannels using volume of 

fluid (VOF) simulations.114  They considered two bubbles in a continuous liquid.  A periodic 

boundary condition was used axially along the channel.  The length scales used were larger than 

would be typical for microreactors, which also led to the inclusion of buoyancy in nearly all 

simulations.  They considered bubbles and slugs of a variety of sizes.  To perturb the system, 

the ratio of the lengths of two adjacent liquid slugs was varied.   

Oztaskin et al. found that the two bubbles coalesced or recovered to the unperturbed system 

when both liquid slugs were of the same length.  Essentially, a stable flow is one in which all 

liquid slugs are the same length.  When the length of a slug was perturbed, some simulations 

returned to this stable flow while others became increasingly unstable and bubble coalescence 

was observed.  When looking at the flow (Figure 2.7), it became clear that a minimum slug 

length must exist for recirculation to occur in the liquid slug.  When a slug with recirculation 

was perturbed, it was able to recover.  Specifically, when the dimensionless slug length (Ls/Dh) 

is less than 0.1, bypass flow was observed which led to the shrinking of the liquid slug and 
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coalescence.  However, when Ls/Dh was greater than 0.2, recirculation was observed and the 

system recovered.  In a similar work, Thulasidas et al. experimentally found that the liquid slug 

flow profile was fully developed when Ls/Dh was greater to or equal to 1.5.115  This work 

suggests that there is a minimum slug length required to enable stable segmented flow.  

Otherwise, any small perturbation to the pressure envelope of the system, such as a 

disturbance from a syringe pump, would result in bubble coalescence.   

2.1.4. Mass Transfer Model 

When using a microreactor system to study a kinetic system, it is important to observe kinetics, 

not an artifact due to insufficient mass transfer.  One check would be to estimate the mass 

 

Figure 2.7. Visualization of particle trajectories (left half) and velocity vectors (right half) for 

(a) coalescing flow with bypass and (b) stable recirculating flow. From Thulasidas et al.115 
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transfer in the system and ensure that it is faster than the recorded reaction rates.  In general, 

there are two separate contributions that can be considered: (1) mass transfer from the body of 

the bubble to the lubricating film and corner regions and (2) from the caps of the bubble 

directly to the liquid slug116   

 = +, ,L L film film L cap capk a k a k a  (2-9) 

The film transfer step also includes the diffusion from the film around the body of the bubble to 

the liquid slug.  This model works best for the case where the liquid slugs are long, allowing 

complete mixing between the liquid film and the liquid slug. 

Yue et al. developed a mass transfer correlation for gas-liquid segmented flow inside square 

microchannels.117  The final expression for the mass transfer coefficient, kLa, was 
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where D is the diffusivity of the gas species in the liquid phase.  The length of the gas bubble 

strongly influences the mass transfer, which suggests that the film contribution is significant.  If 

the bubble length did not have an impact, it would suggest that the mass transfer only occurred 

across the bubble cap.  In addition, mass transfer is improved as the velocity of the flow 

increases or the length of the bubble decreases. 

2.2. Gas-Liquid Flow over Packed Beds 

When microreactors are used to study heterogeneous catalysis, a third solid phase is added to 

the system.  While packed beds are the most versatile method of introducing a solid, it is also 
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possible to deposit catalyst on to the walls of the channel using techniques such as wash 

coating61, 118 or on impregnated structured packing.89  Packed beds provide the greatest 

flexibility because it is possible to recover the packed catalyst for further tests or to reuse the 

reactor with another catalyst.  In addition, the surface area of the packed bed is orders of 

magnitude larger than the wall surface area, for a given volume. 

2.2.1. Micro Packed Beds 

Micro packed beds are a simple way to add a third participating but immobilized phase to a 

microreactor.  One of the largest practical challenges around packed bed microreactors is high 

pressure drops, particularly when compared to an unpacked channel.  Pressure drop scales 

linearly with length and is strongly affected by the size and packing density of the bed.  The 

Ergun equation describes the pressure drop for single phase flow through a packed bed of 

spherical particles, 
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where P is the pressure, L is the length of the bed, ε is the void fraction, and Dp is the diameter 

of the spherical particles.  For relatively slow flows, the first term dominates.  From the first 

term, we can see that pressure drop increases linearly with increasing bed length, viscosity, and 

velocity and decreases with the square of particle diameter.   

To ensure uniform flow across a packed bed, the size of the particles must be much smaller 

(<1/10) than the width of the channel.  Otherwise channeling will occur in the flow, particularly 

in the void adjacent to the wall.  A typical microreactor channel has a width of 400-500 µm.  
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Therefore, typical particle diameters in micro packed beds are an order of magnitude smaller, 

approximately 50 µm.  Even under slow flow, large pressure drops are observed.  Large 

pressure drops are a particular problem for reactor systems run at low pressures.  It may be 

difficult to overcome the pressure in these situations.  In addition, as the pressure changes over 

the course of the bed, so does the concentration of gas species.  The change in the 

concentration of gas is proportional to the ratio of pressure drop to total pressure.  This 

concentration change further complicates kinetic measurements.  At high pressures, 

overcoming moderate pressure drops are of smaller concern.  In addition, the same nominal 

pressure drop will have a smaller effect on the measured kinetics because the total pressure is 

much higher, reducing the ratio of pressure drop to total pressure.  Other fluid properties do 

not change significantly with pressure.  Pressure drop is also a larger concern for flows that 

contain liquid rather than gas at comparable velocities, since the viscosity of liquid is much 

greater than the viscosity of gas.   

There are a number of design strategies for reducing the pressure drop in packed beds.  These 

strategies center on reducing the length of the bed for a given volume of catalyst.  The simplest 

would be to increase the cross-sectional area by simply widening the bed and reducing the 

length.  This strategy can work well for low pressure reactors.  In high-pressure reactors, it is 

possible to run into failure due to material limitations.  The stress exerted on the wall of a 

channel scales with the square of the channel width, where the width is smaller than the 

length.  Thus a wide bed is much more likely to fail than a narrow bed. 
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A second approach to increasing the cross sectional area of the bed is to separate a single bed 

into parallel channels.  Using parallel channels allows for narrow channels and high-pressure 

operation.  However, parallel channels require a more complicated flow distribution system 

than is required for a single channel.  Without uniform flow along each channel, it would be 

impossible to determine the amount of catalyst that participated in the reaction or the 

residence time.  Losey et al. designed an early packed bed reactor that used parallel channels.  

Their design consisted of an array of 10 channels connected through a manifold.89  The gas and 

liquid were mixed through a continuous split and mix strategy prior to the reaction channel.  To 

allow catalyst loading, a wide channel was run perpendicular to the reaction channels.  The 

catalyst particles were loaded in a slurry, which required a minimum velocity for the particles to 

remain in solution.  The pressure required to satisfy this velocity became unattainable as the 

reaction channels filled with particles.  By having the loading channel run parallel to the 

reaction channel, particles could be flowed at the required velocity both through and past the 

reaction channels.  However, the loading channel also created a large dead volume during 

catalyst tests. 

A third approach is to design a cross flow packed bed.  This bed has a very short length in the 

direction of flow, and thus experiences a small pressure drop.  It also overcomes the pressure 

limitations associated with wide packed beds because the stress exerted on the channel wall 

scales with the square of the bed length.  However, a wide bed can also have flow distribution 

difficulties.  Ajmera et al.66, 119 designed a manifold system to ensure uniform distribution across 

the wide bed.  The inlet channel bifurcates into 64 parallel channels followed by 256 shallow 

pressure drop channels.  The pressure drop channels dominate the pressure drop in the rest of 
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the reactor to ensure that variations in the catalyst loading do not affect the overall flow 

distribution.  This design did not have any mixing zones to complicate the design because it was 

designed to operate in a single phase. 

2.2.2. Mass Transfer Model 

A simple mass transfer film model can be applied to three phase microreactor systems.  There 

are three mass transfer steps required to get a reactant that is in the gas phase to react at an 

active site on a catalyst particle.  The first step is for the gas to absorb into the liquid phase.  

The second step is for the dissolved gas to diffuse from the bulk liquid to the catalyst surface.  

The third and final step is for the dissolved molecule to diffuse into the catalyst particle.  All 

three steps are required for reaction to occur, and they occur in series.  Hence, applying the 

resister analogy, the overall reaction constant kov can be expressed as 
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where klai is mass transfer resistance of the absorption into liquid across the interface, kcas is 

the diffusion of the dissolved gas from the bulk liquid to the catalyst surface, η is the catalyst 

effectiveness factor, and k is the intrinsic rate constant.  It is difficult to determine the two mass 

transfer coefficients independently with any certainty and thus they can be lumped together in 

an overall mass transfer coefficient kLa.  Equation 2-12 can therefore be simplified to  

 

η

=
+

1
1 1ov

L

k

k a k

 (2-13) 



57 
 

Calculating the value of the effectiveness factor requires knowledge of the intrinsic kinetics.  

Losey et al. determined the mass transfer in a single channel micro packed bed using this 

expression to be in the range kLa = 5-15 s-1.120  This represents a significant improvement over 

typical laboratory trickle-bed reactor system where kLa = 0.01-0.08 s-1.18   

2.3. Microreactor Designs 

The ideal microreactor design differs depending on whether homogeneous or heterogeneous 

catalysis systems are studied.  A homogeneous reactor would consist primarily of a long 

channel to enable studying slow reactions at long residence times.  A heterogeneous reactor 

design would be dominated by having enough catalyst for reaction to occur while controlling 

the pressure drop.   

2.3.1. Homogeneous Reactors 

2.3.1.1. Initial Design 

The initial homogeneous reactor design was provided by Samuel Marre.52  This reactor had 

been designed for nanoparticle synthesis, which shares design objectives with homogeneous 

catalysis kinetics.  Specifically, the reaction was to proceed through a known reactor volume 

under isothermal conditions.  A two dimensional sketch of the reactor is shown in Figure 2.8.   

The features shown in Figure 2.8 are etched anisotropically into a 650 µm thick silicon wafer, 

resulting in a channel with three silicon walls.  The features were etched to a depth of 400 µm.  

A 1 mm Pyrex wafer was bonded to the silicon wafer, forming the fourth wall of the channel.  

The reactor design has a number of different sections that are designed to take advantage of 

unique aspects of segmented flow.   
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There are two zones in the reactor, heated and cooled, separated by a halo etched region.  

Silicon has a thermal conductivity two orders of magnitude greater than Pyrex (silicon: 

153 W/m K; Pyrex 1.1 W/m K).  Therefore, to sustain a temperature gradient, silicon must be 

removed between the two zones.  A halo etch removes a large cross section of silicon and 

forms a boundary between the two zones.  The bulk removal of silicon allows a temperature 

gradient to be sustained across the remaining silicon with a lower overall heat flux.  The heated 

zone is maintained at a constant temperature to allow reaction to occur.  The cooled zone 

consists of a pre-reaction mixing zone as well as fluidic ports.  This zone is cooled to facilitate 

mixing prior to reaction, to quench the reaction before leaving the chip, and to enable 

polymeric sealing of the fluidic connections.   

 

Figure 2.8. Initial homogeneous reactor design.  The top of the reactor is heated, while the 

bottom of the reactor is cooled. 
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The halo etched region allows a temperature gradient to be sustained at lower overall heat flux.  

Figure 2.9 shows two three dimensional COMSOL Multiphysics simulations.  A silicon wafer is 

represented with and without a halo etched region.  In both cases the reactor is capped with a 

silica glass layer.  Constant temperatures are applied to the rectangles at the bottom (TH = 

200 °C) and top (TC = 35 °C) of the reactor.  All of the remaining boundaries are approximated 

adiabatically.  The simulations show a similar temperature gradient existing between the two 

temperature zones.  The advantage of the halo etched region is the reduction of heat that must 

be added or removed from the reactor to sustain that large gradient.  The amount of heat 

added to the heated decreases by a factor of 2.9.  In the reactor without the halo etch, 40.5 W 

of power is required. In the reactor with the halo etch, only 14.1 W of power is required. 

 

Figure 2.9. Temperature profiles in two 3-dimensional simulations showing the effect of the 

halo etched region on reducing the power required to sustain a temperature gradient.  Power 

required: No halo = 40.5 W, Halo = 14.1 W. 
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The inlets at the lower right hand corner of the reactor enter at T-junctions.  The widths of both 

the main and inlet channels were not fully optimized and have widths of 200 µm.  There are 

three inlets allowing any combination of liquid and gas streams to be mixed in the inlet region.  

The width of the main channel then expands to 400 µm.  The channel width in the inlet region 

was narrower so that smaller volume bubbles and slugs would form.  After expansion, the 

bubbles and slugs would still span the channel and their length would be halved, since they 

have a fixed volume.  This design attempted to have very small bubble and slug sizes to improve 

mass transfer within the liquid slug and across the gas-liquid interface.  The widened channel 

then proceeded through an undulating zone that ensured that the fluid entering the heated 

zone was well mixed.  Following the mixing zone, a 0.75 m long serpentine channel passes 

through the heated zone.  A constant temperature is maintained in this region to allow reaction 

to occur.  Finally, the channel passes back through the cooling zone before exiting the reactor.  

A 2500 Å layer of silicon nitride was deposited on the reactor.  This improved the compatibility 

of silicon to strong bases, which could be required for certain catalyst systems. 

The short length of the quenching zone is sufficient to cool the fluid stream.  To provide an 

upper bound to the length required for cooling a simple two dimensional COMSOL Multiphysics 

simulation can be performed (Figure 2.10).  A single liquid phase (toluene) was considered 

which provides a conservative estimate because recirculation in segmented flow improves heat 

as well as mass transfer.  Fully developed flow passed from a constant temperature region (TH = 

200 °C) through a geometrically simplified halo region into the cooled region (TC = 35 °C).  A 

relatively fast flow of 50 µl/min (5.2 mm/s) was chosen to ensure the estimate is an upper 

bound.  The simulation shows that the maximum variation between the channel and the center 
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of the channel, the point furthest from the wall, is 0.2 °C.  This result suggests that the reaction 

will be quenched as long as the cooling zone is sufficiently cooled.   

In total, the volume of the reactor is 160 µl, of which 120 µl is found in the heated zone.  The 

total channel length was 1 m.  The exterior dimensions of the reactor allowed four reactors to 

be manufactured on each 6 inch silicon wafer.  A finished microreactor is shown in Figure 2.11. 
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Figure 2.10. Simulation to verify the length of the quenching zone. (a) Simplified simulation 

diagram with boundary conditions. (b) Temperature of center of fluid channel, from heated 

zone to cooled zone. (c) The temperature difference between the wall and center of the 

channel. 
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2.3.1.2. Initial Reactor Performance 

This first generation reactor was used to perform initial kinetic studies.  Initial flow studies were 

conducted to ensure stable segmented flow.  In nitrogen-water segmented flow, the reactor 

design performed well with stable segment flow present over the entire reactor (Figure 2.12a).  

However, when water was replaced by toluene, significant coalescence was observed towards 

the end of the reactor (Figure 2.12b).  

The instability in the liquid phase extended over a wide range of gas-to-liquid ratios as well as 

flow rates.  At the same flow rates and gas-to-liquid ratios, the size of each liquid and gas slug 

also varied.  Differences in fluid properties clearly affected the stability of the segmented flow.  

Parameters that are likely relevant to bubble formation and segmented flow stability have been 

described in Section 2.1.3 above.  Table 2.1 compares parameter values for water and toluene.  

Toluene has a lower density, viscosity, and surface tension when compared to water.  

 

Figure 2.11. Completed homogeneous microreactor. 
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Increasing the temperature of the heated zone further reduced the stability of segmented flow.  

At temperatures of greater than approximately 150 °C, the water-nitrogen segmented flow also 

began coalescing.  Both viscosity and surface tension decrease as temperature increases.  If 

water slugs coalesce above a certain temperature, the fluid properties likely crossed a critical 

value that toluene already crossed at room temperature.   

Squalane, a viscous hydrocarbon, was added to the toluene (50%) to increase the mixture 

viscosity in hopes of improving segmented flow stability.  This marginally improved the stability 

of the segmented flow.  However, since the surface tension of both toluene and squalane are 

 Water Toluene Squalane 

Density (g/ml) 0.9982 0.8669 0.803 

Viscosity (cP) 1.000 0.590 27.5 

Surface Tension (dynes/cm) 72.8 28.5 28.0 

Table 2.1. Property comparison of water, toluene, and squalane at 20 °C.121 

  

Figure 2.12. (a) Segmented flow comprised of nitrogen bubbles and water slugs.  The 

segmented flow was very regular and did not coalesce over the length of the reactor.  (b) 

When toluene was used as the liquid phase, significant coalescence was observed in the 

reactor. 

a. b. 
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essential the same and different from water, surface tension is likely the fluid property that 

most affects segmented flow stability. 

Other attempts to improve the stability of segmented flow in the toluene case were to vary the 

pressure drop in both the gas and liquid lines upstream of the reactor.  Specifically, PEEK tubing 

of 25 and 127 µm inner diameters and lengths varying from 10 cm to 1.25 m were added to 

increase pressure drop.  Increased pressure drop improved the stability, but did not completely 

prevent coalescence.  Ultimately long lengths of the 127 µm tube were used to provide 

pressure drop upstream of the reactor.  This was mainly due to practical considerations around 

clogging of the very small inner diameter tubing.  In particular, a disturbance that caused 

backflow could wick liquid into the PEEK tubing.  In the case of 25 µm tubing, significant 

pressure was required to force the liquid out of the tube, which proved to be a challenge.  The 

gas in the syringe pump (described in detail in Section 3.4) was compressible and had to be 

further pressurized to overcome this resistance.  

Another possible cause of the instabilities was an unstable pressure environment downstream 

of the reactor.  This thesis describes the first attempt to use an active pressure controller to 

control microreactor system pressure (described in detail in Section 3.3).  While the controller 

provided excellent pressure control, ±0.02 bar of the set point, the needle valve was constantly 

actuating to control the overall pressure.  These fluctuations might be enough to perturb the 

segmented flow leading to the observed coalescence.  Alternately the constant fluctuations 

may have prevented steady state from ever being achieved. 
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It was also observed that the liquid slugs and gas bubbles were significantly shorter in the 

toluene case than the water case.  Shorter slugs may prevent flow from fully developing, as 

described above.  A gas-to-liquid ratio of approximately unity consistently led to the most 

stable flow.  For example, the gas-to-liquid flow ratio was varied at constant liquid flow rate to 

determine the effect of bubble length on stability (Figure 2.13).  In the case where Vg/Vl = 3, the 

length of the slug appeared to be smaller than the channel width.  This would imply that the 

recirculation flow in the slug would not be fully developed.  Increasing the gas-to-liquid ratio 

appeared to reduce the liquid slug length more than the ratio would imply.  The rectangular 

cross section (Figure 2.3) captures significant liquid along the length of the bubble, reducing the 

apparent length of the liquid slug.  The unit cell must contain a gas-to-liquid (volume) ratio set 

by the inlet flow rates for the continuity of mass condition to be satisfied.   

The design of the T-junction and the expansion immediately following it might also contribute 

to variation in the lengths of the liquid slugs and gas bubbles that were magnified at long 

channel lengths.  Specifically, the channel expansion occurs only a few channel widths from the 

final T-junction (Figure 2.14).  It was hypothesized that allowing segmented flow to fully 

 

Figure 2.13. As the gas-to-liquid ratio is increased, the apparent liquid slug length decreases 

even as the overall liquid flow rate is held constant.  Stability decreased with increasing gas-

to-liquid ratios. 
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develop prior to the expansion might improve the stability of the flow. 

While it is difficult to pinpoint the exact cause of the instability in the segmented flow, a 

redesign might be able to address some of the observations.  While fluid properties appear to 

have the largest effect on stability, it is not practical to vary the fluid for specific chemical 

systems.  Instead, it appears that changes in the fluid properties have a direct effect on bubble 

and slug length, which may allow disturbances to magnify to the point that coalescence was 

observed.  Varying the gas-to-liquid flow rate ratios or absolute flow rate has a very weak effect 

on bubble and slug length.  The remaining lever is to vary the geometry of the T-junction which 

requires a reactor design. 

2.3.1.3. Redesigned Reactor 

A number of areas of the design were iterated in the second generation of reactors.  Three 

different reactor designs were completed to address the instabilities in the previous section.  In 

addition, higher flow rates at the same residence time were desired.  By increasing the volume 

of the reactor, it would be possible to reduce the time between experiments.  The new designs 

address one or more changes in the following list: 

 

Figure 2.14. Third T-junction in the original design where the segmented flow typically 

formed.  The bubbles extended to the start of the expansion zone prior to being pinched off. 
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1. Increase the spacing between the T-junction and fluid expansion section.  In addition, 

the fluid expansion section now expands symmetrically. 

2. Remove the expansion section by having a constant width main channel. 

3. Increase the volume of the reactor. 

Both the first and second changes attempt to improve the stability of the segmented flow.  

Increasing the spacing between the T-junction and fluid expansion section will ensure that the 

recirculation flow in the liquid slug is fully developed.  The second change should increase the 

size of the liquid slugs and gas bubbles.  In addition, by removing the expansion section, the 

bubble and slug sizes are not reduced below their initial size.  The final change enables higher 

flow rates at the same residence time.  These higher flow rates enable increased experimental 

throughput by allowing the fixed minimum sample size to be collected more quickly. 

The first microreactor design (Figure 2.15a) simply allowed the flow to further develop before 

 

Figure 2.15. The three second generation reactor designs introduced new inlet and mixing 

zones as well as an increased reactor volume. 
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being expanded.  The total length of the heated zone remained constant at 0.75 m.  The inner 

radius of the turns in the heated zone of the reactor remained equal to the channel width, 

400 µm.  The second and third designs (Figure 2.15b,c) reduced the inner radius of the turns in 

the heated zone of the reactor to half the channel width or 200 µm.  This enabled a total 

channel length of 1.6 m which leads to reactor volume of 260 µl, of which 220 µl are in the 

heated zone.  This represents an 83% increase in the reaction zone when compared to the 

original reactors 120 µl reaction zone.  The second design also removed the expansion section 

entirely and the main channel was widened to 400 µm.  The third design is a combination of the 

inlet and mixing zone of the first reactor and the increased reactor volume found in the second 

reactor. 

2.3.1.4. Second Generation Reactor Performance 

The overall performance of the second generation reactors was similar to the first generation.  

