
Developing Distributed Contextualized Communication Services

Edison Thomaz Junior

B.A., Computer Sciences

The University of Texas at Austin, 1999

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

In partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

At the Massachusetts Institute of Technology

September 2002

0 Massachusetts Institute of Technology, 2002. All rights reserved

Author

MASSACHUtSETTS ISTITUTE
OF TECHNOLOGY

OCT 2 5 2002

LIBRARIES

Edison Thomaz Junior

Program in Media Arts and Sciences

July 2, 2002

Certified by

Andrew B. Lippman

Senior Research Scientist

Thesis Supervisor

Accepted By

Andrew B. Lippman

Chairperson

Department Committee on Graduate Students

2

Developing Distributed Contextualized Communication Services

By

Edison Thomaz Junior

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning, on July 2, 2002

In partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

In the past few years, the worldwide adoption of digital devices such as computers, cell
phones, media players and personal organizers skyrocketed. Due to advances in
networking and computation technologies, we now have the opportunity to allow our
devices to communicate and collaborate with each other in order to create an entirely new
set of distributed user-centric services. An example of a distributed service would be a
cell phone that learns more about social communication patterns by communicating with
an email client application. This thesis demonstrates how we could develop such a
system. I built a telephone application that benefits from the exchange of context
information with a personal information manager to help users prioritize calls and make
better-informed decisions about them. The application is based on a lower level
specification that serves as the foundation for the design of sensible distributed services.

Thesis Supervisor: Andrew B. Lippman

Title: Senior Research Scientist, MIT Program in Media Arts and Sciences

Thesis Committee

Thesis Supervisor

Andrew B. Lippman

Senior Research Scientist

MIT Program in Media Arts and Sciences

Thesis Reader

Christopher Schmandt

Principal Research Scientist

MIT Media Laboratory

Thesis Reader

Ted Selker

Associate Professor

MIT Program in Media Arts and Sciences

Acknowledgements

I dedicate this thesis to my family, for their love, support and dedication.

Andy Lippman, my advisor, for giving me opportunity to come to the Media Lab and

join this great research community. Andy has always pushed me hard to think outside the

box and I really appreciate that.

Ted Selker, Chris Schmandt and Henry Lieberman for the thousands of hours spent

discussing ideas with me and also for being part of my thesis committee, formally or

informally.

Patrick Winston, for showing me what Al is all about, instigating my interest in the field

and being such an example and role model in academia.

Greg Lavender, for being my undergraduate research advisor, for his inspiring lectures

and for encouraging me to come to graduate school and apply to the MIT Media Lab.

Deborah Widener and Polly Gugenheim, for providing help and support in dealing with

group administrative issues, as well as personal ones.

Linda Peterson and Pat Solakoff, for their patience and for answering all of my

questions, offering good advice, telling me how to get things done in the lab and for

genuinely caring about my well-being here.

Andrea Lockerd, for being my friend, my inspiration, for teaching me so much about so

many things and for being deliciosa as only she can be.

Neil Murray, Ingvar Aberg and Dah-Yoh Lim, my friends at 8D, who came from

nowhere exactly when I needed them the most. Thanks guys!

Surj Patel and Jim McBride, for being my good friends here in the lab, partners in

crime and in lunch, technical consultants and for cheering me up when things didn't look

so bright. All at the same time and with their eyes closed!

Ernesto Arroyo, Jorge Martinez, the rest of The Mexican Mafia, Kwan Lee, Shyam

Krishnamoorty and Florian Mueller, for joining the roller-coaster with me and keeping

me sane and entertained in the Media Lab. It would be much tougher without you guys.

Peter Gorniak, Stefan Marti, Natalia Marmasse and the rest of the student committee

gang. It has been a pleasure to work with them to make the lab a more enjoyable, fun and

productive place to be.

My UROP Dan Ports for his enormous talent, contribution and patience in helping me

get my thesis project off the ground. Good luck for you in your future adventures.

My good friends in Austin that I know I can always count on: Katatau, Dani, Bilau,

Juliana, Michel, Peu, Jabota, Elana, Diana, Lulu and so many others. I love you all.

Table of Contents

1. INTRODUCTION... 11

1.1. A HOLISTIC AND COLLABORATIVE APPROACH 12
1.2. CONTRIBUTIONS... 13
1.3. CHALLENGES .. 15

2. BACKGROUND .. 17

2.1. ATTENTIVE SYSTEM S .. 17
2.2. CONTEXT-SENSITIVE ARCHITECTURES .. 19
2.3. TELEPHONY, MESSAGING AND AWARENESS.................... 21

3. APPLICATION SCENARIOS..................................... 24

3.1. CALLER AVAILABILITY ... 24
3.2. EXPECTED CALL DURATION ... 25

4. SYSTEM ARCHITECTURE ... 27

4.1. INCALL... 27
4. 1. 1. Implementation... 27

4.1.1. 1. H ardw are ... 28
4.1.1.2. Softw are.. 29
4.1.1.3. inCall Telephony Core (iTC).. 29
4.1.1.4. Full-Duplex Voice over IP... 31
4.1.1.5. XML-RPC Client and Server .. 32
4.1.1.4. R ing C ontroller .. 33

4.1.2. Services ... 35
4.1.2.1. Availability of caller encoded in phone ring frequency ... 35
4.1.2.2. Expected duration of a call encoded in phone ring or frequency...................................... 39

4.2. SENSORAM A .. 44
4.2. 1. Interfaces and Organization ... 45

4.2.1.1. High-Level Managers ... 46
4.2.1.1.1. Tim e M anager..46
4.2.1.1.2. Social Manager ... 47
4.2.1.1.3. Location M anager... 49

4.2.1.2. Low-Level Managers and API..49
4.2.1.2.1. Activity Manager ... 50

4.2.1.3. Communication Protocol ... 50
4.2.2. Implementation 53

4.2.2.1. MacZoop 53
4.2.2.2. XM L P arser ... 54
4.2.2.3. X M L -RP C O bjects ... 56
4.2.2.4. Sensorama Core and API... 58
4.2.2.5. Interprocess Communication and Scripting (IPC).. 58
4.2.2.6. X M L -R P C C lient.. 61
4.2.2.7. X M L-R P C Server ... 61

5. EVALUATION .. 64

5.1. D E SC R IPT IO N .. 64
5.2. USER STUDY GUIDELINES ... 65

5.2.1. Journalist 65
5.3.2. Travel A gency .. 67

5.3. R E SU L T S .. 69

6. CONTRIBUTIONS.. 71

7. FUTURE WORK.. 73

8. APPENDIX A: SENSORAMA API SPECIFICATION................... 77

8.1. TIME MANAGER ... 77
8.2. SOCIAL MANAGER .. 77
8.3. LOCATION MANAGER... 77

9. APPENDIX B: WORKLOAD DETECTION.. 78

10. APPENDIX C: EVALUATION FORMS... 80

11. APPENDIX D: COMPILING LIBWWW AND XML-RPC-C.............82

11.1. L IB W W W .. 82
11.2. X M L -R P C -C .. 82

12. REFERENCES..83

List of Figures

Figure 1: inCall implementation architecture.. 27
Figure 2: inC all hardw are... 28
Figure 3: Internal inCall architecture ... 30
Figure 4: Call thread requests caller's time availability to caller's computer................ 35
Figure 5: Call thread contacts the recipient's phone ... 36
Figure 6: Ring thread selects a ring tone... 36
Figure 7: Recipient's phone sends context data to recipient's computer....................... 37
Figure 8: Recipient's computer displays caller's context data...................................... 38
Figure 9: Recipient's phone agrees to start full-duplex... 38
Figure 10: Full-Duplex starts on both ends.. 39
Figure 11: Call thread requests expected call duration to caller's computer................. 40
Figure 12: Call thread contacts the recipient's phone ... 40
Figure 13: Ring thread selects a ring tone... 41
Figure 14: Context data sent to recipient's computer.. 41
Figure 15: Recipient's computer displays caller's context data 42
Figure 16: Recipient's phone agrees to start Full-Duplex ... 43
Figure 17: Full-Duplex starts on both ends... 43
Figure 18: Sensorama architecture ... 46
Figure 19: MacOS Sensorama implementation.. 53
Figure 20: User Study: Journalist Schedule .. 67
Figure 21: User Study - Travel Agent Schedule.. 68

List of Tables

Table 1: inCall Call Request Interface .. 33
Table 2: inCall Call Answered Interface.. 33
Table 3: Time Availability vs. Ring Tone.. 34
Table 4: Expected Call Duration vs. Ring Tone.. 35
Table 5: Time M anager API... 47
Table 6: Email Number vs. Call Duration... 48
Table 7: Social M anager API .. 48
Table 8: The W eather Channel URL ... 49
Table 9: Location M anager API .. 49
Table 10: Sample XM L-RPC call.. 51
Table 11: Sample XM L-RPC response.. 51
Table 12: Sample XM L-RPC call with header... 52
Table 13: Sample XM L-RPC response with header.. 52
Table 14: Using the Expat parser... 55
Table 15: Sample usage of XM L-RPC Objects... 56
Table 16: Output of sample usage of XM L-RPC Objects ... 57
Table 17: List of XM L-RPC Objects.. 57
Table 18: Sample Applescript .. 59
Table 19: Using the XM L-RPC Client ... 61
Table 20: XM L-RPC Server dispatch calls... 62
Table 21: inCall vs. IP Phone Comparison for the Pairs ... 70
Table 22: Tim e M anager API... 78
Table 23: Social M anager API .. 78
Table 24: Location M anager API .. 78
Table 25: M etric to determine workload.. 80
Table 26: Determining a workload .. 80

10

1. Introduction

In the last decade, the worldwide adoption of digital devices such as computers, cell

phones and personal organizers skyrocketed. Where just a few years ago possessing a cell

phone or handheld device could easily award you special treatment in restaurants and

social circles, today virtually anyone can walk into an electronics store with less than

$300 dollars and leave with a variety of digital gizmos. The numbers confirm this trend.

According to a September 2001 J.D. Power and Associates study, 52 percent of

households in the 25 largest urban markets surveyed in the United States now have at

least one cell phone. In some European countries such as Iceland and Finland, the figure

exceeds 75 percent. Consumers bought an estimated 6.4 million digital cameras and 12

million digital organizers in 2001 [1].

The pervasiveness of small computational devices does a lot more than simply add

weight to our pockets. It represents a new and important trend in the consumer and

computational spaces. As the complexity and number of digital devices that we carry

with us increases, so does the amount of distributed computation, media and information

that continuously surrounds us. Consequently, as time goes by, this digital "aura" can

become more connected to our lives and meaningful to us. As an example, MP3 devices,

digital cameras and organizers are powerful computing systems that carry some type of

information that represents our values and way of life. The collection of songs in our

MP3 player expresses our musical interests and therefore our personality to some degree.

Digital cameras have the means to infer where we have been physically lately and the

people we share our lives and experiences with. Finally, our personal organizers know

what our upcoming appointments are, who we usually communicate with on a regular

basis and much more.

