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Urban Solarium
Thermal Performance in Boston

by Juliet Chia-Wen Hsu

Submitted to the Department of Architecture, February 2012
in partial fulfillment of the requirements for the degree of 
Master of Architecture at the Massachusetts Institute Of Technology

Abstract

This thesis addresses the issue of energy efficiency through the lens of thermal 
performance in the context of urban housing in the city of Boston. Located in the 
historic brick row house neighborhood of the South End, the project utilizes brick 
for its inherent property of high heat capacity – a material’s ability to store radiant 
energy and release it later due to the temperature difference between day and 
night – as a thermal battery for heating and cooling domestic spaces. 

In Boston where the temperature frequently goes below freezing in winter time, 
this thesis challenges existing housing typologies by incorporating thermal mass 
as a passive solar strategy at the scale of an entire structure. The urban solarium 
produces an interstitial zone in housing that promotes a new lifestyle by bringing 
together thermal performance and urban farming.  

Thesis Supervisor: Joel Lamere
Title: Lecturer, Architectural Design
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House : Experimentation

The single-family housing typology had long been a codified space with specific 
sets of rules and regulations. As family structures and lifestyles evolved, resulting 
in programmatic changes; the house nevertheless has remained a laboratory 
for experimentation of emerging disciplinary developments. To operate in the 
realm of domestic architecture, one must understand the house not only as an 
intimate landscape, but also as an artifact of culture with larger ramifications. The 
instrumentality of the house therefore lies in its easy relation to the general public 
beyond the discourse of architecture. 

Historical precedents of collective experimentations in the single-family housing 
typology ranges from Weissenhof siedlung in Stuttgart, Germany in 1920’s to the 
Case Study Houses in Los Angeles, California of the postwar era. As communities 
of houses, both movements proved to be didactic. In the former, Mies van der Rohe, 
Le Corbusier, Walter Gropius and others combined “mixed-income residences to 
advocate modernism’s social potential during a time of housing shortages” and 
in the latter, Richard Neutra, Charles and Ray Eames, Eero Saarinen, and others 
“constructed daring examples of affordable modern homes for a country immersed 
in a building boom”.  What then, is the proper expression of housing experimentation 
for today?  

House : Nature

From John Ruskin’s notion of habitation in the landscape to Le Corbusier’s Five 
Points of Architecture, the relationship between the house and its surrounding 
environment had shifted. Modernism’s quest for transparency lead to an increased 
exchanged between the inhabitant and its habitat in terms of accessibility as well as 
visibility. In Los Angeles, California, the production of the Case Study Houses and 
the collective incorporation of the open floor plan, a sequence of continuous volumes 
that culminates in a variety of indoor and outdoor spaces. In contemporary practices 
of architecture, a similar desire to connect to the landscape remains, more so than 
ever it is revealed in the area of the envelope. Not only are traditional materials 
appropriated, new materials explored, a crop of hybrid materials are also currently 
available for architects to deploy. 
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House : Envelope

Recent developments in the realm of surface and envelope research often manifests 
in one of two scales – standalone installations or full-scale implementation at the size 
of a stadium, shopping mall, and a variety of large-scale civic buildings that “do not 
require any relationship between inside and outside.”  These objects, consumed 
in the format of books and magazine photo or on websites, are often considered 
to be beyond the reach of the general public. Therefore, projections of the latest 
technological advancements in the realm domestic architecture is eminent in order 
to reach a broader demographic. 

To situate the discussion of the house as an envelope, one can begin the discourse 
from the thick to the thin, from poché space in Roman architecture  to Gottfried 
Semper’s theory of original enclosure, as textile or woven mat between poles. 
Furthermore, the tension between ornament and function will find relevance in both 
Adolf Loos’ argument of Ornament and Crime  as well as Venturi Scott Brown’s 
theory of the decorated shed  . According to K. Michael Hays, “the experience of the 
[new] architectural envelope is no longer distinctive but is now part of an aesthetic 
experience that is diffused through and saturates every part of our lives.”  While 
technology have afforded us digital tools to aid in both the design (software) and the 
fabrication (hardware) of new envelopes, these digital tools have yet to permeate the 
canonical means and methods of standard residential construction. 
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House : Materiality

Furthermore, the current state of discourse on material and envelope has remained 
at the level of producing architectural phenomenon through the manipulation of 
opacity, translucency, and textures.   The shifted focus from “static material properties 
to dynamic material behaviors”  at the level of academic research has captured the 
attention and sparked interest in the discipline of architecture. The changing nature 
of material through the fourth dimension of time demands a radical transformation 
that will require a new architectural paradigm. Concerns of sustainability and issues 
of ecology are often brought into question when evaluating new materials and new 
methods of production and application. The embodied energy of material production 
is just as important as the effects that it produces. 