Moving the expansion zone further from the T-junction did not have an observable impact on 

the overall stability of toluene segmented flow.  Removing the expansion section and increasing 

the main channel width at the T-junction led to larger bubbles and slugs which appeared to 

improve the stability of the segmented flow.  However, this improvement was offset by the 

increased channel length.  Longer channels allow instabilities to grow and provide more time 

for coalescence to manifest itself.  The reactor shown in Figure 2.15b was chosen to perform 

the final analysis for the homogeneous catalyst study due to its larger volume and adequate 

segmented flow stability. 
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2.3.2. Heterogeneous Reactors 

2.3.2.1. Initial Design 

The heterogeneous reactor was designed in conjunction with Bariş Ünal and based on his 

reactor design for studying high-pressure gas phase heterogeneous catalysis.  The reactor, 

shown in Figure 2.16, was designed with eight parallel channels.  A single inlet was shared by 

two adjacent channels.  There were multiple inlets to ease loading of catalyst.  Any curvature in 

a channel through which catalyst is loaded would result in clogging during loading.  At the end 

of the main reactor channel, a weir with 40 µm posts and 20 µm channels was constructed as a 

catalyst retainer.  Each pair of reactor channels proceeded to a single outlet.  A large region of 

silicon was removed to improve the temperature gradient across the reactor.  The exterior 

dimensions of the reactor are 5.7 cm wide by 7.6 cm long.   

 

Figure 2.16. Eight channel, four inlet reactor for studying high-pressure gas phase 

heterogeneous catalysis. (Photo courtesy of Bariş Ünal) 
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To extend this design to multiphase flow, a few modifications were made to the single phase 

reactor design.  The new reactor design is shown in Figure 2.17.  Primarily, another inlet was 

required to introduce the second phase in a controlled manner.  A single gas inlet was designed 

and joined to each of the eight main reaction channels.  This gas inlet channel measures 200 µm 

in width.  As the channel bifurcates, each half is identically symmetric to ensure that the 

pressure drops, and therefore the flows, are identical.  A single outlet is used in this reactor 

design.  The gas inlet lines preclude any extra outlets because channels would invariably cross.  

In addition, a single outlet simplifies the fluidic connections.  The four inlets were maintained to 

enable easier loading of the catalyst.  They will additionally be used as the liquid inlets since it is 

impossible to have both a single gas and liquid inlet without having channels cross if the reactor 

design is limited to two dimensions.   

 

Figure 2.17. Initial heterogeneous reactor design.  Eight parallel 45 mm long reaction channels 

allow up to 58 µl of catalyst bed volume to be loaded. 
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A longer catalyst bed was included in this design by shrinking the length of the halo etched 

regions.  The length of the heated region of a catalyst channel is now 47 mm.  All features in 

this design are etched to a depth of 400 µm and width of all channels, other than the gas inlet 

channel, is also 400 µm.  With 8 parallel channels, the maximum volume of catalyst that can be 

loaded in this reactor is 58 µl.  In addition, the spacing between the ports on the reactor shrank 

to the minimum spacing that allows a wrench access to the fittings on the reactor chuck.  This 

spacing is now 8 mm which also enables the reactor width to be narrowed to 3.2 cm from 

5.7 cm.  This reduction allows four (two additional) reactors to be fit on a single 6 inch silicon 

wafer, reducing fabrication costs.  A completed microreactor is shown in Figure 2.18. 

2.3.2.2. Initial Reactor Performance 

It proved impossible to achieve stable flow using the initial design.  Pressure drops prior to the 

reactor were varied in an attempt to tune the flow, but failed to have any impact.  Flow was 

never observed simultaneously in two adjacent liquid channels.  In addition, flow redistributed 

through the gas inlet lines.  This behavior had been previously reported for a reactor without 

balanced pressure drops.122 

 

Figure 2.18. Completed multiphase heterogeneous microreactor. 
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Small differences in pressure drop between channels led to the poor flow distribution.  

Multiphase flow led to further differences in pressure drop.  Gas, due to its lower density and 

viscosity, has a much lower pressure drop in the packed bed than does liquid. The design of the 

inlet region of the channel (Figure 2.19) had a very low pressure drop between adjacent 

channels and low pressure drop between pairs of channels through the gas lines.  Both of these 

pressure drops were dwarfed by the pressure drop across the bed.  A new reactor design was 

required to refine the flow. 

2.3.2.3. Second Generation Heterogeneous Reactor 

A second generation reactor had an improved pressure drop design.  Given the flow 

distributions observed in the first generation design, two new reactors were designed, differing 

only in the length of the gas inlet pressure drop channel.  The new design improved the design 

by satisfying two pressure criteria: 

1. Pressure drop in the inlet channels must be greater than in the packed bed to ensure 

that flow does not redistribute through the inlet channels. 

 
Figure 2.19. Detailed view of the inlet section of the first generation multiphase 

heterogeneous reactor.  Pairs of channels share a common liquid inlet and the gas inlet 

allows communication between adjacent pairs of channels. 
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2. For stable bubble formation, pressure drop in the gas inlet channel must be greater than 

the pressure fluctuations associated with bubble formation. 

The first criterion, while conservative, should ensure that all channels have identical flow.  For a 

packed bed of any practical length, the second criterion should be met if the first is.   

The first criterion affects both the gas inlet channels as well as the liquid inlet channels.  The 

liquid inlet channel serves two purposes: liquid inlet and catalyst loading.  Catalyst is loaded 

into the channel manually, which requires a wide channel.  Thus it is not possible to have a 

single liquid inlet serving two channels; there is no way to have a pressure drop between the 

channels to ensure that the liquid flow is distributed between the two.  Thus the second reactor 

design has the number of parallel channels reduced from 8 to 4.  The first criterion is satisfied 

by introducing the pressure drop outside the reactor.  In the new design, each channel is fed by 

its own liquid port.  A single line from the liquid pump is split into four lines which are then 

connected to the reactor.  By using 8 inch long, 127 µm ID PEEK tubing, the flow can be 

distributed between the four channels with a high pressure drop.   

A similar redesign of the gas inlet is required to preclude flow distribution through those inlets.  

It is possible to fabricate reactors with features of two different depths, specifically one very 

shallow depth followed by a second arbitrary depth.  Features of up to 10 µm in depth can be 

achieved using this technique.  A square channel with sides of 10 µm in length was chosen. 

Pressure drop in a channel with a single liquid phase can be described using the Hagen–

Poiseuille equation,123 
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where ΔP is the pressure drop, µ is the kinematic viscosity, L is the length of the channel, Q is 

the volumetric flow rate, and Dh is the hydraulic diameter.  The viscosity is a fluid property, the 

flow rate will be varied, and the hydraulic diameter was fixed by fabrication limitations.  The 

remaining degree of freedom is the length of the pressure drop channel. 

The Ergun equation (Equation 2-11) can be used to estimate the pressure drop through the 

packed bed.  The Ergun equation was developed for flow of a single phase and is hard to extend 

to multiphase flow.  It is impossible to estimate liquid holdup in a multiphase packed bed, 

which would be required to extend the Ergun equation to multiphase flow.  A number of 

correlations for pressure drop through a trickle bed have been proposed, but are difficult to 

apply outside of the experimental conditions used to fit them.124, 125  These correlations have 

not been applied to microsystems in the literature.  A very conservative estimate of the 

pressure drop across a packed bed in gas liquid multiphase flow would be to calculate the 

pressure drop as though the total flow rate was liquid.  Thus both the pressure drop in the gas 

inlet and in the bed is a function of the gas flow rate; the pressure drop in the liquid region is a 

function of the liquid flow rate.  To satisfy the first criterion, the pressure drop in the inlet 

channel must be greater than the pressure drop in the bed.  To determine the required length 

of the pressure drop channel, the ratio of the inlet to bed pressure drop were compared against 

possible gas-to-liquid flow rate ratios at different pressure drop channel lengths (Figure 2.20).  

For a pressure drop inlet length of 300 mm, the pressure drop in the inlet channel was 4-

10 times greater than the pressure drop in the longest packed bed that could be loaded into the 
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reactor.  Wada et al.122 demonstrated a multiphase silicon packed-bed reactor whose pressure 

drop channels were designed to have 40 times higher pressure drop than the main channel. 

Ultimately, two reactor designs were fabricated.  In the first, the very conservative channel 

length of 300 mm was used.  In the second, a 12 mm pressure drop channel was chosen.  The 

tradeoff between certain stability at 300 mm is very slow dynamics associated with changes in 

pressure or when starting up the system.  It was therefore worth trying a shorter channel to see 

if stable flow could be achieved more quickly.  A comparison of the two inlet designs is shown 

in Figure 2.21a-b.  The final 4 channel design is shown in Figure 2.21c.  To reduce the chance of 

clogging, a weir similar to the one that retains the catalyst in the main channel was added to 

the inlet and the outlet of the gas pressure drop channels.  The remaining dimensions remained 

identical to the first generation design.  The total catalyst bed volume was halved allowing for 

29 µl of catalyst to be loaded.   

 

Figure 2.20. To determine the length of the pressure drop channel, the ratio of the pressure 

drop in the gas inlet to the pressure drop across the bed was calculated for various gas-to-

liquid ratios. 
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2.3.2.4. Second Generation Reactor Performance 

The newly designed second generation reactor immediately achieved stable segmented flow in 

all four channels, using both the short and long pressure drop designs.  A photograph of the 

segmented flow can be found in Figure 2.22.  In this example, 20 µl/min of cyclohexene and 

80 µl/min of hydrogen are flowing through the reactor at 30 bar.  While not visible in the 

photograph, a standing bubble exists at the bed inlet.  Liquid slugs collapse and bypass the 

bubble through the corners.  Segmented flow reforms at the catalyst retaining weir.  Bubbles 

and slugs coalesce at each junction where the streams recombine.   

It is interesting that both the short and long pressure drop channels resulted in essentially 

identical flow distributions.  The short pressure drop was able to achieve stable flow five times 

more quickly and thus was the preferred reactor design.  The bed was also never filled greater 

than 60%, which would also reduce the amount of pressure drop required in the gas inlet.  In 

  

 
Figure 2.21. Detailed view of the 300 mm (a.) and 12 mm (b.) pressure reduction channels.  

The entire second generation reactor design is also shown (c.). 

a. b. c. 
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addition, the pressure drop calculated for the bed was certainly high; the pressure drop for gas-

liquid flow is always less than the pressure drop for a single liquid phase at the same flow rate.  

The fact that the shorter reactor design worked suggests that the criterion that the pressure 

drop in the gas inlet channel be greater than the pressure drop across the bed was too 

conservative.  The pressure drop preventing flow between adjacent channels may only need to 

be greater than the difference in the pressure drop in those channels.  The initial criteria would 

ensure stable flow, which was unintentionally observed, in the case where one channel had 

catalyst and the second had none.   

2.4. Reactor Fabrication 

All microreactors were fabricated using the same process in the fabrication (cleanroom) 

facilities in the Material Technology Laboratories at MIT.  A general discussion of the fabrication 

 

Figure 2.22. Photograph showing stable gas-liquid flow, at 30 bar, in a multichannel 

heterogeneous reactor. 

Bubble 

Slug 

Packed Bed 

Weir 
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procedure is included in this section.  A detailed procedure can be found in Appendix A, along 

with all photolithography masks, which define the two dimensional layout of the reactors.   

Bare 650 µm thick double side polished wafers were deposited with 5000 Å of low pressure 

continuous vapor deposition (LPCVD) silicon nitride to provide a sacrificial layer which will 

protect the bonding surface of the silicon wafer during processing (Figure 2.23a).  A 10 µm layer 

of positive photoresist is spun onto the topside of the silicon.  The photoresist serves as a mask 

for subsequent etch steps.  Using a transparency mask, it is possible to expose the photoresist 

to high intensity light which modifies the structure of the polymer (Figure 2.23b).  The exposed 

region is soluble in the corresponding developer exposing the silicon surface underneath.  Using 

photolithography techniques, any two dimensional pattern can be exposed on the surface of 

the silicon wafer.  The front side mask is used to expose the photoresist and developed.   

Deep reactive-ion etch (DRIE) is used to etch the pattern 400 µm into the wafer (Figure 2.23c).  

Two steps are repeated sequentially to enable anisotropic etching with very high aspect ratios.  

In the first step, a standard silicon isotropic etch is combined with ions that vertically bombard 

the surface of the wafer.  The second step deposits a chemically inert passivation layer on all 

exposed surfaces.  This layer protects the side walls from the isotropic etchant and is removed 

from the bottom of the feature by ion bombardment during the first step.  The silicon nitride 

coating is not a good mask for DRIE, and is readily removed.  The remaining photoresist is 

removed, and the entire process is repeated on the back of the wafer (Figure 2.23d).  The only 

features typically found on the back of the wafer are features that are present on both sides of 

the wafer, such as the halo etched regions and fluidic ports.  The backside of the wafer is spun 
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with photoresist, exposed, developed, and etched to a depth of 250 µm.  In the second 

generation design for the multiphase heterogeneous reactor, two masks were used to pattern 

the front side of the wafer.  Prior to patterning the 400 µm deep features, the pressure drop 

channels were pattered to a depth of 10 µm.  This depth was chosen specifically because it is 

shallow enough that a second application of photoresist, required for the second front-side 

mask, will completely fill these features. 

The sacrificial layer of nitride is removed in hydrofluoric (HF) acid.  Silicon nitride is etched at a 

rate of 200 Å/min by HF while the silicon wafer is impervious.  Following removal of the silicon 

nitride layer, found only on the top surface of the wafer, a fresh LPCVD silicon nitride layer is 

deposited which covers the entire wafer, including the walls of the etched channel.  A Pyrex 

wafer is then anodically bonded to the wafer to form the fourth wall of the channel (Figure 

2.23e).  During anodic bonding a potential is applied across the heated silicon and Pyrex wafers.  

Sodium ions in the Pyrex wafer migrate under the electric field away from the Pyrex-silicon 

interface.  The depletion of sodium ions increases the reactivity of the glass with the silicon, 

enabling strong bonds to form.  Once bonded, the wafer is diced into individual reactors using a 

diamond saw (Figure 2.23f). 

  



80 
 

 

Figure 2.23. Key steps in the microfabrication of homogeneous silicon microreactors. 
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Chapter 3. System Components and Construction 

3.1. Requirements 

The design of a high-pressure microreactor support system is necessarily challenging.  Many 

pieces of traditional equipment are simply too large to integrate seamlessly with microscale 

flow.  Invariably, the supporting system has dimensions that dwarf the microreactor.  A set of 

requirements (Table 3.1) was drafted that guided the design of the final system.  The system is 

modular, allowing it to be modified to suit the changing requirements of the homogeneous or 

heterogeneous reactors.  The primary challenge was combining stable high-pressure operation 

at low flow rates with analysis of the reactor effluent. 

 Condition 

Pressure ~100 bar 

Temperature Room temperature → 350 °C 

Residence Time Seconds to minutes 

Analysis Methods Online (preferred) and offline 

Safety Considered at all stages 

Table 3.1. Summary of conditions that must be attainable in system. 

The desired upper pressure limit for the system was on the order of 100 bar.  Pyrex/silicon 

microreactors have been demonstrated to achieve pressures of 300 bar,52 which could be 

considered an upper bound for the system as designed.  A lower pressure was chosen because 

the goal was to study high-pressure reactions, which for industrial processes are run at 

pressures around 50 bar.  Ultimately, the system pressure was limited by the back pressure 

controller, which had an upper pressure limit of 100 bar.  The maximum temperature of the 
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system is localized to the heated zone of the reactor and the heating elements.  Therefore the 

temperature would be limited by the Pyrex-silicon bond, which has been previously operated 

under pressure at temperatures of 400-500 °C.52  The residence time of the system was limited 

by the size of the microreactors.  Online analysis is greatly preferred to offline analysis due to 

the quicker and more frequent analysis that this method allows.  Quantitative reproducibility is 

also greatly valued and a number of offline techniques such as gas chromatography (GC) or 

high-pressure liquid chromatography (HPLC) have been shown to be reliable analysis 

techniques.  Lastly, safety was considered throughout the design and construction of the 

system.  The two most significant identified hazards were chemical toxicity and high-pressure 

operation.   

3.2. Overall System Design 

The completed system is constructed from a number of systems that work in concert to enable 

kinetic measurements at high temperature and pressure.  The completed system for the 

homogeneous reactor case (Figure 3.1) consists of components organized together into major 

systems such as the pressure-control system, gas-handling system, temperature-control 

system, and analysis system.  The pressure control system allows for the precise control of 

pressure independent of flow rate.  The gas-handling system allows for the preparation of 

reproducible gas mixtures from up to three gas components, as well as delivering the mixture 

to the microreactor.  The temperature control system controls both the heated and cooled 

zone of the microreactor.  Finally, the analytic system consists of both online Fourier Transform 

Infrared (FTIR) spectroscopy and offline sampling infrastructure. 
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The entire system was constructed in a modular manner.  This allowed for the addition and 

removal of components as necessary.  For example, it was determined that the multiphase flow 

must be phase-separated prior to the analysis system for accurate analysis.  Therefore, a gas-

liquid membrane separator was built and introduced into the system.  The modular nature also 

allowed for the system to be rearranged while searching for stubborn leaks or clogged tubing.  

Each system was designed independently and is described in detail below. 

3.3. Pressure Control System 

The pressure control system consists of two major classes of components: a back pressure 

controller to regulate the system pressure and syringe pumps to deliver fluid.  Identifying a 

back pressure control scheme that worked with microliter per minute flow rates at pressures of 

up to 100 bar proved to be a significant challenge.  Prior microreactor systems have used two 

basic approaches for controlling pressure: large pressure drop at the outlet of the system or a 

 

Figure 3.1. Schematic of the high-pressure system interfaced with a homogeneous 

microreactor. 
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reservoir system with a purge/bleed arrangement.  The simpler arrangement is to provide a 

pressure drop at the outlet of the system using a small-diameter tube or a needle valve.  Under 

this arrangement, pressure drop remains a function of fluid properties and the overall system 

flow rate.  Pressure drop cannot be determined independently of flow rate.  A needle valve 

allows for some tuning of pressure drop if flow conditions are varied, but either system is slow 

to achieve steady state in the presence of compressible fluids such as gas.   

An improvement to this arrangement is to add a reservoir just before the outlet of the system.  

Three connections are required for the reservoir: an inlet from the microreactor, a constant-

pressure gas inlet, and an outlet.  The pressure in the system is supplied from a gas cylinder 

with a regulator set to the desired pressure.  The leak from the system at the operating 

pressure must be greater than the overall flow rate through the microreactor.  The difference 

between the outlet and inlet flow rates is supplied by the gas cylinder to maintain the set 

pressure.  The reservoir must be large enough to collect the total volume of liquid that will flow 

through the system in a given experimental run.  While rarely limiting, the reservoir must be 

large enough to allow gravity-based phase separation to occur.  Using this configuration, the 

system flow rate and the system pressure are largely decoupled.  This arrangement has two 

disadvantages: the relatively large reservoir volume can pose a safety risk and the increased risk 

of backflow.   

A third approach would be to use an active back pressure controller and active-control valve.  A 

suitable controller, EL-PRESS was purchased from Bronkhorst (Figure 3.2a).  This system has the 

advantage of actively controlling back pressure in the system and was capable of controlling 
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very low flow rates at pressures of up to 100 bar within ±0.02 bar of the set point.  A Kalrez 

polymeric seal around the valve was chosen for its high chemical compatibility.  This system is 

capable of controlling pressure as the fluid flow rates are varied.  The internal volume of the 

back pressure controller is approximately 2 ml which is much lower than the volume of a 

reservoir.   

The high-pressure syringe pumps that deliver gas and liquid to the microreactor make up the 

second half of the pressure control system.  Syringe pumps have traditionally been used to 

deliver liquid to a microreactor at low pressure.  The Teledyne Isco 100DM syringe pump was 

identified as being capable of driving high-pressure flows at very low flow rates.  The pump is 

capable of pulse-less flow at flow rates of under 1 µl/min and pressures of over 600 bar with a 

syringe volume of 100 ml.  Each pump has two connections: the first is connected to the 

 

 

Figure 3.2. Two primary components of pressure control system: a) EL-PRESS back pressure 

regulator, consisting of a controller (left) and valve (right). b) Teledyne Isco 100DM high-

pressure pump capable of pulse-less flow at flow rates of 1 µl/min and pressures of over 

600 bar. 

a. b. 
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microreactor system and the second is used for loading.  These pumps are unique in that they 

can be operated in constant pressure mode as well as constant displacement mode.  Traditional 

syringe pumps, such as the Harvard Apparatus PHD2000 series, are capable of slower flow rates 

using smaller syringes, but have difficulty driving high pressures.  Gas has traditionally been 

controlled using mass flow controllers with the gas cylinder pressure driving the flow.  

However, no mass flow controllers were found to be capable of matching the low flow rates of 

the high-pressure syringe pumps at elevated pressures.  Instead, a second syringe pump was 

used to deliver gas to the system.  The syringe pump consists of a vertical, cylindrical chamber 

with two seals: a stationary, deformable seal at the top of the syringe and a moving piston seal 

at the bottom of the cylinder.  When the syringe pump was pressurized with gas, small leaks 

were observed and were suspected to come from the moving seal.  A 3 ml sample of very low 

vapor pressure Fomblin oil was added to the gas syringe pump to wet the moving seal at the 

bottom of the syringe.  This oil pooled at the bottom of the syringe and provided a liquid 

interface between the moving seal and the syringe and greatly improved the ability of the 

syringe to pump gas.  This solution was only possible because of the vertical orientation of the 

syringe.  A second liquid syringe pump was eventually added to the system to enable liquid 

reactants to be isolated prior to reaction.  A single Teledyne Isco Controller was able to control 

up to four pumps and could also interface with a computer.   

3.4. Gas Handling System 

The high-pressure syringe pump described in the previous section was capable of delivering a 

single stream of gas to the reactor system.  This necessitated loading the syringe pump with a 

gas mixture.  The pump would be loaded in much the same manner as a traditional bomb 



87 
 

reactor – successive pressurization with each gas.  A computer-controlled gas handling system 

was designed for this purpose (Figure 3.3).  Automation of the filling increased reproducibility 

of the resulting mixture. 

