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Abstract

T lymphocytes are key orchestrators of the adaptive immune response in higher
organisms. This thesis seeks to apply different techniques from engineering and the
physical sciences to understand how T cells balance the risks of autoimmunity and
infection.

(1) What features of proteins do T cells search for that correlate with pathogenicity,
distinguishing self from foreign? Two contrasting theories have emerged that attempt to
describe T cell ligand potency, one based on the half-life (tv12) of the interaction between
T cell receptors (TCR) and peptide-MHC complexes (pMHC), the second on the
equilibrium affinity (KD). We study an extensive set of TCR-pMHC interactions in
CD4+ T cells which have differential KD and kinetics of binding. The data indicate that
ligands with short t112 can be highly stimulatory if they have fast on-rates. Simple models
suggest these fast-kinetic ligands are stimulatory because the pMHC bind and rebind the
same TCR several times. Accounting for rebinding, ligand potency is KD-based when
ligands have fast on-rates and t1/2-based when they have slow on-rates, unifying previous
theories.

(2) How do T cells make optimal responses with the imperfect information they receive
through their receptors? Recent experiments suggest that T cells sometimes make
stochastic decisions. Biological systems without sensors and genetic diversity, such as
some bacteria, make stochastic decisions to diversify responses in uncertain
environments, thereby optimizing performance (e.g. growth). T cells, however, can draw
on considerable environmental and genetic diversity to diversify their responses. Using T
cell biology as a guide, we identify a new role for noise in such systems: it helps systems
achieve complex goals with simple signaling machinery. With decision-theoretic
techniques, we suggest necessary conditions for noise to be useful in this way.

(3) How can biological systems, like T cells, maintain desired responses in the presence
of molecular noise, suppressing it or exploiting it as needed? We develop a semi-
analytical technique to determine how small changes in the rate constants of different
reactions or in the concentrations of different species affect the rate at which biological
systems escape stable cellular states. A single deterministic simulation yields the
sensitivities with respect to all reactions and species in the system. This helps to predict
those species or interactions that are most critical for regulating molecular noise,
suggesting those most promising as drug targets or most vulnerable to mutation.

These projects and others discussed in this thesis recruit techniques from random walks,
statistical inference, and large deviation theory to understand problems ranging in scale
from individual molecular interactions to the population of T cells acting in concert.
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Chapter 1

Introduction

"seeing your bald intellect collywobbling on its feeble stem is
believing science=(2b)~" herr professor m"

e.e. cummings, XIX, W[Viva]

Nothing is like a living cell except a living cell, nor like a chemical reaction except a

chemical reaction. The ability of models to elucidate biological systems is therefore

necessarily limited. However, by focusing on small parts, models can suggest essential

features, generating hypotheses that inform experiment. This thesis seeks to make a

small progress into applying, by analogy, the techniques of the physical sciences and

engineering to understand essential features of problems in biology.

The particular biological focus of this thesis is on immunology, specifically the role of T

cells in immunological responses. T cells are among the key orchestrators of the adaptive

immune response, tasked with identifying and clearing a diverse array of infections

without causing collateral damage to self tissue (i.e. generating an autoimmune response).

1.1 Background and scope

T cells distinguish infectious agents from self tissue not by catching them in the act of

being pathogenic (e.g. releasing virulent agents or high-jacking host replication

machinery), but rather by scanning all proteins (protein fragments) indiscriminately,

looking for features that correlate with a protein being foreign rather than self. In this

respect, the T cell system is like a criminal profiling system; the infectious agents are the

analogs of criminals.



Because the T cell system is based on profiling and not on direct evidence of

pathogenicity, it confronts several challenges. The second and third chapters of this

thesis consider two of these challenges.

First, what features of proteins can T cells search for that correlate with pathogenicity?

There are no obvious structural differences between foreign and self proteins (contrary to

the imagery in pharmaceutical advertisements). This question is the subject of Chapter 2.

In any case, whatever these correlative features are, they are unlikely to be perfect

indicators of pathogenicity since they do not directly relate to the act of being pathogenic.

The diversity of self and pathogenic proteins is so large that it likely complicates any

attempt to find a feature that no self protein has but that all pathogenic proteins will

always have. (This difficulty is highlighted by the inability of the innate immune system

to clear all pathogens.) Furthermore, even if such features did exist, viruses mutate and

evolve (sometimes, as in the case of HIV, on the time scale of the infection itself), just as

criminals adapt to avoid getting profiled (e.g. screened at airports.) It is hard to imagine

how correlations can be perfect against an adversarial agent.

That the correlative features are imperfect constitutes another challenge for T cells. How

can T cells design an optimal response with imperfect information? When, in a criminal

investigation, an enforcement agent witnesses a suspect in flagrante delicto, it is clear the

enforcement agent should apprehend the suspect. However, when profiling based on

imperfect correlation, it is not always clear how to best respond. In cases of uncertainty,

law and order profiling systems typically follow a profiling step with an evidentiary step

- people are profiled to be searched, but then are in fact searched, not just thrown in jail.

T cells base their responses purely on the correlations. How can they best balance the

risks of infection and autoimmunity? This question is the subject of Chapter 3.

The previous two challenges are faced by T cells as a profiling system. T cells also

encounter challenges common to all types of cells. How do cells use the building blocks

of biology (e.g. proteins) to engineer complex, sensitive, and speedy responses to diverse



inputs? Chapter 4 considers one aspect of the design of cellular signaling machinery,

motivated by the work in Chapter 3 that suggests the optimal T cell response.

Finally, in Chapter 5, we consider different spatiotemporal effects in T cell signaling,

extending the work of Chapter 2.

These questions span different scales of the immune system, from molecular interactions

to the entire population of cells acting in concert, and recruit different techniques from

the physical sciences and engineering to address them. The following sections provide

more context for each question.

1.2 Correlative features in T cell profiling

Just as identifying features that correlate with guilt is an important question in criminal

profiling, what features the T cell searches for in trying to uncover infection is a major

question in immunology.

Addressing this question requires further details regarding the biology. T cells do not

directly scan whole proteins; rather they scan protein fragments, known as peptides (p),

that are presented on the surface of almost every cell in the body (1). (Why this should be

the scheme is not a subject of this thesis.) Constantly, cells in the body chew up proteins

that they find inside of them or that they scavenge from their environment. Misfolded

proteins, for example, provide a source of proteins that the body will not miss if so

chewed up, since such proteins are nonfunctional (or deleterious) anyway. The protein

fragments are presented on the cell surfaces in the grooves of molecules known as MHC

molecules. When the body is not infected, the peptides presented on cell surfaces are

derived exclusively from self proteins, since no foreign proteins are present. However,

when the body is confronting an infection, at least some of these protein fragments will

be derived from the foreign pathogen, though many will still be self-derived.



A hint about what features of peptides T cells search for comes from work that has

elucidated the development process of T cells. The human body generates many different

T cells, each roughly with a different, randomly generated type of receptor on its surface

(the T cell receptor, or TCR). It is with their TCRs that T cells "scan" peptides, as the

receptors are able to bind to pMHC. The binding of pMHC and TCR is the first step in a

sequence of molecular interactions (reactions) on the surface of the T cell and inside the

T cell that leads to the T cell's response. In this sense, the bindings are the input to the T

cell's response.

The nature of the interaction between a particular TCR and peptide depends on the

unique random sequence of the TCR and the unique peptide. Specifically, the

interactions can be described at a molecular scale by the kinetic parameters that govern

them: the on-rate (how quickly the pMHC and TCR bind when near each other), the half

life (how long they stay bound when they bind), and the equilibrium affinity (how

frequently they are bound when they are nearby). (Note that only two of these three

parameters are independent, as the third is a ratio of the first two.) Because of sequence

diversity, different pairs of TCR and peptides have different on-rates, half-lives, and

affinities of binding.

During a process in T cell development known as thymic selection, T cells serially scan

many peptides that are guaranteed to be self (at least in the absence of a pathology).

Those T cells that respond strongly to any of these self pMHC, because of their particular

receptors and the particular combination of kinetic parameters describing their

interactions with self peptides, are likely to be deleted from the host repertoire (negative

selection) (2). This developmental process enables correlations between the binding

features of a particular TCR and pMHC and whether that pMHC is self or foreign

derived: since selection is against self, not foreign, those with TCR whose binding

features to pMHC enable them to respond strongly when binding to pMHC post-selection

(e.g. they bind strongly in some sense) are likely to be interacting with a foreign pMHC.



However, it has not been clear which of the three kinetic parameters that describe

interactions between TCR and pMHC are actually involved in the correlation used in

profiling (that is, lead to a "strong response") (3). All are plausible candidates for "strong

binding" when they are large: empirically, while experiments have agreed that the

binding must be strong in at least one of these senses, they have disagreed as to which

sense or senses are most important; theoretically, each is supported by plausible

intracellular signaling models.

Understanding how T cells profile peptides (that is, knowing which kinetic parameters

actually correlate with T cell response) is important because each kinetic parameter

suggests different mechanisms of intracellular signaling, fundamental knowledge which

is useful in identifying drug targets, and each suggests different screening strategies for

identifying immunogenic vaccines.

In the second chapter of this thesis, we utilize a new data set from Eric Huseby's lab, in

concert with mechanistic models of binding events between pMHC and TCR, to try to

understand which kinetic parameters correlate with T cell activation. The data set is

particularly important because the variation in kinetic parameters among pMHC and TCR

is significant enough to tease apart their potentially different effects when viewed in

conjunction with macroscopic data on the T cell's response (e.g. T cell proliferation). (In

many data sets, the different kinetic parameters have tended to trend similarly, or be

constant, which has forestalled consideration of this debate; now it is clear they do not

always go together).

A chief challenge in understanding how the different kinetic parameters affect T cell

activation is understanding how the kinetic parameters interact with the different length

and time scales that describe the cellular signaling machinery, since the signaling

machinery determines the T cell's response. To do this, we constructed simple

mechanistic models of the earliest stages of the T cell interaction. The models address

various aspects of the interaction in space and in time. For example, the TCR and pMHC

are both in membranes, diffusing through space (4). Additionally, it has been discovered



that key signaling molecules cluster on the surface of T cells (5). These length and time

scales (among others) interact with length and time scales provided by the kinetic

paramheters to produce different responses.

In developing these models, we recruit a body of literature involved with random walks

and diffusions and their properties in different dimensions. A notable fact, for example,

is that a random walker (e.g. a drunkard moving randomly) will certainly return to

wherever she started in one and two dimensions (on a line or in a plane), but not in three

dimensions (6). (In one and two dimensions, however, the return may take, on average,

forever.) This has implications for diffusing molecules on cell membranes (two

dimensions) versus in the cytoplasm (three dimensions) versus on cytoskeletal filaments

(one dimension). Importantly, it has implications for the problem of receptor-ligand

binding on membranes, which are effectively two-dimensional on time scales shorter than

membrane motion in the z-direction (4).

Finally, one practical difficulty in teasing apart the influence of different kinetic

parameters using macroscopic experimental data (e.g. T cell activation) is the uncertainty

about what it means for a T cell response (e.g. activation) to correlate with a particular

parameter but not others. A comparison of linear fits will not do, as there is no reason to

believe the response is linear in the parameters. Here we address this problem by looking

for parameters whose values are one-to-one with the T cell's response. But future work

will need to merge inquiries on the macroscopic scale with models of the T cell's

signaling machinery more involved than those considered here in order to resolve the

response at these two scales.

We demonstrate that a simple model accounting for multiple rebindings between the

same pMHC and TCR can explain the new data set from Eric Huseby's lab, suggesting

that fast on-rates can enable short half-life ligands to stimulate T cells. This model

reconciles previous experiments suggesting that the affinity or the half-life are the most

important parameters.



1.3 How T cells use imperfect information to make optimal responses

In intermediate summary, T cells look for features correlated with whether a peptide is

self or foreign (the analog of "guilt" or "innocence" in criminal profiling) and one

particular choice of feature they look for, empirically determined, is binding strength (a

particular combination of kinetic parameters.) (Other correlative factors, not subjects of

this thesis, include the number of pMHC presented on APC, their groupings into clusters,

and, less specific to the interaction of a particular T cell, the cytokine environment (7, 8).

In what follows, we use the generic term "stimulus" as a proxy for those features that

correlate with a peptide being foreign (e.g. the activating binding kinetics.)

T cells use the information they obtain through their receptors to determine their

responses. The responses of T cells include production of cytokines and T cell

proliferation, which both contribute to clearing the infection. (Different types of T cells

are specialized for different types of response.)

However, it is unclear how T cells should use the information, because the correlation

between the stimulus (e.g. binding strength) and whether a peptide is foreign is not

perfect, for reasons mentioned in Section 1.1. In addition, the details of the biology make

it clear that the system by which T cells measure the correlative features is not perfect,

introducing further uncertainty. Some T cells escape thymic selection, so that there are

auto-reactive T cells in the periphery (9); and, because of limited resources (e.g. the

amount of time allowed to scan the pMHC, the numbers of pMHC and TCR) there is

some randomness in the stimulus a T cell receives when it scans another cell.

Thus, individual T cells face uncertainty about whether the pMHC they engage is really

self or foreign. What should T cells do in cases of uncertainty? For example, T cells

could balance this uncertainty by gradually increasing the magnitude of their response

(e.g. gradually releasing more cytokines) as the likelihood the pMHC is foreign increases

(that is, as the stimulus strength increases; see the discussion on thymic selection).

However, recent experiments suggest that T cells make digital decisions about whether to



activate, at least as indicated by early markers of T cell signaling. That is, a given T cell

is either fully active or fully inactive (e.g. there is a jump in cytokine release between the

two states; though, as noted later, the decision may be stochastic) (10).

Another way to handle their uncertainty, given that they are constrained to either activate

or not, is for T cells to err on the side of always activating whenever there is any

uncertainty, and thereby protect against infection. But then they would frequently

erroneously activate against self pMHC, potentially leading to autoimmune responses.

However, if they took the opposite approach and never activated in such uncertainty,

infections would sometimes spread unchecked. With imperfect information, there is no

way for T cells to completely eliminate both the risk of infection and autoimmunity. Like

a criminal justice system attempting to balance letting a criminal go free or an innocent

go to jail, the T cell system must utilize the information on hand to delicately balance the

risks of autoimmunity and infection. (This balancing is known as searching for Pareto

optimal solutions.)

In the second chapter of the thesis, we consider two different ways T cells could balance

(or "hedge") these risks. One possibility is that they could always activate whenever the

stimulus exceeds some threshold (and thus the uncertainty favors it being foreign) and

never activate below the threshold (the uncertainty favors it being self). Indeed, this

seems to be a natural interpretation of the dictum that "strong stimuli" are correlated with

foreign pMHC. Alternately, the probability a T cell activates could gradually increase

form never activating for weak stimuli to always activating at strong stimuli; for

intermediate stimuli, they would only sometimes activate (essentially flipping a coin). At

an essential level, the difference between these two approaches is that the first is

deterministic and the second is stochastic (random).

Interestingly, recent experiments suggest that T cells make their decisions in the second

of these two ways (7, 10-12). For intermediate stimuli, they make stochastic, not

deterministic, decisions. In the third chapter of this thesis, we try to understand the role

of stochastic decisions in balancing the risk of autoimmunity and infection in the T cell



population. (How would the public respond if law enforcement sometimes arrested and

sometimes did not when the same correlative features were present - and if they made

this decision by flipping a coin? It is as though some T cells expended resources to

measure the stimulus and then decided to discard information in the stimulus to make a

stochastic decision anyway.)

The role of stochastic decisions in the T cell population has implications for more than

just T cell biology directly, as it touches on a larger discussion in the literature about the

role of stochasticity or randomness in biological systems (13). Randomness is ubiquitous

at the molecular level of biological systems (14). Molecules move about randomly,

buffeted by collisions with other molecules and with water (the random walks referred to

in Section 1.2), and they bind and rebind randomly, due to these same thermal sources

(15). Furthermore, concentrations of key molecules fluctuate from cell-to-cell (due to

randomness, e.g., in transcription and translation processes) (16). Since biology often

occurs with small number of molecules over finite times, these effects do not always

average out on relevant scales. Thus, randomness at the molecular scale can manifest

itself at the cellular scale, for example in stochastic decisions made by T cells.

Historically the manifestation of stochasticity at the cellular scale was considered

deleterious, much as randomness in the function of engineered systems like computers is

usually considered deleterious. Over the past several decades, however, researchers have

begun to recognize constructive roles for noise in biological systems. It is in this latter

spirit that we investigate whether stochasticity is beneficial for the T cell system.

Stochastic decisions also touch on literature in a variety of fields concerned with how

humans should make decisions based on data, including decision theory, statistical

inference, game theory, information theory, and economics. (John Nash won the Nobel

Prize in part for showing that there is always an optimal strategy in a particular class of

games so long as one is willing to sometimes flip a coin.) It is a testament to how

confusing stochastic decisions can be that practical advice often counsels against making



a stochastic decision, even when it is optimal, since it can be hard to explain if the

eventual decision turns out to be incorrect (17).

Connections between these applied fields and biological systems are in some ways still in

their infancy (18), though potentially rich as interest in biological decision-making

grows. We attempt to apply the techniques from the disciplines related to decision theory

to understand stochastic decisions in a biological context, while respecting the unique

features of biological systems.

One challenge in applying knowledge from these fields to biology is that much statistical

inference is based on heuristics or assumptions. While these may be appropriate to

understanding experimental data in the absence of alternatives, they are not necessarily

applicable to the decisions biological systems make themselves (or we know too little

about the biology to know what heuristics are appropriate). What is interesting in the

biological context is to see what can be said qualitatively, independent of such unknown

features. The problem of T cell stochastic decisions is such a qualitative problem in the

field of biological decisions, and so it is an interesting problem to consider in terms of

connection to these fields.

By studying T cell decisions, we find a new role for noise in complex biological systems.

Stochastic decisions by individual components (T cells) allow the interacting population

to achieve complex goals with simpler biochemical machinery (e.g., a simpler signaling

network) than would be required to implement a deterministic response which achieves

the same performance. This contrasts with the role of stochaticity in diversifying

decisions in previously studied systems.

1.4 Sensitivity analysis of reaction networks

Previous sections have taken for granted T cells' ability to process information they

obtain through their receptors to carry out cellular-scale responses. We have assumed,



for example, that machinery exists that can translate and transduce the binding of TCR-

pMHC into activation.

Just as the building blocks of computers are circuits, the building blocks of cellular

machinery are individual molecules (e.g. proteins, small molecules like calcium).

Different molecules can interact with each other, binding and unbinding, modifying each

other, and changing each other's conformation to expose or occlude functional surfaces.

Work over the past several decades has shown how these simple interactions between

molecules can achieve complex responses when they are incorporated in networks. In

fact, it has been shown, for example, that gene transcription networks are capable of

recapitulating the fundamental logical operations (like computers), so that any response is

possible in principle (19).

Intriguingly, these biological machines function in the presence of randomness in the

building-block molecular interactions, as described in Section 1.3. They are able to

suppress noise to maintain stable cellular states or produce consistent responses to inputs;

or, as in the previous section, they are able to constructively exploit noise to enable

transitions between stable states or stochastic responses to inputs. Suppressed or

exploited, the noise is controlled to enable biological function. Given that the

randomness is so prevalent at the molecular scale, how is it controlled?

Previous work has uncovered qualitative design features of networks that affect their

noise transmission properties (20, 21). In Chapter 4, we adopt a more empirical

approach, complementing this theoretical work. That is, for given cellular signaling

networks we seek to develop a procedure that identifies the particular reactions and

species in that network that are most crucial in regulating stochastic transitions away

from a stable cellular state - either to another stable cellular state or to (perhaps

undesirable) distant states. These reactions and species are those that are most vulnerable

to mutation (as in cancers) or most promising as drug targets.



If Chapter 3 is concerned with how unpredictable cellular signaling networks can be - T

cells sometimes make stochastic decisions -- Chapter 4 is concerned with how

surprisingly predictable they can be. Exactly when a transition occurs is quite

unpredictable (up to a distribution), and whether it occurs in a biologically relevant time

is unpredictable as a result. However, how the transition occurs when it occurs -- the

particular sequence of reactions by which it occurs -- is often very predictable. This

knowledge can be exploited to understand different properties of the transition, including

how different reactions and species affect the expected time of the transition.

The methods by which such predictions can be made fall under the study of large

deviation theory (LDT). Large deviation theory extends the results of the central limit

theorem and the law of large numbers (22). The law of large numbers states, roughly,
that sample averages converge to expectations; the central limit theorem describes how

quickly this happens at the limit of large sample size. Large deviation theory describes

how quickly the convergence happens at slightly smaller, but still large, sample size (that

is, near the tails of distributions, where they converge most slowly.)

In networks of chemical reactions, what is often large is the number of molecular

interactions required to change the state significantly ("large" and "significantly" must be

more carefully defined.) In Chapter 4, we exploit an application of LDT to networks of

chemical reactions in order to predict how the systems' ability to suppress or control

noise is affected by perturbing the number of each type of species in the system or the

rate constant of each reaction type. This approach leads to a semi-analytical formula.

With this formula, only one deterministic simulation is required to determine the

sensitivity of the transition time on all of the species and reactions in the system. We

further exploit the semi-analytical nature of the formula to make qualitative conclusions

about reactions that are important in regulating stochastic transitions.



1.5 Summary

This introduction has sought to situate the different projects constituting this thesis in the

context of T cell immunology, which theme unifies them. The results, particularly those

of Chapters 3 and 4, have a broader impact in the fields of biology and theoretical

chemistry. The respective chapters introduce them in this context.