Passive strategies that engage the local climate, mediation of air and lighting 
condition, as well as seasonal changes typically have been incorporated into 
standard architectural practices today. However, work remains in the architectural 
invention and application of active strategies such as local electric generation, 
responsive materials, and embedded intelligence in interactive systems.  This new 
crop of performance driven materials and its application will be the subject that 
occupies a new generation of architectural practices. 

In conclusion, this thesis intends to catalogue the current state of material practices 
and address issues of the ever diminishing wall thickness. The house is at once an 
experiment, a place for nature, an expression of tectonics (envelope), that which 
is measured through its engagement of materiality. Energy production, material 
efficiency and efficacy can be addressed simultaneously through alternative modes 
of material application.  
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RESEARCH
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>US Weather Condition
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>US Weather Condition
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>US Weather Condition
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>US Industrial Zone
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>Masonry Unit
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DOUBLE-WYTHE BRICK WALL
WITH CONCRETE AND STEEL REINFORCING

BRICK AND CMU CAVITY WALL
WITH CONCRETE AND STEEL REINFORCING

BRICK WALL W/ CMU BACKUP
AND WIRE TRUSS TIE

SST WIRE TIE

BUTTERFLY TIE

STAINLESS STL TIE

STAINLESS STL TIE

RUNNING BOND HEADER BOND FLEMISH BOND

FLEMISH RUNNING BOND DUTCH BOND ENGLISH BOND

AMERICAN BOND FLEMISH SLEEPER BOND HOUNDS TOOTH BOND

LOUDON’S HOLLOW BOND DEARNE’S BOND RAT-TRAP BOND

>Masonry Construction
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Images from Brick: A World History by James W.P. Cambell

>Brick Manufacturing Process

>US Climate Zones >Brickmaking

>Brick Properties
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>Precedents

2010 
TERRA THERMA

The Bartlett : Peter Webb & Mick Pinner

DIGITAL FABRICATION
CONTINUOUS EXTRUSION

LIQUID THERMAL INSULATION
THAMES THERMAL BATH

This project aims to rethink clay and the building components that are made from it. With the aid 
of digitally controlled tools, it investigates methods to extrude, manipulate and fire clay in the 
making of a building skin that is termperature and humidity controlled. When fired, clay vitrifies, 
changing state from clay into ceramic / brick. The result is a material with a hard, porous structure 
that has a high resistance to weathering. High in compression, it is initially bluish in color and 
becomes brown when wethered.
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>Precedents

2008
ONE STEP BUILDING SYSTEM
PENTSTAR: JOHN SPAKOUSKY & PAUL SPAKOUSKY

A holistic, high-performance building product that address the entire exterior structure of a wall. 
The system’s concrete form masonry units (CFMUs) allow the shell of a building to be constructed 
using only one product, one trade organization, and one step in construction sequence. CFMU 
incorporates high R-value, low conductivity, and dense thermal mass - all of which combine to 
significantly reduce heating and cooling costs. The CMFU includes a 5 layer moisture-blocking 
system, preventing water leakage, condensation, and black mold. 
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>Precedents

2009
290 MULBERRY STREET

SHOP ARCHITECTS

The project is defined by its context and by reinterpreting the zoning and building code 
regulations. The masonry enclosure was developed as a contemporary response that does not 
attempt to imitate the past. Using a corbelling technique, the brick façade projects beyond the 
property line as allowed by the code for classical ornamentation. Customized precast brick 
panels were designed to achieve maximum effect at minimum cost. The building is veiled by a 
textured wrapper in contrast to the simplicity of the interior. 
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>Precedents

1992
CRYSTALLOGRAPHIC DATA CENTER
ERIC CHRISTIAN SORENSEN

The Crystallographic Data Center holds a database for the identification of organic and inorganic 
compounds from the results of spectroscopy. The basic requirements of this building were for a 
quiet working environment for the researchers. In the interior, acoustic bricks laid in Flemish bond 
provide an interesting texture and pattern while absorbing majority of the noise. Furthermore, 
carpeted floors and timber acoustic ceilings help to dampen the noise. The exterior shell of the 
building is clad in Danish brick to provide additional thermal mass.  
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>Precedents

2006
GANTENBIEN VINEYARD FACADE

GRAMAZIO & KOHLER

Masonry is used on the facade for its ability to buffer temperature, as well as filtering direct 
sunlight for the fermentation room. Using a robotic production developed at ETH, each brick 
is laid precisely according to programmed parameter. An appearance of plasticity is achieved 
based on the movement of the observer and of the sun over the course of the day. Joints between 
the bricks were left open to create transparency and allow daylight to penetrate the hall and into 
the building. Polycarbonate panels are installed on the inside. 
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>Building Classification