We could think of these digital devices simply as service providers, but the tight coupling

that exists between them and our lives turns them into implicit pointers to our personality,

our activities, our physical health and even our state of mind. These devices and the bits

that they carry represent a largely ignored resource that could be translated into new

kinds of useful device functionalities.

1.1. A Holistic and Collaborative Approach

Although opportunities exist, realizing the full potential of these digital devices and

getting them to represent our selves and different aspects of our lives is not a simple task.

They need to be designed to, for example, not only play MP3s but to also make some

kind of sense of what they are playing and under what context. Fortunately, an added

bonus of the computational surplus in our personal digital devices is that in addition to

providing a fixed set of services such as playing music or making phone calls, devices

could perform other peripheral tasks without any impact on performance. Collecting

observational data about where and how they are used, analyzing what kinds of data they

manipulate and also interacting with other devices in the surrounding area are examples

of such tasks. The ability to collect and analyze usage data is particularly significant

because digital devices could then make educated guesses about the state of users and

their environment, turning themselves into continuous sensors with a bit more of

awareness of their purpose in our lives and a better understanding of the media and

information that they host. Digital devices with these characteristics are commonly

referred to as context-aware, or attentive [15], but I like to call these systems "sensible". I

believe that in the foreseeable future, most of our digital devices will be sensible to some

degree. Incidentally, I also think that the definition of what we today refer to as analog

and digital will be determined in the years to come much more in terms of the ability of

devices to be sensible and aware of their environment than by the materials and

techniques employed in their physical construction.

If we think of all the devices that we use on a daily basis as a collection of sensible

systems, in additional to the enormous amount of implicit user information that can be

collected and used by each single sensible device, we could also combine the

observations and inferences of independent devices to design a whole new class of

collection-level services. These services would rely on the sharing of information and

collaboration between two or more devices to be realized. For instance, it could be useful

to let our smart credit card inform our heart beat rate monitor that we had a greasy

hamburger and milkshake for lunch. We might have to work twice as hard in the gym to

get rid of those extra calories. Likewise, it could be useful for our telephone to

communicate with our personal organizer and prioritize our phone calls according to the

activity of our contact manager and email client application. Although the opportunity

clearly exists for cross-device communication and information sharing at a cognitive

level, very few devices today could be considered sensible. In other words, very few

devices actually collect, analyze and share usage data.

1.2. Contributions

This thesis demonstrates the design, implementation and evaluation of inCall, a telephone

application that benefits from the exchange of context information with a personal

information manager to help users prioritize incoming calls and make better-informed

decisions about them. At a higher level, InCall can be divided in two main components:

iTC and Sensorama. ITC is the core unit of inCall, responsible for the voice over IP [47]

service, logic and the overall functionality of the telephone system. Sensorama is an

application and interface that allows a computer personal information manager to become

sensible and exchange user context information with other devices, such as a telephone.

The key idea behind InCall is that when user A places a call to user B, inCall

communicates with user A's computer and collects observational context information

about user A, such as how busy he or she is, where he or she is and who he or she

communicates with on a regular basis. This information is then sent to user B so that user

B can better prepare for the call or make a better informed decision about whether to take

the call or not.

Features of inCall include, considering a call from user A to user B as above:

- Communication with the personal organizer of A and encoding of time availability of A

into ring type when the phone of user B rings indicating an incoming call. The goal is to

eliminate long phone-tags between users of the system who want to talk to each other.

- Communication with the email client application of A and encoding of social

communication patterns of A into ring type when the phone of user B rings indicating an

incoming call. The system changes its ring type according to how long a phone call is

expected to last. This deduction is based on how often individuals communicate with

each other by email. The goal of this feature is time prioritization.

- Communication with information sources to determine the weather conditions of where

A is located based on the zip code of A. This piece of context information can be

displayed to user B. The goal of this feature is to give user B an idea of the physical

context of the call.

- Display of context-information about A to B when the phone of B rings. In addition to

changing its ring type based on context information, the system also displays the context

cues mentioned in the features above in a screen before calls are answered.

One key aspect of inCall is that it enables user context information toflowfrom the caller

to the callee, unlike most personal awareness and phone applications built so far. This is

an important distinction between inCall and other telephony and messaging applications

with user-awareness functionality built-in.

Moreover, inCall shows how a telephone network employing a voice over IP architecture

can be used to easily provide user services that require not only the transmission of voice

but also of data. In the case of inCall, voice packets are sent interchangeably with data

packets in order to frame a context for a call that is ongoing or that may take place in the

near future.

1.3. Challenges

Developing a system such as inCall is challenging for several reasons. One of them is that

there is not a standardized communication platform that is designed specifically for the

purpose of developing collaborative and distributed services that depend on a group of

devices or software applications. New emerging hardware technologies such as

BlueTooth [37] and Wi-Fi, more commonly known as 802.11 [38], are now able to

provide the physical link that enables devices to exchange data with each other.

Distributed protocols and language specifications for remote method invocation such as

XML [39], XML-RPC [40] and SOAP [41] could be seen as a common denominator that

enables software applications to execute programs in a distributed fashion. Ideally, a

combination of these different technologies is what would be considered an ideal

architecture for distributed services such as inCall. Incidentally, inCall uses XML-RPC as

its remote method invocation and messaging protocol.

Another challenge has to do with the acquisition of context information. Collecting

contextual user information from devices and software applications is not a simple task.

The number of systems that implement an interface to user-centric data such as patterns

of usage is very small. Most of the systems we use are black boxes, running proprietary

software, which were not designed to give any visibility of its inner workings. That is the

main reason why Sensorama had to be developed. Sensorama, described in detail in a

later section, not only collects context information from Microsoft Entourage for the

Macintosh [48], a personal information manager, but also analyzes this information and

makes it available to other devices that implement the XML-RPC protocol.

One of the primary challenges of developing a system like inCall is that its efficiency and

effectiveness can be hard to evaluate over a short period of time. This is due to the fact

that the evaluation process in these cases needs to be qualitative for the most part. In the

evaluation section of the thesis, I describe how I attempted to study inCall quantitatively

by means of a series of 30-minute user study.

One of the fundamental ideas of this thesis is that an architecture that permits digital

devices to talk to each other is highly desirable. However, a new trend in the personal

digital device space could weaken the role of personal digital devices as independent

systems. Due to the variety of mobile devices that many people are starting to carry with

them on a regular basis, such as cell phones, PDAs, MP3 players and still cameras,

consumer electronic companies have begun to investigate whether it makes sense to

combine several of these distinct devices into one. An example of a device that unites a

cell phone with a personal organizer in the same form factor is the Handspring Treo [44].

However, integrating several devices into one poses a considerable challenge to

technology companies and designers. While the miniaturization of electronic circuits

continues, it is increasingly harder to create user interfaces for devices that are smaller

and feature-richer than previous ones. Therefore, it may well be the case that personal

digital devices will remain application-specific for the foreseeable future.

Personal privacy cannot be ignored as another very significant challenge to inCall and

similar context-based applications. Exchanging sensitive information among a group of

devices poses a series of security and authentication questions with regard to the

robustness of distributed systems. Users should be completely aware of what kinds of

contextual information about them are being used, by whom and at what times. These

issues cannot be disregarded by any means. However, due to the nature of this thesis, it is

primarily focused on showing how context information could benefit communication and

distributed services. Exploring how to address these security and privacy issues in a

distributed environment would be a perfect way to bring inCall closer to fruition and to

end users.

2. Background

2.1. Attentive Systems

There is an extensive body of knowledge in the area of context awareness, among them

COACH, The Lumiere Project and Letizia. All these systems are significant because their

key functionality stems from the utilization of context-based information.

The Cognitive Adaptive Computer Help (COACH) [17] is an example of an attentive

system. It is an adaptive help system that monitors a user's actions. When a user begins

an unfamiliar task, COACH will proactively present advice to the user. Users may also

explicitly request help information. In either case, COACH uses a user model to estimate

the user's level of experience with the current task, and then chooses articles from a

database of help information. COACH is significant because it was one of the first

context-aware systems developed.

In the last few years, a wide variety of agent-based systems were developed, with the

intention of offloading common tasks to autonomous intelligent software applications,

such as personalized news retrieval and filtering. Their agents relied heavily on

observations and user context information to execute their semi-autonomous jobs; as a

result, they are also attentive systems. With agents, instead of user-initiated interaction

via commands and direct manipulation, the user is engaged in a cooperative process in

which humans and computer agents both initiate communication, monitor events and

perform tasks. Pattie Maes was one of many research pioneers who developed a variety

of software agents in order to explore and study the human computer interface paradigm

changes that are intrinsically connected to the agent computing model [14]. In particular,

she was interested in issues such as competence and trust that arise when humans and

semi-autonomous agents work together. Maes was one of the first to try to understand the

nuances and subtleties in developing agents that interact with humans on a day-to-day

basis.

Most agent systems are behavior-controlled by user actions and activities, especially user

interface agents; therefore they should also be considered attentive systems. The Lumiere

Project, developed by Eric Horvitz at Microsoft Research, centers on harnessing

probability and utility to provide assistance to computer software users [11]. It uses

Bayesian user models to infer a user's needs by considering a user's background, actions,

and queries. Several problems were tackled in Lumiere research that are very relevant to

the Sensorama and inCall, including the construction of Bayesian models for reasoning

about the time-varying goals of computer users from their observed actions and queries,

gaining access to a stream of events from software applications, developing a language

for transforming system events into observational variables represented in Bayesian user

models, developing persistent profiles to capture changes in a user's expertise, and the

development of an overall architecture for an intelligent user interface. Lumiere

prototypes served as the basis for the Office Assistant in the Microsoft Office '97 suite of

productivity applications.

Letizia, developed at the MIT Media Lab by Henry Lieberman, is an observational

software agent that compiles a history of how users utilize their web browsers [13]. Then,

based on the history of previous web pages visited, the agent tries to infer which links in

a new page the user will most likely want to visit. With that empirical information, the

agent pre-caches the web pages that it thinks the user will want to see. Expert Finder, also

by Lieberman, is another agent that observes users as they interact with their software

applications and then automatically classifies both novice and expert knowledge by

autonomously analyzing documents created in the course of routine work [10]. Letizia

and Expert Finders are important research projects because they demonstrate in practice

the degree to which agents can be used to monitor users engaged in human-computer

interface activities in order to assist them and help them be more productive.

Observable APIs are defined as interfaces that permit a system to watch and be notified

about changes in another system. Most software systems today do not offer any kind of

observability to its external world. As an example of what I mean by software

observability, there is not any generic way to programmatically query a media player and

ask it which songs a user has been listening to lately. This is unfortunate, since software

applications usually provide very valuable contextual information about users. All this

contextual information is lost unless there is a way to have access to it. Moreover, as we

move forward and attempt to create systems that profile users and predict their actions, it

is absolutely essential that we monitor them closely, at the application usability level.

Cameo is a C++ toolkit and associated model that allows programmers to build

observable APIs [23]. The development of the Cameo environment has been largely

influenced by a technique called status/event analysis [24], where systems can be

decomposed into parts that have a set of status and events associated with them.