Chapters 2 through 4 span three different biological problems at three different scales of

the immune system. In Chapter 2, we zoom in to the molecular level of interactions

between individual molecules (TCR and pMHC). In Chapter 3, we focus on the

population of T cells acting in concert. Finally in Chapter 4, we look at an intermediate

scale, networks of chemical reactions.

The projects recruit three different techniques from engineering and physical sciences:

random walks and diffusions (chapter 2), decision theory and statistical inference

(chapter 3), and large deviation theory (chapter 4).

These different areas of inquiry present broad ideas for further study. Such ideas are

explored in the conclusion. However, some of these ideas have already been explored as

part of this thesis, but have been omitted from the main narrative flow. Chapter 5

contains two projects related to spatiotemporal aspects of signaling (which was also

exploited in Chapter 2.)

1.6 Statement of Collaborations

Chapter 2 was the result of a close collaboration with Prof. Eric Huseby at the University

of Massachusetts Medical School. All experimental results are from work in his lab.

Theoretical results have been obtained jointly with him. The write up of this work was

completed with him.



Chapter 4 was the result of another close collaboration with Ming Yang, a fellow Ph.D.

student with Arup Chakraborty. The results in that chapter are all joint with him. The

write up of the work was completed with him.

The work on T cell memory referenced in Chapter 5 was predominantly conducted by

Jayajit Das, a postdoc with Arup Chakrabroty, and his experimental collaborators. The

small part explicitly discussed in that chapter constitute my contribution to that endeavor.
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Chapter 2

"Fast on-rates allow short dwell time ligands to activate T
cells" 1

"We have the idea that our hearts, once broken, scar over with
an indestructible tissue that prevents their ever breaking again

in quite the same place; but as Sammy watched Joe,
he felt the heartbreak of that day in 1935 when

the Mighty Molecule had gone away for good."

Michael Chabon, The Amazing Adventures of Kavalier and Clay

Two contrasting theories have emerged that attempt to describe T cell ligand potency,

one based on the half-life (tiv2) of the interaction, the second on the equilibrium affinity

(KD). Here we have identified and studied an extensive set of TCR-pMHC interactions in

CD4+ cells which have differential KD and kinetics of binding. Our data indicate that

ligands with short t112 can be highly stimulatory if they have fast on-rates. Simple models

suggest these fast-kinetic ligands are stimulatory because the pMHC bind and rebind the

same TCR several times. Rebinding occurs when the TCR-pMHC on-rate outcompetes

TCR-pMHC diffusion within the cell membrane, creating an "aggregate t112" that can be

significantly longer than a single TCR-pMHC encounter. Accounting for aggregate t 12,
ligand potency is KD-based when ligands have fast on-rates and t2-dependent when they

have slow on-rates. Thus, TCR-pMHC on-rates allow high affinity, short tj12 ligands to

follow a kinetic proofreading model.

2.1 INTRODUCTION

T cell receptors (TCRs) expressed on T cells bind host-MHC proteins presenting both

self and foreign pathogen-derived peptides (pMHC). Depending on the signal emanating

This work has appeared in the Proceeding of the National Academies of Science as
"Fast on-rates allow short dwell time ligands to activate T cells" (C. C. Govern, M. K.
Paczosa, A. K. Chakraborty, E. S. Huseby, Proc. NatL. Acad Sci. U. S. A. 107, 8724
(2010)). Experimental results in this chapter are from Eric Huseby's lab.



from these interactions, diverse biological outcomes ensue. In the thymus, these TCR-

pMHC mediated signals shape the specificity of the mature T cell repertoire and prevent

overtly self-reactive T cells from escaping (1). In the periphery, naive T cells require

continual TCR engagement with self-pMHC complexes to receive a homeostatic survival

signal, while engagements with foreign peptides induce rapid T cell division and the

acquisition of effector functions (2). How T cells interpret the interaction between their

TCR and pMHC ligand leading to these different biological outcomes is greatly debated.

Two competing models of T cell activation have been proposed, with ligand potency

being a function of TCR-pMHC equilibrium affinity (KD) (3-7) or half-life (t 12) (8-11).

Evidence supporting KD-based receptor occupancy models of TCR signaling comes from

sets of ligands which show a correlation between KD and ligand potency (3, 5) and from

the fact that ligands induce qualitatively distinct biological outcomes depending upon

their concentration (12).

In sharp contrast to receptor occupancy models, t112 -based kinetic proofreading models

hypothesize that TCR must be engaged long enough to complete a series of signaling

events, including co-receptor recruitment and TCR phosphorylation (13). Increases in

the t1/ 2 of the TCR-pMHC engagement raise the probability that any single TCR-pMHC

engagement will surpass the threshold amount of time required to initiate T cell

activation (14). Recently this threshold amount of time has been predicted to be at least 2

sec (9, 15). Whether there is, in addition, an optimal t1/ 2 that balances these kinetic

proofreading requirements and the serial triggering of TCRs has been debated (16, 17)

Further evidence supporting tv2-based kinetic proofreading models arises from the

discovery of antagonist pMHC ligands (18). TCR antagonists induce partial but not

complete phosphorylation of the TCR complex and fail to fully activate T cells at any

ligand concentration (18). The subsequent discovery that antagonist ligands bind TCRs

with shorter tu,2 than stimulatory agonist-pMHC complexes further suggests that

activating ligands must engage a specific TCR for a long enough period of time to allow

a series of signaling events to occur (19, 20).



As compelling as the arguments are for tu/2-models of T cell activation, discoveries of

highly potent T cell ligands with short t1/2 suggest that T cell activation may not be solely

dependent on the dwell time (4-6, 21, 22). In an attempt to reconcile why neither KD nor

tv,2 fully predicts ligand potency, we have identified low, medium and high potency T cell

ligands which have medium and fast binding kinetics. The potency of these ligands fails

to be described by either a KD or tv/2-based model. By mathematically modeling the

biophysical mechanisms leading to T cell activation using standard assumptions, our

results indicate that fast on-rates allow individual TCRs to bind and rebind rapidly to the

same pMHC several times prior to diffusing away. The rebindings lead to aggregate tiu2

that can be significantly longer than individual TCR-pMHC interactions. Importantly,

ligand potency correlates closely with this aggregate t1/2 regardless of whether the ligands

have fast or slow on-rates or t1/2. These findings demonstrate that KD and t1 /2 models of T

cell activation are not mutually exclusive, since both emerge from an aggregate t1/ 2 model.

In particular, the aggregate ti, 2 depends on the tv12 or KD alone when on-rates are low or

high, respectively. Aggregate t1v2 allows strong KD /fast binding kinetic ligands to follow

a kinetic proofreading model of activation.

2.2 RESULTS

2.2.1 Identification of high, medium and low KD TCR - pMHC interactions with fast

rates of association and disassociation

During our previous study of TCRs specific for IAb/3K, we noticed that several of these

TCRs bound IAb/3K with strong KD using very fast binding kinetics (22, 23). However,

because some of the off-rates were exceptionally fast, with loss of all specific binding for

some occurring in less than 1 sec, the original measurement had a significant error range.

Using surface plasmon resonance focusing on obtaining TCR-pMHC disassociation rates,

we measured the binding kinetics of the B3K506 and B3K508 TCRs interacting with the

previously reported and additional IAb/3K APLs (Fig. 1).
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Fig. 1. Release of soluble IAb/3K and APLs from immobilized B3K506 or B3K508 TCR,
monitored SPR. (A) Soluble IAb/3K, P5R, P8R or P-lA or (B) P8A, P5Q, P-1K loaded
onto B3K506 TCRs, or (C) IAb/3K, P5R or P2A loaded onto B3K508 TCRs were
allowed to disassociate for 60 sec at a flow rate of 20%d/min at 25'C. Data was collected
at 0.2 sec intervals and fit to a 1:1 Langmuir binding model to determine the dissociation
rate (kd) and half life (t/) of the MHC/TCR complex. Curves are examples of three
independent experiments.

Although the B3K506 and B3K508 TCRs interact with the IAb/3K complex with

conventional KD for agonist ligands (7[tM for the B3K506; 29[tM for the B3K508), the

binding kinetics of the interaction of the B3K506 TCR with IAb/3K is extremely fast; k=

101,918/M*sec and kd= 0.7/sec leading to a tv,2 of 0.9 sec (Table SI and Fig. Sl). The

KD of other B3K506 and B3K508 TCR ligands range from 7 - 175 RM, all with fast or

medium binding kinetics.

2.2.2 B3K506 and B3K508 CD4 T cells proliferate in response to high, medium and

low KD ligands with very short tj,2

To determine the potency of high, medium, and low KD ligands with differing binding

kinetics, mature CD4 T cells from B3K506 and B3K508 Rag1~'~ TCR Tg mice were

incubated with titrating concentrations of peptides and assessed for proliferation (Fig. 2).

Because the peptides with KD or t 12 beyond the SPR detection limit failed to induce

significant activation, we do not consider them in our subsequent analysis. Of critical

importance, except for a two-fold increase in binding by the 3K P2A peptide to lAb, the



peptides all bind similarly to IAb proteins (24). Furthermore, mature B3K506 and

B3K508 CD4 T cells are equally sensitive to anti-CD3 mediated T cell signaling,

suggesting that the responses of these different T cells to stimulatory ligands can be

directly compared (Fig. S2). Our data confirm that fast-kinetic ligands can signal,
suggesting the 2 sec limit on t112 is not absolute. Notably, the B3K506 undergo

proliferation at sub- M peptide concentrations by the 3K, P5R, P8R and P-lA ligands

(tu2= 0.9, 0.9, 0.8 and 0.3 sec, respectively) (Table Sl).

A IQ00'000" -0-3K B
-0- P5R 10,00,000-
-0-P8R
-*-P-1lA 3K

1,000--. P8A -@-,00 PSR

0 -0- P8Q K C P5A

0*0

Peptide Conc. (piM) Peptide Conc. (pM)
Fig. 2. Activation of 3K-reactive T cells to differing KD ligands. (A) B3K506 and (B)
B3K508 T cells proliferate when challenged with 3K and APLs. 3K APLs are listed next
to each panel top to bottom by increasing KD- Data are representative of at least three
independent experiments.

Some T cell ligands with shorter tv12 than the immunizing ligand can induce super-agonist

or partial T cell effector functions if the T CR complex is not efficiently ubiquitinated (18,

25). To determine whether B3K506 and B3K508 T cells undergo complete activation in

response to fast kinetic ligands, we chose two additional cellular functions to explore: 1)

ligand-induced TCR downregulation as a measure of receptor phosphorylation,

ubiquitination and degradation by Cbl-b (26) and 2) cytokine production by T cells.

Consistent with inducing complete phosphorylation of the TCR complex and T cell

activation, fast kinetic ligands induce TCR downregulation and TNFa production (Fig.

S3 and Table S1).



2.2.3 Ligand potency of 3K or APLs fails to obey straight-forward KD or ti/2 models

Individually, ligand potency for the B3K506 or the B3K508 T cells loosely follows the

overall trend of both KD- and tu2-based models. However, when B3K506 and B3K506 T

cell activation data are compared neither model suffices (Fig 3 and Table Si). In regards

to KD, the B3K508 T cells are activated too well. For example, the 3K ligand induces

proliferation of B3K506 and B3K508 T cells at a similar nanomolar range concentration,

despite having significantly different KD (7 versus 29[tM). In another example, the

B3K506 TCR binds IA / P-lA (26pM) with similar KD as the B3K508 TCR binding

IAb/3K (29 M), yet the B3K506 T cells proliferate at an ECs0 that is 23-fold less than the

B3K508 T cells. A failure of KD to define the ligand potency is further apparent when

additional 3K APLs are tested (Fig 3A and Table Sl).
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~6/P-1 K
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Fig. 3. Failure of KD or tj 2-based models to predict ligand potency. EC5o values, based on
proliferation, are shown with respect to (A) KA; (B) ti, 2. Data points are labeled by T cell,
B3K506 (square) or B3K508 (circle) and grouped by ligand potency: highest (black),
intermediate (grey), and lowest (white). Specific TCR-pMHC pairs are listed to the right
ordered according to EC5o. The EC50 values are averaged over three measurements.

In reverse correlation from KD, ligand potency does not correlate with tv12 as the B3K506

T cells are activated too well. The 3K ligand induces similar proliferation of the B3K506

T cells (ti, 2 = 0.9 sec) as the B3K508 T cells (ti, 2 = 2.2 sec) (Table Sl). In addition, the

P5R ligand is significantly less potent in activating the B3K508 T cells than the 3K

ligand is in activating the B3K506 T cells, despite having a similar tj,2 (0.7 and 0.9 sec,

respectively). Multiple discrepancies can be observed when comparing other 3K APLs

(Fig. 3B and Table S1). The finding that each T cell in isolation loosely follows both KD

and tj 2-based models appears to be an artifact of limited variation in the kinetics among

the ligands for each T cell. A failure of KD or tv/2 to predict ligand potency is true for



cytokine production as well, suggesting the proliferation response is not anomalous (Fig.

3 and Table Si).

Consistently, activating ligands for B3K506 T cells use fast on-rates or strong KD to

compensate for short t1 2 . (Since there is a simple relation among them, only two of the

three parameters describing the interaction are independent.) Vice versa, B3K508 T cells

compensate for a weak KD by engaging IAb/3K ligands for a longer tv1 2 . These results

suggest that ligand potency is determined by an interplay between the TCR-pMHC on-

rate and t1 12 (or KD and tU2) in a way that allows for enhanced signaling by fast-kinetic

ligands.

2.2.4 Does a combined KD/tl2 model or serial triggering predict T cell ligand potency?

In an attempt to reconcile how the interplay of KD and binding kinetics influences T cell

activation, we evaluated whether a straightforward merging of the two predicts ligand

potency. A combined KD and ti 2 model suggests that increasing the frequency or total

number of TCRs engaged by pMHC would stochastically result in an increase in the

number of uncharacteristically long TCR-pMHC interactions. To test this we identified

the change in receptor occupancy required for a strong KD, fast kinetic ligand to be bound

to an equal number of TCRs, on average, for at least 2 sec as compared to a medium

kinetic, medium KD ligand.

To approximate how frequently each pMHC ligand is bound to a TCR, we assume that a

quasi-equilibrium between TCR and pMHC occurs on the time scale of cell-cell contact

and that TCR are far in excess of the relevant pMHC. The probability that a pMHC is

bound to TCR then depends on the equilibrium association affinity (KA) through a simple

saturation curve (3):

CpMHC-TCR KA CCR
0PH 1+K cOcpMHC 1 A TCR

The parameter c denotes the concentration of pMHC on the APC, cR denotes the

concentration of TCR in the interface, and CpMHC-TCR denotes the concentration of bound



pMHC. cTCR was estimated to be 20 TCR/tm2 (10,000 TCR per T cell / 500[m 2 surface

area of a T cell; Supp. Tests). Within TCR islands, cc can be locally much higher (80-

430/pm2) (27), however increasing this value had little effect on our results. To convert

the measured KA of TCR-pMHC in solution to KA when the TCR and pMHC are

membrane bound, we have used a confinement length measured for the 2B4 TCR

interacting with the MCC88-103 ligand (1.2 nm, corresponding to a conversion factor of

0.262 nm) (8).

The TCR-pMHC saturation curve from Equation 1 contains a threshold KD, K*, above

which pMHC ligands are bound at least 50% of the time. Using the above

approximations, K* is 130[tM and pMHC ligands with a 43[tM KD are bound 75% of the

time (Fig. 4). These values mirror measurements made by Grakoui and colleagues, in

which the majority of a 60 [M KD pMHC ligand was bound to a TCR when located

within the interface of T cells and APCs (8). Due to ligand saturation, increasing KD

above 100 M has only a modest effect on the overall frequency of TCRs bound to

pMHC. This saturation curve can be used to show that changes in TCR-pMHC

occupancy do not describe ligand potency (Supp. Tests).

100
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75 8/3K
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Fig. 4. Receptor occupancy depends only weakly on KD for pMHC ligands with KD
stronger than 130gM. The receptor occupancy predicted by Equation 1 is plotted
according to the parameter estimates in the text, on a scale that is linear in KA (l/KD).
The predictions for the actual pMHC-TCR pairs in our experiments are superimposed on
the plot, colored according to their actual activity as described in the caption to Fig. 3.

By comparing ligands with similar EC50 of proliferation yet different ti/ 2, we tested

whether a merged KD/tl,2 model describes ligand potency. Specifically, the tests evaluate



whether a stronger KD for the B3K506 TCR engaging pMHC generates enough

additional bindings to overcome the lower probability of their bindings being long-lived.

One comparison is the B3K506 TCR interacting with 3K/P-lA peptide (KD = 26 M, tv12

= 0.3 sec, EC50 = 9nM) and the B3K508 TCR interacting with the 3K/P5R peptide (KD =

93 M, tv2 = 0.7 sec, EC50 = 15nM). Assuming TCRs bind pMHC with exponentially

distributed dwell times, the B3K506 TCR would have to bind 26-fold more IAb/P-lA

ligand than the B3K508 TCR binding IAb/P5R to generate an equal number of 2 sec

engagements. However, the 3.6 fold difference in KD between the two TCR-pMHC pairs

leads to only a 1.5 fold difference in receptor occupancy. The effect is qualitatively

similar for other comparisons (Fig. S4A) and is largely robust to assumptions about the

parameters (Supp. Tests). Thus a merged KD/tii 2 model does not properly account for

ligand potency. Based on similar reasoning the effects of serial triggering cannot

contribute significantly to ligand potency (Fig S4B-C and Supp. Tests). It appears that

the role of the on-rate and affinity in our data is not to increase the number of bindings,
either at any given time (receptor occupancy) or over time (serial triggering).

2.2.5 Could rebinding of TCRs to pMHC expand the dwell time for fast kinetic

ligands?

The failure of KD, t1U2 or serial triggering models indicates other mechanisms must

underlie ligand potency. The hypothesis of serial triggering, that individual pMHC can

sequentially bind multiple TCRs led us to wonder whether a pMHC can bind multiple

times to the same TCR. The ability of a receptor/ligand pair to associate, disassociate

and re-associate in a finite amount of time prior to complete disengagement is termed

rebinding. Although TCR-pMHC interactions are usually thought of as single binding

events, it is theoretically possible ligands with fast on-rates may be able to rebind TCRs

(28), especially since they are bound on membranes where diffusivities are typically

slower than in solution. If it occurred, TCR-pMHC rebinding would generate an

aggregate dwell time of interaction, assuming the rebindings occur faster than the TCR

signaling complex disassembles.



To investigate whether TCR-pMHC rebindings are plausible, we have followed an

extensive set of work analyzing diffusion-influenced reactions (29, 30). Our approach

has been to apply the particular estimate of the aggregate binding time, including

rebindings, provided by Bell (31) because of its simplicity and to suggest that the

qualitative results are robust to the choice of model (see below and Supp. Tests). In

applying Bell's model, we assume that pMHC and TCR move purely diffusively on flat,

stiff membranes. Neglecting membrane forces is potentially in conflict with emerging

work indicating the role of the actin cytoskeleton in breaking TCR-pMHC bonds,

decreasing their t1 /2(32). However, when on-rates are fast enough for rebinding to occur,

they happen very quickly, so it is unclear how much membrane forces could intervene.

The model also assumes that all rebindings occur at the same rate, which neglects any

stabilization of binding that may be provided by coreceptors. Stabilization would have

the effect of increasing the propensity of rebinding. Furthermore, the model counts only

those rebindings that occur almost immediately, before the TCR and pMHC separate by

more than a molecular length scale (e.g. 100 A), on the order of 1 ms using the

parameters below. Though the molecular details of TCR activation are not entirely

understood (33, 34), TCR activation is not expected to be appreciably reversed on such

short time scales.

Within this framework, Bell's result for the total dwell time, summing the duration of any

rebindings that occur, is;

ta = tu 2 + - KA (2)
2x{ (DTCR + DpMHC)

The parameters DTCR and DPMHC represent the diffusivities of TCR and pMHC,

respectively. From Bell's result it can be seen that the total aggregate half-life (ta) is

dependent upon the individual tu/2 and the equilibrium affinity. The first term in Equation

2 accounts for the duration of the first binding, whereas the second affinity-dependent

term accounts for any subsequent rebindings. Noting that every individual binding event

lasts, on average, as long as any other, the expected number of rebindings between a

particular pMHC-TCR pair is:



+ TcR) (3)

The parameter kon denotes the on-rate of the pair on the membrane. The system has

qualitatively different dependence on the tj,2 and KD when on-rates are small and large.

When on-rates are fast relative to the diffusion rates, pMHC binds and rebinds the same

TCR many times reaching a quasi-equilibrium before diffusing away. As a result, the

equilibrium affinity dominates the duration of the interaction when on-rates are high.

However, when on-rates are slow, rebinding does not occur and ti/ 2 dominates. Because

Equation 2 can be independently motivated by simple arguments such as these, it is

qualitatively robust to the choice of model (Supp. Tests).

More generally, Equation 3 suggests that there is a threshold on-rate above which

rebindings are relevant:

k,*, = 2x(DTCR +DMHc) (4)

Whenever the on-rate exceeds this threshold (also known as the diffusion-limited rate), at

least one rebinding is expected to occur. Importantly, the specific parameter values are

important only insofar as they influence this threshold and not the underlying biophysical

event.