31

>South End Row House

BHA MULTI-FAMILY REHABILITATION

bow front row house 1800s historic plan
single family residence

boston housing authority
multi-family rehabilitation

fourth floor third floor second floor first floor ground floor basement floor
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>Passive Solar >Thermal Comfort
organization of architectural building elements based on thermal principles human satisfaction with the thermal environment
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>Thermal Mass
effective for material with high heat capacity, moderate conductance, moderate density, high emissivity
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>Mean Radiant Temperature Mapping
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>Unit Typology >Building Typology
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DESIGN
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>Boston’s South End
Boston’s South End is built upon a former tidal marsh, part of a larger land fill project from 
the 1830s to the 1870s. The neighborhood consists mostly of mid-nineteenth century 
brick bow front row houses of mixed residential and commercial use. Designed to emulate 
the wealthy residential district of London, the neighborhood incorporates public squares, 
rectilinear gardens, and broad tree-lined English avenues. An influx of immigrant and 
working class populations soon settled in the South End and created an impoverished 
district amidst the Victorian architecture. Many of the South End’s upper class residents 

abandoned the neighborhood and favored other areas such as Back Bay and Beacon Hill. 
By the late 1960s and 1970s urban renewal lead to the area’s revival and many home 
owners moved back due to the affordability of housing in the South End. Since the 1980s 
an effort has been made to preserve the South End’s historic and architectural attributes as 
well as the creation of affordable housing to help retain the neighborhood’s ethnic diversity. 
Today, the South End is a Boston Landmark District and is listed on the National Register 
of Historic Places.   
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BHA HOUSING PROJECT
OPEN SPACE

POTENTIAL SITE

>Boston South End

POTENTIAL SITE
OPEN SPACE

PUBLIC HOUSING PROJECT

Located in the heart of the South End neighborhood, the project site is the Rutland 
Washington Community Garden protected by the South End / Lower Roxbury Open Space 
Land Trust. Washington Street, a high-traffic four-lane wide road, is to the southeast of the 
lot, while Rutland Street, a smaller two-lane residential road is its southwest. 

(RIGHT) This map documents existing public housing projects and identifies all open 
space, including public parks, parking areas, and open lots. Potential sites for this project 
are specified as south-facing lots with direct solar access.   
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SUMMER_SELF SHADING BALCONY WINTER_SOLAR EXPOSURE

SUMMER_ SELF SHADING STRUCTURE_900 DECEMBER_ WINTER SOLSTICEDECEMBER_ WINTER SOLSTICE_1200

900

1200
1500

900

1200

1500

>Sun Study
(TOP) During summer time, the solar room protects the thermal mass wall from overheating 
with its deep floor overhang. In winter time, the low sun angle penetrates the solar room 
and provides direct solar gain on the masonry wall.

(BOTTOM) On the southeast façade of the corner lot, the project has year-round direct solar 
exposure. While the southwest corner of the project is occasionally blocked by shadows 
casted from adjacent building in summer mornings and winter afternoons. 

SUMMER SOLAR ROOM   
self shading balcony

WINTER SOLAR ROOM  
direct solar gain

SUMMER (morning)
southwest corner shaded

WINTER (afternoon)
southwest corner shaded
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winter_day
solar gain raises solar room temperature

winter_night
warm air is pushed into living space

>Massing Strategy

DEVELOPMENT SCENAIRO community garden
110’ X 110’ = 12000 sf

urban garden
18’ x 110’ = 2000 sf
2000 sf x 6 fl = 12000 sf

9 units x 6 floor = 54 units

SOLAR STRATEGY

direct south exposure / thermal mass shadow from adjacent structure max garden area / terrace temperature difference per floor

living
circulation

solar room

(TOP & CENTER) The project is set up as a series of zones with different levels of thermal 
comfort: the solar room, circulation, and living spaces. The solar rooms are programmed 
as urban gardens and shaped according to sunlight and shadow studies. The thermal mass 
wall is rotated 45 degrees for direct southern exposure and pleated to increase surface area.

(BOTTOM) In winter daytime, direct solar gain heats up air in the solar room creating a 
greenhouse scenario. Thermal energy is absorbed by thermal mass wall via conduction. In 
winter evening, the solar room provides both radiant and convection heat delivered into the 
living space through operable vents.  

WINTER (day)
solar gain raises room temperature

WINTER (night)
warm air pushed into living space through vents

DEVELOPMENT SCENAIRO 

SOLAR STRATEGY
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CORE CIRCULATION

RESIDENTIAL UNITS

SOLAR ROOM

THERMAL MASS
south exposure

public & private gardens

summer & winter scenarios

GLAZED ROOF

OPERABLE SLIDERS

>Systems Axon

(LEFT) Southeast elevation rendering in winter. View from Washington Street 
towards Rutland Street and downtown.