Sensorama was influenced by Cameo, especially its Manipulation primitive. Due to its

XML-RPC interface, Sensorama offers only a procedural query interface, as opposed to a

callback registration interface. Also, Sensorama is much more specific than Cameo,

because it was built to realize some real user scenarios in a distributed environment.

2.2. Context-Sensitive Architectures

The context-sensitive architectures mentioned here are particularly relevant to the

Sensorama component of the inCall system. These architectures aim to facilitate the

development of context-aware applications. Sensorama could be generalized to be

presented as an architecture similar to the ones below rather than as a support application

and interface for inCall.

The MIT Laboratory for Computer Sciences Oxygen Project is a major ubiquitous

computing research initiative whose goal is to re-architect software and hardware systems

to make them much more user-centric than they are today [27]. The proposed distributed

architecture is based on a collection of devices that work together seamlessly. A major

priority of Oxygen is to develop an infrastructure where people offload tasks to the

environment around them. The Oxygen Project encompasses research all the way from

chip design to human interfaces and computer networks. Here is a complete description

of the project:

"Oxygen is an integrated collection of eight new technologies: handhelds, wall and trunk

computers, a novel net, built-in speech understanding, knowledge access, collaboration,

automation and customization. The power of Oxygen lies not in any one piece but in the

totality of these human-oriented technologies together. They forge a new computing

metaphor that we hope will mark an important shift from the desktop and icons of today,

as those innovations did from text-only systems"

The Context-Toolkit was developed to make it easier for developers to create context-

enabled applications [28]. According to Salber, Dey and Abowd, context is defined as the

information that is part of an application's operating system and that can be sensed by the

application. What is novel about the Context-Toolkit is that it was designed to model

graphical user interface (GUI) toolkits. For instance, the same way that GUI toolkits are

constituted of widgets that provide an application interface to users interactions, the

Context-Toolkit also takes advantage of the widget design pattern to insulate applications

from context-sensing mechanisms. The Context-Toolkit focuses on a new way to design

and build new sensors, based on widgets. These sensors can then be integrated into

applications.

CyberDesk is a desktop platform on top of which context-aware software applications

can be built [29]. It is aimed at providing a more flexible framework for integrating

software behavior. Software applications register their services in the Registry and

CyberDesk becomes in charge of signaling to the user which services are available

relative to the task being performed. The advantage of developing CyberDesk

applications has to do with the user interface. Rather than displaying all the available

services to the user at all times, the interface is limited to displaying those services that

are relevant to the user's current context.

2.3. Telephony, Messaging and Awareness

The systems described below are telephone and awareness applications that either take

advantage of context information in the telephony domain like inCall or show the

benefits and flexibility of voice of IP.

Over the years, a wide range of media space systems has been created [8]. The

Awareness Community Portal is one example of a shared media space system, which

displays information in shared physical spaces and attempt to provide a feeling of social

awareness [16]. The Portholes project is another media space system, which investigated

how media space technologies support awareness through the exchange of images [5][9].

These awareness systems are relevant because like inCall, they attempt to convey a sense

of awareness by transmitting user context information from point-to-point.

A variety of telephone and messaging applications have attempted to benefit from context

information. Quiet Calls offers a new form of communication, extending the choices

offered by synchronous phone calling and voice mail [18]. It is a technology that allows

mobile telephone users to respond to telephone conversations without talking aloud. The

system developed by Nelson, Bly and Sokoler addresses the typical problem of having to

establish a phone communication with someone in environments that are not suitable for

conversations or talking aloud, such as conference rooms and meetings. InCall and Quiet

Calls are similar for two reasons. Firstly, they are both illustrative of how our

communication needs and settings are changing rapidly and what we are doing to deal

with these behavior changes. Secondly, both systems are context-dependent; inCall tries

to deduce the context of users while Quiet Calls receives direct input from users about

their context and availability.

The Live Addressbook is an application that helps users make more informed telephone

calls by providing callers with presence cues of the people that they want to call [4]. This

allows participants to negotiate a call before it actually takes place. The application

accomplishes this by using the "buddy list" concept from instant messaging applications

with the addition of user-controllable presence indicators. The key difference between the

Live Addressbook and inCall is that in the case of inCall, contextual information about

the caller is sent to the callee whereas in the Live Addressbook, contextual information

about the callee is sent to the caller. Incidentally, this reversibility in user context flow is

a key aspect of this research.

ConNexus goes a bit further than the Live Addressbook above and presents specific

information about callee schedules and activities, such as for how long the callee has

been idle or whether the callee has upcoming appointments [20]. Therefore, a lot of

information is available to the caller before making a phone call. The caller also knows

beforehand what he or she can expect when placing a phone call. Again, just like the Live

Addressbook, The key difference between ConNexus and inCall is that in the case of

inCall, contextual information about the caller is sent to the callee whereas in ConNexus,

contextual information about the callee is sent to the caller.

As far as message filtering is concerned, CLUES observes user communication patterns

and other user activities to prioritize and present messages in order of importance and

timeliness [19]. CLUES helps to identify important messages based on time-varying

information sources. The biggest challenge of CLUES is to learn user's short-term

interests and prioritize incoming messages accordingly. In order to determine user's

interests, CLUES relies on information found in a user's work environment such as

calendars, email and call logs and rolodexes that we could comfortably refer to as context

information. CLUES is not exactly a phone application, but the type of context

information used by CLUES is of the exact same kind that inCall relies on to make

inferences about phone callers.

The ICEBERG project of the University of California at Berkeley is looking into issues

associated with the converged network of the near future, specifically the migration of

telecommunications networks towards Internet technology and voice over IP [26]. On

one hand, one of the goals of ICEBERG is to serve as a foundation for applications

integrating data and voice. On the other hand, ICEBERG attempts to support diverse

access technologies (such as the Public Switched Telephone Network, digital cellular

networks, pager networks, and IP-based networks). InCall and Sensorama together

explore the potential of voice over IP services, but neither has the low-level computing

and telecommunication infrastructure focus as ICEBERG.

IMPROMPTU is an IP-based audio platform for mobile communications and networked

audio applications developed at the MIT Media Lab by Kwan Lee [12]. Several

similarities between inCall/Sensorama and IMPROMPTU exist. Both projects were

designed with scalability in mind and around an architecture that serves as the foundation

for distributed services. Moreover, the Full-Duplex component of inCall stems from the

IMPROMPTU chat application, with a few minor modifications. However, the

motivation behind the two projects is significantly different. While Sensorama was

conceived as an integration infrastructure for personal digital devices, with inCall as an

example of the benefits that such as infrastructure can provide, Kwan Lee was primarily

interested in exploring how to develop audio interfaces for a sophisticated mobile

platform with IMPROMPTU.

3. Application Scenarios

InCall is a phone systems distinguished by its set of context-sensitive user services. The

usage scenarios below portray how inCall might be used and how people in real life

situations could benefit from it. The fictitious characters in the application scenarios

below are James, Bridget and Lucy. James and Bridget are married and have one

daughter, 12-year old Lucy. James runs a small consulting business with 5 others and

Bridget works as a dentist at the local university. They work in opposite sides of town, so

they get to see each other only in the morning for breakfast and sometimes late in the

evening. Therefore, they rely on their office and cell phones to communicate with each

other during the day. It is common for Bridget to call James several times a day, during

her breaks and when patients are late for appointments. Conversations between the two

are more often than not about their personal lives, such as who is going to take the kids to

school the next day and whether they are going to visit grandma during the holidays.

Most of the time, however, their conversations are fairly short; they don't talk for more

than 5 minutes at a time. After all, James is usually very busy at work, running to and

from meetings and conference calls all day long. Lucy also calls her parents regularly

during the day. Luckily for James, who does not have an administrative assistant, his

company has an inCall voice communication system installed, which facilitates the

arduous job of prioritizing between so many different tasks that need his attention and

time throughout his day. InCall replaces the old phone system with a smart and context-

sensitive communication device.

3.1. Caller Availability

It's lunchtime. Bridget picks up her cell phone and punches her husband's office number.

For years during her lunch break, Bridget has been calling her husband to see how his

day is going and talk about the kids and what they are all doing for dinner. Instead of

hearing James' voice however, she is sent to voice mail. Most of the time, James spends

his lunch break in the city park, enjoying the scenery, the cool breeze and his turkey

sandwich. Not today. He is busy in an important lunch conference call with a group of

important partners and cannot talk to his wife. Thanks to inCall, though, when his wife's

call comes through, the type of ring tells James how busy Bridget is and whether would

be ok to call her back later. He glances at his phone caller ID and confirms that Bridget is

the one on the line. His phone emits the sound of someone snoring, which means that she

will not have any appointments for the next 3 hours. It is a slow day in the office for her.

That is perfect, because he will be free later in the day. At 4PM, James calls Bridget and

they decide to go have pizza for dinner with the kids.

inCall interfaces and communicates with the personal organizer of its users, allowing it

to encode time availability into ring type, eliminating long phone-tags between people

who want to talk to each other.

3.2. Expected Call Duration

Every week, James needs to fly to California to visit some of his clients located there.

James is a first class frequent flyer. Because of how often he travels, James devised a

special routine for his traveling days that allows him to do some work before heading to

the airport. He usually goes to the office around 8AM, works for a couple of hours and

then leaves to catch the 12PM flight to San Francisco. One of the problems that James

had before using inCall was that sometimes he was so busy in the office that he had to

force himself to stop working or talking on the phone so as not to miss his plane. This

was particularly true when he received an important phone call minutes before leaving to

the airport and could not hang up the phone right away. As with many, being late is an

extremely stressful condition for James. After the installation of inCall, however, his job

of prioritizing communication tasks became a lot easier, especially under time-critical

circumstances. Now, when he is about to leave the office for an upcoming appointment or

flight and has only a few minutes to spare, James avoids answering the phone when its

ring type indicates a long phone call.

in Call can be programmed to change its ring type according to how long a phone call is

expected to last. Because of its ability to communicate with email client applications,

inCall is aware of whom one talks to on a regular basis and whom one might have to talk

to for a longer period of time.

4. System Architecture

InCall is a service that derives its unique value from the communication and sharing of

data between personal digital devices, in this case a personal computer and a telephone.

InCall can be divided in two main components: iTC and Sensorama. ITC is the core unit

of inCall, responsible for the voice over IP service, logic and the overall functionality of

the telephone system. Sensorama is an application and interface that allows a personal

information manager to become sensible and exchange user context information with

other devices, such as a telephone. Sensorama is the source of context information for the

telephone system of inCall. In this chapter, we first describe inCall, then Sensorama.

4.1. inCall

4.1.1. Implementation

The inCall system was implemented as a mobile platform and also as a desktop system.

The mobile platform was created around the iPaq personal digital assistant and the

desktop one ran in a variety of Red Hat 7.2 Linux boxes in the laboratory.