2.2.6 Rebinding of TCRs to pMHC uniquely explains how fast kinetic ligands induce

T cell activation

To evaluate whether rebinding could impact the dwell time of B3K506 or B3K508 TCRs

engaging pMHC ligands, we applied Equation 2 to our data set. The diffusivity for a

TCR and pMHC were estimated at 0.04 ptm 2/sec and 0.02 gm2/sec respectively,

corresponding to midrange measured values (see Supp. Tests). On-rates measured using

SPR were converted to on-rates on the membrane by assuming 1) that off-rates of

membrane bound TCRs binding pMHC are identical to SPR measurements and 2) that

the KD of membrane bound TCRs engaging pMHC are proportional to SPR-measured

affinities, as done in our analysis of receptor occupancy. Because of limited data, it is



generally difficult to directly convert SPR-measured on-rates to on-rates on the

membrane (35, 36). We discuss sensitivity to the assumptions in the supplement.

Using these parameter values, rebinding likely occurs for TCR-pMHC pairs with fast

binding kinetics (Fig. 5). Specifically, this initial model predicts that the threshold on-

rate for rebinding is 60,000/M*sec. As a result, the number of rebindings increases from

almost none to 1.7 as the on-rate increases in our sample from 11,000/M*sec to

102,000/M*sec. Since T cell activity is generally thought to be very sensitive to t 12, a

factor of 2 or 3 can be important. When rebindings are accounted for, the highly potent

B3K506 T cell ligands 3K, P5R and P8R change from tv/2 of 0.9 or 0.8 sec to aggregate

ti, 2 of 2.7, 1.9 and 1.8 sec, and the medium potent P-1A ligand converts from a tv12 of 0.27

sec, to an aggregate tv2 of 0.72 sec. Importantly, aggregate tv1 2 is significantly better at

predicting ligand potency than KD or ti/ 2 (Fig. 6C, S4, S7 and S8).
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Fig. 5. Fast on-rates lead to rebinding. (A) The average number of rebindings predicted
by Equation 3 is plotted, versus the on-rate. The threshold for rebinding, kon*, separates
pairs expected to rebind at least once from those that rarely rebind. (B) The probability
of 0, 1, 2, 3, or more than 3 rebindings between TCR-pMHC, according to their on-rate,
as predicted from Equation 2 (Supp. Tests).
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Figure 6. Aggregate t 12 is the best predictor of ligand potency for 3K-reactive T cells.
EC50 values, based on proliferation, are shown with respect to (A) KD; (B) tiv2; (C)
aggregate tl12, with rebinding threshold set at 60,000/M*sec; and (D) aggregate ti,2 , with
rebinding threshold set at 45,000/M*sec.

Within the data set two groups of high or medium potency ligands arise from different

TCR-pMHC binding parameters (Table Si). Using these groups, the competing models

can be quantitatively evaluated. The four high potency ligands (3K, P5R, P8R binding

the B3K506 TCR and 3K binding the B3K508 TCR), have KD and tl,2 that vary widely by

factors of 4.0 and 2.7, but aggregate t12 that only vary by a factor of 1.5 (Fig. 6C). The

two ligands in the second most-potent group (B3K506 TCR binding P2A, B3K508 TCR

binding P5R) have KD and tv,2 that vary by factors of 3.6 and 2.6, respectively, but

aggregate ti, 2 that are almost identical, varying only by a factor of 1.1.

Though our aggregate ti,2 model was generated without empirically fitting the data, our

estimate for the rebinding threshold, 60,000/M*sec, is near the best fit for minimizing the

variation in the aggregate tv12 of the most potent group of ligands (Fig. S5). Quite

similarly, for the medium potent ligands, the best-fit threshold is 45,000/M*sec (Fig. 6D).

The convergence of the aggregate t12 model with empirical data suggests the assumptions

and underlying biophysical process are correct.

2.3 Discussion

Binding of two proteins is governed by the KD, on-rate and tv2, any two of which suffice

to describe the interaction since the three are simply related. Though ligand potency

could be dependent upon each of these binding characteristics, research over the past two

decades has suggested that only the KD or tj12 matter. Mechanistically these two mutually

exclusive models have been interpreted to mean that T cells are either: 1) sensitive to the



number of TCRs simultaneously bound to pMHC (3-6); or 2) sensitive to ligands that

produce a long enough interaction to fully phosphorylate the TCR complex (8-11, 13).

In seeming contradiction to both theories, data presented here suggests neither the KD nor

t1/ 2 determines the potency of T cell ligands.

A plethora of data suggests that T cells are increasingly sensitive to long-lived TCR-

pMHC engagements, with t1/2 of 2 sec being near the shortest allowable time (9, 15).

Additionally, T cell responses are dependent upon ligand concentration, suggesting T

cells are also responsive to the frequency of these long-lived bonds. With this as a

starting point, we asked how changes in the on-rate or KD might allow T cells to be

equally reactive to ligands with different t1,2 . The IAb/3K model system is particularly

well suited for this analysis because each of the 3K APLs bind IA similarly, and the

relatively large number of TCR - IAb/3K APL pairs contain several which have similar

potency while using different KD and binding kinetics. These controlled combinations of

T cells and pMHC ligands allowed a direct comparison of the different theories of T cell

activation.

Because high potency T cell ligands with short t1/2 all have fast on-rates, we hypothesized

TCR-pMHC interactions may be influenced by diffusion rates. Although rebinding is

potentially relevant for any binding event, it will be less important for cytosolic reactions

because diffusivities in the cytoplasm are relatively high (31). However, when both

receptor and ligand are anchored on membranes, the rates of diffusion are drastically

reduced. A recent study of the interaction between membrane-bound CD2 and CD58

using FRAP suggests that the fast-binding pair may rebind 100 times prior to separating,

significantly increasing the duration of the bonds (37) and potentially explaining the

pair's physiological activity (38).

Modeling TCR-pMHC interactions when both are membrane bound shows that fast on-

rates allow rebinding to occur. Depending upon the on-rates, this effect can greatly

extend bond durations, allowing medium potency ligands with measured t1/ 2 of 0.3 and

0.7 sec to generate aggregate tu!2 near 1 sec. As an independent example , the LCMV-



specific P14 TCR has been shown to bind its cognate H-2Dbgp33 ligand with a low tv/2
of 0.7 sec (21). Due to a fast on-rate of 400,000/M*sec, our rebinding model predicts the

P14 TCR would have an aggregate tv2 of 5.5 sec, fully consistent with kinetic proof-

reading models of activation.

Most importantly, rebinding-mediated aggregate t1/2 uniquely predicts ligand potency for

B3K506 and B3K508 T cells (Fig. 6). Although our data initially appear to be in conflict

with both KD and t1U2-based activation models, the aggregate tv2 model is consistent with

reports that either tv,2 or KD can be the better predictor of ligand potency. T cell ligands

with slow on-rates are predicted to follow a strict tu12-based reactivity pattern because

rebinding does not occur and the aggregate tv12 is equal to the ti/ 2 of a single binding event.

The canonical t1/2-dependent systems, such as the 2B4-IEk/MCC and 3L.2-IEk/Hb TCR-

pMHC pairs, have slow on-rates compared to the rebinding threshold we have estimated

(45,000-60,000/M*sec) (10, 11, 19). Because most T cell activation studies have been

done using these systems, tv2-based models have appeared sufficient and rebindings have

not been required to understand ligand potency. For example, the on-rates for the ti/ 2 -

dependent 2B4/MCC system studied by Krogsgaard et al. are all less than 6,670/M*sec,

so that almost no rebindings (less than 0.15) are predicted to occur (10).

In contrast to the canonical t1,2-models, most T cell activation studies which suggest KD is

a better predictor of ligand potency have on-rates larger than or close to the rebinding

threshold (5, 6). Our data suggest these correlations with KD occur because of rebinding.

For example, the KD-dependence of the two peptides studied by Ely (6) is consistent with

a dependence on the aggregate half-life, the more potent peptide having a 14-fold faster

on-rate and a predicted 1.3- to 1.4-fold longer aggregate half-life, according to our model.

Thus, observations that ligand potency is dependent upon KD or ti! 2 are not in conflict

with each other, but rather are different manifestations of the interaction between the T

cell and APC when the on-rate is very fast or very slow. With the continuing emergence

of T cell ligands with very fast on-rates (4), our findings are likely to impact a large

repertoire of T cells.



Upon completion of this work, we have become aware of results for CD8+ T cells that

are in harmony with our conclusions (39).

Materials and Methods

Mice and Peptides

C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, ME). Rag1-r-

B3K506 and Rag F'- B3K508 TCR Tg mice have been previously described (22). All

mice were maintained in a pathogen-free environment in accordance with institutional

guidelines in the Animal Care Facility at the University of Massachusetts Medical

School. Peptides were purchased from the MRC at National Jewish Medical Center.
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2.A Appendix for Chapter 2

Table SI. TCR-ligand Ko,. binding kinetics, and T-cell effector functions

Kc, k(l.s
(pM) (IM-s)

7
11
13
26
92
101
114
122
256
278
>550
>550
>550

29
93
175

>550
>550
>550
>550
>550

101,918
74,654
64,318

101,731
33.370
55.149

ND
ND
ND
ND
ND
ND
ND

10.887
11,048
19,914

ND
ND
ND
ND
ND

k." tin Proliferation
(1s) (s) ECse (nM)

0.2
0.2
0.3
9
1.200
660
9,800
710
>10,000
750
>10,000
>10,000
>10,000
0.4
15
71
5,700
>10,000
980
>10,000
>10,000

IA" + 3K
mutation

TNF-a
ECso
(nM)

83K506
83K506
S3K506
83K506
831(506
B3K506
B3K506
B3K506
83K506
B3K506
83K506
83K506
B3K506
B3K508
B3K508
83K508
B3K508
B3K508
83K508
B3K508
B3K508

3,1
6
7
68
2,210
5,500
>10,000
3,600
>10,000
5.500
>10,000
>10,000
>10,000
6
87
530
>10,000
>10,000
>10,000
>10,000
>10,000

Scatchard analysis of binding data data were used to determine the dissociation constant (K). The k,. was calculated from the Ko and k." (ken = kdKo).
The tin values were calculated using first-order reaction kinetics: tl,2 = In(2yk,,r. ND, not determined.
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Fig. S1. The B3K506 and B3K508 TCRs interact with IAb/3K and peptide variants with differing rates of
association and disassociation. The affinity and kinetics of soluble, monomeric IA -3K or variant peptide
ligands binding to immobilized B3K506 and B3K508 TCRs were analyzed by surface plasmon resonance
using a BIAcore 2000 and BlAcore 3000 instrument (BIAcore AB, Uppsala, Sweden). Approximately
2000 RU of soluble B3K506 TCR was captured on the surface of a CM5 biosensor flowcell by an
immobilized anti-Ca mAb, ADO-304. For the B3K506 T cells, soluble IAb/3K or variant peptides were
injected at 20tl/min for 60sec through a CM5 biosensor flow cell at a concentration of (A) 3K WT (4, 8,
16, 32 pM), (B) P5R (5.6, 11.2, 22.5, 45 pM), (C) P8R (8, 16, 32, 64yPM), (D) P-lA (8, 16, 32, 64 pM),
(E) P8A (8, 16, 32, 64 pM), (F) P-1K (12.9, 25.7, 51.4 y M), (G) P8Q (13, 26, 52 y#M), (H) P-1L (16, 32,
64 p4M), (I) P8L (4, 8, 16, 32 p4M), (J) P2A (4, 8, 16, 32 p4M). No specific binding was detected for the
P3A, P5A and P5Q ligands interacting with the B3K506 TCR. For the B3K508 T cells, soluble IAb/3K or
variant peptides were injected at 20ml/min for 60sec through a CM5 biosensor flow cell at a concentration
of (K) 3K WT (4, 8, 16, 32 pM), (L) P5R (5.6, 11.2, 22.5, 45 pM) and (M) P2A (4, 8, 16, 32 IM).
Limited binding was detected for the P5A ligand binding the B3K508 TCR at the 32 and 64pM. No
specific binding was detected for the P-1A, P8R, P8A and P3A ligands interacting with the B3K508 TCR.
As a control for bulk fluid phase refractive index the IAb-3K preparations was also injected through a
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fourth flow cell with an immobilized irrelevant TCR Ani 2.3 specific for HLA-DR52c. All samples
reached equilibrium binding within 10 sec. The complex was allowed to dissociate for 60 sec between
injections. Raw data were corrected for the bulk signal from buffer and IAb-3K by performing identical
injections through a flow cell in which an irrelevant abTCR was immobilized. The data were further
corrected for the loss of captured apTCR during the series of injections based on the observed dissociation
rate (kd) of the abTCR from the anti-Ca mAb (~ 4.5 x 104/sec). The data were analyzed with BlAcore
Bioeval 4.1 software.
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Fig. S2. C57BL/6, B3K506 and B3K508 CD4* T cells downregulate TCR expression and upregulate CD69
expression equivalently in response to titrating amounts of anti-CD3 cross-linking. CD4 T cells were
incubated in plates coated with l0IgIml of anti-CD28, titrating amounts of anti-CD3 for 18 hours and
analyzed by flow cytometry for (A) TCRP expression and (B) CD69 expression. TCRp expression is
normalized for each T cell population to the expression at which no activation occurs. Data are the average
of three wells per variability and are representative of two independent experiments.
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Fig. S3. B3K506 and B3K508 T cells downregulate TCR expression and produce TNFa when challenged
with high, medium and low KD ligands. Naive B3K506 CD4 T cell (A) downregulate TCR expression and



(B) produce TNFa to 3K and APL ligands. Peptide ligands are listed top to bottom by decreasing KD with
the 3K peptide having the strongest KD and the P5Q peptide the weakest (undetectable) KD. (C) Naive
B3K508 CD4 T cell downregulate TCR expression and (D) produce TNFa to 3K and APL ligands. Peptide
ligands are listed top to bottom by decreasing KD. Data is representative of at least three independent
experiments.
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Fig. S4: Evaluating models that correlate ligand potency with the number of long-lived bonds between the
pMHC and TCR. (A) A model merging receptor occupancy and dwell time does not explain the activities
of the pMlHC-TCR pairs. The pMHC-TCR pairs are ranked according to the average number of interactions
between them, at any given time, that have lasted longer than 2 sec. This average number was calculated as
the product of two quantities: (1) the fraction of peptides bound at any given time, as given in Equation 1,
and (2) the fraction of such bindings that last longer than 2 sec, assuming exponentially distributed binding
times. The result has been normalized by the B33K508 peptide interacting with the 3K peptide, which is the
most active. The results are fairly insensitive to the parameter estimates due to the strong (exponential)
dependence on the half-life and the weak (sublinear) dependence on the affinity. (B-C) A model merging
serial triggering and dwell time does not explain the activities of the pMHC-TCR pairs. The pMC-TCR
pairs are ranked according to the number of distinct interactions between them that last longer than a
threshold time. The number of interactions is normalized by the number of interactions for the B3K506
TCR interacting with the 3K peptide, which is predicted to be most active. The threshold time required to
activate a TCR is assumed to be: (B) 2 see and (C) 34 sec. Note that panel (C) is on a log scale.
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Fig. S. Determining the optimal rebinding threshold for the data. The variation in aggregate half-lives (ta)

within groups of similar activity is plotted against different rebinding thresholds for (A) the most potent

group of peptides and (B) the second most potent group of peptides. The optimal thresholds are (A)
60,000/(M*sec) and (B) 45,000/(M*sec).
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Fig. S6. Sensitivity of receptor occupancy to parameter estimates. The predicted receptor
occupancy for each pMHC-TCR pair is plotted, according to Equation 1, (A) using a
threshold affinity, KD*, of 130yM as estimated in the main text, and (B) with an affinity
threshold three times stronger (43pM) and (C) three times weaker (390pM). The
different affinity thresholds model uncertainty in the concentration of TCR on the surface
of the cell and the conversion between SPR-measured affinities and affinities on the
membrane.
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Fig. S7. Sensitivity of rebinding to parameter estimates. Correlations between peptide potency and the
aggregate half-life are plotted (A) with a rebinding threshold, kon*, of 60,000/M*sec, as estimated in the
main text and with rebinding thresholds (B) three times lower (20,000/M*sec) and (C) three times higher
(180,000/M*sec). The aggregate half-lives were determined according to Equation 2. The different
rebinding thresholds model uncertainty in the diffusivities of the pMHC and TCR and the conversion
between SPR-measured on-rates and on-rates on the membrane.
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Fig. S8. The models are compared according to their ability to account for peptides with equal activity but
different affinities, on-rates, and half-lives. (A) The models are fit to the most potent group of peptides,
which all have similar potency. The vertical, horizontal, and diagonal lines correspond to best-fits for the
half-life, affinity, and rebinding models, respectively. (B) The models are fit to the second most potent
group of peptides. The best-fits for the rebinding model correspond to rebinding thresholds, k0 , of (A)
32,000/M s and (B) 45,000/M s. These are similar to the best-fits obtained using the techniques in Fig. S5.



2.A.1 Supplemental Materials and Methods

2.A.1.1 T cell proliferation

T cell proliferation was assessed by incubating 1 x 10' naive Ragl-'- B3K506 or B3K508

CD4' T cells for 48 hr with 5 x 10W irradiated C57BL/6 spleen cells and titrating amounts

of 3K or 3K variant peptides in 200d of RPMI, pulsed with lmC [3H] thymidine/well for

18hr, harvested and counted on a Wallac scintillation counter.

2.A.1.2 TCR downregulation

1 x 105 B3K506 and B3K508 Ragl-'- CD4* T cells were incubated with 5 x 104 bone

marrow derived dendritic cells pulsed with titrating amounts of 3K or variant peptides for

16 hrs in 200ml RPMI. Cells were then washed, and labeled with anti-TCRb-FITC

(HAM597), anti-CD69-PE, anti-CD4-PerCP and anti-Thyl.2-APC. TCRb expression

was assessed by flow cytometry (FACScaliber, BD biosciences) on CD4* Thyl.2+ cells

and analyzed using FlowJo version 8.3 (TreeStar).

2.A.1.3 Intracellular cytokine production

3x10 5 CD4 B3K506 or B3K508 Ragl-'- CD4' T cells were stimulated with 1x10 5

C57BL/6 BM-DC pulsed with titrating concentrations of 3K or variant peptides in the

presence of GolgiPlug (1 [1/ml BD biosciences) for 5 hrs at 37 0C. T cells were then

surface stained with anti-CD4, anti-CD8, washed, fixed in 4% formaldehyde (Fischer

Scientific) and stained for intracellular TNFa using a Cytofix/Cytoperm kit (BD

biosciences) using manufacturer's protocol. TNFa expression was assessed by flow

cytometry (FACScaliber, BD biosciences) on CD4+ T cells and analyzed using FlowJo

version 8.3 (TreeStar).

2.A.1.4 Surface plasmon resonance measurements of TCR-pMHC kinetics and

affinities



Soluble IAb/3K and IAb/3K peptide variants were expressed and produced using the

baculovirus expression system as previously described (1, 2). KD and binding kinetics for

TCRs binding to IAb/3K and APLs were obtained on BlAcore 2000 and 3000 instruments

(BlAcore AB, Uppsala, Sweden). Data points were collected at 0.2 sec intervals and

analyzed with BlAcore Bioeval 4.1 software. Scatchard Analyses of the equilibrium data

were used to determine the dissociation constant (KD). The kinetic data were used to

determine the dissociation rate and the association rate (ka) was calculated from the KD

and kd (ka=kd/KD)*

2.A.2 Tests of different models of ligand potency and sensitivity to model

parameters

2.A.2.1 Tests to determine if T ligand potency correlates with TCR-pMHC occupancy

when TCR and pMHC are membrane bound

T cell ligand potency does not correlate with the measured KD (Fig.3A). Even though the

KD measurement of soluble proteins does not describe ligand activity, it is possible

changes in receptor occupancy when TCRs and pMHC are membrane bound do describe

our data. In this section, we provide an alternate argument against receptor-occupancy

(KD) based theories. In the main text, we concluded that the affect of KD on receptor

occupancy is weak due to saturation effects (Fig. 4). Thus, for a KD-based model to

explain the wide range of activities seen in our data set, the effect of receptor occupancy

on activity would have to be quite strong.

To directly assess whether changes in receptor occupancy can account for ligand potency,

we have compared two quantities: 1) the dose response of a T cell to different

concentrations of ligand; and 2) the response of the T cell, at fixed concentrations of

ligand, to ligands with different KD. Because changes in concentration and KD lead

independently to changes in receptor occupancy, the dose response curves and the

mutation studies provide independent measures of the effect of receptor occupancy on



activity. By comparing KD-based changes in receptor occupancy (comparing different

ligands) to concentration-based changes (comparing the same ligand at different

concentrations), the impact of KD can be directly assessed. To do so, we posited that

changes in peptide concentration lead directly to changes in receptor occupancy,

assuming TCR are in great excess and that the additional peptide binds MHC (this is at

least true for low peptide concentrations). For example, we assume that a two-fold

increase in peptide concentration leads to a two-fold increase in pMHC-TCR

engagement.

0- P-1
_41- PMI

PepideCoc.IpM
0~ ~. Y - 0 - P S

Peptide Conc. (pM)

Figure S9: Comparing changes in peptide concentration with changes in equilibrium affinity.

Changes in peptide concentration affect T cell proliferation far less than an affinity-based receptor

occupancy theory would require.

Consonant with our arguments against a pure KD theory in the main text, the data indicate

that that the effect of receptor occupancy on activity is not strong enough to explain our

data. The dose response curves indicate that large changes in receptor occupancy are

required to increase activity, far larger than the difference in receptor occupancies

between two peptides with different KD. This can be seen in particular by examining the

responses of the B3K506 TCR to two different peptides, IAb/3K and IAb/P-1A. The

IAb/3K peptide is more stimulatory for the B3K506 TCR than the IAb/P-1A peptide at

every concentration of peptide. In particular, at a concentration of 0.000lpM, the 3K

peptide induces 14% more proliferation, on a log scale, than the P-1A peptide. The 3K



peptide also has a stronger KD (7pM and 26pM, respectively), in apparent agreement

with a KD theory. Its four-fold higher affinity can lead at most, though, to a four-fold

higher receptor occupancy at each concentration of peptide (Equation 1). Because of

saturation, the actual increase is probably less. In fact, using estimates of relevant

parameters, we predicted in the main text that its receptor occupancy is only 12% higher

than the receptor occupancy of the P-1A peptide (Fig. 4).