The gas handling system was initially designed by outlining the required fluidic and electric 

connections (Figure 3.3).  The system was intended to allow mixtures of three gases to be 

mixed.  The gas handling system thus required three pneumatic valves to control the flow of 

the three gases, nominally carbon monoxide, hydrogen, and nitrogen.  In addition, a valve was 

required to vent the contents of the system to the hood.  A valve was also included to control 

access to a vacuum pump that would allow the system be evacuated to reduce cross 

contamination.  A final valve controlled flow to the gas syringe pump.  The original design called 

 

Figure 3.3. Schematic of gas handling system illustrates the required valves, transducers, and 

control system. 
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for three pressure transducers: to measure the pressure inside the system, to measure the 

pressure in the line between the system and the syringe pump, and to measure the vacuum 

level.  Ultimately, the pressure transducer between the system and the syringe pump was 

removed and the pressure transducer in the gas syringe pump was monitored instead. 

The normally closed pneumatic valves are actuated using high-pressure air.  The required 

pressure to operate the valve is 80 psig, which was typically provided by the house high-

pressure compressed air feed.  The air was switched using computer-controlled solenoid valves.  

A solenoid valve was required for each pneumatic valve; the six solenoids were arranged in a 

manifold with a single high-pressure air inlet.  Both the control of the solenoid valve and the 

monitoring of the signal voltage from the pressure transducers were performed using a data 

acquisition/switch unit, an Agilent Unit 34970A with two different plug-in modules: Multiplexer 

34901A and Actuator 34903A.  This switch was computer-controlled. 

To ensure the most reliable and leak-free system possible, it was decided to construct the 

system using VCR fittings.  VCR fittings form a seal using a deformable, single-use metal gasket.  

The smallest tubing size compatible with VCR fittings is 1/4 inch.  This size of tubing requires a 

tool to make precise bends, which must be made before attaching to the system.  In addition, 

VCR fittings must be welded onto the stainless steel tubing.  As a result, the schematic shown in 

Figure 3.3 was adapted into a SolidWorks model (Figure 3.4), ensuring that the welded tubes 

are the proper length and corners occur at the proper location.  The finished gas handling 

system (Figure 3.5) was mounted onto sheet metal that was hung vertically in the hood to 

conserve space.  Precise placement of screw holes was required to mount the system onto the 
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sheet of metal.  The final SolidWorks model was used to control an abrasive water jet cutter, 

which cut the sheet metal.   

Initially, the pressure in the pump was controlled by closing the pneumatic valve when the 

desired pressure was reached.  In practice, the pump filled so quickly that the system had no 

ability to control the pressure.  Thus a manual three-way valve was added downstream of the 

gas handling system (see Figure 3.6).  In the first position, a large inner-diameter tube (0.03 in) 

allowed for quick filling and evacuation of the gas syringe pump.  In the second position, a 

5 foot length of 0.005 in inner diameter tubing was used to increase the pressure drop and 

restrict the flow.  The pump filled much more slowly and the final pump pressure was 

decoupled from the pressure of the gas leaving the gas cylinder.  Unfortunately, the volume of 

gas between the pneumatic valve and the pressure reducing tube prevented reproducible filling 

of the syringe pump because the pump continued to pressurize even after the valve was closed.  

 

Figure 3.4. SolidWorks representation of gas handling system which provides a spatial model. 
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A line was added connecting this region to the back pressure controller, which was used to 

bleed off this excess gas after the pump reached its desired pressure.  Reproducible gas 

mixtures were then achieved. 

3.5. Liquid Handling System 

The liquid handling system consists of the liquid syringe pumps described above and a series of 

lines connected to one of the two pumps (Figure 3.7).  These modifications enable loading of 

liquid samples while excluding gas, and in particular air, from the liquid pump.  The inlet side of 

the pump was connected to a tube terminated with a syringe-compatible Leur Lock fitting.  The 

 

Figure 3.5. Assembled gas handling system. 
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outlet of the pump is attached to a three-way valve.  The pump attaches to the common port of 

the three-way valve and the first switched port is attached to the microreactor system.  The 

second switched port is attached to a second three-way valve that is attached to low-pressure 

nitrogen and vacuum lines.  The high-pressure syringe pump, even when “empty” holds a few 

milliliters of fluid.  Opening the inlet valve and flowing nitrogen backwards through the pump 

can force the remaining fluid from the system through the inlet.  The pump inlet can then be 

sealed and evacuated, evaporating any remaining solvent.  Evacuating the pump additionally 

ensures that no gas remains in the pump prior to liquid loading. 

 

Figure 3.6. Schematic of the interface between the gas handling system and the gas syringe 

pump. 

 

Figure 3.7. Schematic of the liquid handling system, highlighting the nitrogen and vacuum 

connections.  This system enables the exclusion of oxygen during liquid loading. 
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3.6. Microreactor Fluidic Connections 

The microreactor was interfaced with the rest of the system using a compression chuck that 

was previously developed in the Jensen group and could be operated under high-pressure 

conditions.52  A chuck must be designed for each port design.  For this work, two chucks were 

required: one for the four-port homogeneous reactor and one for the eight-port heterogeneous 

reactor.  The compression scheme consists of a stainless-steel chuck that interfaces with 

standard 1/16” compression fittings on one side and the microreactor on the other.  The holes 

on the chuck are aligned with through-holes etched through the silicon of the microreactor.  

Fluorosilicone O-rings (O-Rings Inc, M25988/1-005) fit into grooves on the chuck and form a 

compression seal against the silicon microreactor.  Compression force is applied by a stainless 

steel plate screwed to the chuck.  A Pyrex window distributes the force on the Pyrex side of the 

reactor.  Parallel channels for active water cooling are machined through the chuck, 

perpendicular to the fluidic connections.   

The four-port reactor chuck was designed for reactors with a port spacing of 7.5 mm and has 

two water cooling channels machined through the chuck.  The eight-port chuck standardizes on 

port spacing of 8 mm and has three water cooling channels.  Both chucks are compressed in the 

same manner.  The four-port reactor uses coned stainless steel compression fittings (Vici Valco, 

ZP1), whose ports are more difficult to machine.  The eight-port chucks uses flat-bottom 

polymer fittings (Upchurch M-250). CAD drawings of both reactors are shown in Figure 3.8 for 

comparison. 
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When redesigning the chuck for the eight-port application, materials other than stainless steel 

were considered in an effort to reduce cost.  For example, PEEK and aluminum are much easier 

to machine than stainless steel.  In particular, PEEK is an attractive material because it exhibits 

very high chemical compatibility and is regularly used for high-pressure tubing and fittings.  

When designing a high-pressure chuck, the likely failure mechanism is deformation that leads 

to cracking of the silicon reactor, rather than total failure.  The maximum deformation can be 

calculated as follows:52 
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Figure 3.8. Left: Four-port compression chuck with coned ports. Right: Eight-port compression 

chuck with flat-bottomed ports. 
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 = 3 /12J h b  (3-5) 

where d, d1, d2 are total deformation, force deformation, and bolt deformation, respectively, E 

is the elastic modulus of the chuck material, F is the force applied by the bolt, J is moment of 

inertia of the compression plate, and P is the system pressure.  The remaining variables are 

geometric parameters and are defined in Figure 3.9. 

Under operating conditions, the maximum deformation of a Pyrex/silicon microreactor is on 

the order of a few microns.  Summarized in Table 3.2, the results show that PEEK exhibits too 

large a deformation.  Aluminum might work but lacks the chemical compatibility of stainless 

steel.  Ultimately, the chuck was also constructed out of stainless steel.   

 

Figure 3.9. Geometric parameters required for calculating reactor deformation in a high-

pressure reactor chuck.52 

Material Young’s Modulus (GPa)126, 127 d (µm) 

Stainless Steel 200 90 

PEEK 3.6 5020 

Aluminum 69 260 

Table 3.2. Total displacement deformation for the eight-port chuck constructed from a variety 

of machinable materials. 
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All remaining fluidic connections in the system were made using commercially available tube 

fittings.  In general, three competing types of fittings were used: stainless steel Swagelok tube 

fittings, stainless steel Vici Valco coned tube fittings, and Upchurch polymeric flat bottom 

fittings.  The Vici Valco and Upchurch unions have much reduced volume compared to the 

Swagelok unions and were thus favored for most of the system.  Swagelok manufactures high-

pressure three-way valves that were not available from the other two suppliers.  Tubing in the 

system was either PEEK or stainless steel.  PEEK tubing was easy to cut using a razor and 

resulted in consistently good ends.  Additionally PEEK tubing was very flexible and was resistant 

to kinking.  PEEK tubing was used wherever possible. 

3.7. Temperature Control 

The temperature of the reaction zone in the microreactor is controlled during kinetic 

experiments.  In addition, the compression chuck is cooled to quench the reaction and to 

enable polymeric sealing with the reactor.  The polymeric O-rings fail at high temperature.  

Cooling water flows through the high-pressure chuck, cooling it and the reactor to near ambient 

temperature.  A heating chuck was designed to heat the reactor. 

The purpose of the heating chuck is to transfer heat from resistive cartridge heaters to the 

silicon microreactor while maintaining a uniform temperature profile.  The basic design for the 

heating chuck (Figure 3.10) is to places cartridge heaters in 1/4 inch holes drilled through the 

aluminum block and suspend the heater from the microreactor.  The heating chuck is 

suspended using light compression in much the same way as the high-pressure chuck is 

compressed.  The reactor is sandwiched between base plate containing the heating element 
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and a Pyrex window and aluminum top plate.  Aluminum was chosen for the heater and top 

plate because it is inexpensive and easy to machine.  The thermal uniformity achieved with 

aluminum (237 W/m K) alone is likely sufficient, but adding a compliant layer of copper 

(401 W/m K) should improve the uniformity.  Graphite (2.2 W/m K) is an alternative compliant 

layer because it conforms to the reactor when compressed.  Copper was ultimately chosen 

because of its higher conductivity, its ability to be patterned using a water jet cutter, and the 

fact that it is sufficiently compliant when a compressive force is applied to it.  Precision 

patterning with an abrasive water jet cutter removed copper from the plate to enable a K-type 

thermocouple (Omega, KMQSS-062G) to be inserted and contact both the reactor and the 

aluminum chuck.  The thermocouple is cylindrical with a diameter of 1/16 in.  A 1/16 in thick 

copper plate allows the thermocouple to contact the silicon device while preventing the 

thermocouple from concentrating stress. 

To verify the uniformity of the temperature using the chuck design, a two-dimensional COMSOL 

Multiphysics simulation was run (Figure 3.11).  A constant heat flux was applied to the cartridge 

 

Figure 3.10. Schematic of the heating chuck attached to a reactor. 
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heater sections.  The heater chuck was drawn as a stack consisting of an aluminum plate, 

copper heat spreader, and a silicon chip.  The right most boundary of the chip was held at a 

constant temperature of 300 K.  A two-dimensional halo approximation was included.  The halo 

etched zone reduces the cross-sectional area available for heat transfer.  It was assumed that 

the halo region removes 80% of the silicon between the heated and cooled region of the chip.  

Therefore, when approximating the problem in two dimensions, the thickness of the wafer at 

the halo position is reduced by 80%.  The temperature profile along the base of the chip is 

plotted in Figure 3.12.  The temperature profile is largely flat across the heated zone with an 

average temperature of 353.7 K and a standard deviation of 0.7 K.  The maximum temperature 

deviation is 2.7 K.  The design is deemed sufficient due to the low temperature deviations. 

The resistive cartridge heaters (Omega, CIR-1021/120V) are capable of providing 125 watts and 

are 1/4 inch in diameter.  These are controlled using a J-Kem Gemini-K temperature controller.  

 

Figure 3.11. Finite elements simulation demonstrates the temperature uniformity across the 

silicon microreactor in contact with the heating chuck. 
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This temperature controller is capable of auto-tuning the PID parameters, which significantly 

improves the performance of the heating chuck.  The reactor temperature is generally 

controlled within ±0.2 °C of the set-point.  Cooling is provided by pumping water through 

channels in the high-pressure compressor chucks.  An inexpensive aquarium pump (ViaAqua 

2600 Pump) recirculates room-temperature water from a 14 L reservoir. 

3.8. Gas-Liquid Separation 

Gas-liquid separation at the micro-scale requires new approaches.  Gravitational effects, the 

basis of traditional separations, are dominated by surface tension effects precluding density-

based separations.  Microscale separators must therefore harness surface tension effects to 

separate phases.  Phase separation was added to the system to improve sampling reliability in 

 

Figure 3.12. Temperature profile along the base of the reactor in Figure 3.11.  The 

temperature in the heated zone averages 353.7 ± 0.7 K with a maximum temperature 

difference of 2.7 K. 
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the analytic sections.  Two different gas liquid separators were constructed for this system, 

employing different separation methods. 

The degassing separator was built around a Teflon AF membrane.  Teflon AF is a gas-permeable 

membrane with a molecular framework open enough to allow passage of gas.  It has been used 

for degassing solvents under vacuum.128  This separator was designed to degas the multiphase 

flow as it passed over the membrane, leaving pressurized liquid on the feed side of the 

membrane.  The separated gas could be depressurized prior to being vented or sent to a mass 

spectrometer for analysis.  The membrane separator was machined out of two blocks of 

aluminum (Figure 3.13).  On one of the blocks, a 1 mm wide spiral design was machined 0.2 mm 

into the surface and then polished.  The other block has a 0.5 inch diameter cylindrical hole 

where a stainless steel frit was placed.  Teflon is capable of operation at high pressure and 

under high compressive loads, but would rupture if a large force is placed across it.  The porous 

frit supported the membrane preventing rupture.  A sheet of Teflon AF was placed covering all 

 

Figure 3.13. CAD model for the degassing gas-liquid separator. 
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features in the design.  Screws were then used to compress the two blocks.  The Teflon AF 

sandwiched between the two blocks was compressed, forming a seal around the channels. 

This degassing separator was successfully used at pressures of up to 30 bar.  Gas permeated the 

membrane while liquid did not pass through the membrane.  In fact, the gas passed through 

the membrane so readily that pressure fluctuations were observed in the reactor leading to 

undesirable bubble coalescence.  The main advantage of this technique is that the gas stream is 

always liquid free.  Mass spectrometers, for example, cannot tolerate any liquid contamination.   

The second gas liquid separator was adapted from prior work in the Jensen group.84  For the 

published application, a Teflon PTFE membrane (average pore size: 0.45 µm) was used to 

separate two immiscible liquids.  Selective wetting and capillary pressure prevented the non-

wetting phase from passing through the membrane.  Similarly, in a gas-liquid system, the liquid 

phase would always wet the membrane.  Thus liquid can be induced to pass through the 

membrane while the gas remains on the inlet side (Figure 3.14).  This arrangement is the 

opposite of the degassing separator above.  This membrane design requires that the pressures 

on both sides of the membrane be similar and related in a very specific way.  Thus, while the 

streams are separated, they are later combined and exit the high-pressure system together.  

Two distinct pressure conditions must be met to ensure separation: 

1. The pressure difference between the gas and liquid side of the membrane must be less 

than the capillary pressure difference, and 

2. The pressure drop between the separator and the point where the streams rejoin must 

be much lower for the liquid side than the gas side.   
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The capillary pressure is the minimum pressure required to overcome capillary forces and drive 

gas through the membrane.  The first condition ensures that the membrane is selective for 

liquid.  The second condition ensures that both phases do not just bypass the membrane 

separator.  Given the large viscosity differences between gas and liquid, the second condition 

requires that the gas side be heavily constricted.  Transparent Teflon tubing was attached to 

both the gas and liquid outlets.  The transparent tubing allowed for visually monitoring the 

separation efficiency.  A micro-metering valve was added to each Teflon line to allow tuning of 

the pressure drops to ensure that the two pressure conditions were satisfied.   

The Teflon membrane was again sandwiched between two aluminum blocks of a simpler design 

(Figure 3.15).  A single straight channel (1 mm wide, 0. 5 mm deep, 30 mm long) was machined 

on the top and bottom blocks.  The PTFE membrane was compressed between the two blocks.  

This design did not require membrane support since both sides of the membrane were 

pressurized and only differed slightly in pressure.  The top block had a single outlet port for the 

liquid phase, while the bottom block had two ports: an inlet and a gas outlet.  The gas-liquid 

separator performed well under all conditions studied requiring only slight tuning of the micro-

metering valves to ensure that the two pressure conditions were met.   

 

Figure 3.14. Capillary gas-liquid separator.  Liquid wets and passes through the membrane 

while the gas is retained on the inlet side. 



102 
 

3.9. Offline Sampling 

The collection of liquid samples allows for many types of analysis to be performed in the 

laboratory.  Initially, samples were collected from the stream exiting the back pressure 

regulator, but this quickly proved impractical.  The back pressure controller has an internal 

volume of approximately 2 ml.  The system is operated at flow rates on the order of 10 µl/min.  

Considering only the volume of back pressure controller, it would take over three hours for a 

sample to reach the outlet.  In addition, large chambers, such as in the back pressure controller, 

must be flushed with a few volumes of sample to reduce sample cross contamination.  A new 

method was required to collect liquid samples prior to the back pressure controller.  This 

method also had to prevent pressure disruptions to the main channel flow to ensure that stable 

segmented flow was achieved.   

The offline sampling unit is constructed out of two high-pressure valves (Figure 3.16).  When 

integrated, the 2-postion, 6-port valves have four states (binary: AA, BA, AB, and BB) which are 

fully described in Table 3.3.  A 100 µl sampling loop is attached to the first valve (Figure 3.17), 

 

Figure 3.15. CAD model for the capillary gas-liquid membrane separator. 
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which allows a sample to be removed from the pressurized system.  The second valve is 

connected to a high-pressure gas line that delivers gas at the system pressure.  A nitrogen tank 

with a regulator manually set to the system pressure is used to supply the high-pressure gas 

line.  After the sample is expelled into a 200 µl insert containing a 2 ml sample, the sampling 

loop is pressurized using nitrogen.  As a result, no pressure disturbances are introduced when 

the loop is returned to the high-pressure system.  The entire filling procedure is automated 

using a custom LabVIEW program.   

 

Figure 3.16. Photograph of the two integrated two-position six-port valves. 

 

Figure 3.17. Schematic of the two-position six-port valves showing the connections between 

the two valves. 
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Initially, a 10 µl sample loop was used to collect samples because it was believed that removing 

and reintroducing a smaller volume to the system would reduce the impact of pressure 

fluctuations on the flow.  When operated with this smaller loop, multiple loop volumes were 

required to collect the required 70+ µl sample.  This system was sampling a combined gas-liquid 

stream and pressurized gas was used to automatically eject the sample.  Ultimately the yield 

per cycle was very low and large volumes of gas were consumed.  This gas led to evaporation 

and distortion of the collected liquid sample.  In addition, aerosolization of the sample was 

observed.   

The addition of a gas-liquid separator overcame these challenges.  With the gas-liquid separator 

in place, depressurization no longer led to the sample being ejected from the system.  The 

sample was thus ejected from the sample loop manually using a disposable syringe which 

forced air through the sampling lines.  The smaller sample loop was replaced with a 100 µl loop 

so that only a single manual operation would be required to collect an entire sample.  

Increasing the size of the sample loop did not change the level of disturbance observed in the 

microreactor during sampling. 

Step V1 V2 Purpose 

1 A A Normal operation, flow filling sample loop 

2a B A Pressurized sample removed from system 

2b B A Sample manually expelled into vial 

3 B B Pressurize sample loop with gas to system pressure 

4 A B Reintroduce sample loop into system 

5 A A Clean sampling line 

Table 3.3. Procedure for collecting samples for offline analysis without disturbing system flow 

using high-pressure valves. 
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The sampling procedure (Table 3.3) was largely automated and controlled through the LabVIEW 

interface.  The loop was filled for a set time, calculated from the liquid flow rate and a user-

defined delay.  The sample loop was then removed from the system and a disposable syringe 

was used to eject the sample for collection.  The automation was then resumed causing the 

sample loop to be pressurized and reintroduced into the system.  Finally, the sampling line was 

pulsed three times with nitrogen in an effort to reduce sample cross-contamination.   

3.10. Computer Control 

The majority of the system was integrated into a single, custom LabVIEW program that enabled 

remote operation of the high-pressure system.  LabVIEW drivers were available for the 

Teledyne Isco high-pressure syringe pumps and the Agilent data acquisition unit.  Customized 

drivers were developed for the high-pressure valves used in the offline sampling unit, the JKEM 

temperature controller, and the Bronkhorst back-pressure controller.  The LabVIEW interface 

(Figure 3.18) was designed to include access to all of the major systems including the syringe 

pumps, pressure controller, sampling valves, temperature controller, and the gas handling 

system. 

The interface enabled all relevant pump parameters to be displayed and modified.  Pressure, 

volume remaining, and flow rate were all displayed in real time.  The pressure measured by the 

back pressure controller was shown in real time, as was the valve output level.  The set point 

could be changed from this interface as well.  The operation of the offline sampling unit could 

be operated automatically or manually.  During automation, the progress of the procedure was 

displayed.  The set point and current reading for either channel of the temperature controller 
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were also accessible.  Finally, a simplified schematic for the gas handling system allowed each 

valve to be manipulated.  The schematic also displayed the pressure at different locations in the 

system.   

3.11. System Enclosure 

Early during the design process, it was determined that the Teledyne Isco high-pressure syringe 

pumps were the only viable alternative for delivering fluid to the system.  These pumps stand 

40 inches tall, while the previous enclosure was only 24 inches tall.  To be able to place the 

 

Figure 3.18. LabVIEW interface for the high-pressure system.  This program controlled all 

pump, gas handling, pressure, sampling, and temperature systems and could be accessed 

remotely. 
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entire system in an enclosure, a new design was required.  The enclosure was built on a 4 ft by 

8 ft optical isolation table.  This table is shared by two researchers who constructed 

experimental setups on opposite sides of the table.   

Through discussions with MIT’s Environment, Health, and Safety (EHS) department, the only 

criterion for an experimental enclosure is that the average linear face velocity across any open 

areas is greater than 80 ft/min, with 100 ft/min being preferred.  The available ventilation near 

the enclosure was limited to 1000 ft3/min.  Any remaining ventilation capacity was connected 

to a gas cylinder cabinet that would hold toxic gases.  From these constraints, the maximum 

exposed area during operation was limited to 100 ft2.  The design must be tall enough to allow 

the high-pressure syringe pumps to fit inside.  In addition, it must enable two people to work 

simultaneously.  The enclosure was designed to be 48 inches tall.  Three rows of two doors each 

were designed for each of the two sides of the enclosure.  A one inch gap was left below the 

bottom doors to allow make-up air to enter the enclosure when all the doors were closed.  Two 

doors open at the same time would expose an area below 100 ft2.  The enclosure was vented 

through two exhaust ports at the top of the enclosure.  Two ports were chosen to reduce the 

effect of the rectangular enclosure shape. 