Figure 1: inCall implementation architecture

4.1.1.1. Hardware

The iPaq used to implement the system was the COMPAQ iPAQ H3600. A dual-slot PC

Card expansion pack was added to the iPaq and the two extra PC slots were filled with a

LUCENT Wavelan 802.11 b wireless card and a 1GB IBM Microdrive. On the desktop

side, standard PC boxes with network connectivity were used. Below is a picture of the

iPAQ, the 802.1 lb card and the Microdrive.

COMPAQ IPAQ H3M00 Lucent Orinoco Gold 802.11b PC Card

IBM 1GB Microdrive

Figure 2: inCall hardware

-E-L- "MMEM-_ - -

4.1.1.2. Software

The desktop version of inCall was developed under the Red Hat Linux 7.2 operating

system, but it should run without problems under other Linux distributions as well. The

mobile inCall system was implemented on top of the Familiar vO.5.2 Linux distribution

[31]. The iPaq is a device with little internal memory and storage space compared to

today's desktop and laptop computers. This makes it very hard to install in the iPaq all

the necessary tools and libraries required to develop relatively large software systems. To

alleviate this situation and support software development for the iPaq running Linux,

Compaq Research set up a group of external compilation servers called skiffclusters.

Skiffclusters are supercharged iPaqs, with a lot of memory and storage space that give

developers an unconstrained environment that allows them to create software without too

many restrictions. Once a piece of software has been compiled in the skiffclusters with all

the resources that it needs, it can then be transferred to the local iPaq using FTP. InCall

was developed using these external skiffclusters in C and C++.

4.1.1.3. inCall Telephony Core (iTC)

The inCall Telephony Core, also called iTC, is the heart of inCall. Among the

responsibilities of the iTC are handling the connection negotiation, managing the

exchange of context data, using logic to select and trigger the appropriate ring tone and

establishing the full-duplex audio connection.

It provides two interfaces for control: a command-line shell prompt and an XML-RPC

server. The command-line shell is used when placing or answering calls, while the XML-

RPC server interface is used for communication with other devices and for the exchange

of context data relative to originating or incoming calls. Each of the interfaces runs in its

own thread and waits for input. The input then triggers the appropriate command

handlers, which often involves starting up new threads. These two control threads run

continuously whenever the system is running.

There are three threads that can be invoked inside the command handlers: the calling

thread, the ringing thread, and the full duplex thread. No more than one of those threads

can be running at any one time.

Input Input

Command Shell

Calling Threa(

XML-RPC Server

Full-Duplex Threa

Ringing Threa(

Figure 3: Internal inCall architecture

C

- - =___ - - M-A-00 - -- -

The system can be in one of five states: idle, calling, ringing, connected, or transition;

each of these are pretty much associated with one of the three threads started by the

handlers.

Each thread locks a mutex when it changes the state, and unlocks it when it shuts down.

Most commands can only be used in the idle state. For example, one cannot make a call

when the phone is already in use. The transition state is used to prevent race conditions

when switching from one thread to the other; the new thread hasn't started up yet, but the

system isn't idle either.

4.1.1.4. Full-Duplex Voice over IP

The voice over IP (VoIP) component of inCall is based on previous work done by Kwan

Lee [12] in his Master's Thesis titled "IMPROMPTU, Audio Applications for Mobile

IP". IMPROMPTU, also based on the iPaq, is defined by Kwan as a platform for mobile

communications and networked audio applications. One of the applications developed for

IMPROMPTU is a full-duplex telephone system. This is the application inCall stems

from. Internally, the full duplex phone application is actually very simple. When a

connection is established, two completely independent threads are started, a sending

thread and a receiving thread. The sending thread is responsible for constantly capturing

digitized audio from the iPaq built-in microphone, creating UDP packets with the audio

data and sending these packets to the other end of the connection [30]. The receiving

thread, as expected, receives incoming UDP packets, extracts the audio data from them

and places the data in the iPaq audio buffer. These two threads permit the simultaneous

sending and receiving of voice in real-time, effectively morphing the iPaq into a

telephone. Because of network congestion or other potential problems, the Full-Duplex

threads were designed to time-out if no data is received within 5 seconds.

4.1.1.5. XML-RPC Client and Server

What differentiates inCall from current phone systems is that it is able to modify its

behavior depending on its own state and the state of its users. In order to communicate

with Sensorama or with other devices and exchange contextual information with them,

inCall was designed from the ground up with an embedded XML-RPC client and server.

The inCall XML-RPC client and server are based on an XML-RPC library for C and C++

referred to as xml-rpc-c [32]. This library defines itself as a lightweight RPC library

based on XML and HTTP. The client side of xml-rpc-c requires the installation of

libwww. Libwww is a highly modular, general-purpose client side web API written in C

that is maintained by the W3C consortium [33]. The server side of xml-rpc-c requires the

installation of ABYSS, a small footprint, fully HTTP/1.1 compliant web server [34].

Xml-rpc-c installs the ABYSS server by default.

The inCall XML-RPC client is used to communicate with other devices as part of the

handshake and negotiation protocol that takes place when users implicitly or explicitly

utilize inCall services. An implicit utilization of an inCall service would be answering a

phone call, while an explicit utilization would be making a phone call, for instance.

With regard to the inCall XML-RPC server, it runs in its own thread and spawns new

threads in order to serve requests. Not unlike the client, the server is also critical to

communication and negotiation when inCall services are in progress, about to be in

progress or terminating. The inCall XML-RPC is bound to the following interface:

Table 1: inCall CallRequest Interface

And

Boolean Call Answered (String pIP, String dIP)

Table 2: inCall CallAnswered Interface

The arguments of CallRequest are pIP, dIP, htnEvent, mtnEvent and eDuration, for the IP

address of the caller's phone, the IP address of the caller's personal computer, the number

of hours until the caller's next appointment, the number of minutes until the caller's next

appointment and the expected duration of the call, respectively.

4.1.1.4. Ring Controller

The ring controller is responsible for the ring thread and also for determining which ring

tone to use given a particular scenario and user context. There are three types of ring

tones built into inCall: the sound of someone snoring, the sound of a monkey screaming

and the sound of a regular digital telephone. The monkey screaming tone is used to

convey urgency or speed, such as when the caller should return a phone call very soon in

order to talk to the callee. This might happen if the callee will be in a meeting or away

shortly. The sound of someone snoring is used in the exactly opposite situation, such as

when the caller does not need to return a phone call right away or when the expected

duration of a call is long. The sound of a regular digital telephone system is used in the

in-between cases. The tables below show the relation between time availability, expected

call duration and ring tones chosen by inCall.

Time Availability

less than 30 minutes

between 30 minutes and 2 hours

more than 2 hours

Ring Tone

Monkey

Digital Telephone

Snore

Table 3: Time Availability vs. Ring Tone

Expected Call Duration

less than 10 minutes

between 10 minutes and 30 minutes

more than 30 minutes

Ring Tone

Monkey

Digital Telephone

Snore

Table 4: Expected Call Duration vs. Ring Tone

4.1.2. Services

4.1.2.1. Availability of caller encoded in phone ring frequency

1. The caller places a call to the recipient by entering the 'call' command as a command

line. This requires an IP address and an identifier for the recipient. This starts up the call

thread and puts the phone in the calling state.

g etH o ursTillN extAp pointm ent()
g etMin ut esTillN extAp p ointm ent()

2 hours and 24 minutes

Figure 4: Call thread requests caller's time availability to caller's computer

2. The call thread contacts Sensorama in the caller's personal computer to get the context

data: time until next event (getHoursTillNextAppointment and

getMinutesTillNextAppointment). It then contacts the recipient's phone with a

CallRequest message containing the addresses of the caller's phone and desktop, and all

the context data.

CalIR e q u est()
-PhonelP
-ComputerlP
-H ours Till Apptmt.
-Minut esTill Ap ptmt.

Figure 5: Call thread contacts the recipient's phone

3. Provided that the CallRequest returns true (i.e. the recipient is not busy), the call thread

goes into a waiting loop. Unless it's stopped (by the call being answered), it times out and

returns the phone to an idle state in 35 seconds.

4. The recipient's phone receives the CallRequest message through its XML-RPC server.

If it's not busy, it stores the data about the incoming call (IP addresses and context data)

in a global structure, and starts up the ringer thread.

Bee p!

Figure 6: Ring thread selects a ring tone

5. The ring thread uses the context data and internal logic to decide what ring tone to use.

It then starts a loop that lasts until it's stopped (by the answer command) or until it times

out in 30 seconds. During this loop it plays the selected sound by forking off a sub

process and executing the player process (SOX, in this case [21]).

6. While the ring thread is running, the recipient's phone sends the context information to

the recipient's computer, by issuing a CreateSensor Window message.

i
-H ours Till Ap ptmt.

-Minut esTill Apptmt.

Figure 7: Recipient's phone sends context data to recipient's computer

7. The recipient's computer then displays the context information to the recipient of the

call in a SensorWindow.

Juka

Figure 8: Recipient's computer displays caller's context data

8. The recipient chooses to answer the ringing phone by invoking the answer command.

This shuts down the ring thread and starts up the full duplex thread. The full duplex

thread begins sending audio and prepares to receive incoming audio. Finally, a

CallAnswered message gets sent back.

F uliD u pl ex

CallAnswere do

Figure 9: Recipient's phone agrees to start full-duplex

inCall

expected duration location weather

75'F, Cloudy

availability workload

4 hrs and 23 min

no e n s o ra ni a I

9. The CallAnswered message is received by the caller's XML-RPC server. It stops the

call thread, and starts up the fullduplex thread. This begins full-duplex audio exchange

between the two parties.

F uliD u pl ex

F ulD u p ex

Figure 10: Full-Duplex starts on both ends

10. Once the conversation is finished either side can use the close command, which stops

the full duplex thread.

11. The other side's full duplex process, having not detected any incoming data in a

certain period (5 seconds), will time out and shut down. The phone will then be returned

to the idle state. This is also what happens if the connection is dropped.

4.1.2.2. Expected duration of a call encoded in phone ring or frequency

1. The caller places a call to the recipient by entering the 'call' command as a command

line. This requires an IP address and an identifier for the recipient. This starts up the call

thread and puts the phone in the calling state.

exp ect e dCaID urati on() 34 minut es

Figure 11: Call thread requests expected call duration to caller's computer

2. The call thread contacts Sensorama in the caller's personal computer to get the context

data: expected call duration (getExpectedCallDuration()). It then contacts the recipient's

phone with a CallRequest message containing the addresses of the caller's phone and

desktop, and all the context data.

CalIR e q u est()
- Phone IP
- ComputerIP

- Call D urati on

Figure 12: Call thread contacts the recipient's phone

3. Provided that the CallRequest returns true (i.e. the recipient is not busy), the call thread

goes into a waiting loop. Unless it's stopped (by the call being answered), it times out and

returns the phone to an idle state in 35 seconds.

A ..

Mi

4. The recipient's phone receives the CallRequest message through its XML-RPC server.

If it's not busy, it stores the data about the incoming call (IP addresses and context data)

in a global structure, and starts up the ringer thread.