For the KD model to explain the differential activity of these two peptides, a 4-fold

increase in receptor occupancy must be able to generate a 14% increase in proliferation.

A 4-fold increase in the concentration of P-1A from 0.0001pM, though, barely increases

its proliferation (2% on a log scale). In fact, the concentration of the P-lA ligand must be

increased over 50 fold to recapitulate the activity of the 3K peptide at 0.0001pM. Even if

a 50-fold increase in concentration leads to a smaller increase in receptor occupancy, the

gap is quite large.

Since the different affinities in our data set lead to only small differences in receptor

occupancy and peptide activity is not very sensitive to receptor occupancy, KD theories

do not explain our data.

2.A.2.2 Testing the impact of Serial Triggering

Because neither KD nor t11 models, independently or combined, explained the T cell

activation data, we assessed whether serial triggering could influence ligand potency.

The serial triggering hypothesis postulates that an individual pMHC can sequentially

trigger multiple, distinct TCR (3, 4). Thus, the faster on-rate of IAb/3K binding B3K506

TCRs would lead to a greater number of distinct binding events over the course of the T

cell-APC interaction. Serial triggering of many more TCRs by fast kinetic ligands versus

slow kinetic ligands could lead to an increase in the probability of generating

uncharacteristically long-lived interactions.



To test whether serial triggering accounts for the ligand potency of IAb/3K-reactive T

cells, we determined how many more binding events would be required for a strong KD,

fast kinetic ligand to bind an equal number of TCRs for at least 2 sec as a medium

kinetic, medium KD ligand. We followed the analysis conducted by Coombs and

colleagues (5). In this model, the number of distinct TCR bound by a pMHC is:

N ln(2) KACTCR
tul 2 1+KAcTCR

The parameter T denotes the total time a pMHC is present in the APC-TCR interface.

Since the number of distinct TCR a pMHC binds depends on the affinity and on-rate in

exactly the same way as the receptor occupancy, the conclusion that serial triggering also

does not account for our data is not surprising.

As an example, we compared the responses of the fast-kinetic B3K506 TCR binding the

IAb/P-1A ligand and the B3K508 TCR binding IAb/P5R. These two peptides induce

similar activity but have different KD and binding kinetics. If we assume TCRs binding

pMHC have exponentially distributed dwell times, as in the main text, then to have a

similar probability of engaging pMHC for 2 sec, the B3K506 TCR would have to

generate 26-fold more distinct binding events to the IAb/P-1A ligand than the B3K508

TCR binding IAb/P5R. However, the 3.6 fold difference in KD between the two TCR-

pMHC pairs leads to only a 6.5 fold difference in the in number of distinct bound TCRs.

The impact of serial triggering on equalizing half-lives becomes worse when a higher t/ 2

threshold is assumed (Fig. S4C), further suggesting that serial triggering cannot lead to

significant increases in uncharacteristically long-lived TCR-pMHC interactions. Most

importantly, both the B3K506 and B3K508 T cells demonstrate enhanced activity to

ligands with increasing t1 2. These data indicate that for fast kinetic, medium and strong

KD ligands, T cell activation is negatively correlated with increasing numbers of binding

events.

2.A.2.3 Model and parameter sensitivity analysis

2.A.2.3.1 Model merging receptor occupancy and dwell time



In the main text, we estimated parameters in Equation 1 to evaluate whether receptor

occupancy and dwell time models could jointly explain our data. Recent arguments

suggest that the relevant TCR concentration in Equation 1 is the effective concentration

of TCR in the synapse, averaged over TCR-rich and TCR-sparse regions, assuming that

the TCR can move freely in between the two regions (6). Thus, the concentration of the

TCR in the interface between the T cell and APC,cCR, was estimated in the main text by

dividing the total number of TCR on a T cell (10,000 TCR per T cell) by the total surface

area of a T cell (500 pM2), leading to an estimate of 20 TCR/pM 2 (7). Within TCR-rich

regions (e.g. islands), cCR is locally much higher (80-430/um 2) (8). Though we have

used the lower effective concentration of TCR, higher concentrations would only

improve the robustness of our conclusions, as we demonstrate below.

To convert the measured KA of TCR-pMHC in solution to KA when the TCR and pMHC

are membrane bound, we have used a confinement length measured for the 2B4 TCR

interacting with the MCC88-103 ligand (1.2 nm, corresponding to a conversion factor of

0.262 nm) (7). Although this conversion has precedent, it is uncertain, as recent research

reveals (9, 10). The need for more direct measurements of membrane kinetics has long

been acknowledged (11). In particular, one recent study of pMHC-TCR kinetics on the

membrane has suggested that on-rates and off-rates are faster on the membrane than

solution-based measurements suggest and that actin-cytoskeleten-driven membrane

motion has a role in tearing apart bonds (10). The role of the membrane in breaking apart

bonds as short-lived as those in this paper is unclear.

Since the parameters involved in our models are uncertain, we checked that our

conclusions were robust to parameter variations. First, we checked the validity of our

conclusion that the receptor occupancy is saturated. To do so, we varied the threshold

affinity, K*, modeling uncertainty both in the concentration of TCR on the T cell and

likely errors in converting SPR-measured affinities to affinities on the membrane (Fig.

S6). If the threshold KD is weaker than our estimate, even weakly binding peptides will

almost always be bound, and the conclusion is robust. As the threshold KD becomes



much stronger than our estimate, some of the weaker binding peptides in our sample

become unsaturated. Even in these cases, however, it is unlikely that changes in KD

could compensate for changes in t1 in a merged receptor occupancy/dwell time model.

The dwell time depends strongly (exponentially) on the t1 /2, whereas the receptor

occupancy depends weakly (sublinearly) on the KD, even if the system is not saturated

(see the arguments in the tests of the pure affinity model).

2.A.2.3.2 Rebinding

2.A.2.3.2.1 Model sensitivity

In the main text, we applied Bell's model to estimate the importance of rebinding on the

membrane. Here, we briefly motivate rebinding models to suggest that our qualitative

conclusions are robust to the choice of model.

Once a ligand and receptor debind, we assume there is some probability they will rebind

within a given time interval. Suppose we knew this probability (p). Then, the number of

rebindings would be a geometrically distributed random variable with parameter 1- p,

assuming that every rebinding is independent, and the expected number of rebindings

would be p/(1-p).

What is the probability p? Clearly, it depends on the time interval over which rebindings

are counted. In the case of the interaction between TCR and pMHC, we are only

interested in those rebindings that occur relatively quickly, before the TCR signaling

complex disassembles. Since it is unclear how quickly the TCR signaling complex

disassembles, however, models must choose a different measure of "quickness."

(Analytically, other measures are also more tractable.) One reasonable approach is to

count only those rebindings that occur before the pMHC binds another TCR for the first

time.



In a different approach, Bell's model can be interpreted to count only those rebindings

that occur almost immediately, before the receptor and ligand are ever separated by more

than a molecular distance. To see this, consider the probability that a pMHC binds to a

TCR before diffusing away when it is within a molecular distance of the TCR. For

simplicity, we can model the reaction and diffusion as competing exponential processes

with rates corresponding to their characteristic rates, which scale as kn/L2 and D/L2 ,

respectively, where L is the molecular distance. (Note that k. is expressed on a per

molecule basis.) Applying this simple analysis to determine the probability p (12), it is

possible to obtain Bell's model (Equation 2), within a constant factor.

How sensitive are the conclusions to the particular choice of model? Clearly, the choice

of which rebindings to count will affect the quantitative results. Allowing more time for

the pMHC and TCR pair to rebind, for example, will lead to larger predictions for the

aggregate t1 2. The qualitative prediction of the model, however, is robust. Independent

of the choice of model, the aggregate t12 will depend on the t 2 and KD when on-rates are

low or high, respectively, and on a combination of the two when on-rates are

intermediate. The robustness of this conclusion stems from the fact that it can be

motivated independently by simple arguments. When on-rates are slow, rebindings will

not occur and the aggregate t1 /2 will depend on the single-interaction half-life.

Conversely, when on-rates are fast, a pMHC and TCR will rebind many times, essentially

equilibrating. As a result, the aggregate t 12 will depend only on the KD when on-rates are

large.

2.A.2.3.2.2 Parameter estimates and sensitivity

To evaluate whether rebinding could impact the dwell time of B3K506 or B3K508 TCRs

engaging IAb/3K and APL ligands, we estimated the parameters in Equation 2. The

diffusivity for a TCR and pMHC was estimated using published experimental

measurements. We used 0.04 um2/sec and 0.02 um 2 /sec as typical estimates of the

diffusivities of pMHC (13-15) and TCR, respectively (16-18). The range of reported

diffusivities is from 0.01 to 0.1 um 2/sec for pMHC, with measurements concentrated



toward the lower end, and from 0.01 to 0.12 um2/sec for TCR, though the higher

estimates may apply to TCR outside lipid rafts. We converted our SPR measurements of

on-rates to on-rates on the membrane by assuming that affinities on the membrane are

proportional to SPR-measured affinities, as in our analysis of receptor occupancy, and

further, by assuming that off-rates on the membrane are identical to those measured by

SPR. Because of limited data, it is generally difficult to convert SPR-measured on-rates

to on-rates on the membrane (11, 19). A recent study of pMHC-TCR kinetics on the

membrane has suggested that on-rates and off-rates are faster on the membrane than

solution-based measurements suggest and that actin-cytoskeleten-driven membrane

motion has a role in tearing apart bonds (10). The role of the membrane in breaking apart

bonds as short-lived as those in this paper is unclear. Additionally, since faster on-rates

promote rebinding but membrane motion driving the pair apart inhibits rebinding, it is too

early to understand how our qualitative results would be affected.

Because of the uncertainty in these parameters, we checked the robustness of our

conclusion that rebinding explains the potency of the peptides in our data set. To do so,

we varied the threshold for rebinding, kn*, which models uncertainties in the diffusivities

of the TCR and pMHC and errors in converting SPR-measured on-rates to on-rates on the

membrane. It is also a rough way of accounting for other factors that might increase or

decrease the likelihood of rebinding, such as membrane motion, as well as uncertainty in

the model itself. Three-fold differences in the threshold on-rate do not qualitatively

affect our conclusions (Figs. S5 and S7). As the threshold for rebinding increases,

rebindings become less likely for any given pMHC-TCR pair and the effect of rebinding

on the aggregate tU2 weakens. As long as the rebinding threshold falls within or near the

range of on-rates in our data, it will explain at least part of the difference between the

B3K506 and B3K508 TCR, balancing their KD and t2-

Independent of the parameter estimates, we also provided best-fit values in the main text,

which, being close to our estimates, reinforced our conclusions. We provide another type

of best-fit analysis, based on fitting the models to groups of peptides with similar activity,

in Fig. S8 to show this conclusion in another way.
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Chapter 3

Stochastic decisions enable T lymphocytes to achieve complex
immunological goals with a simple signaling network'

"The first story is about what the Constitution is like.
It's going to show that the Constitution is no simple contract,

not because it uses a certain amount of open-ended
language that a contract draftsman would try to avoid, but

because its language grants and guarantees many good things,
and good things that compete with each other and
can never all be realized, all together, all at once."

--Justice David Souter

Biological systems without sensors and genetic diversity, such as some bacteria (at least

as modeled), make stochastic decisions to diversify responses with the aim of optimizing

performance (e.g., growth) in uncertain environments. T lymphocytes, a key part of the

adaptive immune system in higher organisms, are an example of a genetically diverse

population of cells with sensors for diverse environments which co-exist in the host and

perform complex biological functions. In such a system, each cell should not need to

make stochastic decisions to diversify responses. But, T cells do make stochastic

decisions. With the biology of this system as a guide, we use a decision-theoretic

framework to obtain general necessary conditions for stochastic responses to be

beneficial for function in systems with sensors and great genetic diversity. By studying a

specific model that satisfies these conditions, we find a new role for noise in complex

biological systems. Stochastic decisions by individual components (T cells) allow the

interacting population to achieve complex goals with simpler biochemical machinery

(e.g., a simpler signaling network) than would be required to implement a deterministic

response which achieves the same performance. Thus, while not required for

The work in this chapter has been submitted for publication as "Stochastic decisions
enable T lymphocytes to achieve complex immunological goals with a simple signaling
network."



diversification, noise provides a simpler solution to a complex challenge confronted by

populations of cells in higher organisms.

3.1 Introduction

Stochastic effects in cell decision processes have been observed in varied biological

contexts (1-5). Most studies to determine their role have focused on systems where the

inputs received by individual cells are not diverse because they lack sensors or because of

limited or no genetic and environmental diversity. In such cases, stochastic decisions by

individual cells diversify responses to help a population of cells achieve certain system-

specific objectives (6-13). For example, stochastic decisions enhance survival of

sensorless bacteria in a varying environment (9-13).

Diverse stimuli provide varying inputs to a population of cells with sensors in complex

organisms, and the resulting responses can draw on considerable genetic variation

between cells (since cells in higher organisms with different genotypes or epigenetic

markers can co-exist to perform complex functions). One important example is the

response of a population of T lymphocytes (T cells), orchestrators of adaptive immunity,

to diverse infections. Each T cell has a receptor (or sensor), the T cell receptor (TCR),

and most T cells express a unique TCR. T cells respond to peptides (p) derived from

pathogenic proteins which are expressed on infected cells in complex with host major

histocompatibility (MHC) proteins (14). A particular T cell can respond to a pMHC if its

TCR binds sufficiently strongly to it. A pathogen expresses many pMHCs, each binding

to individual TCRs with different affinities. This system, therefore, is one where a

genetically diverse population of cells, each with a sensor, receives diverse inputs to

which it responds to clear infections. Over a range of TCR-pMHC binding affinity, or

strength of other stimuli such as that provided by cytokines, some T cells fire and others

do not, due to internal and/or external noise (15-18). The role of noise in regulating the

function of such systems is not known (1). We consider a model of T cell interactions

and their outcomes which abstracts general features observed in experiments to address

this issue in the context of a specific biological system.



3.2 Model development

Given a stimulus strength, x, each T cell makes a binary decision to either activate or not.

The decisions, determined by the T cell's signaling network, are observed to be

stochastic. Thus, the probability of activation (-(x) in Fig. 1A) increases from

approximately zero to approximately one over a finite range of stimulus strength; in

contrast, for deterministic decisions, 0-(x) is always either 0 or 1. Self peptides derived

from host proteins are also expressed on cells, and they are more likely to stimulate TCRs

on T cells weakly due to developmental processes. The outcomes of decisions made by a

collection of T cells can be quantified by a cost for the host, which depends upon the

decisions in two ways: 1] Whether the responses to self or pathogenic pMHC are correct

or not. If too many T cells activate upon interactions with self pMHC, autoimmunity

would ensue. If too few T cells activate in response to a pathogen's pMHC molecules,

persistent infection or death could result. 2] There are also costs to the host regardless of

whether decisions are correct. Examples are: a decision to activate incurs a metabolic

cost; when there are resource (e.g., cytokine) limitations, the decision to activate costs

more if several T cells have already been activated.

The dependence of the cost, C, on the factors above is denoted by C(2,d). Each element

(di) of the vector, d, lists the decision made upon a specific T cell-pMHC interaction (di

= 1 and di = 0 denote a decision to activate and not activate, respectively). The vector, j,

is a list describing whether each decision is correct or not (Fig. 1B). The cost can also

depend upon the stimulus strength (supporting online text). Our goal is to understand

whether the decision rule for individual T cells, o*(x), that optimizes the outcome for the

host involves stochastic decisions. For all decision rules, the ultimate outcome (or cost to

the host) of T cell decisions is uncertain because diverse processes pertinent to an

immune response are intrinsically stochastic. For example, two individuals may have

varying success clearing infection and avoiding autoimmunity even though their T cells

adopt the same decision rule. Therefore, we optimize the following expected (average)

cost to a host:
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Figure 1: T cells make stochastic decisions. (A) A T cell's activation probability, a, is
governed by a stochastic decision rule (red), not a sharp deterministic threshold (grey;
(15-18). (B) The variable si denotes whether the interaction is with self or pathogenic
pMHC; xi is the stimulus strength (e.g. TCR-pMHC binding strength); di is the actual
decision made (yes, activate; no, remain inactive); and ej specifies whether the decision is
correct (4) or not (M) against self (blue) or pathogenic (green) pMHC (four possibilities).
(C) An isolated T cell should activate whenever the expected or average cost of not
activating (e.g. blue) is greater than the expected cost of activating (green), corresponding
to an optimal deterministic decision rule, a *, where activation occurs above a sharp
threshold stimulus strength.

E[C(2,d)]= diC(,)P(sid,N) (1)

s is a vector that lists whether each interaction is with self (siO=) or pathogenic (s= 1)

pMHC, N is the total number of interactions, and P indicates a probability model

describing the diverse stochastic effects in the immune system when a particular

decision-rule o is used; note that a(x,) = P(d, = 1|x,) by definition, as P (d, = 1| x, )is the

probability of activation given the stimulus, xi. The variables i, 3, d, and N, must be

explicitly included to study genetically diverse cells with sensors in an uncertain

environment. (Note that ej is fully determined by the decision di and si.) The coarse-

grained treatment of the details of all other stochastic processes in terms of a probability

model enables us to make widely-applicable statements about this class of systems. The

optimal decision rule, o*, minimizes the expected cost (19, 20).



3.3 Results

3.3.1 Isolated T cell

Consider the simplest case of an isolated T cell interacting once with a single stimulus (x,

e, d, and s are scalars). For a given stimulus, x, the expected cost is the expected cost of

activating weighted by the probability of activation (o(x)), and the expected cost of not

activating weighted by the probability of not activating (1-o(x)):

E[C(e,d) I x] = E[C(e,d) I x,d = 1]o(x) + E[C(e,d) I x,d = 0](1 - o-(x)) (2)

As noted, self-peptides are less likely to stimulate T cells very strongly; so, the expected

cost of activating for very weak stimuli is high, and vice versa. So, the expected cost for

activation is a strictly decreasing function of x, and that for not activating increases with x

(Fig. 1 C). So, the expected cost for not activating exceeds that of activating at a single

stimulus strength. Eq. 2 shows that the choice of a that minimizes the expected cost is Q

= 0 if the expected cost of activation is greater than expected cost of not activating, and o

= 1 if the opposite is true. Therefore, the optimal decision rule for isolated T cells is a

deterministic sharp switch from not activating to activating and could be implemented by

the existing T cell signaling machinery if noise was suppressed (e.g., with more

molecules). Given the importance of T cell decisions on the host's health, why have

evolutionary forces not led to this situation?

3.3.2 Coupling at the population level

Function is determined by the response of the T cell population. Individual T cell

responses are coupled to each other in a number of ways. The cost incurred by a T cell's

decision depends on the decisions of other T cells (Fig. 2A). The cost of a T cell not

activating in response to a pathogenic pMHC is lower if many T cells have been activated

in response to the infection since only a certain level of activation can clear infections.

Also, the cost of activating against self pMHC is higher if similar events have already

occurred since peripheral tolerance mechanisms can tolerate only some autoimmune



responses. Resource (e.g., cytokine) limitations also couple the costs incurred by

individual T cell decisions. Coupling of T cell responses through incurred costs means

that the cost to the host is not the sum of costs incurred in individual interactions; i.e.,
N

C(2,dj) 0 C(eg, di) (3)
i-1

A cost of others active B
mistake?

Q

vs. inactive i
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Figure 2: T cells are coupled at the population level. (A) T cell decisions are coupled
through their costs for the host. For example, the cost of a T cell mistakenly not
activating (X) against a pathogenic pMHC depends on the correctness of other T cells'
decisions. If enough others activate (q) in response to this pathogen, the mistake has
minimal impact since the infection will be cleared (low cost). Conversely, if other T cells
have not been activated, there is a high cost for the T cell not activating as the pathogen
will proliferate unchecked. (B) T cell decisions are coupled through their observations,
because T cells are in the same host confronting the same infection. For example, if a
particular infection results in the expression of pathogenic pMHC with which some T cell
clone in a host interacts particularly strongly (indicated by a dark green color in the host
on the left), then there will be many strong interactions over the course of that infection.
In contrast (right), if an infection results in the strongest interaction being weak (light
green color in the host on the right), there will be many weak interactions. T cell
decisions are also coupled because the decisions T cells make can affect others'
observations, but this is not illustrated.