To verify that operating with different pairs of doors open does not affect local face velocity, a 

series of simulations were run using ESI CFD-ACE+, a computational fluid dynamics (CFD) and 

multiphysics solver.  This software allows large CFD problems to be solved on relatively modest 

computer platforms using iterative methods.  The geometry of the proposed enclosure was 
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built in the software.  The boundary conditions were as follows: exhaust outlet: fixed mass flow 

rate, open doors: pressure = 0 psig, remaining surfaces: no-slip.   

A number of door combinations were tested, including two adjacent and two opposite doors 

being open.  The solution was calculated using the kappa-epsilon turbulence model.  A sample 

solution can be found in Figure 3.19.  The simulation shows some variation in the face velocity 

across the enclosure.  The calculated face velocities are above 0.4 m/s which correspond to the 

80 ft/min criterion.  From this and similar simulations, it was concluded that any two doors 

could be opened without affecting the safety of the system. 

The enclosure was constructed out of aluminum framing with Lexan windows.  Lexan is shatter 

resistant to ensure researcher safety in the event of an explosion within the enclosure.  The 

 

Figure 3.19. Turbulent simulation showing face velocities and particle traces for the case 

when two doors are open.  All velocities are above the required 80 ft/min (0.4 m/s). 
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aluminum framing was a custom cut product known as T-Slots (Futura Industries).  T-shaped 

nuts and fasteners are inserted in the slots enabling quick assembly.  Similarly, door hinges can 

be attached to fasteners in the slots.  The gas handling system, first mounted on an aluminum 

plate, was suspended from the T-slot material as well.   

By designing the enclosure from scratch, it was possible to integrate cable/tube feedthroughs 

into the design.  The feedthroughs are basically custom-designed rings that are fastened to the 

Lexan panels.  Four sheets of neoprene are sandwiched between the ring and the panel.  The 

neoprene has an X pattern cut through it and each sheet is rotated 45° relative to the sheet 

below it.  The neoprene forms a seal around the cables and tubing that is passed into the 

enclosure.  Four feedthroughs were incorporated into the enclosure design requiring that the 

two large Lexan walls as well as the roof be custom fabricated.  The completed enclosure is 

shown in Figure 3.20.  

 

Figure 3.20. Completed system enclosure with six doors per side. 
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Chapter 4. System Operation and Analytics 

Standard operating procedures were developed for the high-pressure microreactor system for 

both homogeneous and heterogeneous operation.  Specifically, a procedure was developed for 

preparing gas and liquid mixtures, as well as for conducting sequential experiments.  For 

heterogeneous operation, procedures were also required for catalyst loading.  Both the inline 

Fourier Transform Infrared (FTIR) and offline sampling have unique considerations that must be 

addressed to enable reliable data collection. 

4.1. Experimental Preparation 

For both homogeneous and heterogeneous reactions, a generalizable procedure was 

developed.  A liquid mixture, required for the day’s experiments, was loaded into a high-

pressure syringe pump.  If a second pump was to be used, a second liquid mixture was loaded 

into it at this time.  A gas mixture was then prepared and loaded into the gas syringe pump.  

The reactor was loaded with catalyst, if applicable, and connected to the high-pressure system.  

The back-pressure controller was then set to the pressure for the set of experiments.  The gas 

syringe pump was opened, which pressurized the system.  Once the system was pressurized, 

gas and liquid flow was started.  During pressurization, the pump was run at constant pressure 

to compensate for the gas consumed while pressurizing the system.  When the pressures 

stabilized in each of the syringe pumps, the flow was at steady state and reaction sampling 

could begin.  At the conclusion of the experiments, the system was depressurized through the 

back-pressure controller; the pumps were depressurized separately.  The following sections 

describe each of these steps in greater detail. 
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4.1.1. Gas Mixtures 

Catalyst systems often require more than one gaseous species for reaction.  As described in 

Section 3.4, a single high-pressure syringe pump is used to deliver the gas to the system.  A gas 

handling system was developed to create a gas mixture in this pump.  This gas handling system 

is automated using a custom LabVIEW program.  The LabVIEW program allows the desired 

composition to be input, as well as the target pressure and volume.  The first step in the filling 

procedure is to evacuate the gas pump and all of the common lines.  This is done through the 

larger diameter line connecting the gas-handling system with the syringe pump.  Once the 

pump has been evacuated for 40 seconds, the manual valve is switched to the smaller diameter 

line.  This line has a larger pressure drop which slows the filling rate.   

The first gas is introduced to the system.  The program follows the pressure in the gas syringe 

pump until it approaches the desired pressure.  The valve connecting the gas handling system 

to the pump is then automatically closed.  A small reservoir of high-pressure gas is held in the 

tubing between the closed valve and the low diameter tubing.  This gas eventually equalizes in 

pressure with the pump, increasing the syringe pressure above the desired level.  To bleed this 

excess gas, the back-pressure controller is connected to this zone.  A three-way valve is used to 

connect the back pressure controller to either the high-pressure microreactor system or to the 

gas handling system.  Initially, the back-pressure controller’s valve remains closed.  Once the 

valve to the gas handling system is closed, the set point is varied until the pressure stabilizes.  

At that time, the first gas is considered loaded.  The gas handling system is then vented, 

followed by evacuation.  The second and third gas are added sequentially in much the same 
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manner, at increasing pressures so that the partial pressure of each gas corresponds with the 

desired composition of the final mixture.   

When an experiment does not require a mixture, manual controls are used to fill the pump.  For 

example, the only hydrogen gas is required for hydrogenation.  In this case, fine pressure 

control is unimportant because excess gas would just bleed through the system during 

pressurization.  In this scenario, the pressure from the gas cylinder can be used directly to 

pressurize the system without needing to run the pump.  The valve to the gas handling system 

is then closed before starting the pump. 

Upon completion of the experiment, any residual gas in the gas syringe pump is vented through 

the gas handling system, which is much faster than venting it through the microreactor system.  

Venting is completed through the larger tube connected to the manual valve.   

4.1.2. Liquid Mixtures 

The handling of liquid mixtures is largely determined by the sensitivity of each mixture to water 

and oxygen.  Most of the chemistries studied contained compounds that were sensitive to air.  

Initial manipulations were therefore done under an inert atmosphere in the glove box.   

Organometallic homogeneous catalysts are typically solid under standard conditions and are 

dissolved in solvent.  These catalysts are oxygen sensitive and are purchased under an inert 

atmosphere, which is maintained through manipulation in a glove box.  The samples are 

weighed and transferred to empty septum vials (40 ml, iChem).  Stir bars are also loaded into 

the vial in the glove box.  The vial is then sealed and removed from the glove box.  To further 

manipulate the contents of the vial, modified Schlenk line techniques are employed.  A nitrogen 
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line connected to a syringe needle is used flush the vial with inert gas, while a second syringe is 

used as a vent.  This vial is thus kept under positive purified nitrogen pressure during 

manipulations.  Anhydrous toluene (used as purchased) is loaded into a syringe and transferred 

to the vial containing the solid catalyst.  The vent is removed, followed by the nitrogen line, 

leaving the vial under positive pressure.  The vial is placed on a stirrer until the catalyst is fully 

dissolved.   

If a liquid reagent is air sensitive and unavailable in an anhydrous form, a different procedure is 

used.  In this case, the reagent is transferred to the glove box for preparation.  Molecular 

sieves, baked at 115 °C for at least 12 hours, are transferred to the solvent bottle.  Molecular 

sieves remove water in the reagent to very low levels.  To remove any oxygen-containing 

species in the reagent, activated alumina is added to the vial.  The alumina is activated using 

the same procedure as described above for molecular sieves.  Finally, the reactant is 

transferred to the vial and sealed.  The vial is then removed from the glove box.   

The liquid syringe pumps require a special procedure for cleaning.  The pumps cannot be 

disassembled easily, so they are cleaned using repeated fillings.  The pumps are first flushed 

three times with pure solvent, compatible with their previous contents.  The syringe pumps, 

even when “empty,” contain a few milliliters of liquid in the tubing between the syringe and the 

high-pressure valves.  While it is possible to fully exclude air from the first liquid syringe, the 

second liquid syringe pump does not have this capability and was used for reagents that were 

not air sensitive.  The first syringe pump is first flushed with nitrogen delivered through the gas 

handling system.  This purge expels the remaining liquid in the pump.  The purge is run for a 
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few minutes to encourage evaporation of the remaining solvent in the pump.  Finally, the pump 

is evacuated until the vacuum pressure reading stabilizes.  This removes all remaining volatile 

species. 

The liquid mixtures in the septum vial are then loaded into the syringe pumps.  A nitrogen line 

with attached needle is reinserted into the septum vial, this time without a vent.  A glass, gas-

tight syringe is then used to remove the mixture from the vial.  The syringe is also fit with an 

on/off valve.  A 0.45 µm filter disk is inserted between the syringe and the needle to filter 

particles from the liquid.  Microfluidic systems are very susceptible to clogging if foreign solids 

are introduced to the system.  The syringe is inserted into the liquid and the valve is opened.  

Nitrogen pressure drives the fluid into the syringe.  When the syringe is full, the valve is closed 

and the syringe is removed from the vial.  The gas-tight syringe is then connected to the syringe 

pump, which is then filled.  In the case of the first high-pressure syringe pump, the line to the 

attached gas-tight syringe is evacuated before loading.  There is no gas headspace in this 

scenario.  For the second high-pressure syringe pump, the lines are initially filled with gas, 

resulting in gas and liquid being loaded into the pump.  The pump is subsequently run until only 

liquid is observed exiting the inlet, which ensures that all gas is removed. 

4.1.3. Solid Catalyst Loading 

Catalyst particles must be loaded into the heterogeneous reactors prior to attachment to the 

system.  There are two traditional methods for loading reactors: fluidization and manual 

manipulation.  Fluidization, for example in ethanol, is preferred because loading is faster and 

requires less researcher manipulation.  The typical size of the catalyst particles employed (40-
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70 µm) are large enough that they require high velocities to remain suspended.  The beds in 

this study were 1-4 cm long, which would require increasingly large driving forces to maintain 

the velocity required for particle suspension.  Alternately, the particles can be manually 

manipulated using a spatula to load the dry catalyst particles.  A 1 mm micro spatula is used to 

load each reactor channel individually.  The inlet port is filled with catalyst particles.  The 

reactor is then tilted and tapped gently to allow the catalyst particles to flow from the inlet to 

the bottom of the channel under the force of gravity.  The process is repeated many times until 

the desired bed length has been reached.  The length of the bed in each channel is evened by 

small additions of catalyst.  The loaded reactor weight is compared to the empty reactor to 

determine the catalyst loading.   

This procedure leads to uniformly packed beds.  High packing efficiency has been observed by 

simply tapping the reactor to settle the catalyst.  When pressurized rapidly, the four bed 

lengths remain uniform suggesting that there were no voids in the initial packing.   

4.1.4. Reactor Packaging 

Reactors are loaded into the chuck using a standard procedure.  Care must be employed during 

packaging to prevent cracking the reactor.  The homogeneous reactor is inserted into the 

reactor chuck and aligned by ensuring that the through-etched ports are concentric with the 

ports on the chuck.  The heterogeneous reactor requires an additional step.  Given the 

sensitivity of the microreactor system to clogging,  extra effort is made to limit the spread of 

catalyst particles from the microreactor to the rest of the system.  Stainless steel screens (Vici, 

1SR1) with 1 µm spacing are placed over the ports on the stainless steel chuck.  Care is taken to 
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ensure that the 1/16 inch-wide frits are centered over the ports.  The reactor is then slid into 

the chuck.  The chuck is tightened in the same manner for both reactor designs.  The 

four screws on the chuck are tightened a fraction of a turn each following a cross pattern to 

ensure that the load is evenly distributed.  Improper balancing resulted in cracked reactors.  

During tightening, the spacing between the reactor and the chuck is observed from multiple 

angles to ensure that equal force is being applied to all four corners.  The fluorosilicone O-rings 

(O-Rings Inc, M25988/1-005) lose their elasticity after a few uses, increasing the likelihood of 

cracking a reactor during tightening.  

4.2. Experimental Operation 

After the system has been pressurized, the flow rates of the gas and liquids streams are set.  

The pressures in the syringe pumps, particularly the gas pump, are monitored until they 

stabilize.  The transient in this step can be large, depending on the pressure drop between the 

gas pump and the main reactor channel.  During operation, the gas pump is pressurizing rather 

than pumping the gas.  The gas is driven across a pressure drop to the reactor.  The pressure 

will vary until equilibrium is reached with the volumetric flow rate.  Liquid equilibration 

happens much more rapidly since it is largely incompressible and therefore can be pumped 

directly.  

If the liquid phase fluid properties, such as viscosity and surface tension, have changed 

significantly since the previous experiment, the gas-liquid separator would need to be tuned.  

Under standard operating conditions, both separator outlets are observed through the 

transparent Teflon tubing connecting the separator to two micrometering valves.  The 
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micrometering valves are used to balance the pressure drops such that the only the liquid 

passes through the porous membrane.   

The design of the system makes changing certain variables quicker than others.  A change in 

reactor temperature would only take a few residence times before a new sample could be 

taken.  Similarly, a pressure change would simply require a new steady state to be achieved.  

Changing the gas composition or liquid composition would require reloading the respective 

syringe, as described above, and restarting the entire process.  If there is only a single liquid 

reactant, the system is capable of varying the concentration of that species in real time through 

dilution.  A typical experiment would therefore map out a series of temperatures before 

attempting to change any other parameters.  It is essentially very cheap to conduct 

temperature experiments. 

The procedure for each successive temperature is as follows.  The temperature is input into the 

LabVIEW program and the reaction progress is monitored using the inline IR system.  The 

conversion varies with temperature and eventually reaches a steady state.  Inline analysis 

increases experimental throughput.  Rather than waiting for a stable temperature followed by a 

predetermined number of residence times, steady state is observed directly.  At this time, 

samples are collected using the sampling valve system.  Two samples are typically collected, of 

which only the second is retained.  The samples are collected in 2 ml screw top glass vials with 

200 µl inserts to enable collection of small volume samples.  Upon completion of the offline 

sampling, the next temperature is set and the procedure is repeated.   
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Following a series of temperature experiments, the next variable is changed.  By varying the 

flow rate, it is possible to determine temporal effects on the reaction.  Reducing the system 

pressure is most useful in experiments with a single species in the gas phase.  When the system 

pressure is changed, it is most efficient to begin the first experiment at the highest pressure.  In 

either scenario, the pressure in the gas syringe pump is monitored until a new steady state is 

reached.  A new series of temperature data is then collected. 

4.3. Analytics 

The system was designed to have two complementary methods of analysis.  The first system 

incorporates an inline Fourier Transform Infrared (FTIR) spectroscopy system that provides real-

time analysis.  The second method involves offline analysis.  While high-pressure liquid 

chromatography (HPLC) could also be employed to analyze the offline samples, gas 

chromatography (GC) with and without mass spectrometry (MS) were used exclusively.   

4.3.1. Inline – Fourier Transform Infrared Spectroscopy 

A Mettler Toledo ReactIR iC10 FTIR system was incorporated into the high-pressure system.  

This system is a capable of real-time monitoring of reaction progress.  It uses a mercury 

cadmium telluride (MCT) detector, which is cooled to 80 K to enable a good signal to noise 

ratio.  This system was chosen for the availability of a flow cell.  The flow cell (Figure 4.1) allows 

for continuous monitoring of small volumes of fluid under flow.  The flow cell contains an 

attenuated total reflectance (ATR) sampling element.  The infrared beam enters the crystal at 

an angle such that it is reflected a number of times.  At each internal reflection, an evanescent 

wave is generated that penetrates 0.5-2 µm into the fluid being sampled, depending on the 



119 
 

light wavelength.  The attenuation from the interaction of the evanescent wave with the 

sample is passed back the IR beam and analyzed.   

The DiComp ATR window is a composite material of diamond deposited over zinc selenide.  The 

diamond coating increases the strength and chemical compatibility of the window, but 

significantly reduces sampling of the region from 2250 to 1950 cm-1.  The combined crystal has 

a spectral range of 4000 to 650 cm-1, excluding the diamond “blind spot.”  Alternatively, silicon 

could be used as the crystal material.  It does not suffer from the diamond blind spot, but is not 

as chemically or mechanically robust as diamond.  A silicon window is more likely to scratch 

during cleaning.  Moreover, it is etched by alkaline solutions. 

The second half of the flow cell consists of a removable head (shown in Figure 4.2), which is 

fastened using screws.  A Kalrez O-ring provides a fluidic seal between the head and the rest of 

the cell.  The head contains the fluidic connections which are 1/4-28 threaded flat-bottom 

ports.  A variety of fittings are available from suppliers such as Upchurch Scientific that can 

 

Figure 4.1. Flow cell module connected to the iC10 FTIR.  Fluidic connections are made to a 

removable head, which is heated. 
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interface with these ports.  The flow within the cell impinges on the crystal window before 

exiting the cell.  The internal volume of the flow cell is 51 µl.  The removable head also 

incorporates a resistive heater and an RTD temperature sensor.  The flow cell can be 

maintained at temperatures from room temperature to 75 °C.  The flow cell is capable of 

operation at pressures up to 30 bar.  The flow cell restricts the upper operating pressure when 

the flow cell is used as part of the high-pressure system.   

Sampling occurs at predetermined intervals using the accompanying Mettler Toledo reactIR 

reaction analysis software.  Each data point consists of the average of the scans that occur 

 

Figure 4.2. Schematic of the flow path in the head of the flow cell.  The flow enters on 

through the lower port, impinges on the window, and exits through the upper port.  

[Courtesy of Mettler Toledo] 
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during that interval.  For example, with the resolution set to 4 cm-1 and the interval set to 

30 sec, 127 scans are averaged for each point recorded.  The reaction software also performs 

real-time analysis such as chemometrics, peak integrations, and solvent background 

subtraction. 

4.3.1.1. Operation 

When the FTIR was attached to the high-pressure system, additional steps were required at the 

start of experimentation.  Liquid nitrogen is required to cool the MCT detector to 80 K.  While 

the reservoir should be capable of holding enough liquid nitrogen for experiments of up to 

24 hr, the liquid nitrogen was topped up before overnight runs.  In addition, a dry air purge was 

required to prevent changes in humidity from affecting the data.  The laser beam travels 

through both fiber and air within the IR instrument.  An air background was collected prior to 

each experiment.  During background collection, the spectrum is influenced by whatever is in 

contact with the ATR crystal.  The window must therefore be very clean when the background 

is collected.   

Prior to collecting the background and beginning experimentation, one of two cleaning 

procedures was employed.  The type of experiment most recently run in the system 

determined which cleaning procedure was used.  If the most recent chemistry was the same as 

the current set of experiments, the goal of the cleaning was simply to remove material from the 

window itself to ensure collection of a clean background.  If a new chemistry was to be run, 

every effort was made to completely clean the entire flow cell.  For a complete cleaning, tubing 

was attached to the flow cell and a disposable syringe was used to flush it with a series of 
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solvents.  Solvents such as water, toluene, acetonitrile, and acetone were used to flush the flow 

cell.  Acetone was always the last solvent.  To clean the window, the head of the flow cell was 

removed.  A cotton-tipped applicator, wet with acetone, was rubbed vigorously on the ATR 

window.  The window was then allowed to air dry.  The ReactIR software stores a known clean 

“gold-standard” background spectrum.  The software allows a real-time comparison between 

the measured spectrum and the stored spectrum to verify that the window has been cleaned.  

Depending on the result of this comparison, the window was further cleaned using a cotton-

tipped applicator soaked in the solvents enumerated above.  Acetone was always the final rinse 

because it evaporates rapidly.  Once the window was sufficiently clean, a background for the 

day’s experiments was recorded.  The head was then reattached to the flow cell.  The 

temperature in the flow cell was set to 35 °C.  Temperature control minimizes the effect of 

room temperature fluctuations on the collected spectrum.  IR data collection could then 

commence. 

4.3.1.2. Analytic Approaches 

The iC10 spectrometer, together with the micro flow cell, allow for both qualitative and 

quantitative monitoring of reaction progress.  Quantitatively, IR can be unreliable at low 

concentrations.  Small peaks can be overcome by noise in the system, particularly in mixtures of 

any complexity.  Mettler Toledo promises reliable results at concentrations greater than 1% of 

the total solution.  Of course, this depends on the intensity of the IR response to individual 

species.  For example, molecules containing carbonyl groups have strong IR fingerprints and can 

be tracked quantitatively at lower concentrations than a weaker IR active functional group such 
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as an alkene.  Characteristic peak overlap or duplication of functional groups in a mixture 

increases the difficulty of using IR quantitatively.   

Beer’s law forms the basis of quantitative analysis based on IR spectra,129  

 ( ) ( )ν ν=A a bc  (4-1) 

The law relates absorbance at any wavenumber ν to the species absorptivity (a) at that 

wavenumber, the path length (b), and concentration (c).  This expression can be extended for 

mixtures such that Beer’s law for a mixture can be written: 

 ( ) ( )ν ν
=

=∑
1

N

i i
i

A a bc  (4-2) 

where i refers to the ith component of the mixture.  The simplest way to apply this relationship 

is to find a wavenumber where ai is 0 for all but the desired species.  In other words, that peak 

location is unique to a single species.  For example, in a nonanal/1-octene/toluene mixture, 

there is a peak associated with a carbonyl stretch at 1740 cm-1.  Thus by calibrating 

concentration against this peak, it is possible to calculate the concentration of nonanal.  

Calibration occurs by taking measurements of known concentrations and fitting a slope to a 

plot of absorbance against concentration.  Essentially the fitted slope is the product of a(ν)b.  

Beer’s law is expected to be linear over a wide range of absorbance.  Deviations can occur when 

analyzing highly concentrated solutions or when there is insufficient spectral resolution.   

For qualitative analysis, it is often desirable to subtract the solvent from the spectrum to ease 

identification of the desired species.  Solvent subtraction can also ease quantitative analysis by 

isolating spectral bands.  Background solvent subtraction works best when the sample mixture 
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is dominated by the solvent, such that the scaling factor k is near unity in the following 

expression, 

 = −r bA A kA  (4-3) 

where Ar is the raw spectra and Ab is the solvent background spectra.  As the solvent becomes 

less dominant, determining the proper scaling factor becomes challenging. 