/

/ BLep!

Figure 13: Ring thread selects a ring tone

5. The ring thread uses the context data and internal logic to decide what ring tone to use.

It then starts a loop that lasts until it's stopped (by the answer command) or until it times

out in 30 seconds. During this loop it plays the selected sound by forking off a sub

process and executing the player process (SOX, in this case [21]).

6. While the ring thread is running, the recipient's phone sends the context information to

the recipient's computer, by issuing a CreateSensor Window message.

j -Cal Duration

Figure 14: Context data sent to recipient's computer

7. The recipient's computer then displays the context information to the recipient of the

call in a SensorWindow.

_____________ ,,-:5@Snsrama I

Figure 15: Recipient's computer displays caller's context data

8. The recipient chooses to answer the ringing phone by invoking the answer command.

This shuts down the ring thread and starts up the full duplex thread. The full duplex

thread begins sending audio and prepares to receive incoming audio. Finally, a

CallAnswered message gets sent back.

JukainCall

expected duration location weather

30 minutes 75'F, Cloudy

availability workload

FullDuplex

CallAnswere dO

Figure 16: Recipient's phone agrees to start Full-Duplex

9. The CallAnswered message is received by the caller's XML-RPC server. It stops the

call thread, and starts up the full duplex thread. This begins full-duplex audio exchange

between the two parties.

F ullD u pl ex

F uliD u pl ex

Figure 17: Full-Duplex starts on both ends

10. Once the conversation is finished either side can use the close command, which stops

the full duplex thread.

11. The other side's full duplex process, having not detected any incoming data in a

certain period (5 seconds), will time out and shut down. The phone will then be returned

to the idle state. This is also what happens if the connection is dropped.

4.2. Sensorama

Sensorama is an application and interface that allows a computer personal information

manager to become sensible and exchange user context information with other devices,

such as a telephone. Sensorama was implemented as a wrapper around Microsoft

Entourage for the Macintosh, a software package that includes an email client, a calendar

and also an address book. Sensorama constantly monitors the data activity of Entourage,

such as the flow of email messages and appointments of users, and either tries to analyze

it or make some of it available to other systems and applications as a set of distributed

observable interfaces [23]. Sensorama is a core element of the service because it is the

source of user context information to inCall. The telephone component of inCall simply

needs to comply with the XML-RPC interface of Sensorama in order to request

information from it. Examples of what kind of personal information Sensorama provides

includes how long users will be free until their next appointment and whom they

communicate with by email regularly.

One of the challenges of an application like Sensorama has to do with the

Informativeness vs. Privacy design tradeoff mentioned by Milewski and Smith [4].

Milewski and Smith state that if someone's personal information is conveyed fully

enough to be useful, in the case of a telephone awareness application, then it may often

violate that person's privacy. Privacy and the extent to which users are willing to give it

up is one of the major challenges that inCall faces. Reducing the resolution of

information to address privacy concerns has been one of the tactics employed in the past

in dealing with this compromise and this is the strategy that I use here as well [6].

Although the exposure of private user information to the external world might be

undesirable at first thought, it should not pose any problems or threats to users as long as

all sensitive information is kept within a closed and personal computational environment.

Even though Sensorama was described as a wrapper around Entourage, it was

implemented as a Macintosh stand-alone application. The next several sections offer a

detailed description of the Sensorama interfaces, how they were implemented and other

important elements of this non-trivial piece of inCall.

4.2.1. Interfaces and Organization

The Sensorama interfaces are constituted of modular managers organized in layers. At

the bottom lays the low-level manager, the Activity Manager, whose functionality

provides essential services to higher-level managers. Some high-level managers examine

the raw data provided by the Activity Manager, extract regularities from it and expose

them with an interface to the outside world. Others, such as the Location Manager,

simply offer information services and do not need to communicate with the Activity

Manager at all. The regularities extracted from the Activity Manager data might be

patterns of social interaction or time availability, for example. There are three high-level

managers, the Time Manager, the Location Manager and the Social Manager. Below is a

diagram of the Sensorama managers in-context:

* Schedule
" Email exchange
" Addressbook look up

- Location Weather

Figure 18: Sensorama architecture

4.2.1.1. High-Level Managers

4.2.1.1.1. Time Manager

The Time Manager is responsible for collecting scheduling information about the user

from a personal information manager and sending this piece of context data to inCall. As

it currently stands, this manager is very simple, since it is not trying to make any direct

inferences about the state of the user.

Table 5: Time Manager API

The two interfaces, getHoursTillNextAppointment and getMinutesTillNextAppointment

both return an Integer indicating the number of hours and minutes respectively, until the

next user appointment. A much larger set of interfaces could be implemented for the

Time Manager, but the two described above were the only ones strictly necessary for the

implementation of the inCall user scenarios.

Incidentally, the Appendix B describes a method for determining user workload that

would be a possible way to extend the Time Manager.

4.2.1.1.2. Social Manager

Recognizing email exchange patterns is the main task of the Social Manager. It provides

two interfaces, isPersonA Contact and getExpectedCallDuration, which mainly keep track

of user contacts and communication history. While the isPersonA Contact interface

simply checks whether a contact can be found in the user's addressbook, the

getExpectedCallDuration interface is more complex. It was added to Sensorama in order

to implement one of inCall's user scenarios. The getExpectedCallDuration interface

deduces how long a call between A and B might last according to the number of emails

that A has received from B or vice-versa. For instance, if A has received many emails

from B, in other words, is in constant communication with B, then a phone call between

the two of them is likely to be relatively short. Alternatively, if A has received only one

email from B in a long time, then a call from A to B is probably going to be longer. One

of the challenges with this interface is that intuitively, the rationale behind its

implementation might make sense. However, in practice, the exact opposite of what we

might expect could naturally occur. The getExpectedCallDuration interface correlates

email number with call duration according to the table below:

Number of Emails Expected Call Duration

> 4 5 minutes

>1 20 minutes

1 35 minutes

Table 6: Email Number vs. Call Duration

Due to time constraints, the effectiveness of this interface has not been evaluated. It is

also worth noting that the Social Manager does not try to make inferences based on the

semantics of a communication stream, such as the contents of an email message.

Table 7: Social Manager API

4.2.1.1.3. Location Manager

The Location Manager provides information about the user environment, more

specifically weather temperature, by querying an external source: the web site of The

Weather Channel. Given a zip code, this manager issues a URL request to the following

URL, with the zip code appended as shown below:

http://wvww.weather.com/weather/ocal/+ zip code

Table 8: The Weather Channel URL

The returned web page is then parsed and the temperature is obtained. It is important to

mention that the web page above was designed to be accessible by web browsers, so its

layout may change at any time and the parsing code implemented by the Location

Manager may stop functioning correctly. Ideally, a web service with a permanent

interface would be the provider of this type of user context information.

Table 9: Location Manager API

4.2.1.2. Low-Level Managers and API

4.2.1.2.1. Activity Manager

The Activity Manager is a central piece of Sensorama. It is responsible for constantly

monitoring the activity and data of the user's personal information manager. Contextual

observations harvested by the Activity Manager are then sent to high-level managers to

be analyzed and from where regularities are extracted. With regard to communication

with the personal information manager application, Sensorama relies on the interprocess

communication interface built into the Macintosh operating system API. This interaction

is described in detail in a later section.

4.2.1.3. Communication Protocol

The Sensorama interface is exposed through XML-RPC [40], a simple but effective wire

protocol built on top of HTTP [42]. In other words, XML-RPC is the interface between

Sensorama and the telephone component of inCall. The word XML-RPC is a

combination of two different acronyms: XML and RPC. XML stands for "eXtended

Markup Language" and RPC stands for "Remote Procedure Call". In essence, XML-RPC

communicates using XML in order to perform remote procedure calls.

A distributed protocol like XML-RPC was chosen as the Sensorama interface primarily

because of its simplicity, reliance on XML and widespread support due to recent interest

in the development of web services on the Internet [7]. One of the great advantages of an

HTTP-based protocol is that it allows systems running on disparate operating systems

and environments to communicate with each other rather seamlessly. Any device, using

any operating system connected to a network can in principle implement an XML-RPC

client and server and become part of a distributed network. An XML-RPC call to the a

hypothetical calculateArea interface would look like this:

Table 10: Sample XML-RPC Call

The document above is formatted in XML and would be sent from a client to a server as a

POST request. A typical reply would look like this:

Table 11: Sample XML-RPC Response

In particular, an XML-RPC call to the getMinutesTilNextAppointment interface of

Sensorama would look like this, with the header included:

Table 12: Sample XML-RPC Call with Header

And if there are 38 minutes remaining until the next user appointment, Sensorama returns
the following message, also with the header included:

Table 13: Sample XML-RPC Response with Header

This last example is very important because it accurately illustrates how an interaction

with Sensorama takes place with XML-RPC. The fact that XML-RPC is based on XML

makes client and server messages easy to read and debug.

4.2.2. Implementation

The MacOS implementation was designed as a stand-alone application. It is divided in

seven modules: MacZoop, XML Parser, XML-RPC Objects, Sensorama Core and API,

IPC, XML-RPC Client and XML-RPC Server. The following diagram illustrates how

these modules are organized:

Figure 19: MacOS Sensorama implementation

4.2.2.1. MacZoop

Modem operating systems with increasingly complex user interfaces such as the MacOS

and Windows pose a challenge to software developers. To facilitate the development of

software programs with sophisticated user interfaces, a variety of GUI toolkits and

frameworks have emerged, such as MacZoop. MacZoop is an object-oriented framework

that makes it really simple to design software applications for the MacOS [35]. Most of

the essential routines that handle the management of the user interface are already part of

the framework; in other words, it does not need to be written by software programmers.

Management of the user interface encompass tasks such as sending and receiving events

to and from the operating system, handling mouse clicks in menus and controls and

supporting "drag & drop" in windows. MacZoop is the framework on top of which I built

Sensorama for the MacOS.

4.2.2.2. XML Parser

The XML Parser of Sensorama is based on Expat, a library, written in C, for parsing

XML documents [36]. It's the underlying XML parser for many open-source XML

parsers currently distributed in a variety of formats. It is very fast and sets a high standard

for reliability, robustness and correctness. However, it is not a validating parser, in other

words, the documents that it parses must be well-formed XML documents but not

necessarily bound to any DTD. This library is the creation of James Clark, who was also

the technical lead on the XML Working Group at W3 that produced the XML

specification.

Expat is a stream-oriented parser. Handler functions need to be registered with the parser

before it starts processing a document. As the parser recognizes parts of the document, it

calls the appropriate handler for that part. In Sensorama, Expat was encapsulated in an

object to facilitate its integration with the rest of the object-oriented architecture in place.

The body of the parse method of the XMLParser class is shown below:

Table 14: Using the Expat XML Parser

In the first line, an Expat instance is created. StartElementstatic, endElementstatic and

textElementstatic are set to point to the parser handlers. Later, calls to

XMLSetElementHandler and XMLSetCharacterDataHandler with the parser

handlers let Expat know which callbacks it should use when it encounters an opening

XML tag, a closing XML tag and the text enclosed by the two previous tags, respectively.