The observations made by individual T cells via their sensors are coupled because the T

cells are in the same host and confronting the same infections (Fig. 2B). For example, if

a particular infection results in the expression of pathogenic pMHC with which a T cell

clone interacts particularly strongly, the interactions of each T cell of this clonotype (and

other similar ones) with this pMHC will result in a strong stimulus as well. Thus, the



observations made in individual T cell-pMHC interactions are not independent. This

coupling through T cells' observations means that the joint probability of the

observations is not the product of probabilities of individual observations:
N

P(i,I N ) l P(si,xi)P(di Ix ) (4)
i=1

The decision of one T cell can also affect the observations of other T cells. For example,

if a T cell activates in response to a particular pMC expressed upon infection by a fast -

mutating virus, the resulting immune pressure will cause the outgrowth of a mutant strain

that will present pMHC that may strongly stimulate another T cell. This type of coupling

implies that the probability of the observations and the decisions jointly is not the product

of the probabilities of the observations and the decisions:
N

P( I, \N) d P(gj)]7JP(di I xi) (5)
i=1

3.3.3 Necessary conditions for stochastic decisions to be beneficial

If T cells are coupled only through their costs, each T cell makes an error (activates

against self or does not activate against pathogens) independently. The probabilities of

making an error are:

Po = P(s = O)f dxP(x I s =O)u(x) = probability of incorrectly activating (6a)

p = P(s = 1)f dxP(x I s =1)(1 - a(x)) = probability of incorrectly not activating (6b)

Eq. 6a is the product of the probability of seeing a self pMHC averaged over all

conditions (P(s = 0)) and the probability of activating to a stimulus strength, x, given that

it is a self pMHC (s = 0). A similar logic leads to Eq. 6b. The Neyman-Pearson lemma

(21) states that the decision rule jointly minimizing the probabilities of error in Eq. 6 is a

single deterministic sharp threshold, when the likelihood of one action being correct

increases with the stimulus, as for T cells (supporting online text).



If T cells were coupled only through their observations, the inequality in Eq. 3 would not

hold, and the resulting linearity makes treating the coupling through the observation

probabilities (Eq. 4) easy (supporting online text). We find that the expected cost (Eq. 1)

is:

E[C(,)] = f a(x)a(x)dx (7)

where a is a function that depends on the probability model and cost function but not on

the decision rule. Arguments analogous to those for the isolated T cell (supporting online

text) suggest that the optimal decision rule for T cells is a single sharp threshold (not

stochastic).

Our arguments provide general necessary conditions for stochasticity to be useful in

systems with sensors and access to abundant environmental or genetic diversity: (1) the

population-level response is important (isolated T cells do not require stochastic

decisions); and (2) biological features of the system must strongly couple the population

of cells (T cells must be coupled through more than the cost alone or the observations

alone). For populations of cells which lack environmental or genetic diversity, coupling

through the cost alone is sufficient for stochastic decisions to be beneficial (3, 8, 22).

Thus, the conditions above are more stringent (though observations might be considered

trivially coupled if no cell has sensors). T cells satisfy these necessary conditions as they

are not coupled through costs or observations alone.

3.3.4 A simple model of the T cell population in which stochastic decisions are

beneficial

To explore the minimal sufficient conditions for stochastic decisions to emerge as an

optimal solution for a population of T cells, we considered a simple model of coupling

between T cell decisions via incurred costs and observations. Coupling through the costs

is treated by noting that the cost incurred by the host over the course of a single infection

decreases nonlinearly with the fraction of pathogenic pMHC to which T cells activate

(f), and increases with the fraction of self pMHC that stimulate activation (fo). Thus:



C(,) C + 2c~f e j) - 1) (8)

which satisfies Eq. 3. Our qualitative conclusions do not depend on the values of the

constants c1, c2, and c3, or the specific nonlinear form of Eq. 8 (supporting online text).

Coupling through the observations is treated by choosing a probability model that

satisfies Eq. 4. It incorporates many possible infections, Ik, each of which correspond to

different distributions, P(xilst=1,Jk), of strong stimuli for the host's T cell repertoire (Fig.

3A). Independent of the infection, self pMHC lead primarily to weak stimuli as described

by P(xjlsi=0) (Fig. 3A). Then, the probability model (consistent with Eq. 4) is:
N

P(ijid \ N)= P(Ik ) P( si ,x \i Ik )P(di 1x X) (9)
k i=1

The probability that the infection confronted is the kth one, P(Ik), is chosen so that it is

unlikely that the immune system confronts an infection that leads only to weak stimuli.

We assume that the number of encounters is large enough to sample the probability

distributions well during any particular infection.

By numerical optimization, we find that a stochastic decision rule outperforms one

characterized by a single sharp threshold which would be obtained by suppressing noise

(Fig. 3B). Just including coupling between T cell decisions via the incurred costs and

observations in a simple way results in stochastic decisions being beneficial, suggesting

that this would definitely be so if additional sources of coupling between T cells were

included. A single sharp threshold stimulus strength separating decisions to activate or

not enforces all-or-nothing immune pressure over different regions of stimulus strength.

This is unlikely to be the appropriate balance between the risk that some self-peptides

will generate strong stimuli or that some infections will lead only to relatively weak

stimuli (Fig. 3C). A stochastic decision rule achieves this balance, critical for the host's

survival, more readily.
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Figure 3: A simple model demonstrates that stochastic decisions can enable T cells to achieve complex
goals with a simpler signaling network than that required for an optimal deterministic decision rule. (A)
The probability distributions for the stimuli T cells receive from self (P(xls=O), upper) and pathogenic
(P(xls=1j,I), lower) pMHC, where lk denotes the /eh infection. For weak stimulus strengths, these
probability distributions are expected to be similar for self and pathogenic pMHC with high values forP; m
denotes an intermediate stimulus strength, above which these probability distributions are different. The
numbers on the abscissa are in arbitrary units. The six possible infections (distributions of pathogenic
stimuli) occur with probability 0.001, 0.049, 0.15, 0.25, 0.3, and 0.25, fromI, to I6, so that infections which
lead only to relatively weak stimuli are unlikely. Similarly, strong stimuli from self are unlikely. (B) For
the probability and cost models in the main text, the best single sharp threshold (grey) has a higher
expected cost (E[C]) than a stochastic decision rule (red). Reported E[C] is normalized by the expected
cost of the stochastic decision rule. The optimal decision rules reflect the discretization of the probability
distributions describing stimulus strengths (see panel A); the orange curve helps visualize the stochastic
solution. (C) The best stochastic decision rule (red) can be created from a sharp threshold (grey) by
shifting immune pressure (red arrow) from strong stimuli to weaker stimuli. This shift helps balance the
risk that some self pMHC lead to strong stimuli and some pathogens lead only to relatively weak stimuli.
(D) A complex deterministic decision rule that alternates between never activating (o=0) and always
activating (a =1) performs as well as the best stochastic one (panel B). Implementing this decision rule
would require a complex signaling network.



3.3.5 The role of stochastic decisions in systems with access to environmental and

genetic diversity

Are there deterministic decision rules, albeit more complicated than a single sharp switch,

which are as good as the optimal stochastic solution? The Dvoretzky-Wald-Wolfowitz

(DWW) theorem suggests that it is always possible to find such a deterministic solution,

for a model such as that described by Eqs. 8 and 9, as long as the probability distributions

of stimuli observed by T cells are continuous (23, 24). The latter should be true because

two T cells are unlikely to see exactly the same stimulus due to abundant genetic

(different TCRs) and environmental (different pathogens, different levels of pMHC

expression) diversity. By searching for optimal deterministic solutions that are not

restricted to being a single sharp switch (supporting online text), we obtain a

deterministic optimal decision rule (Fig 3D) that performs as well as the stochastic

solution.

The DWW theorem makes precise the intuition that stochasticity may not be needed for

diversification of the response when there is considerable genetic or environmental

diversity to draw on, as for the T cell population. However, Fig. 3D shows that the

optimal deterministic decision rule that exploits the environmental and genetic diversity

is not a simple sharp threshold. Thus, it could not be obtained using the existing T cell

signaling machinery and suppressing noise. Because of coupling between T cell

decisions, the optimal deterministic decision rule is far more complicated, and could only

be implemented by a complex signaling network (e.g. many coordinated feedback loops

to generate many sharp thresholds.) By making stochastic decisions, T cells can perform

just as well with a far simpler signaling network, which may be easier to control and

evolve.

3.4 Discussion

The role of noise in biological decisions has been viewed in two ways. First, as a

nuisance that is costly to suppress (25). Second, as a way for populations with limited



environmental or genetic diversity to diversify their responses, which, in turn, optimizes

some function (e.g. population growth in a varying environment (11)). We have

considered a biological system that is comprised of genetically and environmentally

diverse cells with sensors. In this system, noise is not necessary for diversification. Our

results uncover a new role for noise in complex biological systems. Stochasticity enables

a population of cells to achieve complex goals with simpler biochemical machinery (e.g.,

signaling networks) than would be required in the absence of noise. By abstracting the

features of the T cell response to pathogens, we have identified general necessary

conditions that proscribe when stochasticity is useful in this way. A remarkable

implication for T cell biology is that to understand the design of an individual T cell's

signaling network it is necessary to analyze the behavior of the T cell population.



References

1. Raj A & van Oudenaarden A (2008) Nature, Nurture, or Chance: Stochastic Gene
Expression and Its Consequences. Cell 135(2):216-226.

2. McDonnell MD & Abbott D (2009) What Is Stochastic Resonance? Definitions,
Misconceptions, Debates, and Its Relevance to Biology. PLoS Comput. Biol.
5(5):9.

3. Perkins TJ & Swain PS (2009) Strategies for cellular decision-making. Mol. Syst.
Biol. 5:15.

4. Spencer SL, Gaudet S, Albeck JG, Burke JM, & Sorger PK (2009) Non-genetic
origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature
459(7245):428-U144.

5. Tay S, et al. (2010) Single-cell NF-kappa B dynamics reveal digital activation and
analogue information processing. Nature 466(7303):267-U149.

6. Wolf DM, Vazirani VV, & Arkin AP (2005) Diversity in times of adversity:
probabilistic strategies in microbial survival games. J. Theor. Biol. 234(2):227-
253.

7. Avlund M, Dodd IB, Szabolcs S, Sneppen K, & Krishna S (2009) Why Do Phage
Play Dice? J. Virol. 83(22):11416-11420.

8. Paszek P, et al. (2010) Population robustness arising from cellular heterogeneity.
Proc. Natl. Acad. Sci. U. S. A. 107(25):11644-11649.

9. Thattai M & van Oudenaarden A (2004) Stochastic gene expression in fluctuating
environments. Genetics 167(1):523-530.

10. Balaban NQ, Merrin J, Chait R, Kowalik L, & Leibler S (2004) Bacterial
persistence as a phenotypic switch. Science 305(5690):1622-1625.

11. Kussell E & Leibler S (2005) Phenotypic diversity, population growth, and
information in fluctuating environments. Science 309(5743):2075-2078.

12. Acar M, Mettetal JT, & van Oudenaarden A (2008) Stochastic switching as a
survival strategy in fluctuating environments. Nature Genet. 40(4):471-475.

13. Beaumont HJE, Gallie J, Kost C, Ferguson GC, & Rainey PB (2009)
Experimental evolution of bet hedging. Nature 462(7269):90-U97.

14. Murphy K, Travers P, & Walport M (2007) Janeway's Immunobiology (Garland
Science) 7 Ed.

15. Das J, et al. (2009) Digital Signaling and Hysteresis Characterize Ras Activation
in Lymphoid Cells. Cell 136(2):337-351.

16. Feinerman 0, Veiga J, Dorfman JR, Germain RN, & Altan-Bonnet G (2008)
Variability and robustness in T cell activation from regulated heterogeneity in
protein levels. Science 321(5892):1081-1084.

17. Altan-Bonnet G & Germain RN (2005) Modeling T cell antigen discrimination
based on feedback control of digital ERK responses. PLoS. Biol. 3(11):1925-
1938.

18. Busse D, et al. (2010) Competing feedback loops shape IL-2 signaling between
helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl.
Acad. Sci. U. S. A. 107(7):3058-3063.

19. Bertsekas D (2005) Dynamic Programming and Optimal Control (Athena
Scientific, Belmont, MA) 3 Ed.



20. Resnik MD (1987) Choices: An Introduction to Decision Theory (University of
Minnesota Press, Minneapolis).

21. Lehmann (1959) Testing Statistical Hypotheses (John Wiley & Sons, New York).
22. Paulsson J, Berg OG, & Ehrenberg M (2000) Stochastic focusing: Fluctuation-

enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. U. S. A.
97(13):7148-7153.

23. Dvoretzky A, Wald A, & Wolfowitz J (1950) ELIMINATION OF
RANDOMIZATION IN CERTAIN PROBLEMS OF STATISTICS AND OF
THE THEORY OF GAMES. Proc. Natl. Acad. Sci. U. S. A. 36(4):256-260.

24. Feinberg EA & Piunovskiy AB (2005) On the Dvoretzky-Wald-Wolfowitz
theorem on nonrandomized statistical decisions. Theory Probab. Appl. 50(3):463-
U461.

25. Lestas I, Vinnicombe G, & Paulsson J (2010) Fundamental limits on the
suppression of molecular fluctuations. Nature 467(7312):174-178.



3A Appendix for Chapter 3

3A.1 Motivation for the coarse-grained model

In the main text, we noted that Eq. 1 results from a coarse-grained model of the immune

system. In this section, we provide details about this coarse graining and show how the

cost can formally depend explicitly on the stimulus strengths.

Let the vector ii(t) indicate the value of all the variables necessary to describe the

immune system and any infections at a fixed time t. For example, ii(t) contains as

elements the positions of all T cells in the body, the number of TCR on their surfaces

bound to pMHC, and the spatial distribution of cytokines, among many other variables.

The function ii(t) defines a temporal trajectory of the system.

Let P[fi(t)] be the probability (density) of a specific trajectory ii(t). This probability

depends on the probability distribution of initial conditions for the immune system (e.g.

the particular infection(s) encountered, the T cell repertoire) and the dynamics of the

immune response and infection. This probability also depends on the T cells' decision

rule, o(x), since the decision rule affects the dynamics of the immune response.

Let C[ii(t)] be the cost to the host incurred during a specific realization of the immune

system's trajectory. Here we allow the cost to depend on all possible variables necessary

to describe the immune system and their values over the course of the host's immune

response.

The expected cost to the host is E[O[ii(t)]], where the expectation is taken with respect

to the probability model P[ii(t)]. The coarse graining noted in the main text is then:

E[C[5(t)]] = E [E[5(t)]s,,d,N (Sl)



The inner expectation is taken with respect to all trajectories consistent with particular

values of R, , d, and N. The outer expectation is then taken with respect to the

uncertainty in these 4 variables.

From Eq. Si we can identify the coarse-grained cost introduced in the main text as:

C(i,3,d,N)= E[C[ii(t)]s,jd,N] (S2)

In the main text, we have suppressed the argument N, since it is implied by the vector

arguments, replaced i by 2 (since, given d, they are one-to-one) and suppressed the

argument i, leading to C(2 ,d). We address the dependence on 3 in proofs in the

following sections of the supplement.

Note that the probability P(s,,,,N) required in the coarse-grained model is just derived

from P[ii(t)] by integrating over all trajectories consistent with i, 3 , d, and N. In the

main text and the supplement, whenever arguments to the probability P are suppressed,

they have been integrated over.

3A.2 Necessary conditions for stochastic decisions to be beneficial

In the main text, we described necessary conditions for stochastic decisions to be useful

in systems with environmental and genetic diversity. We argued that when these

conditions do not hold, a single deterministic sharp threshold is best. (More carefully,

stochasticity can be useful only at the single stimulus value corresponding to the

threshold stimulus.) In the next two subsections, we elaborate the proofs for these

necessary conditions.

The proofs recruit the property, argued in the main text, that the likelihood of a T cell

seeing a particular stimulus from a pathogenic pMHC versus a self PMHC increases with

the magnitude of the stimulus. That is,

P(x's=l) is strictly increasing with x (S3)
P(x,s = 0)



This statement is closely related to the statement that stronger stimuli are more likely to

be from pathogenic pMHC than self pMHC.

Note that, in addition to the three forms of coupling mentioned in the main text, the level

of coarse graining adopted in the paper admits one more form of coupling. Under this

fourth form of coupling, the actual decisions di or the observations xi or ci are not

independent from the total number N of encounters the population will have. This form

of coupling is most vivid in systems with exponential growth (e.g. bacteria), where the

growth of the population, dependent on its decisions, affects the number of cells and

therefore the number of encounters that occur. For T cells, correct decisions against

pathogenic pMHC lead to speedy clearance of an infection, and therefore fewer total

interactions in an infectious context than when there are incorrect decisions. When we

refer to systems being coupled through the cost or the observations alone, we implicitly

mean that they are not coupled in this way or in the other ways mentioned in the main

text.

3A.2A The population must be coupled through more than just the observations alone for

stochastic decisions to be beneficial.

In this section, we show that a sharp threshold is best if the members of the population

are coupled only through their observations (i.e. the inequality in Eq. 4 holds but Eqs. 3

and 5 hold with equality).

Under coupling through the observations alone, the expected cost in Eq. 1 can be

simplified. The following steps, resulting in Eq. S4, consist of simple algebraic

manipulations, exploiting: (1) the linearity of the cost function, so that any dependencies

in the observations are integrated out in the expectation; and (2) the independence of the

ith decision from all observations other than the ith observation, so that the decision rule

o(x) can be isolated from the probability P(x,s).

First we consider N to be fixed (given). Let (*) denote the conditional expectation:



(*)= E-alN [C(j,d) N = n

Then, using the assumed linearity of the cost function (from Eq. 3 with equality):

N

(*) = E I[C(edi) N =n

where C is defined in Eq. 3. Bringing the expectation inside the summation (since N is

given):

(*)E= Ei el N = n]

Then, because C depends only on one interaction (the ith), the expectations can be taken

trivially over all variables other than those associated with the ih interaction:
n

(*)==Esi jx,diN i'di)=n]

i=1

Expanding the expectation as a sum/integral over the variables xi, si, and di, weighted by

their probabilities:

*)=jSdxj j C(ei,di )P(xi ,si,d |N = n)
i-1 si- 1Oj di-Oj

Recruiting the assumption that the observations and the total number of interactions are

independent, since the population is coupled only through its costs:

(=Ifdxi U(ei,dj)P(xj,sj,d,)
i-1 si-O,1 di-O,1

Because, by assumption, the decisions do not affect the observations (Eq. 5 with equality,

integrated over all variables but those corresponding to the i'h interaction):

(*) = 1Sdx, U(ei,djP(s ,x,)P(djxj)
i-1 s;-O,1 di-O,1

Expanding the summation over di:

(*)= f dx, I C(ei ,di = 1)P(s ,xj)P(d = 1|xj) + C(ei ,d = O)P(s ,xj)P(di =O|xj)

i=1 s,-O,1

Applying the definition of o(x):

(*)= f dxI U(e ,di = 1)P(sj,x)a(x,) + C(ei ,d, = O)P(s ,xi)(1 - o-(x,))
i-1 s,-O,1



Grouping terms according to o(x) and compacting the notation (the dependence on i

comes only because the probability may depend on i):

(*)I= dx I (U(e,d = 1) - C(e,d = 0))P(s,x)a(x) + dx C(e,d = O)P1 (s,x)
i-1 si=O,1 i=1 s-O,1

The second term does not depend on o(x) and therefore does not affect the optimization

over o(x). For compactness, we suppress it in what follows:

(*) = f dx (U(e,d = 1)- U(e,d =0)) i(s'x) a(x)

To derive this last equation, we assumed N was given. This assumption can be relaxed:

E-,N[C( ,d)] = EN [E N[C(2,) N]]

Substituting the expression that was derived for (*) into the right hand side:

E fC(jd) =dx (C(e,d = 1)- C(e,d =0)) EN [pJ(S'X)])(x)
s-0,1 .i-1 .

In principle, Pi(s,x) can depend on i in two ways: through Pi(xls=O) and Pi(xls=1) or

through Pi(s=O) and Pi(s=1). In the following we assume that the dependence comes at

most through Pi(s=O) and Pi(s=1); that is, the stimuli from self and pathogenic pMHC

come from stationary processes (since the initial conditions are also averaged over). We

make this assumption because more complicated behavior in the coarse grained model

would seem to implicate one of the other forms of coupling (e.g. decisions affecting

observations), which we have excluded in this proof by assumption.

When Pi does not depend on i, this previous equation can be simplified to the following,

which is the main result of the preceding manipulations:

E[C(2,d)] = fcdxa(x)a(x)+b (S4)

a(x) = E[N] IP(x,s)[C(e,d =1)- C(e,d = 0)]
s=O1

b = E[N] f dxP(x,s)C(e,d =0)

When Pi depends on i, but as above, the proof below follows similarly. Recall that e is a

function of d and s, and so is fully determined in the expressions for a(x) and b.



Because Eq. S4 is a linear functional of u(x), the optimization of a(x) in Eq. S4 can be

done at each value of x separately. Specifically,

o1 a(x)<0 (S5)
0 a(x)> 0

Note that for a(x) exactly equal to 0, U * (x) can take any value. We have assumed here

that the set of such x is insignificant (e.g. a set of 0 measure.) With simple algebra, the

requirement that a is negative corresponds to:

P(x,s = 1) U(ei,d = 1)- C(e 0O,d = 0) (S6)
P(x,s=0) C(eO,d=0)-U(ejj,d=1)

where the notation esd denotes the value of e when the correct decision is s and the actual

decision is d. (The numerical value of esd is arbitrary, so long as C is defined

consistently.) As noted in Eq. S3, the left hand side in Eq. S6 is strictly increasing withx.

Therefore, if Cis independent of x, as in the main text, Eq. S5 corresponds to a single

sharp threshold, as described for an isolated T cell in the main text. When C depends on

x, it is harder to draw general conclusions. However, the best solution will still be a

single sharp threshold as long as the difference in the expression for a(x) in S4 changes

sign only once. The arguments in this section recall the Neyman-Pearson lemma (21).

3A.2B The population must be coupled through more than just the costs alone for

stochastic decisions to be useful.

In this section, we show that a single sharp threshold is best if members of the population

are coupled only through their costs (i.e. the inequality in Eq. 3 holds but Eqs. 4 and 5

hold with equality). We assume the cost does not depend explicitly on the stimuli x ,

noting the discussion in the previous section.