In practice, the height or area of a representative peak can be correlated to concentration.  The 

ratio of the width of the peak versus the instrument’s spectral resolution affects the measured 

stability and accuracy.  Very sharp peaks provide fewer possible wave numbers at which the 

maximum peak height can be observed.  Peak area, on the other hand, is less sensitive to 

spectral resolution since the area lost due to a truncated peak is small relative to the rest of the 

peak.  In practice, both techniques work equally well for the systems studied in this thesis.  

Absorbance data, after solvent subtraction, is shown for a typical run in Figure 4.3.  The data 

show that there is a strong, highly-linear relationship between peak height and area, as would 

be expected.  Peak height data is easier to collect and was thus the basis for all IR data 

presented in this thesis. 

The analysis presented above is the simplest way of approaching the IR data and only works 

when a non-overlapping characteristic peak can be identified for each species.  The ReactIR 

software has two additional approaches for performing online data analysis. The first is iC 

Quant, which uses a training data set to identify spectral characteristics associated with each 

species.  This method enables quantitative results in mixtures with many overlapping peaks.  

The second method, ConcIRT applies chemometrics to identify patterns in the IR data over time 
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and is able to identify different species in the sample and provide a rough spectrum for each 

species.   

Before running an experiment using the iC Quant system, a model must be developed within 

the software.  A known series of samples are prepared and sampled using the IR system.  The 

resulting spectra and concentration data, collectively known as a training set, are then fed into 

the model software.  The model is based on the spectra within a defined range that would 

preferably exclude strong solvent peaks.  A partial least squares method is used to reduce a 

 

 

Figure 4.3. Top: Raw reaction data as temperature is varied showing both height and area 

data associated with nonanal and 1-octene.  Bottom: The same data is plotted showing that a 

linear relationship exists between height and area.  (A.U. abbreviates arbitrary unit) 
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sample spectrum into a handful of variables that are indicative of the larger spectrum.  A model 

is then defined by further reduction of these variables down to a set of principle components.  

Ultimately, fewer principle components must be selected than there are data points in the 

training set to ensure a reasonable model.   

An iC Quant model was prepared for the hydroformylation reaction of 1-octene to nonanal.  

Two component mixtures were prepared of 1-octene and nonanal in toluene (solvent) at 

concentrations ranging from 0.01 to 0.50 M, with a combined analyte concentration of 0.50 M.  

A model was developed that fit the data and could then be applied in real time as IR data was 

collected.  The predicted concentrations for a sample run are shown in Figure 4.4.  While the 

predicted concentrations follow the expected trends as the temperature is varied, they fail to 

make physical sense.  The model forces mass balance closure, while allowing the concentration 

 

Figure 4.4. The iC Quant concentration results from an experimental run, as temperature is 

varied.  While the mass balance closure is perfect, the model makes little physical sense due 

to the negative concentration of the nonanal product. 
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of nonanal to be negative.  Training the model with single component mixtures led to poor 

mass balance closures.  While it is conceivable that a training set could be devised that would 

lead to a better model, no further effort was expended because manual single peak analysis led 

to reasonable results. 

ConcIRT analysis was also applied to the hydroformylation system.  The benefit of ConcIRT is 

that the chemometric methods require neither a training set nor any a priori knowledge of the 

system.  By tracking a portion of the spectra with time, it attempts to decompose the raw data 

into pure component spectra.  From these spectra it generates concentration profiles with 

arbitrary units that can be used to study complex reactions.  This analysis was attempted as a 

third possible method for analyzing the IR reaction data. 

The concentration profiles calculated using the ConcIRT method (Figure 4.5) follow the same 

trends as simply monitoring the characteristic peaks for nonanal and 1-octene.  Component 

 

Figure 4.5. ConcIRT concentration profiles are compared to the peak-height based profile 

completed manually (Ht). 
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#3 is 1-octene and Component #1 is nonanal.  The analysis also identified a third component 

(Component #2) that does not vary widely over the course of the experiments.   

In addition to the concentration profiles, the method also determines estimates of the pure 

component spectra.  These spectra are shown in Figure 4.6, along with analytically pure 

component spectra.  The heights of the peaks in this comparison are arbitrary, but the location 

of the peak is important.  The peak that ConcIRT identifies as Component #1 has the 

characteristic peak of nonanal at 1740 cm-1.  Similarly, Component #3 shares its characteristic 

peak with 1-octene at 1642 cm-1, as well as most of the toluene spectrum.  Component 

#2 appears to be positively correlated with 1-octene and negatively correlated with nonanal.  

This proposed spectrum makes little physical sense and is of little importance in the 

 

Figure 4.6. A comparison of the ConcIRT pure component spectra against the directly 

measured pure component spectra shows that Component #1 is correlated with nonanal and 

Component #3 is correlated with 1-Octene.  Component #2 appears to be positively 

correlated with 1-octene and negatively correlated with nonanal. 
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concentration profiles in Figure 4.5.  It is interesting to note that both Components #1 and 

#3 contain peaks associated with the toluene solvent.  Introducing solvent peaks into the 

spectra for the reacting components is expected to reduce the accuracy of the overall model.  

In addition, a calibration would still be required to use this analysis quantitatively.  For the 

systems studied in this thesis, it was simpler to perform a manual analysis based on the height 

of a single characteristic peak for each species. 

4.3.1.3. Gas-Liquid Effects 

When first introduced into the system, the flow cell was inserted directly downstream of the 

reactor.  This arrangement analyzed the multiphase flow directly.  During multiphase flow, the 

liquid phase is expected to wet all walls, including the ATR crystal.  The evanescent wave is only 

expected to penetrate 0.5 to 2 µm into the flow, permitting sampling of the liquid phase.  In 

general, a strong signal was observed when sampling multiphase flow.  However, the data was 

noisy and would unexpectedly dip at times (Figure 4.7).  Data for both 1-octene and nonanal 

vary in the same direction suggesting variation of the wetting layer thickness.  If the variability 

was caused by fluctuating conversion, 1-octene and nonanal would have oscillations that were 

out of phase.   

A gas-liquid membrane separator was inserted between the reactor and the flow cell.  Thus 

only liquid was sent to the flow cell, removing multiphase complications.  The resulting peak 

height data had less variability (Figure 4.8) suggesting that the presence of a second phase 

affected data collection. 
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A more direct way to analyze the effect of multiphase flow was to vary the flow rate, while 

maintaining a gas to liquid ratio of 3:2.  The concentration of 1-octene in the liquid phase was 

 

Figure 4.7. Raw IR data for a multiphase samples is noisy.  The peaks and valleys are 

correlated between 1-octene and nonanal suggesting the magnitude of the entire spectra is 

varying. 

 

Figure 4.8. Raw IR data for a liquid stream only.  The variability in peak height is greatly 

reduced when compared to the multiphase data in Figure 4.7. 
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constant for the entire experiment.  However, the measured concentration of 1-octene 

decreased as the flow rate increased (Figure 4.9).  This trend is consistent with the liquid film 

thickness on the surface of the ATR crystal decreasing at faster flow rates.  As the liquid film 

thins at higher flow rates, the measured amount of attenuation decreases, reducing the peak 

height associated with 1-octene.  When the same liquid stream is injected directly into the flow 

cell, in the absence of gas, a concentration of 0.54 M was measured.  These results further 

highlight the susceptibility of the IR flow cell to multiphase flow.  All remaining IR data in this 

thesis were completed after the addition of the gas-liquid membrane separator ensuring that 

only liquid is measured. 

4.3.2. Offline – Gas Chromatography and Sample Collection 

Gas chromatography (GC) provides an alternative analysis method to IR.  GC is a common 

laboratory technique for analyzing compounds that can be vaporized without decomposition.  

Typically, the analytes must have boiling points above room temperature and below 300 °C.  

Large, high-boiling molecules can remain in the sampling zone or column, contaminating future 

results.  Similarly, salts or other solid materials remain in the system, eventually leading to 

 

Figure 4.9. The measured concentration of 1-octene varied during multiphase flow.  The 

concentration of all samples was 0.54 M, as measured in single phase flow. 
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clogging.  GC analysis can also differentiate isomers, which is impossible using IR.  GC is able to 

quantitatively analyze more complex mixtures than IR is capable of.  In addition, GC can analyze 

molecules without any IR active groups.  Offline GC analysis has an inherent delay, preventing it 

from being the sole analysis technique.  When used in concert, IR and GC provide analytical 

redundancy. 

An Agilent HP 6890 series gas chromatograph, with a HP-5MS column, was used to analyze the 

offline samples.  In conjunction with a heat ramp, the column separates different species based 

on their interaction with the column surfaces.  Using a robotic autosampler, liquid samples are 

injected into a sample zone and vaporized.  An inert gas, typically helium, is used as a carrier.  

Absorption on the surface inhibits analyte progress in the column.  The inhibition varies by 

molecule, allowing separation to occur.  A flame ionization detector is used to monitor the 

outlet of the column.  The area under each peak is proportional to the analyte concentration.  

Under ideal conditions, each species in the mixture elutes at a different retention time, allowing 

for analysis of complex mixtures.  The characteristic retention time is a function of analyte, 

column, and method employed.  Calibration standards are run to determine a species retention 

time and relative response factor. 

When the identity of a species is unknown, the GC column can be used in conjunction with a 

mass spectrometer (MS).  GC-MS analysis is only required to characterize unknown peaks 

identified during simpler GC analysis.  For most samples, GC analysis is sufficient to determine 

concentration.  The mass spectrometry data consists of a spectrum that shows the relative 

abundance of molecules of different weights.  The spectrum is composed of basic peaks and 
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fragmented peaks.  Basic peaks are those associated with the total mass of a molecule or after 

a single deprotonation.  Fragmented peaks occur when bonds are cleaved during ionization.  

Different fragmentation patterns allow isomers to be distinguished.  Mass spectra are typically 

compared to a spectral library to identify the molecule.   

4.3.2.1. Sample Crossover during Collection 

Early samples collected for GC analysis were unreliable.  The hydroformylation of 1-octene to 

nonanal was run at different temperatures, which were varied in a random order.  The reaction 

rate was expected to increase exponentially as temperature is increased.  Early results showed 

great scatter in the results, as though the results were affected by previous samples.  To test 

this hypothesis, two samples were successively collected at each temperature point (Figure 

4.10).  In the figure, the red crosses are the first sample, and the blue squares are the second 

sample and are numbered according to experimental order.  When the previous experiment 

was at higher conversion than the current experiment (labeled “d”), the conversion was higher 

for the first sample.  When the previous experiment was at lower conversion (labeled “u”), the 

conversion was lower for the first sample.  For the first data point, both the first and second 

samples have the same conversion.  When only the second samples are considered, the 

expected exponential relationship is present.  This suggests that there is crosstalk between 

samples.  The problem persisted even after reducing the number of connections in the 

sampling line.  The ultimate solution was to take two samples at each condition and discard the 

first.  All remaining GC data in this thesis employed this strategy. 
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Figure 4.10. Crossover contamination was observed during offline sampling.  When two 

successive samples were analyzed, the first sample was influenced by the previous reaction 

condition.  This was not the case for the second sample.  Numbers represent sample order, 

“d” represents a lower temperature than the previous sample, and “u” represents a higher 

temperature than the previous sample. 
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Chapter 5. Homogeneous Catalysis – Hydroformylation 

5.1. Introduction and Reaction Literature 

Homogeneously catalyzed gas-liquid reactions, such as the hydroformylation of alkenes to 

aldehydes and the carbonylation of methanol to acetic acid, are of high industrial importance.  

While catalyst recycling proves to be an expensive challenge, homogeneous catalysis displays a 

number of benefits when compared to heterogeneous catalysis.  Homogeneous catalysts 

typically have higher activity and selectivity, require milder reaction conditions, and provide the 

ability for some mechanistic understanding.130   

Rhodium catalyzed hydroformylation was discovered by Wilkinson and his colleagues in the late 

1960s.131  This new catalyst system could be operated at more moderate conditions relative to 

its predecessor, cobalt carbonyl.132  Hydroformylation reactions are expressed as follows: 

 RCHCH2 + H2 CO  RCH(CHO)CH3 or R(CH2)2(CHO) (5-1) 

One of the most commonly studied catalysts is HRhCO(PPh3)3 which was first identified by 

Wilkinson.131  The mechanism is currently thought to be well understood, and can be found in 

Figure 5.1.  This mechanism consists of two branches which determine the selectivity of the 

reaction to the linear or branched aldehyde product.  Selectivity towards one product is 

determined by whether the center metal forms a bond to the terminal or internal carbon (Steps 

3 and 9).  Selectivities, which can often exceed 90% for the linear product, are a function of the 

type of ligand that is attached to the rhodium center.132  After alkene insertion (Step 2), carbon 

monoxide is added (Step 6), followed finally by hydrogenolysis (Step 4).  A number of internal 

rearrangements occur during the reaction and are typically unobservable during kinetic studies.  



136 
 

The rates of the equilibrium reactions are important because a number of reactions also 

remove rhodium from the catalyst cycle through the coordination of an additional carbon 

monoxide molecule with the metal center.  These equilibria depend on the concentration of the 

available ligands.  For example, triphenyl phosphine (L) and carbon monoxide can coordinate to 

the rhodium in different ratios,132 

 HRhL4 ↔ HRh(CO)L3 ↔ HRh(CO)2L2 ↔ HRh(CO)3L ↔ HRh(CO)4  (5-2) 

Studies have shown that the disassociation of CO is 100 times faster than the hydroformylation 

reaction at 85 °C.100  FTIR in situ studies have shown that at low phosphine concentrations, 

HRh(CO)2(PPh3)2 is the predominant precursor species and readily reacts with the alkene.133   
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Figure 5.1. Widely accepted mechanism for alkene hydroformylation.  Steps 2-6 are the 

dominant cycle and result in the linear aldehyde product.  Steps 9-10 represent a similar cycle 

whose product is the branched aldehyde. 
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Despite the wide agreement on the mechanism of rhodium catalyzed hydroformylation, the 

identity of the rate determining step is a source of continued debate.  Different groups identify 

either the coordination insertion of alkene or the hydrogenolysis to the product as the rate 

determining step and thus disagree whether hydrogen pressure should affect reaction rate.  An 

early study into the kinetics of propene hydroformylation expressed a rate law that was zero-

order in hydrogen.134  Later studies of slightly different systems found either positive-135-138 or 

zero-139 order dependence on hydrogen.  Van Leeuwen directly addresses this discrepancy and 

argues that differences in conditions, most notably hydrogen pressure, could lead to a positive 

observed order due to the requirement that hydrogen cleave di-rhodium species before they 

can renter the catalytic cycle.132, 140, 141   

The choice of ligand also affects the rate determining step.  DFT calculations142 and FTIR in situ 

studies143 have demonstrated that the electrophilicity of the ligand determines whether the 

insertion of alkene or hydrogenolysis is the rate determining step.  Phosphite ligands also lead 

to higher reaction rates than phosphines.144-146  For electron withdrawing ligands such as 

phosphites, the rate determining step is found to be alkene insertion.  For electron donating 

ligands such as phosphine, the rate determining step is hydrogenolysis.  Another DFT study 

finds that CO insertion is rate determining.147   

A number of kinetic studies for HRhCO(PPh3)3 catalyzed hydroformylation are available in 

literature.  These studies express the kinetics as either an overall power law99, 134 or an 

empirical form chosen through regression analysis.135-137  Both types of expressions provide a 

reasonable fit for the data and the many different forms reflect the complexity of the system.  
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As can be expected for empirically-derived kinetic expressions, they are only valid within the 

range of experimental conditions.  The complexity of the mechanism prevents a comprehensive 

kinetic model.  There are multiple catalyst complexes, such as rhodium-hydride or rhodium-

acyl, which remove rhodium molecules from the catalyst cycle.143  The choice of alkene, 

hydrogen and carbon monoxide partial pressures, ligand concentration,140 and solvent148 all 

affect the observed kinetics. 

Murzin et al.149 recently attempted a kinetic model to explain the regioselectivity of alkene 

hydroformylation.  They claim that the relative selectivity of the products depends on the ratio 

of CO to PPh3 ligand on the rhodium center during reaction.  When the catalysts exists in the 

active form HRhCO(PPh3)2, shown before Step 2 of Figure 5.1, the selectivity to the linear 

aldehyde is higher than when the active form is HRh(CO)2(PPh3).  These observations are 

consistent with experimental data showing that an excess of PPh3 ligand, which would favor the 

catalyst form with increased ligand, increases the selectivity towards the linear product.140  

Murzin developed a microkinetic model using elementary reactions from the four reaction 

cycles (two catalysts each forming two products).  They formed an overall rate expression after 

applying a quasi-equilibrium assumption.  These expressions were greatly simplified using 

results from an earlier study, such as the overall order of the kinetic expression in CO and 

alkene.99  Much of the simplification, which made further analysis possible, was based on the 

first order dependence on CO in their data.  Other groups found CO pressure have a negative 

overall order, which would prevent this simplification.135-137   
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5.2. Experimental 

Catalyst and reactant solutions were prepared individually and loaded into the two liquid 

syringe pumps.  The catalyst, tris(triphenylphosphine)rhodium(I) carbonyl hydride 

(HRhCO(PPh3)3) (Aldrich, 225665), and extra ligand, triphenyl phosphine (Sigma-Aldrich, 

T84409) were dissolved in anhydrous toluene (Sigma-Aldrich, 244511).  A 2:1 mass ratio of 

ligand to catalyst was used for all experiments.  The solution was prepared using a glove box, 

under a nitrogen atmosphere, and modified Schlenk techniques to exclude oxygen (Section 

4.1.2).  The reactant, 1-octene (Aldrich, O4806) was separately diluted in toluene.  Hydrogen 

(Airgas, HY Z300), carbon monoxide (Airgas, CM UHP35), and nitrogen (Airgas, NI UHP300) 

gases were all used as purchased.  The three gases were added sequentially to the gas syringe 

pump to achieve the desired composition and pressure (Section 4.1.1). 

The standard conditions for the reactions were: hydrogen pressure = carbon monoxide 

pressure = 11.25 bar, nitrogen pressure = 2.5 bar, catalyst concentration = 5.0 × 10-4 M, and 1-

octene concentration = 0.50 M.  Nitrogen was included to ensure that bubbles would remain 

and reduce axial dispersion if all of the reacting gas was consumed.  The reaction was carried 

out in flow, with a liquid flow rate of 26 μl/min and a gas flow rate of 29 μl/min.  These flow 

rates correspond to a residence time of 4 min in the heated zone of the reactor.  To explore the 

parameter space, only a single condition was varied from these standard conditions.  The active 

form of the catalyst was created in the reactor during reaction.  For each set of conditions, the 

temperature was varied randomly between 85-105°C, in 5°C increments.  The reaction rate was 

estimated from the concentration of the aldehyde products.  When experiments were repeated 

in during a single run, the reproducibility was very high.  The results varied by less than 1%.   
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5.2.1. Analytic Considerations 

Mass balance closure is an important analytic system benchmark.  A closed mass balance 

signals a well calibrated analytic system that accounts for all participating species.  A sample 

experimental run is presented in Figure 5.2.  Two analytic techniques are shown, as well as the 

sum of all of the species analyzed by GC.  The mass balance should remain constant at all 

temperatures.  The calculated mass balance closure for the gas chromatography data has a 

standard deviation of 1%.  The mass balance using the IR measurements show the mass balance 

varies as temperature increases. 

The measurement of 1-octene and nonanal using the two techniques tends to follow the same 

trend, but are slightly offset.  For example, the deviation increases at higher concentrations of 

85 90 95 100 105
Temperature (°C)

0

0.1

0.2

0.3

0.4

0.5

0.6

C
on

ce
nt

ra
tio

n 
(M

)

 

Figure 5.2. Raw data for 1-octene hydroformylation at standard conditions. The three 

measured species are 1-octene (), aldehydes (), and 2-octene () measured by FTIR (red 

filled) and GC (blue open).  The circles are the sum of the measurements of all of the GC data 

and demonstrate good mass balance. 
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nonanal.  These deviations cause the observed trend in the mass balance calculations and 

endured through multiple calibrations.  Calibration was completed in both single component 

and multicomponent solutions.  The initial calibrations were prepared in volumetric flasks by 

diluting each species individually.  A predetermined volume of each species was pipetted into 

the flask and then diluted in toluene (solvent).  By avoiding serial dilution methods, an error in 

the preparation of the initial stock solutions would not propagate to the other standard 

mixtures.  On the other hand, nonlinearities in the calibration of the micropipette would still 

propagate as the solutions were prepared.   

Calibration curves were prepared for three species, 1-octene, nonanal, and 2-octene (a 

potential side product) and are shown in Figure 5.3.  All calibrations exhibit high correlation 

coefficients and near zero intercepts.  Given the IR mass balance closure described above, a 

second and independent nonanal calibration was prepared.  Both nonanal calibrations have 

 

Figure 5.3. Prepared calibrations for 1-octene, 2-octene, and nonanal.  All calibrations have 

near zero intercepts and high correlation coefficients. 
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nearly identical slopes suggesting that errors in preparing the standard solutions are unlikely to 

cause mass balance issues.   

There is no overlap between the characteristic 1-octene and nonanal peaks.  Figure 5.4 shows 

the variation in peaks of these spectra, after solvent subtraction, as 1-octene is converted into 

nonanal.  At higher concentrations, the solvent subtraction algorithms of the iC IR software 

could potentially be less quantitatively reliable.  To test this hypothesis, a second set of 

calibration standards were prepared.  For these calibrations, the total concentration was held 

fixed at 0.5 M.  Mixtures were prepared by combining different volumes of 0.5M solutions of 1-

octene and nonanal.  These mixtures were then analyzed to develop a calibration.  The 

 

Figure 5.4. IR spectra of the hydroformylation reaction at standard conditions, after solvent 

subtraction. The 1-octene (0.5 M) is consumed more rapidly at higher temperature to evolve 

the aldehyde products.  The peak at 1642 cm-1 corresponds to the C=C stretch of a vinyl 

group, while 1740 cm-1 corresponds to C-O stretch of an aldehyde. 
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calibration was not materially different from Figure 5.3.  Catalyst was also added to the 

calibration solutions to test if the carbonyl ligand affected the aldehyde response.  The catalyst 

containing solutions were indistinguishable from the original calibrations. 