(RIGHT) The project is a layering of systems. The solar room is protected with large 
sliding doors that are to remain open in the summer to promote air circulation and 
to prevent overheating. During winter time, the sliders will be closed to create a 
greenhouse scenario for raising room air temperature using passive solar strategy. 
The masonry wall behaves much like a thermal battery, absorbing radiant energy 
during daytime and releasing it later due to diurnal swing. In night time, warm air 
from the solar room is delivered into the residential units through operable vents.   
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>Wall Geometry

straight section

curved section

equal length

graduated length

single instance

(LEFT) The wall geometry was further developed to accommodate a single instance on 
the southwest corner where the building is generally in shadow. Different iterations were 
studied to transform the thermal mass wall from its 10 feet set back towards aligning with 
the exterior of the floor plate. 
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>Wall Geometry

straight section

line : fold

2 fold : 1 fold

3 fold : 1 fold

(LEFT) Geometry of the thermal mass wall was studied to maximize surface area in relation 
to entry sequences. Over six stories the wall transforms from a single V-shape fold to a 
straight section, a single fold to a double fold, and finally a single fold to triple fold. At 
the ground floor the wall is a single fold, each segment is 9 feet in length and the V-shape 
forms a generous entry area for the apartment unit. On the top floor the wall is a triple fold, 
each segment is 3 feet in length, which is the minimum clearance necessary for an entry 
door.     

(RIGHT) In subsequent iteration of the wall geometry, the thermal mass wall steps back to 
allow for deeper solar rooms. Pleating in the vertical section is coordinated with entry door 
height – the thermal mass wall remains vertical from floor to top of entry door and folds 
back to span the distance to the wall above.  
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(LEFT) Rendering of public space at southwest corner of level 2. View of ramp access to 
level 3 and terraced walkway connection to ground level.

(RIGHT) Southeast elevation rendering in summer. View from Franklin Square at corner of 
Washington Street and E Newton Street. Large sliding doors are open in summer time to 
promote air circulation and to prevent overheating of thermal mass wall. 
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Level 2. Spring time vegetables in solar room along southeast façade. Level 3. Spring time vegetables in solar room along southeast façade. 
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>Solarium Planting Schedule
SUMMER FALL

Level 6. Summer time vegetables in solar room along southeast façade. Level 6. Winter time residential interior, view of solar room through glazing.
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Southwest elevation rendering along Rutland Street. View of market façade stepping out 
from setback area to align with exterior edge of floor plate.
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>Site Plan
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>Floor Plan
ground level : winter & spring
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>Floor Plan
ground level : summer & fall : farmers market scenairo
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>Floor Plan
level 3
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>Floor Plan
level 6
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RESIDENTIAL 
UNITS

>Unit Detail

THERMAL 
MASS

URBAN 
GARDEN

Transformation of the thermal mass wall from ground level (single V-shape fold) to level 
three (double fold), to level five (triple fold), and eventually resolving as a straight wall 
segment on the roof. Also, as the thermal mass wall steps back to allow for deeper solar 
rooms, the depth of planting trays increased from 10’ to 18’ deep. 
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>Building Section
(BELOW) Building section is taken through the solar room’s planting trays along the 
southwest circulation. The tray depth tapers from 5’ to 1’ deep at the corner due to the 
massive cantilever of the solar room. The section also reveals the produce and gardening 
market at the ground level and level 2.  
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(LEFT) Wall section of solar rooms showing the 
different size planting trays and thermal mass wall 
geometry. The different depths in the planting trays 
allow vegetation with varying root depth to flourish. 
The public garden is located on the ground level 
and level 2, while private urban garden contained 
within the depth of the solar room exists from level 
3 through level 6.

(RIGHT) Diagram of residential unit transforming 
from a single V-shape thermal mass wall to triple 
pleated wall, and its relationship to planting trays 
of varying depths.  
 
(PAGE RIGHT) Enlarged wall section through solar 
room and thermal mass wall.    
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>Wall Section
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>Model Photographs
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>Model Photographs
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>Model Photographs
Study model with glazed solar rooms, floor cantilever, thermal mass wall, and residential 
units behind. 
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>Model Photographs
(LEFT) Printed 3D model of running bond brick construction detail, showing a section of 
triple pleated wall with door and window openings. 

(RIGHT) Printed 3D model of hounds tooth bond brick construction detail, showing a 
section of triple pleated wall with door and window openings. 
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photograph by andy hsu 12.19.2011 thesis presentation to guest critics: marc pasnik, michelle fornabai, tim love; and thesis committee: 
joel lamere, yung ho chang, and john fernandez. photograph by ann woods.
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