Since the observations are not coupled (by assumption), the probability that a particular

encounter leads to an error (or correct decision) is independent of errors in other

encounters. Specifically, the probabilities of correct and incorrect decisions in any

encounter are, for a given probability model:



PO = P(s = O)f dxP(x I s =O)a(x) = probability of incorrectly activating (S7)

p = P(s = 1)f dxP(x I s =1)(1 - a(x)) = probability of incorrectly not activating

p' = P(s = 0) - po = probability of correctly not activating

p' = P(s = 1) - p, = probability of correctly activating

The probability of activating, correctly or incorrectly, is just pf + po. Note that the form

of the probabilities in Eq. S7 is like the form considered in the Neyman-Pearson lemma

(e.g. type 1 and type 2 errors; 21)

Any candidate decision rule leads to particular values of these probabilities. Consider a

particular candidate decision rule that is not of a single sharp threshold form. According

to the Neyman-Pearson lemma, one can find a single sharp threshold decision rule that

has the same probability of incorrectly not activating but a lower probability of

incorrectly activating. This single sharp threshold, therefore, will have a lower cost due

to errors, on average. Furthermore, the single sharp threshold has a lower probability of

activating (since it activates correctly just as often, but activates incorrectly less often),

and so incurs a lower cost due to resource consumption, on average. Regardless of the

structure of the cost function, then, the single sharp threshold will have a lower cost, on

average. Since this is true regardless of the candidate decision rule, the optimal decision

rule must have the form of a single sharp threshold. The particular location of the

threshold will depend on the exact form of the cost function and the probabilities.

3A.3 Simple model of the T cell population

3A.3.1 Optimization of the simple T cell model

In the main text, we considered a simple model in which the host encounters a single

infection. Which particular infection the host encounters is uncertain. The cost function

in Eq. 8 and probability model in Eq. 9 set up an optimization problem for the decision

rule. To simplify the calculation, we made the assumption in the main text that the



number of encounters in each infection is large enough so that, within a particular

infection, the distributions of stimuli from self and pathogenic pMHC are well-sampled.

In the main text, we introduced the notationfo andf, for the fractions of encounters with

self and pathogenic pMHC that activate T cells. When the distributions are well sampled,

the fractionsfo andfj converge to probabilities:

fo()- f dxP(x Is = O)a(x) (S8)

fl( -> f dxP(x Is = 1,Ik)C(X)

That is, the probability a T cell activates in an encounter with self pMHC is just the

probability the T cell activates given the stimulus x (O(x)) times the probability the

stimulus is actually x in an encounter with self pMHC (P(x~s=O)), integrated over all

possible stimuli x; Eq. S8b follows similarly. Then, the only uncertainty in the

expectation in Eq. 1 is which particular infection the immune system confronts (out of 6),

since the many values of g, i, and d that might be encountered during the infection are

now integrated out in Eq. S8. Note that, because the optimization depends separately on

fo andfi, the relative probability of pMHC being self or pathogenic (P(s=O) vs. P(s=1)) in

Eq. 9 is irrelevant.

The simple probability model we have chosen is constant over unit intervals of the

stimulus (Fig. 3A), in order to simplify computation of the optimal decision rule. As a

result, the optimization problem can be transformed from a functional optimization over

all uto an optimization over vectors i where:

vi = f (x)dx (S9)
ith unit interval

Each vi is constrained to be between 0 and 1, inclusive (because each interval is of unit

length and the decision rule falls between 0 and 1, inclusive, for all x).

If more than one element of the optimal solution i is not strictly 0 or 1, then a stochastic

strategy is strictly better than a single sharp threshold, since sharp thresholds have vi

equal to 0 or 1 (no or complete activation) on all intervals except the one the threshold

falls in.



In general, the optimum decision rule o * corresponding to the optimal solution v is

degenerate, since Eq. S9 is not invertible. The stochastic decision rule plotted in Fig. 3B

was obtained by letting o(x) be constant over each interval. The deterministic decision

rule plotted in Fig. 3D was obtained by taking o(x)=1 over the first part of each interval,

and then a(x)=O over the second part of each interval, such that the appropriate value for

vi was obtained. Though slightly simpler deterministic decision rules can be found by

varying the choice of a(x), they are still more complicated than the stochastic decision

rule or a single sharp threshold. The best single sharp threshold (Fig. 3B) was obtained

by explicitly searching over all possible threshold locations.

3A.3.2 Variations of the simple T cell signaling model

In the main text, our simple model consisted of the cost function in Eq. 8, with c1=50,

c2=0.2, and c3=40, and the probability model in Eq. 9 with distributions in Fig. 3A.

(These parameters weight the cumulative mistakes against self and pathogenic pMHC

roughly equally.) In this section, we show that a different cost function with different

probability distributions leads to the same qualitative results as the example in the main

text, suggesting the results do not particularly depend on the choices of these model

inputs. The cost function and probability model presented here have the same qualitative

properties motivated in the main text. In particular, they couple the T cells through the

cost to the host and their observations, satisfying the necessary conditions for useful

stochastic decisions. The cost function is:

C(2,d) = eA+ c2(ec3fO-1) (S10)

c1=35

c2 =0.1

C3=150

The probability distributions for encounters with self and pathogenic pMHC are

presented in Fig. S lA. As in the main text, we model only an intermediate range of

stimulus, since it is assumed T cells will not activate at very weak stimulus.



As with the model in the main text, the best stochastic solution outperforms the best

single sharp threshold (Fig SlB). The percentage change is small, but suffices to confirm

that stochastic decisions outperform single sharp thresholds. (Because of the

simplifications, the model is not quantitative.)
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Figure Si: Varying the cost function and probability distributions does not change the qualitative
results in the main text. (A) An alternate model for the probability distributions for the stimuli T cells
receive from self (P(xls=O), upper) and pathogenic (P(xls=1,Id, lower) pMHC, where Ik denotes the /h
infection. For weak stimulus strengths, these probability distributions are expected to be similar for self
and pathogenic pMHC with high values for P; m denotes an intermediate stimulus strength, above which
these probability distributions are different. The numbers on the abscissa are in arbitrary units. The six
possible infections (distributions of pathogenic stimuli) occur with probability 0.001, 0.099, 0.2, 0.2, 0.25,
and 0.25, from I, to 16, so that infections which lead only to relatively weak stimuli are unlikely. Similarly,
strong stimuli from self are unlikely. (B) For the probability and cost models, the best single sharp
threshold (grey) has a higher expected cost (E[C]) than a stochastic decision rule (red). Reported E[C] is
normalized by the expected cost of the stochastic decision rule. The optimal decision rules reflect the
discretization of the probability distributions describing stimulus strengths (see panel A). A complex
deterministic decision rule that alternates between never activating ( o=0) and always activating (U =1)
performs as well as the best stochastic one. Implementing this decision rule would require a complex
signaling network.



Chapter 4

Identifying the Reactions and Species that Regulate Stochastic
Transitions in Biological Systems'

"Maybe I shall meet him Sunday,
Maybe Monday, maybe not;

Still I'm sure to meet him one day --
Maybe Tuesday

Will be my good news day."

George and Ira Gershwin

4.1 Introduction

Randomness is ubiquitous at the molecular level of biochemical reactions, due to

fluctuations in reaction rates and cell-to-cell variability in protein concentrations (1).

Cells harness this randomness by organizing individual molecular interactions into

complex reaction networks, which suppress noise to maintain stable cellular states or

exploit it to enable stochastic transitions between them (2-4). Discovering the key

mechanisms in these reaction networks that are responsible for regulating stochastic

fluctuations is important to uncovering design principles of biological signaling networks

(5, 6) and, practically, to identifying the species that are most vulnerable to mutations or

are promising as drug targets.

As a particular measure of the importance of different reactions and species in regulating

stochastic fluctuations away from stable cellular states, we focus on how they affect the

average time it takes for a biologically meaningful stochastic transition to occur.

Specifically, we focus on the percentage change in the transition time when the

I The work in this chapter was conducted in close collaboration with my colleague Ming
Yang, and the writing in this chapter is also joint with him. A manuscript based on this
chapter is in preparation.



concentrations of each species or the reaction rate constants associated with each reaction

are perturbed by a small amount.

Determining these sensitivities can be computationally complex for two main reasons.

First, direct simulations to determine transition times can be computationally costly,

because transitions away from a stable state can be rare and therefore hard to sample (7-

9). Second, realistic biochemical networks often involve many reactions and species,

which each must be perturbed to determine if they significantly affect the transition.

Here we develop a semi-analytical technique for calculating sensitivities when the

transitions are rare and thus most difficult to study by explicit simulation. The technique

exploits the fact that the rarer the transition, the more predictable it is, as addressed by the

large deviation theory (10-16); this utilizes an approach that has been successfully

applied to other problems in reaction networks (16-19). We demonstrate with a nontrivial

biological model that our technique gives results quantitatively consistent with trajectory-

based simulation results. Computationally, the advantage of our approach is that it

requires only a single deterministic simulation to determine the effect of perturbing all

rate constants and concentrations, as long as the transitions are rare and the perturbations

are small and do not lead to a phase transition. Conceptually, our semi-analytical

expressions unveil qualitative features that characterize the key components that affect

network stability.

4.2 Model development

Consider a system of Ns different chemical species, whose copy numbers evolve

stochastically according to a network of reactions, characterized by a stoichiometric

matrix E (of dimension Ns by NR, where NR is the number of reaction types) and rate

constants k (of dimension NR) according to pre-defined rate laws (e.g. mass action). The

system may have one or more stable steady states for the species concentrations,

corresponding to different stable cellular states. We consider cases when the volume V is

large enough that a continuum approximation for species concentrations is valid and large



excursions away from any particular fixed point are rare relative to the time scale of

relaxation to the fixed point. In this limit, the transitions away from a fixed point c7', as

specified by species concentrations, to another fixed point ct' or to some other

biologically relevant (set of) states, can be described by a rate K (8). The percentage

change in this transition rate K when the rate constant k is perturbed by a small

Sln K
percentage can be quantified by . Similarly, the percentage change in K when the

8 ln k1

concentration of the ith species is perturbed by adding molecules of it to -the system is

8 . (The unperturbed rate constants serve as a natural scale for rate constant
dci

perturbations, but the scale for concentration perturbations is not as unique, since the

concentrations evolve with time.)

We first focus on transitions between stable steady states cF' and cF'. There are many

possible paths that the system can take. Any particular path that starts at cF" can be

described by the time evolution of the concentration of each species, i.e. c(t).

Alternatively, the path can be described by the actual reaction propensities at each time

v(t) (that is, the number of reactions of each type that occur per volume per time). Given

the starting point c(O) (e.g. cr'), c(t) is uniquely defined by v(t) through the following

equation:

c(t) = c(O)+ EJu(t)dt (1)
0

Since c(t) does not uniquely define u(t) when E is non-invertible, the latter is more

fundamental. E is noninvertible, for example, whenever there are reversible reactions in

the system.

Not all transition paths are equally probable. Suppose a system is evolving according to a

particular path v(t) and that the system is therefore at a particular point c(t) at time t.

Over the next differential time interval [t,t+AtJ, the actual number of reactions of type i

that occur is ni = v1VAt. However, the expected number of reactions of type i is



A, = UVAt, as determined by the deterministic reaction propensities, Ug, at the state c(t),

according to the pre-defined rate law Uj(t;k,c). The probability of observing n, reactions

of type i over the differential time At follows a Poisson distribution characterized by A,.

Hence, the probability of observing n = uVAt reactions is:

NR Ai=NR (iVAt)viVAt e-VAt(2

P(n) = HLi- e- H ( e (2)
..1 ni! i (vyVAt)!

The first equality holds assuming the time interval is sufficiently small so that the species

concentrations do not change significantly over the interval. By Stirling's approximation,

lim nP= At v.lnL- +U, (3)
v-~ V v i

Hence at the continuum limit, the probability density of the path u(t), not necessarily a

transition path, with t from 0 to T, is proportional to exp(-VS(u,r)), where:

NR T

S(u,-r) = Ifdt vi ln -i--v+;U (4)
i.1 0 Vi

From the large deviation theory, S(vr) serves as the action (or rate function) of the path

v over [0,r]. Therefore, we have shown that for reaction networks, the action of the path

can be defined by Eq. 4. This expression has been derived in a different way by Liu (20).

Eq. 4 parses the total action into contributions from individual types of reactions, and

hence it holds promise for identifying important reactions that can most effectively slow

down or speed up rare transitions.

The minimum action S* for the transition, and the corresponding most probable (least

action) transition path v *, can be formally expressed by minimizing Eq. 4 over all the

paths that originate from c' and reach cB at a time r later and then minimizing over the

time r. S*= min min S(vT) (10).
T U

The minimum action provides a connection to the transition rate K, because the transition

rate of a rare event is, from large deviation theory (e.g. WKB approximation; (10)):

K = A exp(-VS *) (5)



where A depends sub-exponentially on the volume and both A and S* depend on the

parameters describing the system (e.g. k). At the limit of large V, simple calculation

dlnK 8S* dlnK dS*
yields, ~ -V and ~ -V .Hence, to determine the sensitivities of

lnki In k dc dc

8S* 8S*
the transition rate on the different parameters, we only need to compute or --

alnk, dc,

4.3 Results

4.3.1 Perturbation of k

Perturbing the rate constant k by Ak changes the minimal action S*, because: (a) the

steady states change (since the steady states depend on ki); (b) the optimal path U *

changes (not only because its steady-state endpoints change); and (c) individual path

actions change, because the deterministic propensities U * along paths change with k

according to the rate law. The changes in S* due to (a) and (b) are O(Aki2), whereas the

aS *
change due to (c) is O(Aki) (supplement). Hence, to compute , and therefore

adin k,

8 ln K
d In k, we only have to evaluate the change of action along the unperturbed optimal path

u * when ki changes:

aln K M' 8vS 29 * V*
=SV dt=kf(1--4 -- '-dt (6)

dlnk, 0 o dln k, 'U* 0 , ak,
where we substitute Eq. 4 to obtain the second equality. If Ug is linear with ki, as in mass

action kinetics, the sensitivities can be further simplified:

dInK dS*(k) -**
~vfv -V )V v - *dt (7)

dlnk lnki 0

As expected, the transition rate increases with the rates of reactions that must occur more

frequently during the transition than they would deterministically. For rate constants that

participate in multiple reactions (e.g. dephosphorylations by the same phosphatase), the

right hand side of Eq. 7 will contain a summation over all such reactions.



Eq. 7 provides a way to calculate the effect of perturbing rate constants given a single

input, the unperturbed optimal path, u *. This input path can be determined numerically

using the efficient geometric minimal action method (gMAM; (16)).

4.3.2 Perturbation of c

Chemical species can be governed by conservation laws (such laws are determined by E).

Adding molecules of a species not governed by a conservation law to a system (e.g. the

species A in the toy network A ->#, # -+ A) does not change the system's steady states.

Therefore, such perturbations will not affect transition times, because the system will

relax to an original steady state before any rare transition occurs.

For species that are governed by conservation laws, perturbing concentrations by adding

molecules to the system can change the steady states ci7 and ct". The optimal path v *

and the deterministic propensities U5* along the optimal path also change when

concentrations are perturbed, similar to perturbing rate constants. (The deterministic

propensities U(t; k,c) change because the optimal path in concentration space c changes

according to Eq. 1). We can show that the change in the minimal action is due to the

change in deterministic propensities evaluated along the unperturbed optimal path u *, to

the order of O(Aci2) (proof in Supplement). Arguments analogous to the perturbation in k

lead to:

dlnK NR T*2
~ f-V f1 _- i dt (8)

dci j= 0 v) dci

where ' is evaluated by adding molecules to the system at the starting point of the
dci

transition, CA, according to Eq. 1 and the predefined rate law. Note that the specific

state of the system when the molecules are added is unimportant, since the system will

relax to the new steady state before any rare transition occurs, by assumption. For mass



action kinetics, the right hand side of Eq. 8 can be further simplified to
NR t*

VIf Ei I -V dt.
j-1 0 C,

Note there may be multiple ways of perturbing concentrations that achieve the same

effect. For example, increasing the concentration of a compound AB by an amount Ac

will have the same effect as increasing the concentrations of both species A and B by Ac.

This implies, from Eq. 8, that the optimal path u * must be such that

8S*(c) 8S*(c) 8S*(c)
C) = *(+ , which has been verified numerically for a simple model as a

oc AB dC A dCB

check on the equation's correctness (data not shown).

4.3.3 Transitions between a stable state and a set of other states

The previous equations have been derived for a transition between two fixed points. The

same equations apply for a transition from a stable state to a predefined set of states, as

long as u * is understood to be additionally optimized over all possible endpoints

consistent with this set of states, as described algorithmically in (16), because large

deviation theory results still hold. The only exception to the applicability of these

equations is that Eq. 8 does not directly apply, as derived, to any species that participates

in the definition of the set of endpoints. For example, if the transition is complete

whenever the concentration of a certain species exceeds a threshold level, Eq. 8 cannot be

applied directly to perturbations in the concentration of that species.

4.3.4 Application to a biological system

To test the accuracy of the methods developed above, we apply them to a biochemical

reaction network that characterizes a key module in T-cell activation, the Ras-SOS

signaling network. This model has been well-studied computationally in conjunction with

experiments (21-23). We study a particular version of it as defined in Tables SI and S4 of

(21). This model has 26 reactions (and associated rate constants), 14 species governed by



5 conservation equations, and about 400 molecules in the simulation box. The copy

number of individual species, summed over all bound states, is as small at 10. The

dynamics do not observe detailed balance.

The main feature of the model is that a key signaling molecule, Ras, can be activated via

two distinct pathways, mediated by Rasgrp or by SOS, and deactivated by RasGAP. The

activation by SOS is governed by a positive feedback loop: SOS's catalytic activity

increases significantly when it is bound to the active form of Ras, RasGTP. This enables

the system to exhibit bistability when SOS concentration is at an intermediate level.

Meanwhile, at a low SOS level, only one stable state exists, characterized by low level of

RasGTP (21). Thus, the model is rich enough to investigate how cells control stochastic

transitions between multiple stable states (at intermediate SOS level) and suppress

fluctuations from a single stable state (at low SOS level).

We use Eqs. 7 and 8 to predict the sensitivities of the transition time in each of these two

cases: in the first case (intermediate SOS), from the lower to the higher RasGTP steady

state (which represents stochastic activation); and in the second case (low SOS), from the

stable state to a predefined high RasGTP level (which represents spurious Ras

activation). To obtain the unperturbed optimal path u *, we implemented the gMAM

(16). For comparison, we individually calculated the transition times under the

unperturbed parameters and under each of the perturbed parameters by trajectory-based

simulation; we chose forward flux sampling (FFS; (24)) as the direct simulation method

and the RasGTP level as its thresholding parameter. Specifically, we perturbed each of

the 26 rate constants by 1%, and we increased the number of each conserved species by

1.

As shown in Fig. 1, our method not only qualitatively predicted key reactions and

species, but also provided remarkable quantitative agreement with the direct simulation

results. The discrepancies observed in Fig. 1 are due to the finite size of the simulation

system, the finite change in rate parameters and initial concentrations, and statistical

uncertainties in FFS results. Note that for RasGAP, the species in Fig. 1D to which the



transition time is the most sensitive, an increase of one molecule represents a relatively

large (10%) change in concentration, which explains the deviation between the prediction

and the direct simulation.

4.4 Discussion

Our technique correctly identifies the key reactions for regulating Ras activation, namely

RasGAP activity, SOS activity when RasGTP is bound to it, and Rasgrp activity. The

most important species, RasGAP, SOS, and Rasgrp, are, as expected, associated with

those key reactions. These predictions are consistent with recent experimental results in

T-cell cancers in which different species concentrations were perturbed (23). An

interesting prediction that can be tested experimentally is that the relative importance of

SOS and Rasgrp switches at a low concentration of SOS (around SOS=5; data not

shown), presaged in Fig. 1 by the narrowing of the gap in their importance from SOS=55

to SOS=15.

In addition to these biological findings, the method developed in this chapter has

computational and conceptual benefits. Computationally, both direct simulation and our

method require a simulation to determine properties of the unperturbed transition (the

expected time vs. u *). But this is the only simulation required for our method, whereas a

trajectory-based approach requires additional simulations to explore the space of all

possible perturbation parameters. For the simple network we have studied, this is the

difference between 1 (deterministic) simulation and 32 (stochastic) simulations.

Furthermore, Eqs. 4, 7, and 8 give more detailed information than just the overall

sensitivities of the transition, because, though the integrand, they provide time-resolved

information about when fluctuations must occur and at what points the transition is

sensitive to rate or concentration perturbations. This provides the basis to identify

coordinated sets of fluctuations that drive the transition and the order in which they occur

during the transition, not explored in this work.
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Figure 1: Quantitative consistency between predictions and direct simulation
results. (A, B) Fold change in transition rate due to 1% increase of rate constants at (A)
SOS = 50 (intermediate) and (b) SOS = 15 (low). Each red dot represents the perturbation
of a different rate constant. The direct simulation results are the averages of ten
independent FFS runs, and for each FFS run 103 points were stored on each surface. For
SOS = 15 (low), the transition considered is the stochastic escape from the single stable
state to the hyperplane where 60% of Ras molecules are activated. (C, D) Fold change in
transition rate when one molecule of each fundamental type is added to the system at (C)
SOS = 50 (intermediate) and (D) SOS = 15 (low).

Eq. 7 and 8 suggest general features of reactions most responsible for regulating

stochastic transitions. Key reactions are those associated with improbably large

fluctuations over a sustained interval of time (rather than short large bursts) to drive the

transition against large deterministic propensities opposing it. Note that the probability

of a fluctuation in an individual reaction rate is given by Eq. 4 as

S =f dt v* In - * +U-*) Large S,* indicates a significant deviation of actual

propensity v, * from deterministic propensity U, *, and hence large sensitivity in general.