Another possible error source is that only one of the aldehyde products was commercially 

available.  Specifically, calibrations were only constructed from nonanal solutions, when the 

product of the hydroformylation is a mixture of nonanal and 2-methyl-octanal.  The IR response 

to the carbonyl is not expected to vary greatly.  In addition, GC analysis of the product streams 

shows that the ratio of branched to linear product remains consistently 1:3.  The spectra of 

0.5 M hexanal and 2-methylpentanal in toluene were analyzed as a proxy aldehyde pair.  From 

the analysis (Figure 5.5), the peak height of 2-methyl pentanal was 3.5% larger than hexanal.  

For a difference in height of the carbonyl peak in the branched and linear products to account 

for the deviations in the mass balance, the response of the branched peak height would have to 

 

Figure 5.5. The spectra for 0.5 hexanal and 2-methylpentanal are nearly identical, with 2-

methylpentanal having a 3.5% stronger response. 
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be 50% larger.  This increase is not observed for the proxy aldehyde pair.  

Gas chromatography analysis consistently provided good mass balance closure.  It was able to 

separate all species, including the product isomers, while avoiding solvent complication.  As a 

result, all remaining data presented in this chapter were based on the gas chromatography 

data.  IR data was always collected in concert to monitor the stability of the reaction and 

identify problems during operation. 

5.3. Kinetic Results of Hydroformylation 

The high-pressure system was used to conduct a series of experiments where the partial 

pressures of carbon monoxide and hydrogen and the rhodium catalyst concentration were 

varied.  At standard conditions, the time elapsed between subsequent experiments was less 

than 45 min.  An empirical reactor model is first fit to the data to better understand relationship 

between the catalyst, hydrogen, and carbon monoxide.  This understanding is then applied to a 

mechanistic model.  An overall empirical expression of the following form is proposed,  

 = ( ) a b c dP
Rh H CO oct

dC k T C P P C
dt

 (5-3) 

where CP is the concentration of the aldehyde products, k(T) is the reaction constant and is a 

function of temperature, CRh is the catalyst concentration, PH is the hydrogen partial pressure, 

PCO is the carbon monoxide partial pressure, Coct is the 1-octene concentration, and a, b, c and d 

are reaction order constants.  The temperature dependence of k(T) can be described using the 

Arrhenius equation, 
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 − =  
 0( ) exp aEk T A RT  (5-4) 

with A0 being the pre-exponential factor, Ea the activation energy, and R the gas constant.   

5.3.1. Differential Reactor Analysis 

Under differential conditions, an appropriate starting point for kinetic analysis would be to 

assume that all other parameters are held constant during the experiment.  When the 

conversion only reaches a few percent, neither the partial pressures of the carbon monoxide 

and hydrogen in the bubble nor the concentration of the alkene in the slug would change 

significantly.  When these assumptions are valid and catalyst concentration is varied, the rate 

expression in Equation 5-3 can be simplified to:  

 = a
Rh Rhr k C  (5-5) 

where kRh lumps the alkene, hydrogen, and carbon monoxide contribution with k.  A value for 

parameter a could then be determined by minimizing the standard deviation of kRh across all 

catalyst concentrations, at each reaction temperature.  A similar analysis could be carried out 

for variations in the partial pressures of hydrogen and carbon monoxide.   

The Arrhenius equation could be linearized as follows, 

 ( ) ( )= − ⋅0

1
ln ln aE

k A
R T

 (5-6) 

allowing for simple determination of the kinetic parameters.  Using linear least squares 

regression, the parameters for the pre-exponential factor and the activation energy are related 

to the slope and intercept of the above linearized equation. 
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However, applying a differential reactor model to the current data set would strain the required 

assumptions.  The experimental data set contains a number of data points with conversions of 

greater than 10%.  For example, the partial pressure of carbon monoxide varied by over 50% at 

high temperature and low partial pressures.  Additionally, as gas is consumed, the bubble 

volume decreases.  This reduction in the unit cell length - the sum of the bubble and slug 

lengths - is associated with an increase in the residence time in the reactor.  Thus, the reactor 

analysis must fully account for changes in the gas phase partial pressures as well as differences 

in residence time. 

5.3.2. Reactor Model 

The reactor model keeps track of each of the species that is varying during reaction, including 

the alkene reactant, the aldehyde product, and the gas composition of the gaseous species.  

The effect of the vapor pressure of 1-octene and toluene were not included in the analysis.  At 

105 °C, 1-octene and toluene represent less than 3% of the gaseous species in the bubble.  

Similarly, this would have negligible impact on the liquid phase composition since <0.2% of 1-

octene loaded into the system is expected to partition to the gas phase.  It is reported that for 

electron donating ligands such as phosphine, the rate determining step is hydrogenolysis.143  

Consequently, alkene insertion is sufficiently fast to not affect the observed reaction kinetics 

and the rate dependence on alkene concentration is assumed zero order. Additionally, the 

alkene concentration far exceeds the concentration of the catalyst.  The initial alkene 

concentration for all experiments was 0.5 M, while the catalyst concentration was on the sub-

millimolar scale. 
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The reactor model then takes the form: 

 ( ) ( ) ( )= ( ) /1 M /1 bar /1 bara b c
Rh H COr k T C P P  (5-7) 

 =PdC r
dt

 (5-8) 

 = −octdC r
dt

 (5-9) 

 = −2H
l

dN rQ
dt

 (5-10) 

 = −CO
l

dN rQ
dt

 (5-11) 

where N is the number of moles of each species in the gas phase and Ql is the volume of liquid.  

The number of moles of gas rather than concentration was used to make it easier to account 

for changes in volume in the gas phase.  The number of moles of each gaseous species is then 

related to the partial pressure, 

 =
∑

i
i

i

NP P
N

 (5-12) 

where P is the system pressure.  The gas bubble is made up of three components: hydrogen, 

carbon monoxide, and nitrogen.  The nitrogen does not participate in the reaction, but impacts 

the partial pressure in the bubble.  

Normally a differential equation is solved with known starting and ending times.  However, 

when the residence time in the reactor depends on the level of conversion, the end time is not 
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known a priori.  Instead, a fifth differential equation is added that relates the axial position L to 

the current time, 

 = +∑
∑ * *

i
g L

i

NdL TV V
dt N T

 (5-13) 

where Vg and Vl are the initial velocities for the gas and liquid, as calculated from the volumetric 

pump flow rates and room temperature.  The N ratio corrects for the volume of the bubble lost 

due to reaction and the T ratio corrects for the temperature change between the pump, at 

room temperature, and the reactor, at elevated temperatures.  The integration is carried out 

until L = 1350 mm, the total length of the reaction channel.   

A nonlinear least squares regression is used to determine the values for the five parameters in 

this model: A0, Ea, a, b, and c.  The differential equation is solved for each set of experimental 

conditions.  A total of 42 experiments were used to fit the model.  The best set of parameters is 

then chosen by summing the square of the residuals of the experimental measurement against 

the model.   

The parameter set determined from this analysis is shown in Table 5.1.  The values for a 95% 

confidence interval are also shown.  The confidence interval suggests a strong fit for the 

activation energy.  The observed activation energy, Ea = 19.0 kcal/mol, compares favorably with 

the literature.  The reported hydroformylation activation energy for small alkenes was 

19.1 kcal/mol for ethene,150 20.6134 and 19151 kcal/mol for propylene, and 22 kcal/mol for 1-

butene.152  For larger alkenes, a wide range (11.8-28 kcal/mol) of activation energies have been 

reported for 1-hexene,136 1-decene,137 and 1-dodecene.153  This wide range might be explained 
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by the complex, empirical rate expressions that were used to fit the data in these studies.  

These results also show that the reaction is first order in catalyst and hydrogen, and negative 

order in carbon monoxide.  The reaction orders are consistent with the kinetics reported for 

unmodified rhodium carbonyl154 and some phosphite ligand systems.145  A comparison of the 

model predicted conversion and the experimental data is shown in Figure 5.6a-c.  This figure 

demonstrates that the model is in good agreement with the data.   

 Ea 

kcal/mol 

ln(A0) 

ln(M/s) 

a b c 

Value 19.0 25.2   1.03   0.96  -0.64 

Confidence Interval (95%) ±0.8 ±0.2 ±0.15 ±0.16 ±0.08 

Table 5.1. Parameters for the differential equation based power law model, as determined by 

nonlinear least squares. 

The positive, first order relationship between the reaction rate and the concentration of 

rhodium and hydrogen is consistent with hydrogenolysis being the rate determining step 

(Figure 5.1 Step 6).  Increasing the amount of catalyst in the system would increase the 

observed reaction rate.  Similarly, increased hydrogen partial pressure would increase the rate 

of the rate controlling reaction.  The effect of carbon monoxide concentration on reaction rate 

is more complex.  As shown in Figure 5.1, carbon monoxide participates in the reaction in three 

separate elementary reactions.  Two reactions remove catalyst from the main cycle: the 

reversible deactivation of the catalyst (Step 8) and the reversible formation of an acyl complex 

(Step 7).  The third reaction is carbonyl addition to form an aldehyde intermediate (Step 4), 

which is part of the main catalytic cycle.  The negative reaction order of carbon monoxide 

suggests that carbon monoxide has an inhibitory effect over the partial pressure range studied.   
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Figure 5.6. Comparison of model () to experimental () data show good agreement for both 

the empirical (a-c) and mechanistic (d-f) models. 
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This observation suggests that Step 7 or Step 8 affects the overall reaction rate.  Under 

different conditions, a different reaction rate would likely be determined.  It has been reported 

in the literature that at low enough pressures of carbon monoxide, below 2 atm, the observed 

dependence on the pressure of carbon monoxide is positive.136   

For completeness, the reactor analysis was repeated with the reaction rate including first order 

dependence on the alkene concentration (data not shown).  This model did not fit the data as 

well, reinforcing the assumption that the overall model is zero order in alkene. 

5.3.3. Mechanistic Model 

The kinetic results above can be further reconciled with the reaction mechanism.  As previously 

discussed, the data are consistent with hydrogenolysis (Figure 5.1, Step 6) being the rate 

determining step.  The rate expression has no dependence on alkene addition (Figure 5.1, Step 

2).  The absence of a positive response to carbon monoxide pressure suggests that carbon 

monoxide addition (Figure 5.1, Step 6) in the catalytic cycle does not affect the overall rate.  

Together, these observations suggest that most of the rhodium is held in the rhodium-acyl 

complex.  The negative observed order for carbon monoxide shows that carbon monoxide has 

the effect of inhibiting the overall reaction.  In the mechanism (Figure 5.1), there are two 

reactions (Steps 7-8) involving carbon monoxide that remove rhodium from the cycle.  Step 7 is 

expected to dominate, given that the most common rhodium species is the intermediate 

preceding hydrogenolysis.  Carbon monoxide is generally found to inhibit the hydroformylation 

reaction, regardless of whether hydrogenolysis or alkene coordination is the rate-determining 

step.  In the case of alkene coordination being rate determining, Step 8 would likely dominate 
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over Step 7 and provide the same overall order.  A simplified reaction mechanism is proposed 

in Figure 5.7.   

The desired kinetic expression relates the rate of formation of the aldehyde product P to 

measurable species in the system.  The hydrogenolysis reaction, r1, has been found to be the 

rate determining step, 

  = =  2

*
1 1 H

dPr k P Rh
dt

 (5-14) 

where k1 is a reaction constant.  The quasi-steady-state concentration of the rhodium-acyl 

intermediate Rh* is difficult to measure directly and is a function of other reaction parameters.  

The other reactions in the original cycle have been simplified to a single reaction r2,  

 [ ] [ ]=2 2 COr k R P Rh  (5-15) 

where R is the reactant alkene.  In a catalytic cycle, the rates of all reactions are the same at 

steady state, i.e., 

 =1 2r r  (5-16) 

Since step is rate controlling, we expect that [Rh*] >> [Rh] implying that [Rh] is approximately 0.  

Rhodium species are catalytic and therefore not consumed during reaction.  A mass balance 

  

Figure 5.7. Simplified reaction mechanism used for kinetic analysis. 
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leads to the following expression: 

 [ ] [ ]        = + + ≈ +       
* * * *

0Rh Rh Rh Rh CO Rh Rh CO  (5-17) 

where [Rh0] is the concentration of rhodium loaded into the system.  A rate expression can be 

prepared for rhodium-acyl species Rh*, 

 [ ] [ ]     = − + + −     2

*
* * *

1 2H CO f b CO
dRh k P Rh k R P Rh k Rh CO k P Rh

dt
 (5-18) 

The first two terms cancel according to Equation 5-16.  At equilibrium, Equation 5-18 can be set 

to 0.  Solving for [Rh*] and substituting for [Rh*CO], 

 
[ ]( ) −      = = 

**
0* ff

b CO b CO

k Rh Rhk Rh CO
Rh

k P k P
 (5-19) 

 
[ ] −

−
  =  +

1
0*

11
eq CO

eq CO

K Rh P
Rh

K P
 (5-20) 

 = f
eq

b

kK k  (5-21) 

Combining Equation 5-20 with Equation 5-14, yields the final kinetic expression, 

 
[ ] [ ]−

−= =
+ +

2 2

1
1 0 1 0

11 1
eq H CO H

eq CO CO eq

k K P Rh P k P RhdP
dt K P P K

 (5-22) 

In the limit where Keq is small, Equation 5-22 collapses to Equation 5-3, where c = -1.  A small 

value for Keq implies that the rate of the backward reaction to remove the catalyst from the 

cycle is larger than the forward reaction.  On the other hand, if Keq was large, the overall 

dependence on carbon monoxide would be zero order.  Thus this mechanism bounds the 
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possible reaction order of carbon monoxide to be between -1 and 0.  The fitted parameter, 

c = -0.644, lies within this expected range.   

This three parameter model - A0, Ea, and Keq - was fit using a nonlinear least squares regression.  

The parameters can be found in the top row of Table 5.2.  This activation energy is nearly 

identical to the one determined for the empirical reactor model.  From the value of Keq, it is 

possible to estimate the fraction of rhodium that is held in the catalytically active form.  For the 

standard partial pressure of carbon monoxide, PCO = 11.25 bar, 38.9% of the rhodium loaded 

into the system is in the main catalyst cycle.  The remainder is held in the kinetically inactive 

form. 

 Ea / (kcal/mol) ln(A0 / (M/s)) Keq / bar G / (kcal/mol) 

Keq ≠ f(T) 19.0 ± 2.4 24.8 ± 3.3 3.15 ± 1.38  

Keq = f(T) 18.9 ± 2.3 24.7 ± 3.2  -0.80 ± 0.33 

Table 5.2. Parameters (with 95% confidence intervals) for the mechanistic model assuming 

equilibrium between the active and inactive rhodium complexes. 

A comparison can also be made between the carbon monoxide dependence in the empirical 

and mechanistic models.  In the empirical power law model, 

 −∝ 0.644
p COr P  (5-23) 

and in the mechanistic model, 
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The initial carbon monoxide pressure took one of three values during the experiments.  Both rp 

and rm provide a very similar dependence on PCO, as shown in Figure 5.8.   

In the preceding analysis, Keq has been considered independent of temperature.  The model 

was expanded to include temperature dependence,  

 
( ) −∆=ln eq

GK RT  (5-25) 

where ΔG is a constant Gibbs energy of reaction.  There is insufficient temperature resolution in 

the data to resolve a temperature dependent expression for ΔG.  These three parameters - A0, 

Ea, and ΔG - were also fit using nonlinear least squares (Table 5.2, bottom row).  The value for 

the Gibbs energy, ΔG = -0.80 kcal/mol, demonstrates that the equilibrium constant Keq has a 

very low temperature dependence.  Over the experimental temperature range (85-105 °C), the 

value of Keq is calculated to vary between 2.91-3.09 bar.  A comparison of the predicted 

conversion and the experimental data is shown in Figure 5.6d-f.  This figure demonstrates that 

the model is in good agreement with the data and is nearly identical to a plot of the empirical 

 

Figure 5.8. The mechanistic and power law models show a similar dependence on PCO over 

the experimental PCO range. 
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model against the experimental data (Figure 5.6a-c).   

5.4. Absence of Mass Transfer Limitations 

The utility of the designed system depends greatly on directly observing the kinetic reaction 

rate.  If mass transfer rates slow and become competitive with reaction rates, the observed 

rates will no longer be dominated by kinetic effects.  By comparing the rate of transfer of a gas 

species to the liquid phase, assumed to be the rate determining mass transfer step, with the 

rate of consumption of the gas due to reaction, the importance of mass transfer on the 

observed reaction rate could be estimated.  To limit the effect of mass transfer on reaction 

rates, the gas and liquid flow rates were similar.  Longer bubbles and slugs are undesirable 

because they reduce the mass transfer rate in the system.  This reduction in the mass transfer 

rate is caused by the reduction of the interfacial area between the two phases as well as 

increased diffusion length scales within a single phase.   

Of the two reacting gases that were consumed during hydroformylation, carbon monoxide 

would likely have the slower mass transfer because it has a lower solubility and slower diffusion 

rate in toluene.  In addition, the highest reaction rate observed (1.5 × 10-3 M/s) coincided with 

the lowest carbon monoxide pressure of 6.25 bar.  A mass balance was performed on the 

dissolved carbon monoxide to evaluate any potential effect of mass transfer,  

 ( )− = = −*CO
CO L CO CO

dC
r k a C C

dt
 (5-26) 

where rCO is the rate of disappearance of carbon monoxide due to reaction, CCO is the 

concentration of carbon monoxide in the bulk liquid, kLa is the mass transfer coefficient, and 
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*
COC  is the equilibrium liquid-phase carbon monoxide concentration in the absence of reaction.  

The equilibrium carbon monoxide concentration can be estimated using Henry’s law,  

 =*
,CO CO H COC p k  (5-27) 

Here pCO is the partial pressure of carbon monoxide in the gas phase and kH,CO is the Henry’s law 

constant for carbon monoxide.  Jauregui-Haza et al.155 reported a Henry’s law constant of 

119.4 bar L/mol for carbon monoxide in toluene.   

Yue et al.117 prepared an experimental study of gas-liquid mass transfer in square micro 

channels and obtained an empirical correlation for the estimation of the mass transfer 

coefficient, kLa  
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where dh is the hydraulic diameter of the channel, D is the diffusivity of the gas in the liquid, UB 

is the gas bubble velocity, and LB and LS are the lengths of the gas bubble and liquid slug, 

respectively.  The hydraulic diameter of a square channel is equal to the length of its side, which 

was 400 μm for the microreactor.  The diffusivity of carbon monoxide in toluene has been 

reported to be 9.85 × 10-9 m2/s.156  For a gas bubble velocity of 5.7 mm/s and gas bubble/liquid 

slug length of 800 μm, the corresponding mass transfer coefficient was kLa = 0.76 s-1.  

The concentration of the bulk in Equation 5-26 was found to be 0.050 M and the equilibrium 

concentration in the absence of reaction was 0.052 M.  This suggests that mass transfer 

limitations cause a concentration gradient of <4% in the liquid phase, in this worst case 
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scenario.  For the remaining experiments the gradient would be much less than 4% due to 

slower reaction rates.  Therefore, the system is considered to be kinetically limited. 

5.5. Octene Isomerization 

Initial hydroformylation experiments were conducted using a single liquid syringe pump.  The 

pump was loaded with a mixture of the rhodium catalyst, 1-octene, and toluene.  During 

experimentation, an unknown peak, associated with the C-H stretch of a trans-alkene, was 

observed at 973 cm-1.  This peak increased with time, but was unaffected by reaction 

conditions.  In addition, freshly prepared solution contained a higher concentration of 1-octene 

than did week old solution.  The longer that the reaction mixture was stored, the larger the 

973 cm-1 peak became.  These observations suggest that 1-octene was isomerizing to 2-octene 

in the starting mixture in the presence of the rhodium catalyst.  The lack of a temperature 

effect suggests that the isomerization does not occur during hydroformylation.  To test this 

hypothesis, two liquid pumps were used to separate the catalyst from the 1-octene, prior to 

reaction.  The streams joined in the reactor just before gas was added to the stream.  The 

concentration of 2-octene after reaction was negligible, even after the solutions were stored 

for a week.  This result confirmed that isomerization of 1-octene occurred in the presence of 

rhodium catalyst. 

The hydroformylation mechanism provides some insight into the isomerization reaction.  

Focusing on the alkene coordination step, Figure 5.9 shows the series of reactions that occur 

during isomerization of 1-octene to 2-octene.  This reaction is known in the literature, but not 

always reported in hydroformylation experiments.157  When 1-octene reversibly coordinates to 
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the metal center, an internal rearrangement occurs resulting in a bond forming with either the 

terminal or internal carbon.  When the terminal bond forms, the reverse reaction will always 

produce the terminal alkene, 1-octene.  This terminal bond is also required for the dominant 

linear aldehyde product to form.  When the internal bond forms, the reverse reaction will form 

either the terminal alkene or the internal alkene.  The internal bond formation is also 

associated with the branched product formation.  At room temperature, isomerization occurs 

slowly, suggesting the formation of observed concentration 2-octene has not reached 

equilibrium.   

In the absence of carbon monoxide and hydrogen, the hydroformylation reaction could not 

proceed past Steps 3 or 9 in Figure 5.1.  To further explore the isomerization reaction, a set of 

experiments analogous to hydroformylation were performed.  The rhodium catalyst and 1-

octene were supplied from two different syringe pumps, eliminating isomerization prereaction.  

 

Figure 5.9. Alkene coordination on rhodium catalyst can occur at two possible carbon 

attachment points.  When an internal carbon is coordinated, the reverse reaction can result 

in an internal alkene being produced. 
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The gas phase was comprised of nitrogen, which is inert.  The temperature was varied to probe 

its effect on the isomerization reaction rate (Figure 5.10L).  The conversion of 1-octene to 2-

octene increased exponentially until the temperature passed 110 °C.  As temperature increased 

further, the conversion decreased suggesting that the catalyst began to deactivate.  Fitting only 

the points taken at temperatures below 110 °C (Figure 5.10R), an apparent activation energy of 

16.7 kcal/mol was calculated.   

During hydroformylation reactions, isomerization is not observed under the same conditions.  