4.2.2.3. XML-RPC Objects

In order to format data back and forth between native C types and XML-RPC types, I

designed a set of classes that encompass a simple but effective object model for XML-

RPC. This object model shares many similarities with the Document Object Model

(DOM) specification of the W3C [43], but it is much more specific to XML-RPC,

naturally. When creating new messages to be transmitted over the XML-RPC interface,

these classes facilitate the programmatic composition of XML tags and data. Likewise,

when extracting data from an XML-RPC message, the classes return an object model that

we can manipulate fairly easy from C and C++. An example, to call the interface

isPersonA Contact of the Social Manager located at 18.85.19.165 with the string

argument "Mark Whitman", this is how we would do it:

Table 15: Sample Usage of XML-RPC Objects

The illustrative code above is self-explanatory. An XMLRPCMethod object is created

and given a name, isPersonA Contact. An XMLRPCstring Value is also instantiated

and set to value "Mark Whitman". The string value object is then added to the list of

values of the method object. The msg buffer contains the XML below before the

postXMLRPCRequest message is called:

Table 16: Output of Sample Usage of XML-RPC Objects

Incidentally, the XML Parser was designed to work very closely with the XML-RPC

Objects. In fact, what the Sensorama XML Parser outputs is an object tree based entirely

on XML-RPC Objects. Below is the complete set of XML-RPC Objects:

Table 17: List of XML-RPC Objects

4.2.2.4. Sensorama Core and API

The Sensorama Core and API is the main module of the application, the heart of the

Sensorama implementation. The class Sensorama is the one that implements the

Sensorama interface. To a very large degree, all the other modules such as the XML-RPC

Client and Server exist to support the Sensorama class.

The class itself is organized in different sets of methods, a set for each different

Sensorama manager. Additionally, there is a dispatchMethod procedure, which simply

calls the right Sensorama method by name. Most of the methods depend on the

interprocess communication facility of the MacOS to communicate with other

applications. How exactly Sensorama relies on the Interprocess Communication and

Scripting (IPC) architecture of the MacOS is described in the next section.

Only one Sensorama object gets created when the Sensorama application first starts. The

Sensorama class was designed following the Singleton design pattern in order to enforce

this requirement [22]. The only other module that communicates with the Sensorama

object during the execution of Sensorama is the XML-RPC Server.

4.2.2.5. Interprocess Communication and Scripting (IPC)

The MacOS implementation of Sensorama was created as a stand-alone application.

There is one particular reason why this design decision was made: interprocess

communication (IPC). The interprocess communication facilities of the MacOS, it is

fairly easy to allow completely independent applications to communicate with each other

and exchange information. In particular, I am referring to Apple Events, Applescript and

the Open Scripting Architecture (OSA) [45]. All Macintosh applications are required to

implement an API for interprocess communication, according to guidelines released by

Apple Computer. While not all applications do so, especially the ones designed by small

software developers, most of the major software packages for the MacOS provide an

interface for IPC.

Interprocess communication is important to Sensorama because two of its high-level

managers, the Time Manager and the Social Manager, both need to obtain data found in

the personal information manager and email client application of users, such as user's

schedule for the day or emails sent in the last 24 hours. As mentioned in the Sensorama

spec above, the Time Manager and the Social Manager do not interact with the user

environment directly. The Activities Manager is the one that retrieves information from

user applications. Regardless, the need to access information found in these user

applications exists and must be fulfilled to implement Sensorama. Applescript enables a

simple script asking for an upcoming user appointment to easily retrieve that information

from Microsoft Outlook. As an example, the script below is used to retrieve all events

from a user's calendar in Microsoft Entourage:

Table 18: Sample AppleScript

Another reason why using scripts is useful in this case is because not everyone uses

Microsoft Outlook as their information manager. In fact, there are many others popular

personal information managers in the market and we would like Sensorama to work with

all of them, or at least with as many as possible. To make the script above work with

another application, say Now Up-To-Date & Contact [46] and keep the rest of the

Sensorama implementation absolutely intact, all that is required to change the very first

line, from 'tell application "Microsoft Entourage"' to 'tell

application "Now Up-To-Date"'. Such a change can be made to not even need

source code recompilation. This is one of the reasons why I claimed that the MacOS

implementation of Sensorama is reusable and multi-purpose.

Usually, on the Macintosh, stand-alone applications are implemented in languages such

as C and C++ and they don't interface directly with scripts such the one shown above. In

order to communicate with other running applications, most programs rely on Apple

Events, which is a C interface to the interprocess communication architecture available

on the MacOS. The problem with the Apple Events interface is that it is not easy to use,

especially when more complex data exchanges are needed between applications. Multiple

descriptors have to be created and inserted into each other, sometimes in the form of lists.

The end result is code that is hard to maintain and understand. Nevertheless, thanks to the

Open Scripting Architecture (OSA), it is also possible to execute and control natural

language scripts such as Applescript from C code. According to Apple, this is the

definition of the OSA:

"The Open Scripting Architecture (OSA) is an API that provides a standard mechanism

for creating scriptable applications and for writing scripting components to implement

scripting languages. It is made of a set of scripting component data structures, functions,

and resources that allow applications to interact with scripting components."

The OSA path was taken in order to make the Sensorama application communicate with

other applications. The stand-alone app communicates with other external applications by

means of AppleScripts, primarily.

4.2.2.6. XML-RPC Client

The XML-RPC client of the MacOS implementation of Sensorama is built around

another Apple software technology, the URL Access Manager [25]. The URL Access

Manager provides application support for downloading data from or uploading data to a

Universal Resource Locator (URL). The client was encapsulated in a class called

HTTPSuperClient, whose most important method is postXMLRPCRequest. Before

postXMLRPCRequest is called, the client must always check whether the URL Access

Manager is available by calling the method urlAccessIsAvailable. PostXMLRPCRequest

takes two arguments; a URL and an XML-RPC method call in the form of an XML

message. The method creates the XML-RPC request header and appends it to the XML

message, as a prefix. The final step that postXMLRPCRequest is responsible for is to

submit the combined header-message to the URL specified in the incoming argument as a

POST. A typical instantiation and use of the HTTPSuperClient would look like this:

Table 19: Using the XML-RPC Client

4.2.2.7. XML-RPC Server

The MacOS Sensorama XML-RPC Server runs in its own thread and spawns new threads

for every incoming request, so the server is quite efficient. The MacOS Classic threading

model and OpenTransport, the MacOS networking architecture are the two limiting

factors that can cause bottlenecks to occur on the server side. However, unlike web

servers, which must serve a large number of images and documents in a short period of

time, the XML-RPC Server is not expected to handle a heavy load.

For every incoming XML-RPC incoming request, the code below gets executed. A

description follows:

Table 20: XML-RPC Server Dispatching Calls

When an XML-RPC server request comes in, a new XMLParser parser is instantiated.

The constructor of the parser takes an object of type XMLParserCallbackXMLRPC,

which has all the required Expat handler functions. It is worth noting that the handler

functions called when the parsing is taking place already format the incoming request

with XML-RPC Objects and save it as an XMLRPCMethod object. The server then

calls the Sensorama dispatchMethod with it, which returns an object of type

XMLRPCMethod again, this time with the result properly formatted to be sent back to

the client and originator of the request.

5. Evaluation

5.1. Description

The evaluation portion of this thesis is dedicated to inCall. More particularly, it focused

on how extra context information provided to those receiving phone calls, specifically

caller time availability, facilitates the job of contacting other people by phone. The

hypothesis of this evaluation was that the exchange of time availability between phone

systems could help eliminate what is commonly referred to as "phone tagging"; the

definition of what happens when two or more people successively try and fail to contact

each other by phone. The elimination of "phone tagging" is desirable because not being

able to talk to someone when the need arises might delay the execution of tasks and the

exchange of information, especially in a business setting.

To evaluate inCall, a comparative evaluation was organized with ten pairs of people in

two studies. The people who participated in the studies were students at the MIT Media

Lab. The goal of the first study was to test the evaluation procedures and also the inCall

system interface. Essentially, the first study was a pilot test while the second study was

the actual user evaluation. At first, I planned to organize a qualitative study to measure

the benefits brought in by inCall, but with help from Ted Selker, one of my readers, I

designed a user scenario that allowed me to test inCall quantitatively as well.

In pairs and in separate locations, users were asked to simulate a real world interaction

between a travel agent and a travel magazine journalist pretending to be a customer trying

to find last minute tickets, flight and accommodation to the World Cup Finals in Korea

and Japan. In the scenario, the job of the travel agent was to take the customer call, search

the web for travel deals and information relative to the customer requests and then phone

the customer back with the travel offerings available. The job of the travel magazine

journalist was to pretend to be a customer in order to evaluate the quality of service of the

travel agency. The reason why this scenario was chosen is because it required both the

agent and the fake customer to communicate with each other repeatedly over a relatively

short period of time, increasing the chance that they would "miss" each other and that

"phone tagging" would occur. Both the journalist and the travel agent were given

schedules to constrain their communication and simulate meetings and appointments

during the study. The study was set up to last approximately 30 minutes and the metric

adopted to evaluate the performance of inCall was the ratio of the total number of calls

received divided by the total number of phone calls made. The time spent for the

completion of tasks described in the user study guidelines was also taken into

consideration, together with the number of tasks completed. In simple terms, what the

evaluation aimed to show was how the time availability context information of inCall

gives users a better idea of when to return calls to avoid "phone tagging" and, thus help

users accomplish collaborative tasks faster and with less calls.

Half of the users in the evaluation used a version of inCall that provided extra context

information with regard to incoming calls and half of the users performed the evaluation

tasks without the context information provided by inCall.

5.2. User study guidelines

Below are the guidelines given to the pair of subjects that participated in the user study,

one for the travel agent and one for the journalist.

5.2.1. Journalist

Hello,

This is your first assignment as writer and journalist of Travel Smart magazine.

This month, we are going to publish a World Cup Finals special section in our magazine

and you are going to be in charge of it. The first thing that we need to do is cover all the

different travel agencies that offer bargain packages to Japan and Korea. Some of them

sell cheap packages but their customer service is absolutely terrible and we want to steer

our readers away from them. One of the agencies, and the one I would like you to focus

on for the moment, is Slouch Travel. Slouch has a bad reputation; they are known for

being lazy and not getting back to customers. But they are supposed to be improving, so

we are going to TEST them!

Pretending that you are going to the World Cup Finals with your family, follow the

instructions below IN DETAIL:

1. Call Slouch Travel and say: "Hello, I am going to Japan next week to see the World

Cup Finals. Can you give me the phone number of a Hilton Hotel in Tokyo?"

2. When they call back with the phone number, say: " I am sorry, but I have changed my

mind. Can you try to find the phone number of a youth hostel in Tokyo instead?"

3. Finally, the third time that they call, ask them for flight info. Say: "How much would

an airfare to Tokyo cost? I want to leave Boston June 25th and come back July 3 rd. No

preference for airline or flight time."