Note that S1* is convex with respect to v * while the reaction sensitivity is linear; by



Jensen's inequality, given two reactions with the same individual action, the reaction with

fluctuations more evenly distributed along the course of the transition will lead to a larger

sensitivity. Also note the first-order approximation S*- f ' _, 'dt ;hence given the
V.

same Si*, the reaction with larger U,* has a larger sensitivity. This explains why SOS

activity becomes less important relative to Rasgrp when the level of SOS decreases, as

seen in Figure la and b: the decreasing SOS level makes transitions more unlikely (so all

sensitivities, including the sensitivity to Rasgrp, roughly increase), but the decreasing

deterministic propensity of SOS reactions (because the SOS concentration is reduced),

decreases the particular sensitivity to SOS.

An extension of the above features is that the rarer a transition is, the more fragile it is in

general to perturbation. This holds even when the measure of fragility is the percentage

(not just absolute) change in the transition time. This is confirmed by the difference in

the magnitude of sensitivities between Fig. la and lb and between Fig. Ic and Id.

Finally, as seen in Eqs. 7 and 8, to understand the key components that control stochastic

transitions, it is necessary to understand how these transitions occur in the reaction space

(as described by u) rather than in the conventional species space (as described by c).

The sensitivity of stochastic transition times to parameter perturbations complements

other work, involving different metrics, on sensitivity analysis in both deterministic and

stochastic settings (25, 26).
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4A Supplement for Chapter 4

4A. 1 Perturbation of k:

Let c7 and c' be the steady states under the rate parameter k. Let V*B be the optimal
path under k connecting cA to cB and -r* be the corresponding optimal time, so that

the minimal action is S * (k) = S(*A-+B -,B;k), as defined in Eq. 4 in the main text.

Note that here we explicitly include k as an argument of S; this reflects the dependence of
S on k through the deterministic propensities U *, independent of the path v and the time

Now perturb k by a small amount Ak such that the perturbed rate parameter is
k'= k+ Ak. Let ci' and ci be the new steady states under k' and '*'B' be the new

optimal path from c7' and c' in time -r',*_, so that the new minimal action

is S *(k') = S(''B' ,-u -B'; k). In what follows, we assume the perturbation in k is done

by perturbing a single rate constant, ki. To compute the change in minimal action
S(vB*A-B,--B;k)-S(+B',-+rB;k'), we develop the following steps. Note the use of *

to denote an optimal path, time, or action, and the use of' to denote quantities calculated
under the perturbed rate constants k'.

1. Let u'*_ be the optimal path connecting c' to cF in time t* under k',
A'AA' A -A'A

and 'B* be the optimal path connecting c4F to cF in time -+B' under k.

Note that the constructed path U. = A{U'*_,V*+B ,BgB.B } is a valid path

connecting c' to c'.. (through c' and c'). Since actions are additive and

S(v,-r;k') achieves its minimum atU 'a*'B' and -r'gB', by calculus of

variations:

S(U'*-' '-+B A' A-B -+ B-B' B ; B;k)+0(Akj2)
A A rBf;kl) = ("QUA AJA A;k') + S( A BB A-B; kW) + S (U'B B k') (A

2. Note that S(v A*,r'*A;k') (i.e. the action of the optimal path from c' to
2. Noe tht S(A'

cA under k') is O(Ak7), since the minimum action reaches its minimum at

steady state cU (16). Also S(v'*B-' -*B';k) (i.e. the action of the optimal

path from c' to cF' under k') is zero, since the path will follow the
deterministic path into the steady state c'". Hence, the change in minimal

action due to the change of steady states is O(Aki), and the previous equation

reduces to:
S('*,UB'9,', B' k) = S(vA-B -AB;k')+

3. Now to compute the sensitivity of minimal action to ki, we only have to
compute S( *,BJ+B;k A-+B,-rB;k'), that is, to evaluate the change in



action due to the change in ki along the original optimal path V*B. This
proves Eq. 6 in the main text.

4A.2 Perturbation of c:

Consider perturbing the concentration of species i by Ac. Assume the concentration of
species i is governed by conservation equations. Before perturbation, let c' and
cf denote the steady states, V*A-B denote the optimal path, and
S* (cA") = S(A-B -- B;cFj) denote the minimal action. We suppress the dependence of
S on k, since the latter is held constant; we explicitly include the starting point as one
argument, since the deterministic propensity U* depends on the starting point, as seen in
Eq. 1 of the main text. The path in species concentration space c(t) evolves on a subspace
Co with dimension Ns-Nc, where Nc is the number of species conservation equations.
After perturbation, let these corresponding quantities be c f', c', and
S*(cr)= S(vA'> ,T'->;B' C), respectively. The new path c'(t) evolves on a subspace

Co'.

We develop the following steps to compute S(vAB9 - CAF')-S(v'A'-B' 'A-B';

1. Shift cF" by Act so that its image cA" lands in the subspace Co'. Starting from c A"

generate a dynamical path according to VA-B. Note that although V*,B was
optimized on the subspace Co, it is still a valid sequence of reactions in the
subspace Co'. Furthermore, the resulting path in the species concentration space
stays in the subspace Co', since it starts in this subspace and evolves according to
reactions that obey the conservation laws. Denote the endpoint of this path in the
subspace Co' as CB"'

2. We connect cA' to CA using the optimal path '* and cB, to c using the
optimal path U'B"-B'' Just as in the case of perturbation of k, we have:

+ S(v'B,-B "-B'; CB)

and
S(v' *' B -+* *B -B0K+0(Aci)

3. To compute the sensitivity of minimal action to Ac, we have to compute
S(vA-B9B; B A-)B-I'r B; CA). Note that these two paths in the species

concentration space are parallel and point-wise different by Aci. To evaluate the
change in action, we can simply calculate the action change due to the change of
the starting point from cF to CA along the unperturbed optimal path via Eq. 4 in
the main text using the pre-defined rate laws. This proves Eq. 8.



Chapter 5

To the nucleus and beyond

"[I] sprinted lickety- for the prize of the mastery
split on my magic Keds over that stretch of road,

from a crouching start, with no one no where to deny
scarcely touching the ground when I flung myself down

with my flying skin that on the given course
as I poured it on I was the world's fastest human.

Stanley Kunitz, "The Testing-Tree"

The previous chapters suggest broad areas of inquiry that merit further study. For

example, Chapter 2 highlighted the spatiotemporal aspects of T cell signaling. This

chapter probes two additional spatiotemporal aspects of cellular signaling, one temporal

problem (how memory effects can arise in T cell signaling) and one spatial problem (how

fast signals can propagate through space, for example to the nucleus).

5.1 Memory in T cell signaling can arise from a positive feedback induced

hysteresis'

In Chapter 4, we briefly introduced the Ras-SOS signaling module, an important module

in the translation of pMHC-TCR binding into the ultimate activation of the T cell and

other cell signaling systems. As the level of the input SOS increases, the module

undergoes two saddle-node bifurcations, so that the system possesses a single stable

steady state at low SOS levels (representing an inactive state), two stable steady states at

intermediate SOS (representing inactive an active states), and a single stable steady state

at high SOS levels (representing an active state) (Fig. 1).

The work in this section has been published in Cell as a small part of "Digital Signaling
and Hysteresis Characterize Ras Activation in Lymphoid Cells" (J. Das et aL, Cell 136,
337 (Jan, 2009)).



In Chapter 3, we focused on the consequences of the bistability at intermediate SOS,

since such bistabilities enable stochastic switching. The bifurcation diagram of the Ras-

SOS signaling network also suggests that the network supports hysteresis, or memory.

That is, whether the T cell activates at intermediate SOS depends on the state of the cell

when it receives stimulus (and therefore the cell's history). If only a basal amount of Ras

molecules are active, the T cell will remain inactive, unless it stochastically switches to

an active state. If enough RasGTP molecules are already active (the state falls above the

separatrix defined by the unstable steady state), however, the T cell will likely activate.

Ras levels will be enhanced from their basal levels if the T cell had previously been

activated (for example, by having bound an APC that stimulated it very strongly) and this

previous encounter was recent enough that the RasGTP had not fully deactivated yet to

basal levels (Fig. 2). In the computational model in Fig 2., when RasGTP is initially

induced by high levels of SOS and then subsequently restimulated with intermediate

levels of SOS, robust restimulation of RasGTP results, provided the restimulation occurs

quickly enough. Such hysteresis has been observed experimentally (1).

This hysteresis provides a way for T cells to integrate signals in multiple, successive

encounters with moderately stimulating APCs. The implications of this signal integration

have been considered by my colleague, Huan Zheng (2).
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Figure 1: Bifurcation diagram of the Ras-SOS signaling module. Steady states of the
mean-field kinetic rate equations show production of low and high concentrations of



RasGTP (characterized by stable fixed points in red) at low and high values of SOS. At
intermediate levels of SOS three states arise with unstable fixed RasGTP points shown in
blue. A and B denote the saddle-node bifurcations. (Figure and caption adapted from
(1)).
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Figure 2: The Ras-SOS signaling module provides a mechanism for T cell signal
integration. (A) Modeling serial stimulation. RasGTP (blue line) was initially induced
by high levels of SOS (black box, 350 molecules). SOS was removed for 100, 250, or
500 s and subsequent low-level SOS signals were simulated (green box, 150 molecules).
Provided that RasGTP levels do not fall below the blue points (Figure 1), robust
restimulation is induced by low-level SOS. The results are obtained from mean-field rate
equations corresponding to the parameters in Table 1 of Das et al (1).
(B) Lack of sensitized restimulation in the absence of SOS. The model from Fig. lE in
(1) is used to analyze a SOS-deficient state in the same manner as in panel A. RasGRP 1
values were set at 100 (black) and 50 (green) molecules of RasGRP 1 in the simulation
box, respectively. The response to the second stimulus is history independent.

5.2 Signaling Cascades Modulate the Speed of Signal Propagation Through
Space 2

Cells are not mixed bags of signaling molecules. As a consequence, signals must travel

from their origin to distal locations. Much is understood about the purely diffusive

propagation of signals through space. Many signals, however, propagate via signaling

cascades. Here, we show that, depending on their kinetics, cascades speed up or slow

down the propagation of signals through space, relative to pure diffusion.

2 The work in this section has been published in PLoS One as "Signaling Cascades
Modulate the Speed of Signal Propagation Through Space" (C. C. Govern, A. K.
Chakraborty, PLoS One 4, 7 (Feb, 2009)).



We modeled simple cascades operating under different limits of Michaelis-Menten

kinetics using deterministic reaction-diffusion equations. Cascades operating far from

enzyme saturation speed up signal propagation; the second mobile species moves more

quickly than the first through space, on average. The enhanced speed is due to more

efficient serial activation of a downstream signaling module (by the signaling molecule

immediately upstream in the cascade) at points distal from the signaling origin, compared

to locations closer to the source. Conversely, cascades operating under saturated kinetics,

which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing

them to regions around the origin.3

Signal speed modulation may be a fundamental function of cascades, affecting the ability

of signals to penetrate within a cell, to cross-react with other signals, and to activate

distant targets. In particular, enhanced speeds provide a way to increase signal

penetration into a cell without needing to flood the cell with large numbers of active

signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades

facilitate strong, but localized, signaling.

5.2.1 Introduction

Signaling cascades, series of molecules that sequentially activate each other, are

ubiquitous in cellular systems (3-6). They have long been thought to amplify input

signals as each molecule in the cascade can serially activate multiple molecules of a

downstream component of the cascade (7, 8). However, doubts have been raised about

whether cellular conditions actually allow for this (8). Cascades have also been

considered to modulate the duration and timing of signals, filter noise, and otherwise

regulate cellular decisions (8-10).

3 The work in this section considers signal propagation in one dimension. In silico
models in two dimensions suggest similar results (data not shown); however, given the
importance of dimensionality in diffusion processes, more careful work is needed to draw
conclusions in two and three dimensions.



The speed of signal propagation through space is also important. For example, how

quickly signals propagate though the cell might affect integration of signals from

different receptors on the same cell. Insights into the signal amplitude, duration, and

timing at points distal from a signal's source cannot be obtained from computational

models that treat the system to be homogenous (or well-mixed).

The influence of cascades on the spatial propagation of signals has been considered

before (10-18). Much of this work has focused on the long time behavior of spatially

inhomogeneous systems or on the kinetics of particular pathways. In the latter case, for

example, many studies have focused on the MAPK cascade, a ubiquitous cellular

pathway. The MAPK cascade has been shown to enhance signal penetration into the cell,

reducing sharp signaling gradients otherwise caused by phosphatase deactivation of the

signal as it travels away from the origin (10, 14). However, according to these studies,

simple kinetic considerations do not account for how the cascade enables penetration

from the membrane to the nucleus. A more complicated model of the MAPK cascade,

involving feedback-induced bistability, has been shown to generate fast-moving signaling

waves that might account for long-range propagation (11, 15, 16).

Here, we have examined the mechanistic principles underlying how simple cascades can

influence the speed of signal propagation through space regardless of whether the cascade

is an intrinsic amplifier or attenuator of signal amplitude.

We find that, depending upon the pertinent kinetic parameters, cascades can either speed

up or slow down signal propagation though space in a manner that is largely uncoupled

from its impact on features such as amplification of the amplitude. In particular, cascades

operating far from saturation can speed signal propagation through the cell. Although

phosphatase levels modulating certain kinase cascades have been suggested to be too

large for signal penetration into the nucleus, our results may be applicable to kinase

cascades over shorter length scales or to other cascaded signaling modules.

Additionally, we find that cascades operating under zero-order ultrasensitivity (19), in

which the cascaded signal is either completely activated or not active at all, can serve to



slow down signal propagation in a cell, even as the signal is amplified overall. By

extending to the spatial domain studies that productively used moment analysis in the

temporal domain (8), we provide a way to summarize the complex spatiotemporal

behaviors of cascades.

5.2.2 Results and Discussion

5.2.2.1 Simple model of a signaling cascade

We initially model a simple one-level cascade (Figure 3) in which a primary signal,

initially localized in space, diffuses away from its origin and activates a secondary,

homogenously distributed messenger. Homogenously distributed phosphatases

deactivate the signals. In order to reduce the number of competing length scales in the

problem, all molecules are assumed to diffuse at identical rates. We neglect many

effects that are undoubtedly important, including the effects of scaffolds (8, 20, 21) and

feedback regulation (15, 22).

Figure 3: Diagram of a one-level cascade.

Complications arise in modeling the specific geometries involved in cellular signaling.

To keep the discussion general to a variety of length scales and signaling contexts, we

model a system of infinite extent in all directions from the initial signal. In other words,

we imagine that the distance from the origin of the signal to its ultimate target is large
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compared to other length scales in the problem. The models have been studied in one

dimension.

The primary signal is introduced to the system as a bolus at the origin, as opposed to

introduction via a flux, eliminating a time scale in the problem.

Our model differs from more commonly studied models of cascades, in which the

primary signal is permanently localized to the origin (10, 12, 14, 17). Under certain

conditions, our model of a one-level cascade is similar to a two-level model in which the

primary signal is permanently localized. In particular, the common model collapses to

our model if the activation of the first mobile messenger is fast compared to its diffusion

time and the reaction time scale. We do not focus on the two-level cascade directly

because each level of cascading adds complexity to the problem; our goal is merely to

determine whether a secondary mobile messenger travels faster or slower than a primary

mobile messenger.

We describe the results of relevant modifications to this simple model throughout the

discussion.

5.2.2.2 Deterministic formulation of the model

The spatiotemporal evolution of the primary signal, S, and the activated secondary signal,

A*, can be described by the following dimensionless (scaled using Table 1) reaction-

diffusion equations:

acs a2cs

at ax2  (1)
2C

ac a 2c + Da -r(cAcs;Y )
at ax

cs(x,0) =1 x| s 1

0 |x > 1

CA* (x,0) = 0
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cA.(1o,t) = cs(± o,t) = 0

The rate expression r incorporates the effect of phosphatases through the parameter y, as

detailed below.

Table 1: Scalings in Equation 1

Variable Scale
Distance (x) Characteristic width of the initial primary

signal distribution, L.
Primary signal concentration (cs) Characteristic one-dimensional

concentration of the primary signal, Nso/L.
Secondary signal concentration (cA*) Initial concentration of inactive secondary

signal, cAo.
Time (t) Characteristic diffusion time (L2/D).
Reaction rate Characteristic reaction time, dependent on

the particular kinetics. See examples in
text.

The Damkohler number, Da, is the ratio of the diffusion and reaction time scales.

Specific forms are given below, as part of the discussion on particular kinetics. If all

reactions in the system occur on the same time scale, the Damkohler number compares

the time scale over which the primary signal diffuses away from its origin to the time

scale over which it begins to activate the secondary signal. In this respect, it measures

the significance of the primary signal's localization. For example, if the Damkohler

number is small (diffusion is fast compared to reaction), the primary signal delocalizes

quickly, before it attempts to react.

In this paper, we study two limits of Michaelis-Menten kinetics for the rate expression

r(cA -, cs; y). If the enzyme kinetics are far from saturation (the Michealis constants are

large relative to the secondary signal concentration), it suffices to consider direct

reactions between the secondary signal and its activators and deactivators according to

mass action kinetics:

r(cA., cs; Y )= cs (1 - cA- )ycA. (2)

If the enzyme kinetics are saturated (the Michaelis constants are small), the kinetics of

the one level cascade become independent of the secondary signal's concentration:
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r(CA-,CS;Y) cS(1 - cA.) YCA - CS (3)
' + (1-cA) "' + CA*

CAO CAO

The expressions in Equations 2 and 3 correspond to Damkohler numbers of

kNSOL /(KmD) and kNsOL /(cAO D) , respectively, where k and K,, (assuming, for

notational simplicity, identical K",' and KP ) are the constants corresponding to

Michaelis-Menten kinetics.

In both limits of the kinetics, the parameter incorporating phosphatase effects, y, is

kPcL /(kNs 0), where k, is the rate constant describing the phosphatase reaction and c, is

the phosphatase concentration. This parameter compares the initial deactivation and

activation rates at the signaling origin.

Note that the concentration profile for the primary signal concentration, as described by

Equation 1 is just a Gaussian centered at the origin with a variance of 2t.

To quantify the mean speed of signal propagation, we have analyzed the mean squared

displacement of each signal from the origin as a function of time. For the primary signal,

S, the mean squared displacement, (xs2), is just 2t. For the secondary signal, A*, it can

be calculated from the concentration profile as:

fx
2 CA* (x, t)d

(X 2) A*= 0c,(4)

fcA*(x, t)dx

The variance of the signal's distribution, along with the overall amount of the signal in

the system, serves as a summary of its spatiotemporal evolution. The first passage time

distribution, also of interest, is less easily discussed deterministically. Also, it is not as

decoupled from other functions of the cascade, such as signal amplification- merely

amplifying a signal tends to decrease the first passage time, independent of any effect on

the signal's propagation speed.
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5.2.2.3 Cascades operating far from saturated kinetics (large Michaelis constants) speed

up signal propagation

Numerical solutions for the mean squared displacement of the secondary signal under the

kinetics of Equation 2 are presented in Figure 4 for various values of the Damkohler

number, kNSOL /(KmD), without phosphatases (y=O). An approximate perturbative

solution in the absence of phosphatases, obtained by modeling the initial primary signal

as a delta function of unit characteristic length, provides an analytical description for

short times and low Damkohler numbers:

(x 2)=2t- 1+ Dat+O(Da 2(5)( +20.7r)()

1000

0 20 40 60 80 100
Time

Figure 4: Mean squared displacement of the secondary signal under the kinetics of
Equation 2. Dashed line, pure diffusion reference corresponding to the primary signal;
solid lines, mean squared displacement of the secondary signal for various Damkohler
numbers; squares, approximation for Da=1, corresponding to Equation 5.

The numerical and approximate solutions indicate that cascades described by Equation 2

speed up signal propagation; the secondary signal travels faster than the primary.

Furthermore, the cascade's effect on the speed of the signal is independent of its effect on
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the overall amplitude of the signal: the amplitude can be independently controlled by

altering the initial, inactive concentration of the secondary signal, cAo, which does not

affect the signal speed. The enhancement of signal speed is negligible when the

Damkohler number is negligible (e.g. for fast diffusion or weak primary signals) and

increases as the Damkohler number increases. The seemingly linear increase of the

secondary signal's mean squared displacement with time admits the possibility of an

effective diffusivity.

Both the increased speed of the secondary signal and its dependence on the Damkohler

number can be understood by considering the effects of signal localization on serial

triggering. Primary signaling molecules initially localized to the origin must compete

with each other there to activate a limited amount of secondary signal, constraining any

individual molecule's ability to serially activate many secondary signaling molecules.

Primary signaling molecules that diffuse away from the origin, on the other hand,

encounter less competition and can more readily serially activate many molecules. Serial

triggering is enhanced far from the origin, and the distribution of the secondary signal is

shifted to greater distances than the primary signal. In the context of signal speed, the

result is that the secondary signal moves faster than its predecessor. For example, if the

reaction is instantaneous relative to diffusion (Da>>1), the secondary signal becomes

fully activated wherever there is at least one molecule of the primary signal - potentially

quite far from the origin and certainly further at any given time than the primary signal,

on average.

Our results also suggest that the greater the disparity between serial triggering at the

origin and far away, the greater the enhancement in the signal's speed. Specifically, the

speed increases with the Damkohler number, which measures the importance of a

signal's localization. When the Damkohler number is high, the primary signal attempts

to react before it diffuses away from the origin, and near the origin, its ability to serially

trigger is limited.
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There are several implications for these results. Directly, by examining the contributions

to the Damkohler number, our results suggest that one effect of strongly stimulating a

primary signal (increasing Nso) is to generate a quickly moving, not just stronger,

secondary signal.

