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Abstract

I present a novel drawing system for composing and rendering perspective scenes.

The proposed approach uses a projective two-dimensional representation for primi-

tives rather than a conventional three-dimensional description. This representation
is based on points that lie on the surface of a unit sphere centered at the viewpoint.
It allows drawings to be composed with the same ease as traditional illustrations,
while providing many of the advantages of a three-dimensional model. I describe a
range of user-interface tools and interaction techniques that give the drawing system
its three-dimensional-like capabilities. The system provides vanishing point guides

and perspective grids to aid in drawing freehand strokes and composing perspective
scenes. The system also has tools for intuitive navigation of a virtual camera, as
well as methods for manipulating drawn primitives so that they appear to undergo
three-dimensional translations and rotations. The new representation also supports
automatic shading of primitives using either realistic or non-photorealistic styles. My
system supports drawing and shading of extrusion surfaces with automatic hidden
surface removal and emphasized silhouettes. Casting shadows from an infinite light

source is also possible with minimal user intervention. I describe a method for aligning
a sketch drawn outside the system using its vanishing points, allowing the integration
of computer sketching and freehand sketching on paper in an iterative manner. Pho-
tographs and scanned drawings are applied to drawing primitives using conventional
texture-mapping techniques, thereby enriching drawings and providing another way
of incorporating hand-drawn images. I demonstrate the system with a variety of
drawings.
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Chapter 1

Introduction

The advent of computer graphics has greatly influenced many aspects of architec-

tural design. Construction drawings, in the form of plans, sections, elevations, and

details, are seldom drawn by hand today. In addition, hand-crafted physical models,

traditionally used for client presentations, have been largely replaced with three-

dimensional computer models and walk-throughs. Perspective drawing, which was

once an important technique for exploring and presenting design ideas, is virtually

obsolete due to the speed and flexibility of today's Computer-Aided Design and Draft-

ing (CADD) systems.

Perspective drawings have appeal because they convey three-dimensional shape

information on a two-dimensional surface, such as paper or computer screens (see

Figure 1-1). The basic principles of perspective where developed in the Renaissance

and became widely used for art and design [9]. Perspective drawings remain in use for

communicating design ideas, and their techniques are still taught in art and design

schools.

Traditional perspective drawings are difficult to construct. Only a skilled illus-

trator can make a drawing with correct proportions. Furthermore, many construc-

tion lines are required to achieve this proportionality, making the process laborious.

Numerous manuals, such as [13], have been written to teach artists various sets of

constructions. Another shortcoming of traditional perspective is that the views are

static, which reduces their three-dimensional impression. Proper shadow construction



Figure 1-1: Many of the benefits of perspective are due to its ability to convey three-
dimensional scenes utilizing nothing more than two-dimensional media.

and shading are also time-consuming. Finally, like all drawings on paper, they are

difficult to edit or reuse.

My goal is to provide interactive techniques to support perspective drawing. This

problem has been largely neglected in two-dimensional computer graphics. Almost all

current two-dimensional graphics systems use drawing primitives that are represented

with Euclidean two-dimensional points. The process of constructing a perspective

drawing with these systems is nearly as tedious as with traditional media.

This neglect is due, in part, to the immense emphasis on research in three-

dimensional graphics despite some known limitations. While three-dimensional mod-

els are powerful representations, they tend to convey rigid geometry and they can be

very cumbersome to build. The rendering in Figure 1-2 is generated from a three-

dimensional computer model that was difficult to construct, especially the vaulted

ceilings and small triangular openings above the arch. In addition to such geomet-

ric complexities, a major difficulty with three-dimensional models is the fact that

they are constructed using two-dimensional computer interfaces that are one dimen-

sion lower than the models. This usually forces the user to specify the coordinates

in more than one view, which makes the process tedious. Another shortcoming of

CADD systems is that they usually force the designer to input precise geometry and

dimensions, which prohibits their use in the early stages of design where concepts are

often vague and ambiguous.

On the other hand, since perspective is constructed on a two-dimensional medium,

such as paper or canvas, it lends itself to creative expression and fluid freehand strokes.
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Figure 1-2: Rendering from a traditional three-dimensional computer graphics sys-
tem.

The sequence in Figure 1-3 is part of an early design stage study. It shows dramatized

vistas using twisted strokes and soft, blended colors. The methodical drawing in

Figure 1-4 includes realistic-looking shade trees, which would be almost impossible

to model in three dimensions.

Today's drawing systems, such as Adobe Illustrator, utilize Euclidean points rep-

resented by Cartesian (x, y) coordinates. Constructing a perspective drawing with

these systems is almost as tedious as with manual drawing. The views they depict

also remain static as with traditional media.