4. To simulate a real person calling the travel agency, pretend that you have the schedule

below and that the dark rectangles correspond to meetings. IF THE PHONE RINGS

DURING THOSE TIMES, DO NOT PICK UP THE PHONE. PRETEND YOU

ARE NOT IN THE OFFICE.

Customer Schedule

0

5

10

El1Free - Place calls or accept incomng calls

Busy - Do not place or accept calls

Figure 20: User Study: Journalist Schedule

5. Fill-out a travel agency evaluation form whenever the phone rings or whenever you

place a customer call, regardless of whether you talk to the agent or not.

5.3.2. Travel Agency

Welcome to Slouch Travel, a travel agency specialized in low-cost vacation packages

for people on a shoestring budget. This is your first day on the job. You are a travel

operator and your function is to take phone calls from customers inquiring about the cost

and availability of flights, hotels, cruises and get-away specials. Below are your job

instructions:

1. At Slouch Travel, we only work 30 minutes a day, with several breaks in these 30

minutes. You can find your schedule below. DO NOT WORK DURING YOUR

BREAKS.

TravelOperator Schedule

10

15

20

25

30

Z] Work - Place calls or accept incomig collb

Free Timu - Do not place or accept calk

Figure 21: User Study - Travel Agent Schedule

2. When customers call with questions, LISTEN TO THEM CAREFULLY and tell

them that you are CALLING BACK AS SOON AS POSSIBLE WITH ANSWERS.

DO NOT ASK ANY MORE QUESTIONS.

3. The web is your information source and your friend. Go to the web and search for

flights, hotels, cruises and packages for all of your customer requests.

4. Fill-out a customer interaction form whenever the phone rings or whenever you place a

customer call, regardless of whether you talk to the customer or not. IF THE PHONE

RINGS DURING YOUR BREAK, DO NOT PICK UP THE PHONE. PRETEND

THAT YOU ARE NOT IN THE OFFICE.

5. GET BACK TO CUSTOMERS AS QUICKLY AS POSSIBLE!

5.3. Results

The evaluation of the inCall system demonstrated how time availability context

information can help people perform collaborative and co-dependent tasks together. The

first study was a great aid to debug the evaluation procedures and guidelines. As an

example of a significant change that resulted from testing inCall, when inCall was

originally designed, it provides two user interfaces for control: a command-line shell

prompt and an XML-RPC server. To make it as natural as possible for users to place and

answer calls, I designed a user-friendlier interface for inCall specifically for this user

study, the inCall Caller. However, during the evaluation test run, I noticed that the Caller

did not provide enough user feedback and negatively influenced how users perceived the

inCall state to be. Therefore, for the actual evaluation, users were asked to interact with

inCall using the iTC command shell.

Four pairs of people were part of the evaluation pilot and six pairs of people were part of

the real evaluation. During the two iterations of the real user evaluation, the total number

of calls using the inCall system was 41.

The first three subject pairs were given access to the time availability context information

of each other, through the inCall system. The total number of calls was 19. Of these 19

calls, 9 of them led to a conversation between the travel agent and the journalist. The

ratio of the number of calls received divided by the total number of calls made was 0.47.

In other words, 47 percent of the calls placed resulted in a conversation between the pair

of subjects. In total, 7 tasks were completed.

The last three subject pairs were marked by a larger number of calls placed, 22 and also

by how few calls led to an interaction between the agent and the journalist, only 8. In this

iteration, users were also using inCall to place calls, but they were not receiving time

availability information when receiving calls. The ratio of the number of calls received

divided by the total number of calls made was 0.36. In conclusion, only 36 percent of the

calls made resulted in a conversation between the pair of subjects. This small call

percentage illustrates a higher incidence of "phone tagging". In total, 5 tasks were

completed.

Calls Made Calls Rev Tasks Completed

inCall 19 9 7

Phone 22 8 5

Total 41 17

Table 21: inCall vs. IP Phone Comparison for the Pairs

The results obtained in the six iterations of the user evaluation indicate that the exchange

of time availability as a piece of context information between users in a communication

setting seems to reduce the amount of "phone tagging". More studies are necessary to

establish statistical corroboration of time availability as a piece of context in

communication. A study lasting days, if not weeks, might be ideal to really test the

behavior of the unique inCall features in comparison with what a typical IP phone offers

in functionality. What this evaluation shows is that the utilization of time availability as

an element of context can certainly help people communicate with each other more

efficiently.

6. Contributions

inCall is a communication service using voice over IP that shows how user context

information acquired from a personal information manager can be utilized to help users

prioritize incoming calls and make better informed decisions about them. The primary

contributions of inCall are:

1. Showing how a voice over IP network offers the opportunity to serve as a dynamic and

malleable foundation for new types of communication services, context-based or not, that

can be integrated with voice services. In other words, inCall reiterates how many

possibilities exist in an environment where voice and data can coexist interchangeably.

2. Demonstrating how devices that gather and share context information about how they

are used can collaborate to create new user-centric communication services. Although

simple at first, this contribution of inCall is very powerful. It precipitates the

development of a whole new category of multi-device services that transcends the

features that each device can offer individually.

One element that differs inCall from other telephony awareness applications which is

definitely a contribution as well has to do with the flow of context information within a

collection of distributed devices. While in other telephony awareness systems context

information flows from the callee to the caller [4,20], the essence of inCall comes from

the flow of user context information from the caller to the callee. Without a doubt, this is

another unique characteristic of inCall:

The key idea behind InCall is that when user A places a call to user B, inCall

communicates with user A's computer and collects observational context information

about user A, such as how busy he or she is, where he or she is and who he or she

communicates with on a regular basis. This information is then sent to user B so that user

B can better prepare for the call or make a better informed decision about whether to

take the call or not.

As far as Sensorama, a component of inCall, is concerned, its main contribution is to

create a platform as a wrapper around a software application, such as a personal

information manager. This is an important contribution because with such a wrapper, we

can collect and analyze previously inaccessible data that software applications manipulate

and subsequently share it with other devices that comply with a common interface.

7. Future Work

An area that could also benefit tremendously from future work and that I would like to

emphasize here is evaluation. Long term user testing is the only important element of this

research that is conspicuously missing due to time constraints.

As far as inCall is concerned, below is a list of changes and implementations that would

significantly enhance the power and reach of the system:

- Make it easy for users to call each other. Right now, users have to type the command

'call' followed by an IP number and the name of the person who is being called. The

interface is nothing more than a command shell. It is important to make the interface

user-friendlier for evaluation purposes and also for real-world usage. A simple user

interface was developed for the evaluation, but it is not complete and easy-to-use enough

for long term application testing.

- The inCall device right now is very heavy, because of the dual pocket slot, the wireless

card and the 1GB Microdrive. It would be useful to try to reduce the size of the device.

An option might be to reduce the RAM memory footprint and also the required hard

drive space. The XML-RPC Client and Server library require a lot of hard drive space

and that is the reason why the Microdrive is used. Perhaps in a future version of inCall,

another less storage space-hungry XML-RPC library could be used.

- At the moment, different ring types are built into the inCall device and cannot be

changed. Users like customization, so it would be useful to let users upload new rings to

the device and also select the purpose and meaning of each ring.

- It would be very desirable to connect inCall to the real phone system and experiment

with it in the context of real phone conversations. A comprehensive evaluation could

follow.

- The reliability of the system needs to be improved for long-term user testing. Long-term

user testing would be very desirable as well, especially how people would change their

behavior with the addition of inCall into their lives.

- inCall right now is a point-to-point phone system. It could become an audio

conferencing tool without too many modifications. It would be interesting to study the

behavior of inCall within a group, in real-time.

- The audio quality of inCall can be improved as well. InCall could be modified to scale

up and down in terms of bandwidth availability in real-time. In order words, inCall

should be able to sense the amount of bandwidth available and change its audio encoding

accordingly.

- Security and authentication are required element in a system like inCall that I did not

address in this thesis. In principle, when sensitive personal information is exchanged

between devices and applications, all the data must be encrypted and secure.

- To close a connection, users need to type the command 'close'. There should be another

more intuitive way to disconnect the device. Perhaps the 'close' command could be

assigned to one of the iPAQ built-in keys. Likewise for the 'call' command.

- The two application scenarios implemented for inCall involve two different types of

context information - time availability and social communication awareness. Other kinds

of user context information could be employed in the development of user services, such

as time of day or user workload.

- The Location Manager of Sensorama currently provides weather temperature

information given a zip code. It would be more interesting if temperature and other types

of context information tied to a particular physical location, could be obtained given an

IP address. In the case of networked devices with an assigned IP address, there are ways

to convert an IP address into a physical location. This can be accomplished by linking the

IP address to its domain name. Most the time, domain names can give us some insights

about its location (i.e. my computer here at MIT is called thomaz.media.mit.edu. The

'edu' termination indicates that it is located in an educational institution in the United

States).

Personally, as the introduction of this thesis makes obvious, I am enthusiastic about the

hidden potential of sensible personal digital devices that communicate with each other

and share user-centric information. Below is a list of areas of exploration that I also find

worth pursuing:

- In my opinion, inCall demonstrates only a couple of context-based services that could

be designed. The popularization of web services [2] and the Semantic Web [7] are also

likely to result in a large number of Internet resources that might work together with

inCall and similar systems, enriching their potential even further.

- From the perspective of developing systems with human like intelligence and common

sense, I believe that the distributed approach that I employed in inCall could shed some

light in how we could get closer to some real-world systems that achieve practical levels

of autonomy and perhaps intelligence. Undeniably, when I first proposed the

characterization of a set of personal digital devices as a collection of sensible systems, I

was drawing from The Society of Mind ideas of Marvin Minsky [3]. In his seminal work,

Minsky suggests that our intelligence comes from the combined effort of several different

task-specific agencies in our brain and not from a one single element of intelligence.

Likewise, instead of relying on a single source of intelligence control to recreate an

intelligent system, we could try to gather resources from different entities, in this case

personal digital devices, with different characteristics but that speak the same language,

to design a distributed sort of intelligence. As devices become increasingly smaller, more

powerful and closer to our lives, and us we can start calling them sensors and my belief in

such a distributed form of intelligence could come closer to fruition that way. It would be

useful to try to evaluate whether these assumptions are right. The potential benefits are

immeasurable.

- A high-level programming language to let users develop new distributed cross-device

services like inCall could also be of interest. Such a language would allow users to create

customized applications and alerts very easily. Below are some examples of user

applications, assuming programmatic control over all of these devices:

1. An alarm clock that wakes you up in the morning with the song that your close friends

have been listening to the most for the past 2 months.

2. A digital camera that automatically sends your pictures to friends and family when you

get home from vacation.

3. An answering machine that sends you email every time someone leaves you a

message.

- The Sensorama component of inCall was developed with the goal of being an

observable API for software applications using open standard protocols. Its API was

defined to some degree to fulfill the needs of inCall, a telephony application based on

user context information. It would be interesting to investigate whether the key ideas of

Sensorama would help other developers create services similar to inCall. An evaluation

and testing program from the point of view of application and service developers could

be a good way to answer this question.