Our results also clarify previous work indicating that cascades help signals penetrate into

a cell (10, 14). Specifically, we note that one way cascades help signal penetration is by

increasing signal speed. This effect is independent from any overall amplification of the

primary signal, which would also contribute to increased penetration. In particular,

because of the increased speed, a cascade can help a signal penetrate deep into a cell even

if it attenuates the overall level of the signal (Figure 5). Cascades provide a way to

increase penetration at any given time without flooding the cell with large numbers of

active signaling molecules.

5

0

E 25i

04

-50 -25 0 25 50
Distance from origin

Figure 5: Representative concentration profiles in a cascade that attenuates the overall
signal while amplifying the signal far from the origin. Dashed curve, primary signal;
solid curve, secondary signal. Parameters (arbitrary units): Da=1000; cAo=1; Nso/L=100;
t=40. The parameters have been chosen to highlight the limited serial triggering at the
origin, where the secondary signal is already, by the figured time, entirely activated.

Another implication of our results is that cascades do not necessarily cause signaling

delays. In homogenous systems, cascades lead to delays, because species buried within

the chain take time to become activated (8). Heterogeneously, however, the secondary
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signal travels faster than the primary signal, so there may be no delay in its arrival at a

target.

We investigated several modifications to our simple model to determine whether the

basic conclusions continue to hold in more realistic situations. We find that in all cases

cascades described by the kinetics in Equation 2 increase the speed of signal propagation.

For example, we considered the effect of adding phosphatases to the system (Figure 6).

These molecules homogenously deactivate the primary and secondary signals. Because

continual deactivation at the origin enables serial triggering there, the secondary signal

slows down in the presence of phosphatases. Consistent with our previous results,

however, the secondary signal still moves faster than the primary signal.
500

y=0

400-

8
300- Y=0.01

9 200-

Cy=10

100

04
0 20 40 60 80 100

Time
Figure 6: Effect of phosphatases deactivating the secondary signal. The curves indicate
the mean squared displacement of the secondary signal for Da=10 and various values of
the parameter y. The curve for y=1 0 overlays the purely diffusive curve of the primary
signal. Note that y is a parameter that reflects phosphatase activity at the origin only and
so understates phosphatase activity in the system as a whole. Similar results pertain to
the effect of phosphatases on the primary signal.

We also investigated multi-level cascades to determine whether speeds continue to be

enhanced as more species are added to a signaling chain. We find, consistent with our

previous results, that active signaling molecules at all levels of a cascade travel faster

than the primary signal (Figure 7). Furthermore, the same basic features that govern

signal speed in a one level cascade seem to govern the speeds at each level in a multi-
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level cascade. In general, any given step in a multi-level cascade is just a one level

cascade in which the primary signal is no longer a simple Gaussian. The language of

localization developed above for a Gaussian input, for which the diffusion and reaction

time scales determine differences in serial triggering near and far from the origin, broadly

translates to multi-level cascades, as suggested by the simulations in Figure 5. If the

localization at one level is significant, the next level moves quickly relative to pure

diffusion; otherwise, the next level moves almost diffusively. Practically, the

consequence for multilevel cascades is that, if signals in the cascade become more and

more localized down the chain (e.g. the cascade amplifies signal amplitude, reducing

reaction times), the signal travels more and more quickly; if the signals become less

localized (e.g. the cascade attenuates signal amplitude), the speeds tend toward pure

diffusion.

40 C*
E

CL 30-

A*
20

20

10 -.

0 2 4 6 8 10
Time

Figure 7: Signal propagation in a multi-level cascade. The cascade ordering is S, A, B,
C, with each species activating the species after it in the chain. The parameters have been
chosen representatively so that the signal has been amplified at each step by the final time
point. (Inset) The cascade at early times, when the signal has not yet been amplified at
any level. Note that the species rank, from fastest to slowest, as C*, B*, A*, S at late
times (when the signal has been amplified) but as A*, B*, C*, S at early times (when the
signal has been attenuated). Parameters: all species are assumed to diffuse at the same
rate; the plots correspond to Damkohler numbers of 1 for all levels of the cascade, where
the Damkohler number for the ith cascade level is k,cOL 2 /(K,,Di).

We also interrogated our assumption that the primary signal enters the system

instantaneously as a bolus. In many contexts, the primary mobile signal in a cascade is
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activated over time by a permanently localized predecessor (e.g. one bound to the

membrane). To investigate the consequence of this, we considered a model in which the

primary mobile signal is generated at the origin at some constant rate (Figure 8).

Consistent with our previous results, the secondary signal travels faster than the primary

signal. In addition, we investigated a more detailed model in which the primary mobile

signal, initially inactive and homogenously distributed, is activated by a signal on the

membrane that decays exponentially over time (Supplementary Figure 1 a). Again, the

secondary mobile signal travels faster than its predecessor. Furthermore, if the

membrane-bound signal decays rapidly, quickly activating the primary signal, the results

coincide with those of our simple model (Supplementary Figure lb).
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Figure 8: Effect of generating the primary signal at a constant rate at the origin. The
results are parameterized by a Damkohler number equal to kRL4 /(KMD 2), where R is the
rate of generation at the origin. Dashed line, primary signal; solid lines, secondary signal
for different values of the Damkohler number.

Finally, because the mean-squared-displacement metric is sensitive to the tails of the

signals' distributions, we conducted Monte Carlo simulations of our original model with

finite, integer particle numbers (Figure 9). As in the deterministic simulations, the

secondary messenger travels faster than its predecessor in the cascade. The exact scaling

with the Damkohler number was not recovered (not shown), possibly because stochastic

effects alter the scaling with the number of particles in the system.
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Figure 9: Mean squared displacement of the primary and secondary signals, simulated

stochastically. The results are from Monte Carlo simulations on a one-dimensional

lattice. At each time step, all molecules hop to adjacent sites and react, if possible, as

described in Text Si. Dashed line, purely diffusive reference corresponding to the

primary signal; solid lines, secondary signal for different numbers of primary signaling

molecules initially at the origin (N). The results are independent of the number of

secondary signaling molecules in the system.

In the simple system we investigated, as well as in all the modifications, the cascade

serves to speed up the propagation of a signal from its origin. In certain parameter

regimes - fast diffusion, slow reaction, strong phosphatases, or weak signals - the

difference can be negligible. The kinetics, however, admit the phenomena. In biological

systems, in which crowded environments slow down diffusion relative to reaction and

phosphatase recruitment is often delayed, the effects we have described are likely to be

relevant.

5.2.2.4 Cascades operating under zero-order ultrasensitivity lead to signal localization

Cascades operating under the kinetics of Equation 3 exhibit behavior known as zero-

order ultrasensitivity (19): in homogenous systems, the secondary signal is either

completely activated or left inactive depending on whether the primary signal exceeds the

threshold, y.
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Numerical solutions for the propagation speed of the secondary signal under these

kinetics are presented in Figure 10 for various values of the Damkohler number. An

approximate solution for the mean squared displacement at large Damkohler numbers is:

(x =) - 2t -ln(4.ny 2t) (6)

This approximation is obtained by assuming that the diffusion time is much slower than

the reaction time, so that the secondary signal immediately responds to changes in the

primary signal's concentration. In this limiting case, a sharp boundary exists between the

complete activation of the secondary signal near the origin, where the primary signal

exceeds the threshold, and its complete inactivity further away. The secondary signal's

mean squared displacement can then be estimated by tracking this threshold

concentration in the Gaussian distribution describing the primary signal. Note that the

Damkohler number does not appear in Equation 6 as in this approximation it has been

assumed to be infinite for the limiting case.
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Figure 10: Mean squared displacement of the primary and secondary signals under the
kinetics of Equation 3 (zero-order ultrasensitivity). Dashed line, purely diffusive
reference corresponding to the primary signal; solid lines, simulation results
corresponding to y=.01 and slow (Da=100) and fast (Da=.01) diffusion; squares,
theoretical prediction for slow diffusion corresponding to Equation 6. Simulations
conducted with KP,/cAo = .01 (Equation 3).

As indicated by the numerical simulations and by the approximate solution, cascades

operating under zero-order ultrasensitivity can both speed up a signal (at early times) and

slow it down (at later times). Eventually, the primary signal is nowhere above the
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threshold and the secondary signal, after contracting, entirely disappears. Similar to our

results in the previous section, when the Damkohler number is small, diffusion dominates

and the corrections to pure diffusive motion disappear.

Because the overall concentration of the inactive secondary signal (cAo) appears in the

Damkohler number, the signal propagation speed is no longer completely decoupled from

the amplification effects of the cascade. In particular, any attempt to drastically amplify

the primary signal will promote purely diffusive motion of the secondary signal, because

the system's tendency to remove sharp gradients washes out all other effects. The speed

and signal amplitude are still independent in the important sense that the signal can be

slowed down independently of whether it is also amplified or attenuated, depending on

the parameters.

These results have several implications. Like the cascades studied in the previous

section, zero-order ultrasensitive cascades can be used to speed up signal propagation. A

unique feature of these cascades, however, is that they can also slow down signal

propagation, eventually confining the secondary signal to a region around the signaling

origin and preventing it from reaching any distant targets or interacting with distant

signals. The confinement is accomplished purely by the kinetics of the reactions. The

region to which the signal is confined, corresponding to the maximum possible mean

squared displacement of the secondary signal, can be approximated as:

mx 1
(X2)a, = 2 (7)

As expected, phosphatases shrink the region over which the signal can propagate.

Because they can slow down signal propagation in space without necessarily attenuating

a signal, cascades under the kinetics of Equation 3 provide a way for generating strong

signals without promoting cross-reactivity with distant signals or interference with distant

targets. Other simple mechanisms do not simultaneously localize and amplify the signal.

For example, a strongly stimulated, uncascaded signal would necessarily lead to
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increased penetration and interference within the cell; a signal localized solely by strong

phosphatase activity would be commensurately weakened.

We investigated our simplification that the primary signal enters the system

instantaneously as a bolus. If, instead, the primary signal is generated at a constant rate at

the origin, the secondary signal moves more slowly than the primary signal at early times

and moves more quickly at later times, a temporal order that is opposite that of the

original result (Figure 11). If, additionally, phosphatases are added to the system to

deactivate the primary signal, the mean squared displacements eventually plateau as a

steady state is reached between generation and destruction of the primary signal

(Supplementary Figure 2). At long times, the secondary signal will either be more or less

localized than the primary signal depending on whether the steady state is reached while

the secondary signal moves slower or faster than the primary signal. If the phosphatases

are strong and the system quickly reaches steady state, the secondary signal remains more

localized than the primary signal; otherwise, it remains less localized. Given that the

novel feature of cascades operating under zero-order ultrasensitivity is that they can slow

down signal propagation, the relevance of our results in these modified models depends

on whether the early period of slowing down is long compared to other signaling

processes, such as phosphatase deactivation of the primary signal.

Importantly, once the generation of the primary signal is shut off, the system behaves

analogously to our simple model: the secondary signal moves more slowly than the

primary signal, contracting as the primary signal dilutes (Figure 12). Thus, the results

obtained for our simple model appear to apply to more detailed models on time scales

longer than the generation of the primary signal.

We hope that our study adds to the framework for thinking about the role of cascades in
signal transduction, especially how cascades influence signal propagation in space.
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Figure 11: Effect of generating the primary signal continuously at the origin. The results
are parameterized by y = Dkpcp/(kRL2), where R is the rate of formation of the primary
signal at the origin (see Text S 1). The parameters have been chosen so that reactions are
fast compared to diffusion (the Damkohler number is approximately infinite). Dashed
line, primary signal; solid lines, secondary signal for different values of y.
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Figure 12: Effect of cutting off generation of the primary signal. Three cases are
investigated: the primary signal is not cut off; the primary signal is cut off after a
nondimensional time of 5 (I); the primary signal is shut off after a nondimensional time
of 10 (II). Dashed line, purely diffusive reference; solid lines, secondary signals
corresponding to the three cases. Parameters: k=1; D=1; R=10 (rate of generation at
origin); L=1; kpc,=1. See Text Sl for more details.
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5A. Supplement for Chapter 5

5A. 1 Description of modifications to the simple model

Several modifications to our basic model are discussed in the text. These are explicitly

enumerated below in more detail.

(1) The primary signal is constantly generated at the origin.

acs a2 cSat ax2 +6(x)at ax2

A* 2* +Da-r(cA.,cs;y)
at ax2

cS (x,O) = CA* (x,O) = 0

CA.(-to, t) = cS (-o,t) = 0

The Damkohler number corresponds to those in the main text, except that c, is

scaled by RL2 / D, where R is the rate of generation at the origin. Specifically, for

kinetics far from saturation, Da= kRL 4 /(KMD 2); for zero-order ultrasensitive

kinetics, it is kRL 4 /(cAOD 2 ) . The parameter y is DkpcI/(kRL2).

(2) The primary signal is constantly generated at the origin; phosphatases

homogenously deactivate the primary and secondary signals.

acs a2c5
at ax2 + 6(x)-DaPs (S2)

c 2caCA* aCA* +Da-r(cA.,cS;Y)
at ax

cS (x,0) = CA* (x,0) = 0

CA*(±ot) = cs(mot) = 0

k~c, L2

Da =
D

The Damkohler number Da and the parameter y are as described in the first

scenario.
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(3) The primary mobile signal is generated at the origin by an exponentially decaying

signal (I) permanently localized to the origin.

dc5  32 c -_

s= 2+Da e ''"'-c,-xat ax2 1  -OX) (S3)

ac a2 cA* +Da2 -r(c . ;at ax2

Cs (x,O) = CA* (x,O) = 0

CA*(±o, t) = cs (±oo, t) = 0

Da, =SI
K',D

Da-kacScL
Da2 K D

In these equations, N, is the initial amount of the signal I in the region of size L;

cso is the initial amount of inactive S in the system; rdecay is the ratio of the decay

time of I to the diffusion time.

For kinetics far from saturation (Equation 2 in the main text), we also conducted

stochastic simulations with finite particle numbers. These were simple Monte Carlo

simulations on a one dimensional grid with no excluded volume. The grid was initialized

with Nso molecules of the primary signal at the origin and the requisite number of

inactive secondary signaling molecules randomly distributed throughout the system to

achieve a number concentration of cAo. At each time step, every molecule was given a

chance, in random order, to hop to an adjacent site and, separately, to react, if possible.

(This corresponds to a case of commensurate reaction and diffusion propensities.)
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Fig. Si: Effect of primary signal activation by a decaying, immobile signal.
Simulations correspond to Equation S3. (a) Slow decay (Tdecay = 10). Dashed line,
primary signal (a representative curve is shown for clarity; the three cases are within 10%
of this curve); solid lines, secondary signal. The Damkohler numbers of the first and
second steps were chosen to be identical for the simulations. (b) Fast decay (Tdecay =
.001). Parameters chosen so that the primary signal is generated in an initial burst (Dai =
1000; Da2 = 1). Dashed line, primary signal; solid line, secondary signal; squares,
simulations corresponding to the original model (Equation 1 in the main text) with the
initial bolus of signal (Nso) set to the amount of primary signal eventually generated in
the case of fast decay.
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Fig. S2: The effect of phosphatases that deactivate the primary signal. Lines with
squares, Dap = 0.01; lines with circles, Dap = 0.005; open symbols, primary signal; closed
symbols, secondary signals. Other parameters: Da = 1.5; y = 0.67.
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Chapter 6

Conclusions and outlook

"Yes, she thought, laying down her brush
in extreme fatigue, I have had my vision."

Virginia Woolf, "To the Lighthouse"

Chapters 2 through 4 of this thesis span three different biological problems at three

different scales of the immune system, ranging from individual molecular interactions to

the population of T cells acting in concert. The projects recruit different techniques from

engineering and physical sciences to understand these biological problems, including

random walks and diffusion (chapter 2), decision theory and statistical inference (chapter

3), and large deviation theory (chapter 4).

In this conclusion, we seek to situate the three projects in larger areas of inquiry, which

suggest constructive frameworks for applying techniques from engineering and the

physical sciences to consider new problems in T cell immunology. One of these

frameworks - spatiotemporal aspects of signaling - was introduced in Chapter 5.

6.1 Spatiotemporal aspects of signaling

Cells are not well-mixed bags of signaling molecules. Molecules are produced in

different locations than their targets, setting up concentration gradients. Molecules

cluster in rafts or islands. Organelles inside the cell, importantly the nucleus, provide

structure.

Neither are cells static. Molecules diffuse on membranes and in the cytoplasm; they react

with each other to form new species. Cytoskeletal motion provides driven transport of
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membrane bound species; molecular motors drive motion of molecules in the cytoplasm.

Entire cells migrate.

These length and time scales interact with each other to influence cellular responses.

Understanding these interactions provides a key to understanding the complex

spatiotemporal function of cellular signaling networks. In Chapter 2, we demonstrated

how a competition between a time scale set by the on-rate between pMHC and TCR and

a diffusive time scale relating to their separation led to biologically important

consequences.

Consideration of these different scales, via scaling analysis, can suggest the different

physical processes or structures that are relevant to any particular biological

phenomenon. More broadly, however, explicit enumeration of all these possible scales

generates hypotheses for predicting new mechanisms and explaining puzzling

experimental data.

6.2 How cells gather and use information to make decisions

The diversity of length and time scales in immunological problems complicates

mechanistic studies. Underneath its mechanistic complexity however, the immune

system has two essential tasks: to collect information about what is self and what is

foreign and to use that information to make decisions about the nature of its responses.

From this viewpoint, the immune system is a group of statisticians playing games,

communicating over telephone lines filled with static.

As previewed in Chapter 3, a variety of theories have been developed which can address

such representations of biological systems, including information theory and decision

theory (statistical inference). These powerful theories constitute systematic ways to

confront the immune system's complexity. By thinking about the immune system's

features in terms of how they affect the collection, transfer, and use of information, it
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may be possible to advance a unifying framework that informs more detailed

computational models and experimental work.

For example, there are important immunological questions pertaining to information

collection and transfer. T cells have information about whether they should activate in

specific contexts only because of developmental processes that shape a host's T cell

repertoire. How are these developmental processes designed to encode information in the

T cell interactions? This approach may elucidate the role of "mistakes" in these

developmental processes, which has not been understood (that is, how do these

"mistakes" affect the information transferred in later interactions?), and may clarify the

interplay between developmental processes and post-development, peripheral processes

(e.g. T regulatory cells; how does this interplay affect information transfer in T cell-APC

interactions). Also, how do less context-specific sources of information (e.g. from innate

immunity and cytokines) compensate for imperfect information in T cell interactions?

Information theory has been used productively in biological contexts by Leibler and

Bialek, for example.

Furthermore, the decisions that the immune system makes take many forms. In addition

to decisions by effector cells about whether to activate (studied in Chapter 3), cells in the

immune system must make lineage commitment decisions (e.g. effector and memory

subsets). Because the information transmitted by the immune system is imperfect and

incomplete, these are decisions under uncertainty. Moreover, these interactions are

analogous to a game among different players in the immune system (different clonotypes

of T cells, different cell types) and, less subtly, between the host and pathogen. How do

immunodominant responses emerge? How are memory responses designed? How does

the immune system confront rapidly mutating viruses like HIV? Each of these questions

has to do with the decisions that T cells make. Applications of decision theory, including

game theory, also have been useful in biological contexts. For example, Nowak and

others have used game-theoretic techniques to investigate mechanisms that maintain

biodiversity in ecosystems.
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In this context, Chapter 3 is just one example of how such theories can illuminate T cell

biology.

6.3 The surprising predictability of the unpredictable

Over the past several decades, the importance of stochasticity in reaction networks has

been emphasized. Operating with small copy numbers over finite time scales, biological

conditions are prime for stochastic effects. The limitations of approximations that

neglect some or all of these fluctuations - the most famous is the deterministic

approximation, which neglects all of them - have become apparent.

But when must stochastic fluctuations be considered? When do they change the

qualitative biological function of a system, rather than just contributing to biologically

irrelevant small fluctuations around otherwise deterministic behavior?

Furthermore, when the stochastic behavior does qualitatively differ from the

deterministic behavior, with what accuracy must the stochastic fluctuations be considered

to correctly capture the behavior of the system? Solutions to the master equation, either

analytical or computational, capture all fluctuations, but do all possible fluctuations need

to be considered?

Chapter 4 introduces a technique which neglects all but one fluctuation, the most

probable fluctuation. Applying this technique to a biological system demonstrated how

surprisingly predictable the unpredictable can be. Although many fluctuations are

possible, only one occurs with appreciable probability, and it can be predicted without

explicitly considering all fluctuations. Biological systems may not be as unpredictable as

their small copy numbers might suggest.

That is, even though biological systems operate with small copy numbers over finite

times, the entropy of biological systems (in state or trajectory space) may be small
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enough to permit approximation. How the details of the reaction network and the copy

numbers affect the entropy is a question that does not seem to be fully explored.

One appealing aspect of this approach is that explicit consideration of all possible

fluctuations yields far more information than is usually useful. Biologically relevant

questions often are related to the average time of a transition or the probability it will

occur, or the average state of a system; the variance is also often of use. But rarely is the

full distribution relevant, if only because such data is rarely available experimentally for

comparison or prediction. Not only is wasted information wasted computation, explicit

simulation of all fluctuations can often occlude the essential features of a phenomenon,

burying them in pools of data. As we begin to understand how we can approximate the

complex behavior of stochastic biological systems, we maybe able to gain more

qualitative insight.
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