This suggests that the addition of carbon monoxide (Figure 5.1, Step 4) is much faster than the 

dissociation of alkene from the rhodium complexes.  It is only in the absence of carbon 

monoxide that isomerization is observed.  Two liquid pumps were used for all hydroformylation 

experiments, which proved effective at preventing observable isomerization.  Another solution 

was to add excess ligand, triphenyl phosphine, which is expected to slow the isomerization 

reaction significantly.  A 2:1 mass ratio of ligand to catalyst was added to the catalyst solution.  

  

Figure 5.10. Left: The conversion of 1-octene to 2-octene is plotted as a function of 

temperature.  At lower temperatures, an exponential relationship exists, while at higher 

temperature, significant catalyst deactivation is observed. Right: An activation energy of 

16.7 kcal/mol is calculated using low temperature data. 
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Chapter 6. Heterogeneous Catalysis – Hydrogenation 

6.1. Introduction and Reaction Literature 

Hydrogenation is a class of reaction that adds molecular hydrogen to another compound and is 

a prominent three-phase heterogeneous chemistry.  Hydrogen is most commonly added across 

a carbon-carbon double bond in an alkene.  Hydrogenation reactions are of paramount 

importance across many different industries.  They are the most important organic reaction in 

the production of fine chemicals.158, 159  In the petrochemical industry, crude oil containing 

multiple double bonds are hydrogenated.  Hydrotreating, currently heavily employed in oil 

refining, will remain crucially important during the upgrading of pyrolysis to biofuel.160  

Untreated pyrolysis oils contain many unstable functional groups.  These groups can lead to 

polymerization during storage as well as increase the difficulty of blending biofuel with 

traditional fuels.  Hydrogen can also displace oxygen in pyrolysis oil, improving its energy 

density.  Hydrogenation is important to even the food industry, where it is used to saturate 

vegetable oil.161  For example, soybean oil is completely or partially hydrogenated to improve 

its stability.  Unsaturated oils, those containing many double bonds, are highly reactive and 

have short shelf lives due to oxygenation reactions.   

Hydrogenation was chosen to demonstrate the high-pressure, three-phase reactor for a 

number of reasons.  Hydrogenation reactions can be challenging reactions to run in traditional 

systems.  Hydrogen gas has low solubility in many solvents, typically three orders of magnitude 

lower than the alkene substrate.  This low solubility introduces mass transfer limitations under 

many reaction conditions.  Hydrogenations are therefore typically run at pressures of up to 
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100 bar which improves the hydrogen concentration in the liquid phase.  However, high-

pressure hydrogen, contained in large reactors, increases the operational risk.  In addition, 

hydrogenations are exothermic, making temperature control challenging.  Microreactors 

overcome many of these challenges through improved heat and mass transfer.  Hydrogenations 

have been previously studied in microreactors at atmospheric conditions.120  The current three-

phase microreactor system is particularly suited to operate at the higher pressures typical of 

hydrogenation.  Even in a microreactor, the hydrogenation reaction can be so fast that mass 

transfer limitations are observed.  Thus, by studying a known reaction such as hydrogenation, 

the mass transfer performance of the new microreactor can be determined  

A variety of hydrogenation reactions were studied in the multiphase system.  Two catalysts 

were prepared, 5% platinum on silica and 5% platinum on alumina, and two substrates were 

reacted, cyclohexene and 1-octene.  Both substrates have similar heats of reaction;162 the 

standard heat of reaction for cyclohexene hydrogenation is 117.78 KJ/mol and for 1-octene 

hydrogenation is 125.52 KJ/mol.  Cyclohexene is a particularly attractive substrate because 

isomerization reactions, which are common under hydrogenation conditions, have no impact 

on its structure.   

Heterogeneously catalyzed hydrogenation reactions are characterized by the addition of 

hydrogen to an alkene on a catalyst surface.  The mechanism is well known and was first 

identified by Horiuti and Polanyi.163  The Horiuti-Polanyi mechanism proceeds through a 

number of steps: (1) Hydrogen dissociates on the surface. (2) The carbon-carbon double bond 

on the alkene is broken, forming two new bonds with the metal surface. (3) Addition of the first 



163 
 

hydrogen atom to form a reversible intermediate. (4) Addition of the second hydrogen atom 

releases the saturated product; this step is often considered irreversible under hydrogenating 

conditions.  

A variety of hydrocarbon reactions can occur in the presence of platinum catalyst depending on 

the conditions.164  These reactions are plotted in Figure 6.1 along with their reaction rate.  The 

turnover rates associated with the various reactions vary greatly and their prominence can be 

adjusted by altering the reaction temperature.  For example, more complex reactions such as 

isomerization, cyclization, and dehydrogenation have activation energies in the range of Ea = 

35-45 kcal/mol.  Hydrogenations, on the other hand, have lower activation energies in the 

range of of Ea = 6-12 kcal/mol.  Thus hydrogenations are typically performed at lower 

temperatures of around 300 K to improve selectivity. 

6.2. Catalyst Preparation 

A classic method for catalyst preparation involves impregnating a catalyst support with a 

 

Figure 6.1. Block diagram of hydrocarbon conversion over platinum catalysts shows the 

approximate reaction rate range and the most commonly studied temperatures.164 
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catalytically active metal.  This catalyst is then activated through a reduction reaction.  Catalytic 

activity generally increases with the active surface area of the catalyst.  Porous support 

materials are used as the basis for heterogeneous catalysis to take advantage of their high 

surface areas which are in the range of 100 to 400 m2/g.164  The supports are generally 

materials like silica, alumina, or carbon.  The support material can have a larger role on the 

reaction than implied by its name.  It can participate in the reaction and alter the rate or 

observed mechanism.  For example, the support can help stabilize a reaction intermediate.  

Modern supports generally have very well defined microstructures.  Impregnation of high 

surface area support results in highly-dispersed nanometer-sized metal clusters, ideally a single 

atom deep.  Platinum is often used as a metal due to its high activity and low tendency to leach.   

A number of high surface area supports are commercially available.165  Alumina (aluminum 

oxide) is one such common support.  When used as a catalyst support, gamma alumina is 

preferred because this structure has a much higher surface area than alpha alumina.  Silica 

(silicon dioxide) is another traditional catalyst support.  Its surface is thought to be more inert 

than alumina.   

It is impossible to commercially procure small quantities of prepared catalyst particles with a 

narrow size distribution.  The design of the heterogeneous reactor dictates the possible size 

range for the catalyst particles.  The catalyst retaining weirs provide a lower bound of 20 µm for 

the possible particle size.  In an effort to prevent channeling and other flow distribution issues, 

the diameter of the catalyst support should be less than 10% of the channel diameter, which 

provides the upper bound for the catalyst size.  Instead of purchasing prepared catalyst, the 
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desired metal is deposited on a commerically prepared support.  While prepared catalyst can 

be sieved to isolate the desired fraction, this proves to be an expensive proposition.  The metal 

loaded catalyst is far more expensive than the catalyst support.  The support material, like the 

purchased catalyst, generally comes in a wide size distribution.  Instead, the support is sieved 

prior to impregnation to ensure that no platinum is wasted on catalyst particles that are outside 

the desired size range.   

Sieving was performed using a stack of copper mesh trays.  The trays are available in standard 

sizes; the 38, 53, and 72 µm mesh sizes were used.  The stack consisted of the three trays 

stacked largest to smallest from top to bottom.  A pan at the bottom of the stack was used to 

collect the smallest particles.  This tray arrangement allowed two potential fractions of the 

catalyst support to be recovered: 38-53 µm and 53-72 µm.  Two sieving techniques were 

employed.  The first is tapping sieving.  In this method, powder is placed directly in the top 

sieve.  The stack is moved in a horizontal circle, inducing motion of the powder over the mesh 

surface.  The circular motion is coupled with tapping that introduces vertical motion in the 

sieves.  This vertical motion serves to reorient the particles in an effort to find an angle in which 

they could pass through the sieve.  Wet sieving is an alternate sieving technique in which a 

compatible solvent (water, ethanol, isopropanol) wets the desired species.  While dry sieving is 

typically performed, wet sieving is employed when the sample cannot be dried or when 

agglomeration is an issue.   

Two substrates, silica and alumina, were chosen as catalyst supports.  The silica support (Alfa 

Aeser 42570) had a near-neutral pH and a surface area of 500-600 m2/g.  The diameter of the 
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particles was expected to be 38-63 µm (-230+400 mesh).  The alumina (Alfa Aeser 43266) was 

gamma-phase with a surface area of 200 m2/g.  The average particle size was 400 µm.  Both 

supports were sieved using the techniques described above.  Wet sieving was required to 

disrupt the static forces in the dry powder.  The liquid was successful in transporting the small 

particles through the sieve meshes.  However, wet sieving increased the difficulty of sieving the 

larger sized particles.  Thus a staged approach was employed.  Each support sample was first 

wet sieved, before being allowed to dry.  The liquid in the bottom of the pan was discarded.  

Once dry, tap sieving was employed.  The sample was successfully fractionated using this 

method.   

Laser light scattering measurements were taken to characterize the fractioned silica support.  

Figure 6.2 shows the unsieved support and the 38-53 µm fraction after sieving.  The expected 

particle size range of the unsieved silica was 38-63 µm.  Sieving removed the very fine particles 

 

Figure 6.2. Comparison of silica support size profiles before and after sieving show that fine 

particles are removed. 
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from the distribution, while leaving the distribution of the larger particles unchanged.  These 

smaller particles would have travelled through the retaining wall in the reactor and could 

potentially agglomerate and clog the system downstream of the reactor.  The long tail of larger 

particles suggests that agglomeration reoccurred after sieving.  The shape of the tail is similar 

for both samples.   

To better understand the surface area and pore volume of the silica catalyst, BET analysis was 

performed.  During BET analysis, the physical absorption of gas on to the surface is probed.  As 

the temperature is varied, isotherms are recorded from which surface area is calculated.  From 

this analysis, a number of parameters were estimated.  The measured surface area was 

420 m2/g, which is somewhat below the 500-600 m2/g specified by the supplier.  The average 

pore volume was calculated to be 0.57 ml/g with an average pore diameter of 5.5 nm.   

To prepare the final catalyst, platinum metal was deposited into the substrate to achieve a 

weight loading of 5%.  For the catalyst to fully utilize the increased surface area of the support, 

the platinum must be deposited within the pore structure.  Incipient wetness impregnation is a 

classic method for preparing catalyst with metal contained in the porous support.166, 167  As 

liquid is initially added to the porous material, capillary forces draw the liquid into the pores.  As 

the pores fill, the powdered support loses its ability to ‘flow’ and instead begins to cake.  This 

caking signals the end point of incipient wetness.  At this stage the pores are completely filled 

with liquid and a thin film wets the exterior of the particles.  While this method appears simple, 

there is an art to properly identifying the endpoint.  It has been shown that when different 

researchers are asked to identify the endpoint, the total volume of liquid dispensed can vary by 
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as much as 20%.168  To prepare a solution with the proper concentration, a good estimate of 

the volume that leads to incipient wetness is required.  This volume can be calculated from the 

known pore volume.   

An alternate method for estimating pore volume is described by McDaniel and Hottovy.168  

While BET analysis is more accurate, this method more closely resembles incipient wetness 

impregnation.  They outline a highly repeatable method for determining the total porosity of 

silica catalysts using centrifugation.  Special centrifugation tubes are required which consist of 

two nested tubes with a porous frit isolating the inner tube from the outer tube.  When a 

sample is placed in this tube and centrifuged, the excess liquid can be recovered in the larger 

tube, while the sample retained in the smaller tube is at incipient wetness.   

The centrifuge porosity measurement method was used as the basis for a new method to 

perform incipient wetness impregnation.  Using an estimate of the available pore volume, a 

solution containing chloroplatinic acid hexahydrate in water was prepared.  The important 

performance parameters are enumerated in Table 6.1.  The concentration of chloroplatinic acid 

was chosen so that a 5% weight loading was deposited in the pores of the catalyst support.  The 

catalyst support was dried at 115 °C overnight to ensure that the entire pore volume was 

available for the catalyst solution.  Excess solution was prepared and added to a known amount 

of dry catalyst support.  The wet catalyst was then loaded into VectaSpin 3 centrifuge filter 

tubes and centrifuged.  McDaniel and Hottovy168 show that high reproducibility in water 

retention volumes were achieved at both 1500 rpm and 2000 rpm.  Thus the loaded centrifuge 
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tubes were spun at 1500 rpm for 20 min.  The samples were initially dried at 80 °C for 2 hr 

before the temperature was increased to 115 °C and baked overnight. 

At this stage, unreduced platinum was present on the surfaces of the catalyst.  Reduction under 

hydrogen gas transforms the platinum to the catalytically active oxidation state.  The reduction 

was carried out at two different scales: an external gram-scale tubular reactor and an in situ 

multiphase microreactor capable of reducing milligram quantities prior to reaction.  In the 

tubular reactor, a 1/4 inch tube was filled with catalyst, retained by steel wool.  This tube was 

then placed in a quartz tubular furnace.  A mixture of 10% hydrogen in nitrogen, controlled by 

mass flow controllers, was flowed through the reactor.  The furnace temperature was ramped 

to 400 °C at a rate of 10 °C/min.  The furnace was then held at this temperature for 5 hours, 

before being cooling to room temperature.  A similar procedure was used to reduce the catalyst 

in the microreactor system.  The microreactor was loaded with catalyst and connected to the 

high-pressure system.  Hydrogen was loaded into the gas syringe pump, which was then run at 

 Silica Alumina 

Support Weight (g) 2.0 2.0 

Porosity - BET (ml/g) 0.57 0.3 

Porosity - Centrifuge (ml/g) 0.87  

Excess Solution (ml) 0.85 0.4 

Weight %: Platinum 5.0% 5.0% 

Incipient Wetness Volume (ml) 1.14 0.60 

Total Volume (ml) 1.99 1.00 

Weight Precursor (g) 0.46 0.44 

Platinum Concentration (M) 0.45 0.85 

Table 6.1. Key process parameters required to prepare 5% platinum on silica or alumina 

catalyst. 
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a constant flow rate of 30 µl/min.  The system was operated at a pressure of 5 bar.  The reactor 

was heated to a temperature of 300 °C at a rate of 10 °C/min and held for 5 hours before the 

temperature was reduced to room temperature.  In situ reduction allowed the post-reduction 

catalyst to be studied without exposure to air.   

6.3. Catalyst Deactivation 

During operation, catalyst deactivation was a constant challenge.  Both the platinum on silica 

and the platinum on alumina catalysts showed deactivation over time.  There are four basic 

deactivation methods for supported catalyst: poisoning, fouling, sintering, and leaching.165  

Poisoning is the irreversible absorption of a contaminant on an active metal site.  This 

contamination blocks the active site, reducing the rate of reaction.  Fouling occurs when a 

material blocks physical access to active sites on the catalyst surface.  Polymerization is a 

common form of fouling.  Fouling can generally be reversed by combusting away coked 

material.  Sintering occurs when the catalytic metal agglomerates, reducing the exposed metal 

surface area, which in turn reduces the reaction rate.  Sintering is most likely to occur when the 

metal is heated above the Hüttig Temperature.  For platinum metal, the Hüttig Temperature is 

340 °C.  Catalyst deactivation was observed at temperatures below 115 °C suggesting that 

sintering is not the cause of the deactivation.  The final mechanism for catalyst deactivation is 

the leaching of metal to the vapor or liquid stream.  Metal leaching leads to the gradual 

reduction of metal loading on the catalyst.  Platinum metal is not expected to leach.  

The deactivation was probed by comparing different catalysts and different substrates.  

Cyclohexene hydrogenation was explored first because cyclohexene is less susceptible to side 
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reactions than normal alkenes.169, 170  The hydrogenation of 1-octene was subsequently 

explored as an alternative to cyclohexene, but rapid deactivation was observed under all 

conditions 

6.3.1. Cyclohexene Hydrogenation 

While the reactor was operated at steady state, the observed reaction rate of cyclohexene 

decreased with time, failing to reach steady state.  Under constant conditions, the reaction rate 

of cyclohexene hydrogenation over platinum on alumina catalyst was shown to fall over 80% 

over the course of 5 hours (Figure 6.3).   

Early attempts to understand and limit the deactivation focused on the contamination of 

cyclohexene.  Infrared analysis was used to characterize the reaction.  Over the course of 

several days of experimentation, the spectra contained increasing levels of contamination.  The 

most apparent new peak was centered at 3300 cm-1 associated with an OH stretch (Figure 6.4).  

 

Figure 6.3. Neat cyclohexene was reacted with hydrogen at 30 bar.  This room temperature 

reaction exhibited strong catalytic deactivation over time. 
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This stretch could be caused by water or some other hydroxide containing species.  It is 

reported that oxygen contamination, resulting in the formation of hydroperoxides, is a common 

cause of catalyst deactivation during cyclohexene hydrogenation.169, 170  When the 

hydroperoxide reacts with the catalyst surface, the remaining oxygen bonds irreversibly with an 

active platinum site.   

The stock solution of cyclohexene was analyzed using GC/MS.  Four contaminant peaks were 

observed (Figure 6.5).  All of the peaks are likely associated with oxygenated cyclohexene 

molecules.  Two samples of cyclohexene from the same source were analyzed two weeks apart 

(April 21 and May 4).  The increased peak heights in the later sample suggest that further 

contamination had occurred during storage.  The spectra from two of the peaks, at 2.71 and 

2.95 min, were positively identified as 2-cyclohexen-1-ol and 2-cyclohexen-1-one through 

comparison with reference mass spectra.  The spectra of the remaining two peaks are 

consistent with 3-cyclohexen-1-ol and 2,4-cyclohexadien-1-ol, though reference spectra do not 

 

Figure 6.4. Spectral comparison of neat cyclohexene data.  Contamination is evident in the 

red spectrum due to an OH stretch around 3300 cm-1. 
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exist to allow definitive identification.  These results are summarized in Table 6.2.  The presence 

of oxygenated species, which could reasonably be derived from hydroperoxides, is thought to 

contribute to the rapid deactivation of the platinum catalyst.   

A number of methods are described in the literature for the purification of cyclohexene.167, 169, 

170  These methods rely on sparging cyclohexene with an inert gas such as helium to remove 

 

Figure 6.5. Four oxygen-containing contaminant peaks were identified using GC/MS analysis.  

The sample, which had been exposed to air longer (May 4), had more contamination. 

Retention Time (min) Proposed Molecule Sample % (4/22) Sample % (5/4) 

1.91 Cyclohexene 97.62 95.02 

2.56 3-cyclohexen-1-ol   0.33   0.34 

2.71 2-cyclohexen-1-ol   0.71   1.61 

2.95 2-cyclohexen-1-one   0.25   0.93 

3.63 2,4-cyclohexadien-1-ol   1.08   2.11 

Table 6.2. Comparison of the contamination level from two samples.  The majority of the 

samples remain cyclohexene.  Aldrich’s specification was 99% cyclohexene. 



174 
 

molecular oxygen before contacting it with an activated bed of alumina to bind and remove 

oxygen-containing contaminants.  Based on these methods, a number of cleaning methods 

were attempted.  Initial purification attempts involved sparging a cyclohexene sample with 

nitrogen in the presence of alumina.  Using a rapid IR screen, contamination similar to Figure 

6.4 was still observed.  A similar result was achieved using an alumina column, suggesting that 

the contamination level was too high, or contact time was too short to remove the 

contaminants.  A final purification attempt was made utilizing fresh cyclohexene.  Molecular 

sieves and alumina were added to the sample, which was then loaded into the high-pressure 

system.  All manipulations were conducted under an inert atmosphere.  The molecular sieves 

would remove any water contamination.  Full details of this procedure are outlined in Section 

4.1.2.  IR analysis of this sample displays a clean background, without a hydroxide peak at 

3300 cm-1.  Unfortunately, continued deactivation of the platinum on alumina catalyst was still 

observed.  The platinum on silica catalyst showed more limited deactivation using this cleaned 

cyclohexene.  Figure 6.6 shows the initial deactivation of the platinum on silica catalyst before 

reaching a steady state at 25 °C.  The temperature was then increased to 45 °C and a flat 

reaction rate is again observed.   

Temperature does not appear to affect the rate of catalyst deactivation when operated in a 

kinetically limited regime.  To probe the effect of temperature on deactivation, the 

temperature was varied during the reaction of clean cyclohexene with the platinum on alumina 

catalyst (Figure 6.7).  The rate of reduction in catalyst activity remained largely constant.  When 

the temperature was raised from 50 °C to 85 °C and back to 50 °C, the rate followed the same 

trend as if the temperature had simply remained at 50 °C.   
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Figure 6.6. When cyclohexene is reacted with the platinum on silica catalyst in the absence of 

oxygen, significantly less deactivation is observed.  No deactivation is observed as the 

temperature is increased. 

 

Figure 6.7. Rate of cyclohexene deactivation as the reaction temperature was varied.  The 

three parallel red lines illustrate the rate of catalyst deactivation and show that temperature 

has no effect on reaction rate during kinetically limited operation. 
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6.3.2. Analysis of Spent Catalyst 

Pulsed chemisorption of carbon monoxide is an established method for quantifying the number 

of platinum active sites.171  In this method, the catalyst is loaded into a microreactor or stainless 

steel tube under a constant flow of helium carrier gas.  A known volume of carbon monoxide 

diluted in helium is then introduced into the system, before being carried through the reactor.  

When a metal such as platinum is present, one carbon monoxide molecule can bind to each 

platinum atom.  This uptake of carbon monoxide can be calculated by comparing the 

unabsorbed carbon monoxide at the detector with the known amount in a single pulse.  In the 

absence of platinum or when carbon monoxide has bound all of the platinum sites, the 

measured carbon monoxide amount should be constant, since all of the carbon monoxide 

reaches the detector.  A profile is generally observed where less of each subsequent pulse is 

absorbed until all pulses are the same height.  A mass spectrometer was used for this analysis 

and was very sensitive to carbon monoxide.  By summing the number of atoms of carbon 

monoxide consumed in each pulse, the total number of available platinum sites can be 

determined.  It is assumed that each platinum atom provides 1.2 x 10-19 m2 of surface area.172   

Pulse chemisorption is particularly useful for comparing catalyst samples and understanding 

how the available metal changes after reaction.  After deactivation, the catalyst was recovered 

for chemisorption analysis.  The number of active sites in the spent catalyst was compared to 

the number in fresh catalyst.  Figure 6.8 summarizes the results.  From the pulsed data, it is 

immediately clear that the spent catalyst absorbs less carbon monoxide than the fresh catalyst.  