8. Appendix A: Sensorama API Specification

8.1. Time Manager

Table 22: Time Manager API

8.2. Social Manager

Table 23: Social Manager API

8.3. Location Manager

Table 24: Location Manager API

9. Appendix B: Workload Detection

At the moment, the Time Manager of Sensorama simply extracts temporal data from a

personal information manager and makes it available to other devices, such as the inCall

telephone component, in the form of an interface. Here is a description of a method that

could be used by the Time Manager to attempt to infer user workload by examining the

schedule of users and their typical communication patterns. First, below are a few

examples of what the workload assessment method that I describe here should be able to

infer:

- If a user has 4 appointments everyday on average in her business organizer, and one day

that number jumps to 6 or 7, the workload assessment method should be able to detect

that there has been an increase in workload on the part of the user.

- If on average, a user receives 14 email messages every day and that number jumps to 35

one day, the workload assessment method should detect that there has been an increase in

communication activity on the part of the user.

To determine how much work a user is engaged in, there needs to be a way to quantify

workload. I suggest that a metric be used here. The metric system that I propose is based

on assigning points according to user activities per day and the amount of time that these

activities last. These activities can be strictly communication activities or not. Below is a

chart with the suggested workload values per activity:

Table 25: Metric to determine workload

As an example, if one day someone has 4 appointments lasting 1 hours each, answers 5

phone calls that last 20 minutes each and writes 3 email messages that take 5 minutes to

compose, the workload of this person in this particular day will be:

Table 26: Determining a workload

I believe that such a metric can be a reasonable and useful way to extend the Time

Manager. Determining how much work a user faces is a necessity when it comes to

prioritizing tasks on behalf of users.

10. Appendix C: Evaluation Forms

Customer Interaction Form - Slouch Travel

Time of Call:

Circle One: Call Received Call Made

Returning Call:

Talked to Customer:

Reason for Call:

Yes

Yes

No

No

Travel Agency Evaluation Form - Travel Smart Magazine

Time of Call:

Circle One: Call Received Call Made

Returning Call:

Talked to Agent:

Reason for Call:

Yes No

NoYes

11. Appendix D: Compiling LibWWW and XML-RPC-C

- Install LibWWW first and then XML-RPC-C.

11.1. LibWWW

1. Download the libwww .gz file from the W3C web site.

2. Untar the package using the command: tar xzvf <libwww filename>.

3. Enter the libwww untar-ed directory.

4. Type: ./configure -prefix= <libwww installation path here, such as /usr/local>.

5. Type make.

6. Type make install.

7. Add the path of the libwww installation + /bin to the PATH env var.

8. Add the path of the libwww installation + /lib to the LDRUNPATH env var.

9. Add the path of the libwww installation + /lib to the LDLIBRARYPATH env var.

11.2. XML-RPC-C

1. Download the xml-rpc-c .gz file from the W3C web site.

2. Untar the package using the command: tar xzvf <xml-rpc-c filename>.

3. Enter the xml-rpc-c untar-ed directory.

4. Type: ./configure -prefix= <xml-rpc-c installation path here, such as /usr/local>.

5. Type make.

6. Type make install.

7. Add the path of the xml-rpc-c installation + /bin to the PATH env var.

8. Add the path of the xml-rpc-c installation + /lib to the LDRUNPATH env variable.

9. Add the path of the xml-rpc-c installation + /lib to the LDLIBRARYPATH env var.

12. References

[1] Claire Tristram, "Handhelds of Tomorrow", Technology Review,
2002 at: http://www.techreview.com/articles/tristram0402.asp.

[2] Tim Berners-Lee, James Hendler and Ora Lassila, "The Semantic
Web", Scientific American, May 2001, at:
http://www.scientificamerican.com/2001/0501issue/0501berners-
lee.html.

[3] Marvin Minsky, "The Society of Mind", New York, Simon and
Schuster, 1986.

[4] Allen E. Milewski and Thomas M. Smith, "Providing Presence
Cues to Telephone Users", Proceedings of CSCW, 2000.

[5] A. Lee A. Girgensohn and K. Schlueter, "NYNEX Portholes:
Initial User Reactions and Redesign Implications", Proceedings of
the International ACM SIGGROUP on Supporting Group Work,
ACM Press, 1997, 385-393.

[6] E. S. Hudson and I. Smith, "Technique for Addressing
Fundamental Privacy and Disruption Tradeoffs in Awareness
Support Systems", Proceedings of CSCW, 1996.

[7] W3C, "Web Services Activity, at: http://www.w3.org/2002/ws/

[8] Sara Bly, Steve Harrison and Susan Irvin, "Media Spaces:
Bringing People Together in a Video, Audio and Computing
Environment", Communications of the ACM, 36(1), pp 28-47.

[9] Paul Dourish and Sara Bly, "Portholes: Supporting Awareness in a
Distributed Work Group", Proceedings ofA CM CHI, 1992.

[10] Adriana Vivacqua and Henry Lieberman, "Agents to Assist in
Finding Help", Proceedings ofACM, CHI, 2000.

[11] Eric Horvitz, Jack Breese, David Heckerman, David Hovel and
Koos Rommelse, "The Lumiere Project: Bayesian User Modeling
for Inferring the Goals and Needs of Software Users", Proceedings
of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, AAAI Press, 1998.

[12] Kwan Hong Lee, "IMPROMPTU: Audio Applications for Mobile
IP", MIT Master's Thesis, Program in Media Arts and Sciences,
2001.

[13] Henry Lieberman, "Letizia: An agent that assists web browsing",
Proceedings of the International Joint Conference on Artificial
Intelligence, p.924-929, 1995.

[14] Pattie Maes, "Agents that Reduce Work and Information
Overload", Communications of the ACM, Vol.3 7 No.3, July 1994.

[15] Paul P. Maglio, Rob Barret, Christopher S. Campbell and Ted
Selker, "SUITOR: An Attentive Information System", Proceedings
of ACMIUI, 2000.

[16] Nitin Sawhney, Sean Wheeler and Chris Schmandt, "Aware
Community Portals: Shared Information Appliances for
Transitional Spaces", Personal Technologies, 2000.

[17] Ted Selker, "Cognitive Adaptive Computer Help (COACH)",
Proceeding of the International Conference on Artificial
Intelligence, 1989.

[18] Les Nelson, Sara Bly and Tomas Sokoler, "Quiet Calls: Talking
Silently on Mobile Phones", Proceeding ofACM CHI, 2001.

[19] Matthew Marx and Chris Schmandt, "CLUES: Dynamic
Personalized Message Filtering", Proceedings of ACM CSCW,
1996.

[20] John C. Tang, Nicole Yankelovich, James "Bo" Begole, Max Van
Kleek, Francis Li and Janak Bhalodia, "ConNexus to Awarenex:
Extending awareness to mobile users", Proceedings of ACM CHI,
2001.

[21] Lance Norskog et al., "SOX - Sound Exchange", Version 10, at:
http://www.spies.com/Sox/.

[22] Eric Gamma, Richard Helm, Ralph Johnson and John Vlissides,
"Design Patterns - Elements of Reusable Object-Oriented
Software", Reading, MA: Addison Wesley Longman, Inc., 1995.

[23] Andrew Wood, "CAMEO: Supporting Observable APIs",
Proceedings of WWW5, Programming the Web Workshop, 1996.

[24] A. Dix, J. Finlay, G. Abowd, R. Beale, "Human Computer
Interaction", Prentice Hall, 1993.

[25] Apple Computer, Inc., "URL Access Manager", Carbon 2002,
http://developer.apple.com/techpubs/macosx/Carbon/networkcom
m/URLAccessManager/urlaccessmanager.html.

[26] H.J. Wang, B. Raman, C.-N. Chuah, R. Biswas, R. Gummadi, B.
Hohlt, X. Hong, E. Kiciman, Z. Mao, J.S. Shih, L. Subramanian,
B. Y. Zhao, A.D. Joseph, and R.H.Katz, "ICEBERG: An Internet-
core Network Architecture for Integrated Communications",
Proceedings of IEEE Personal Communications (2000): Special
Issue on IP-based Mobile Telecommunication Networks, Volume 7,
2000, Page 10-19.

[27] M.L. Dertouzos, "The Oxygen Project: The Future of Computing",
Scientific American, 1999.

[28] Daniel Salber, Anind K. Dey and Gregory D. Abowd, "The
Context Toolkit: Aiding the Development of Context-Enabled
Applications", Proceedings ofA CM CHI, 1999.

[29] Anind K. Dey, Gregory D. Abowd and Andrew Wood,
"CyberDesk: A Framework for Providing Self-Integrating Context-
Aware Services", Proceedings of the 3rd international conference
on Intelligent user interfaces, January 1997.

[30] J. Postel, "User Datagram Protocol (UDP)", RFC768, 1980 at:
http://www.ietf.org/rfc/rfc0768.txt?number-768.

[31] Alexander Guy, Carl Worth and Ken Causey, "The Familiar
Project", 2001 at: http://familiar.handhelds.org.

[32] Eric Kidd, "XML-RPC for C and C++" at: http://xmlrpc-
c.sourceforge.net/.

[33] W3C, "Libwww - the W3C Protocol Library", Version 5.3.2 at:
http://www.w3.org/Library/

[34] Moez Mahfoudh, "ABYSS Web Server", 2000 at:
http://abyss.sourceforge. net.

[35] Graham Cox, "MacZoop - The Framework for the Rest of Us",
Version 2.5.2, 2002 at: http://www.maczoop.com.

[36] James Clark, "Expat - XML Parser Toolkit", Version 1.2, at:
http://www.jclark.com/xml/expat.html.

[37] BlueTooth. http://www.bluetooth.com/dev/specifications.asp.

[38] IEEE 802.11. http://grouper.ieee.org/groups/802/1/index.html.

[39] W3C, "Extensible Markup Language (XML)", Version 1.0,
specification at: http://www.w3.org/TR/2000/REC-xml-20001006.

[40] Userland, Inc. "XML-RPC", No version information, specification
at: http://www.xmlrpc.com/spec.

[41] W3C, "Simple Object Access Protocol (SOAP)", Version 1.1,
specification at: http://www.w3.org/TR/SOAP/.

[42] W3C, "Hypertext Transfer Protocol (HTTP)", Version 1.1,
specification at: http://www.w3.org/Protocols.

[43] W3C, "Document Object Model (DOM)" Level 1, specification,
Version 1.0, at: http://www.w3.org/TR/REC-DOM-Level-1/.

[44] Handspring, Inc. http://www.handspring.com.

[45] Apple Computer, Inc. "Applescript". http://www.applescript.com.

[46] Power On Software, Inc. "Now Up-To-Date & Contact".
http://www.poweronsoftware.com/products/nudc/.

[47] ITU-T, "H.323". http://www.imtc.org/h323.htm.

[48] Microsoft Corp, "Microsoft Entourage for the Macintosh".
http://www.microsoft.com/mac/entouragex/.

"s