Assuming a 5% platinum loading, a platinum dispersion of 15.2% and 0.4% can be calculated for 

the fresh and spent catalyst, respectively.  These results suggest that the available catalyst sites 
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decreased 93%.  In comparison, the reaction rate decreased by 66% during the experiment.  

The reduction in available catalyst sites is larger than the reduction in the reaction rate.  This 

comparison is consistent with the fact that not all of the available platinum sites have the same 

activity, due to differences in morphology.  In literature, the chemisorption and reaction of 

acetylene with Pt(100) and Pt(111) yielded different reactions.173  Multiple types of platinum 

sites may explain the difference in reduction of the rate and the number of catalyst 

deactivation sites. 

6.3.3. Discussion of Deactivation Characteristics 

A number of deactivation pathways are likely to exist, depending on the nature of the feed.  In 

the presence of hydroperoxides, rapid deactivation occurs through the formation of strong 

oxygen-platinum bonds.  The poisoning of platinum metal due to hydroperoxide contamination 

is well reported in the literature.169, 170  This reaction cannot explain all of the observed 

 

Figure 6.8. Pulse chemisorption results comparing fresh and spent catalyst.  The fresh catalyst 

absorbs significantly more catalyst than the spent catalyst, which is consistent with the 

observed catalyst deactivation. 
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deactivation since deactivation still occurred after oxygen was excluded from the system.  The 

presence of carbonaceous overlayers have been reported during hydrogenation of both 

cyclohexene and linear olefins.174  Even in the presence of excess hydrogen, these 

dehydrogenated carbonaceous species are strongly held and unreactive.  A weakly bound layer 

of intermediates turns over allowing reaction to proceed.  The overlayer also coincides with the 

restructuring of the metal layer.  Either the restructuring or the overlayer itself could explain 

the observed reduction in catalytic activity.   

A related surface reaction study of gas-phase cyclohexene hydrogenation and dehydrogenation 

over platinum on silica catalyst has been reported in the literature.175  The study identifies three 

temperature regions where only hydrogenation, only dehydrogenation, or a combination of 

hydrogenation dehydrogenation occurs.  Specifically, at temperatures below 423 K, only 

hydrogenation is expected while at temperatures above 573 K, only dehydrogenation is 

expected.  In all reaction regimes, the system was run with excess hydrogen.  In the 

microreactor system, the operating conditions would suggest that only hydrogenation should 

be observed.  During certain experiments, the mass transfer characteristics were probed by 

increasing the reaction temperature.  The reproducibility of data in the kinetic regime was 

impacted by operation in a hydrogen starved regime.  A step change in activity was observed 

after operation in the mass transfer regime (Figure 6.9).  While the reaction rate decreased 

significantly, the response of reaction rate to temperature remained comparable.  This data 

suggest that dehydrogenation and/or polymerization could occur in the absence of hydrogen at 

lower temperature than is reported in the literature.   
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Differences in reactivity of the support may account for the different rates of deactivation 

observed between the alumina and silica supports.  Alumina, with its acidic sites, is a known 

cracking catalyst in its own right.176  Once cracked, cyclohexene resembles any other straight 

chain alkene and could proceed through similar deactivation pathways as 1-octene.  

6.4. Kinetic and Mass Transfer Analysis 

Both kinetic and mass transfer analyses were performed in the heterogeneous microreactor 

system.  Numerous studies of the kinetics of cyclohexene hydrogenation have been reported in 

the literature.169, 170  Madon et al. propose a rate expression for the hydrogenation of 

cyclohexene that is 1st order in hydrogen concentration or pressure and 0th order in 

cyclohexene, at reasonable concentrations of cyclohexene.169  Specifically, this implies that the 

rate determining step is the dissociation of a hydrogen molecule on the catalyst surface.  They 

 

Figure 6.9. A kinetic study (in the order: ♦, ■, ▲) was performed.  Significant deactivation 

occurred while operating in the mass transfer control region.  While the reaction rate had 

decreased, the slope was similar for both kinetic regions. 
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found no dependence on the concentration of cyclohexene.  This kinetic relationship greatly 

simplifies analysis by allowing the rate to be directly calculated from the final conversion 

without considering the change in cyclohexene concentration.  Thus the rate can be calculated, 

 τ= 0AXCr  (6-1) 

where X is the conversion, CA0 is the initial concentration of cyclohexene, and τ is the residence 

time.   

While catalyst deactivation proved to be challenging, kinetic data could be collected rapidly, 

reducing the effect of changes in activity.  A standard set of conditions were employed for the 

hydrogenation studies.  The system pressure was maintained at 30 bar.  The hydrogen flow rate 

was set to 80 µl/min, while neat cyclohexene flowed at 20 µl/min.  The temperature was then 

varied, increasing the reaction rate.  After crossing a critical reaction rate, the system 

transitioned from kinetic control to mass transfer control.  This transition is shown in Figure 6.9 

for cyclohexene hydrogenation over platinum on alumina catalyst.  At this stage, further 

increasing the temperature had little effect on the observed reaction rate.  For the first sweep 

of the kinetically controlled region, an activation energy of Ea = 6.3 kcal/mol was calculated.  An 

activation energy of Ea = 5.4 kcal/mol was calculated for the second sweep.  Both results are in 

reasonable agreement with the literature values of 6.0 ± 0.5 kcal/mol.169  This estimate would 

likely be improved with more data points.   

A similar analysis was performed for cyclohexene hydrogenation over platinum on silica 

catalyst.  As previously discussed, this catalyst was less susceptible to deactivation making it 

possible to collect more data points.  Figure 6.10 shows an Arrhenius plot for hydrogenation 
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over platinum on silica.  The data contain a number of repeats that are indistinguishable from 

each other.  The activation energy calculated from the kinetically controlled region is Ea = 

5.2 kcal/mol.  This activation energy is comparable to the platinum on alumina results. 

It proved easier to estimate the mass transfer rate.  As long as the reaction rate was greater 

than the mass transfer rate, a constant mass transfer rate was observed for a given set of 

conditions.  Depending on the activity of the catalyst, the temperature required to observe 

mass transfer limitations varied.  For example, cyclohexene hydrogenation was studied on two 

separate days at the same conditions: gas flow rate = 80 µl/min, liquid flow rate = 20 µl/min, 

pressure = 30 bar.  While the activity of the catalyst varied, the maximum mass transfer rate 

was constant.  On April 23, the catalyst reached the mass transfer limiting reaction rate at 

60 °C, while on April 21 the temperature had to be at least 70 °C for the rate of reaction to be 

mass transfer limited. 

 

Figure 6.10. Kinetic (♦) and mass transfer (■) limited data for the hydrogenation of 

cyclohexene over platinum on silica catalyst.  The kinetically controlled data corresponds to 

Ea = 5.2 kcal/mol. 
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The mass transfer coefficient kLa can be estimated from the reaction rate at mass transfer 

controlled conditions.  From a closure of mass balance, the rate of mass transfer in the system 

can be described as follows, 

 ( )= −*
L H Hr k a C C  (6-2) 

where r is the reaction rate, CH is the concentration of hydrogen at the reaction site and *
HC  is 

the equilibrium concentration, described by Henry’s Law.  Under mass transfer limitations, CH is 

zero. 

The mass transfer coefficients calculated for the two cyclohexene experiments in Figure 6.11 as 

well as for 1-octene are shown in Table 6.3. It was possible to determine a mass transfer rate 

 

Figure 6.11. Comparison of two days of experiments at the same conditions.  The mass 

transfer limit occurred at the same absolute rate on both days even though the activity of the 

catalyst varied. 



183 
 

for 1-octene in spite of rapid deactivation.  The calculated mass transfer coefficients (kLa) are 

approximately 2 sec-1, which are two orders of magnitude higher than in traditional reactor 

systems.18  This mass transfer rate is on the same order as those previously observed in low-

pressure multiphase reactors.120  Variations in the hydrogen diffusion coefficient are a possible 

explanation for the differences in the calculated mass transfer coefficients observed during 

cyclohexene and 1-octene hydrogenation.  A number of mass transfer models exist that provide 

insight into the relationship between the mass transfer and diffusion coefficients.177  Film 

theory provides one such relationship, suggesting that the mass transfer coefficient is 

proportional to the diffusion coefficient D.  Penetration theory, a second mass transfer model, 

concludes that the mass transfer coefficient is proportional to D0.5.  Together, these two 

theories provide bounds for the exponents of the diffusion coefficient in empirical mass 

transfer coefficient expressions.  The ratio of diffusivities under both mass transfer models are 

shown in Table 6.4.  After comparing the ratio of the mass transfer coefficients to the ratio of 

diffusivities, it was concluded that the observed differences in the mass transfer rate are 

consistent with the variations in the diffusivities of hydrogen in the cyclohexene and 1-octene. 

An alternate way to observe the effect of mass transfer limitations is to vary the flow rate of 

hydrogen at constant temperature (50 °C) and liquid flow rate (20 µl/min).  The mass transfer 

Alkene kLa (s-1) 

Cyclohexene 1.7 

Cyclohexene 1.8 

1-Octene 2.3 

Table 6.3. Mass transfer coefficients for cyclohexene and 1-octene hydrogenation over 

platinum on alumina catalyst. 
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rate increases with gas flow rate due to a thinning of the liquid boundary layer coating the 

catalyst particles.  As this layer thins, the mass transfer resistance in the layer is also reduced.  

At low gas flow rates, Figure 6.12 shows that the reaction rate improves as the gas flow rate is 

increased.  These conditions correspond to mass transfer control.  At a critical gas flow rate, 

increases in this flow rate no longer increase the reaction rate.  At these conditions, the 

reaction is kinetically controlled.  If the reaction rate depended on the combined gas-liquid 

residence time, the observed reaction rate would peak.  At low gas flow rates, increasing the 

flow rate would overcome mass transfer limitations, increasing the reaction rate.  At high gas 

flow rates, increasing the flow rate would instead reduce the residence time, decreasing the 

reaction rate.  The absence of this effect suggests that the gas flow rate does not affect the 

liquid residence time.  Instead, the hydrogenation rate is controlled solely by the liquid 

residence time. 

 

 kLa (s-1) D · 105 cm2/s D0.5 

1-Octene 2.3 45 0.021 

Cyclohexene 1.75 22 0.015 

Ratio 1.4 2.0 1.4 

Table 6.4. Differences in the diffusivity of hydrogen in the two solvents178 are consistent with 

the variation in the measured mass transfer rates. 
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Figure 6.12. At constant temperature (50 °C) and cyclohexene flow rate (20 µl/min), the flow 

rate of hydrogen was varied allowing the reaction rate to transition from mass transfer 

control to kinetic control. 
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Chapter 7. Conclusion 

7.1. Accomplishments 

The primary accomplishment of this thesis was the development of a high-pressure, continuous 

flow microreactor system.  This system enables studying of both homogenous and 

heterogeneous gas-liquid catalyst systems.  This system increases the pressure and flow rate 

envelope that can be studied in microreactor systems to include conditions that are typical of 

commercial operation.  Conducting kinetic research at these conditions reduces the time and 

cost of turning laboratory results into commercially viable processes.  Specifically, precise 

temperature control facilitated studying conditions for 25-350 °C.  It is able to operate at 

pressures ranging from near atmospheric to 100 bar.  The system is particularly well suited to 

study the temperature dependence of reactions.  The small reactor scale allows for rapid 

temperature change and up to three temperatures can be sampled in the span of an hour, 

which represents a substantial improvement over traditional batch systems, in the absence of 

parallelization.   

Significant design challenges were overcome to enable the study of high-pressure reactions at 

the low flow rates required for microliter scale reactors.  The system was constructed in a 

completely modular manner allowing for the addition of process components without altering 

its major systems.  For example, when it was determined that combined gas-liquid streams led 

to analytic performance deterioration, a membrane separator was introduced to the system 

without disturbing the pressure-control and flow-delivery systems.  From the design through 

the operating stage, reproducibility was a critical goal for the system.  These goals were 



187 
 

manifested through careful design of the temperature control system to enable computer-

based control.  Computer based automation and control were employed to remove variability 

associated with manual manipulation.   

Two complementary analytic systems were demonstrated in the high-pressure system.  Online 

Fourier transform infrared (FTIR) analysis was demonstrated to provide important real time 

information on system operation and enabled quantitative analysis of simple chemical 

mixtures, such as the cyclohexene/cyclohexane samples from the heterogeneous 

hydrogenation.  Experimental throughput was improved by monitoring for steady state in real-

time.  Offline analysis, specifically gas chromatography (GC), provided highly reproducible 

quantitative analysis for the considered reaction systems.  GC analysis is much more sensitive 

than IR at low analyte concentrations, widening the possible reaction conditions. 

Both homogeneous and heterogeneous catalyst systems were studied.  Each system required a 

different silicon microreactor, which was designed, fabricated, and demonstrated under flow 

conditions.  Residence times ranging from seconds to approximately 15 minutes were observed 

in the homogenous reactor.  The internal volume of the heterogeneous reactor was far smaller 

than the homogeneous reactor, resulting in residence times of up to a minute.   

The hydroformylation of 1-octene was chosen to demonstrate the performance of the 

homogeneous system.  This reaction involves the addition of a hydrogen and a carbon 

monoxide molecule to 1-octene with a HRh(CO)(PPh3)3 catalyst.  The empirical reaction order 

for the dependence on catalyst, hydrogen, and carbon monoxide were determined from these 

experiments.  The overall reaction was determined to be nearly first order in catalyst and 
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hydrogen concentrations and inversely proportional to carbon monoxide concentration.  These 

results were reconciled against the mechanism reported in the literature.  Hydrogenolysis was 

observed to be the rate determining step and the inverse dependence on carbon monoxide was 

explained by an additional coordination of carbon monoxide to a catalyst intermediate, 

removing it from the cycle.  Through this analysis, a rate expression was proposed which 

included temperature dependent terms.  An activation energy of Ea = 19.2 kcal/mol and pre-

exponential factor of ln(A0) = 25.2 were determined through this analysis.  The observed 

activation energy compares favorably with the literature for similar olefins.136, 137   

The hydrogenation of cyclohexene to cyclohexane over platinum catalysts was chosen to 

demonstrate the performance of the heterogeneous reactor.  The reaction was demonstrated 

over two catalysts, 5% platinum on alumina and 5% platinum on silica.  Upon overcoming 

deactivation issues, an activation energy Ea = 5-6 kcal/mol was observed for both catalysts.  

Additionally, the reaction proceeds so rapidly that mass transfer limitation is observed even in 

microreactors.  This limit enabled characterization of the gas-liquid mass transfer coefficient in 

the system.  The mass transfer coefficient was shown to vary depending on substrate, which is 

related to the diffusivity of hydrogen in cyclohexene and 1-octene.  The observed mass transfer 

coefficient (kLa) was approximately 2 s-1, which is consistent with microreactor results at low 

pressure120 and 100 times higher than in traditional systems.18 

The system, as demonstrated, increases the range of conditions that can be studied in 

microreactors.  These advancements allow for higher pressure and temperature 

experimentation than was previously possible in the laboratory. 
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7.2. Challenges and Recommendations 

While the system is operational and providing reliable data, a number of challenges remain.  It 

is not possible to operate the system at its design pressure when the IR system is attached.  

Additionally, segmented flow stability remains challenging and coalescence is unavoidable at 

long residence times.  Finally, hour long residence times are unachievable in the current 

system. 

When real time analysis is enabled, the system must operate at pressures below 30 bar, rather 

than the design pressure of 100 bar.  Real time analysis provides significant additional 

information, making it advantageous to include some form of real time analysis.  IR provides 

inline analysis in the current system through the integration of a flow cell.  This flow cell was 

recently developed by Mettler Toledo and represents the state of the art in the commercial IR 

industry.  To operate at pressures higher than 30 bar, the system was analyzed using offline 

analysis, which is available at any pressure.  This offline nature requires that a set of 

experiments be performed without the benefit of early problem identification.  The inability to 

observe steady state in real time also reduces throughput.  One possible approach to overcome 

the pressure limitations inherent to the commercial flow cell is to directly integrate 

spectroscopic analysis into the microreactor.  This has been previously demonstrated for low 

pressure applications.67  The designs could be extended for high-pressure operation.  A second 

option could be to use the offline sampling system to integrate a high-pressure liquid 

chromatography (HPLC).  While this system would not provide in situ characterization, it is 

capable of returning a result prior to a set point change.  In addition, these samples could be 
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taken more quickly since an online HPLC system would require a smaller sample than vial 

sample collection.   

Bubble coalescence proved to be an ongoing challenge in the long channel of the homogeneous 

reactor.  Careful pressure control through the strategic use of pressure reduction improved the 

flow.  To enable completely stable segmented flow, all pressure fluctuations must be removed 

throughout the system.  One of the greatest strengths of the high-pressure system, its ability to 

decouple flow rate from operating pressure, is provided by the back pressure controller.  This 

system operates by controlling the position of the valve to maintain a constant pressure in the 

controller.  This valve is constantly vibrating as gas and liquid leave the pressurized system.  It is 

likely that these fluctuations compound to lead to unstable flow in the system given enough 

residence time.  In addition, gas in the bubbles is consumed during reaction, altering the size of 

the gas bubble and further impacting stability.  Most methods for improving flow stability 

involve careful manipulation of pressure drops within the system.  The simplest method for 

increasing pressure drop is to add a length of small diameter tubing.  Small diameter tubing is 

also preferable because it reduces system volume for a given pressure drop.  In practice, small 

tube diameters present a clogging risk in the presence of solid particles such as heterogeneous 

catalysts.  Control of the pressure within the system remains an ongoing challenge.  

The final challenge is enabling the study of slow reactions in microreactors.  For example, many 

of the reactions that are of interest in pyrolysis oil upgrading require reaction times of greater 

than an hour.  A number of design decisions limit the longest residence times available in the 

high-pressure system.  For high-pressure conditions to be feasible, the width of a channel is 
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limited to approximately 400 µm.  A reasonably sized microreactor, of which a few could be 

fabricated on a single 6” silicon wafer, would have a maximum internal volume on the order of 

250 µl.  Slow reactions requiring residence times of one hour would thus require delivering 

total flow rates of 4 µl/min.  It is possible to design larger microreactors, using wider channels, 

but the upper pressure limit of the system would then be reduced accordingly.  There are very 

few products commercially available that enable both the precise control of slow flow rates as 

well as operation at high pressure.  The high-pressure syringe pumps employed in this work are 

capable of driving flow at liquid flow rates of 1 µl/min, around the flow rates that would be 

required for studying reactions at long residence times.  Unfortunately, it estimated that a 

typical leak rate in the system under pressure is approximately 1 µl/min, which would represent 

a significant percentage of the total flow.   

The external system ultimately determines what flow rates are practical.  Ideally, the residence 

time in the analytic components would be much smaller than the reactor residence time.  In 

practice, the volume of the downstream components can rival the volume of the reactor.  

Between samples, a minimum of three residence times are required to ensure the system is 

sampling the new steady state.  For slow reactions with a residence time of 60 min, it would 

take hours to collect a single data point.  This residence time requirement is particularly 

important given the large cavity in the micro flow cell.  This geometry is particularly susceptible 

to mixing due to axial dispersion.  Bringing the chemical analysis on chip would increase the 

feasibility of long residence times. 
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7.3. Outlook 

Microreactors systems, such as the one described in this thesis, are powerful tools for studying 

chemical reactions.  They are most powerful when paired with an appropriate chemical 

reaction.  Ideal chemical systems should take advantage of at least one of the three 

microreactor benefits: high heat transfer, high mass transfer, and low material amounts.  For 

high heat and mass transfer to be required, the reaction must be fast.  For purposes of this 

system, fast reactions can be defined as those with measurable conversions achieved on the 

order of seconds to minutes.  Any traditional system is capable of overcoming mass transfer 

limitations for reactions that take hours to complete. 

Analysis systems strive to be accurate and efficient.  The hydroformylation and hydrogenation 

examples demonstrate that the system described in this thesis is accurate.  For the system to 

be efficient, the number of experiments completed in a given time period must be maximized.  

This time can be split into experimental time and setup time.  Continuous operation minimizes 

the effect of setup time by spreading it across a large number of experiments.  The current 

continuous system is very efficient at studying reaction temperature dependence.  Batch 

systems, on the other hand, are very efficient at time dependent characterization of a reaction 

and are easier to parallelize.  The longer the desired reaction, the smaller the impact that setup 

time has on the overall efficiency.  For maximum efficiency, it is critical to pair each chemical 

system with an appropriate analysis technique for the type of information desired.  

The high-pressure system described in this work might still be well suited to study traditionally 

slower reactions.  Operating at high-pressure and temperature can enable measurable 
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conversion to be achieved more quickly than under traditional conditions, offsetting low 

residence times.  The system is also primed to study systems where the catalyst is scarce.  

Today, significant research is being devoted to nanoparticle catalysts.  It is often not practical to 

synthesize the large quantities of these materials required to enable characterization in 

traditional reaction systems.  Microreactors may therefore prove to be the only realistic 

reaction platform for kinetic and mechanistic study.  Improved analytic systems would only 

improve the feasibility for studying such catalysts in high-pressure microreactor systems.  When 

microreactor technology is properly leveraged, significant accuracy and throughput 

improvements can be realized. 
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Appendix A. Microfabrication 

All fabrication was carried out in the Microsystem Technology Laboratory (MTL) at MIT.  The 

fabrication processes required for this thesis are described in detail below.  The machine name 

corresponds to the naming conventions employed in MTL.  The color code describes the 

process contamination level, with green indicating metal-free processing and red indicating 

metal-contaminated processing.  All required masks are also provided and are to scale.  The 

masks contain rotated reactors to ensure that no channels are aligned with the crystal plane.  

The wafer flat is aligned with edge of the mask containing the text “MIT.”  Stress concentrates 

at the corners of channel, which makes the wafer more likely to crack along the crystal plane.  

Two separate processes are presented below differing in how many masks are required.  The 

homogeneous reactor was constructed using a two mask design, while the three phase reactor 

required three masks. 
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Homogeneous Reactor Process 
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Mask 1 – Frontside (negative) 
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Mask 2 – Backside (negative) 
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Heterogeneous Reactor Process 

 



213 
 

 

  



214 
 

Mask 1 – Frontside 1 (negative) 
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Mask 2 – Frontside 2 (negative) 
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Mask 3 – Backside (negative) 
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