I have developed a perspective drawing system that overcomes many of the lim-

itations of traditional perspective drawing and current two-dimensional computer

graphics systems. My system retains the ease-of-use of a two-dimensional drawing,

but its projective representation provides additional three-dimensional-like function-

ality. This tool is intended for applications that may not always require actual three-

dimensional modeling, such as conceptual design, technical illustration, graphic de-

sign, and architectural rendering. In many cases, these applications strive to generate

a single perspective view, or a set of views sharing a common viewpoint.

The main contribution of my approach is the use of projective two-dimensional

points to compose various renderings of a scene and provide capabilities that are



Figure 1-3: A series of perspective sketches made during the conceptual design stage.

Figure 1-4: A traditional hand-drawn perspective view made for design communica-
tion.



generally thought to require three-dimensional models. For example, my system

supports immersive viewing, pseudo-three-dimensional primitive manipulation, scene

illumination and shading, and automatic shadow construction. In addition, shape

modeling operations, such as extrusion, can also be performed using projective two-

dimensional points.

In this chapter, I will propose an alternative representation for perspective draw-

ings and discuss its benefits. I will also review previous work that used a projective

representation or merely emphasized drawings as the main input or output medium.

1.1 Thesis Statement and Contributions

This research presents an alternative drawing paradigm, in which the underlying rep-

resentation is a collection of projective rather than Euclidean two-dimensional primi-

tives. This representation is consistent with the notion that perspective drawings are

images of three-dimensional worlds under central projection. The illusion of looking

at a three-dimensional world is sustained by means of projective mappings of the

points from one image to another, and through the simulation of the effects of virtual

light sources.

The main thesis of this research is that

Perspective drawings can be supported in the computer medium with pro-

jective two-dimensional geometry, allowing for freehand drawing as well as

pseudo-three-dimensional interaction (viewing), manipulation (editing),

and illumination.

Several problems must be addressed in order to support perspective drawing with

the computer. First, we must find a computational representation for the projective

primitives. Second, in order to create a usable two-dimensional interface, we need

a set of intuitive projective mapping operations whose parameters can be specified

by the user in a natural and easy way. Finally, for added visual impact, we seek

representations of light sources and primitive attributes that allow for shading and

shadow projections.



This research contributes to the fields of architecture and computer graphics the

following achievements:

* A new representation for computer drawings based on projective geometry.

" A user interface tailored for the construction, navigation, and manipulation of

perspective drawings that encompasses and goes beyond traditional techniques.

" Methods for shading of drawing primitives and determination of shadows using

directional light sources.

Furthermore, this research addresses the integration of hand- and computer-drawn

perspective images, thereby enabling a wide range of input media and devices.

In this thesis, I hope to show that representing perspective drawings in the com-

puter with projective geometry provides the following benefits:

" A virtual immersive three-dimensional camera.

" Vanishing points and perspective grids used as drawing guides.

" Support for freehand-style as well as methodically drafted views.

* Pseudo-three-dimensional manipulation of drawing primitives.

" Modeling and manipulation of complex shapes, with proper visibility computa-

tions.

" Shadow projection and shading of primitives using directional light sources.

* Shading techniques that mimic the traditional hand-drawn look and enhance

the appeal of the drawings.

" Alignment of views drawn outside the computer.

" Flexible texture mapping techniques that support planar and non-planar im-

ages.



1.2 Related Work

In this section I will review some previous work that has inspired my approach. In

addition, I will describe an alternative approach that attempts to generate three-

dimensional models using interfaces that mimic traditional freehand drawing.

Image-based Rendering

Projective representations underly all panoramic image-based rendering (IBR) sys-

tems. For example, "QuickTime VR" represents environments with cylindrical pano-

ramas and synthesizes novel perspective views by providing an interface for panning,

tilting, and zooming [2], without relying on three-dimensional geometry. IBR systems

typically facilitate navigation and visualization of a static scene. In my approach, I

provide controls for composing and editing illustrations.

Commercial Drawing Programs

Today's commercial two-dimensional drawing and illustration programs allow the

user to input freehand strokes and geometric primitives, such as lines and rectangles,

specified in the Euclidean plane. I extend these notions to the projective plane, thereby

allowing for more general modeling primitives, such as straight lines that adhere to

a chosen vanishing point and quadrangles that respect two vanishing points. I also

extend the use of regular grids, common in today's systems, to perspective grids,

which also conform to one or more vanishing points.

Non-photorealistic Rendering

Non-photorealistic rendering (NPR) techniques apply a "hand-drawn" look to pho-

tographs and three-dimensional renderings by simulating many conventional artis-

tic methods. For example, when mimicking pen-and-ink styles, NPR uses hatch-

ing or stippling (a collection of short strokes) as a means to convey tonal variation

[21, 26, 15]. Another NPR technique is the use of silhouettes to emphasize shape

[25, 16]. My work adopts silhouetting and selected pen-and-ink styles for rendering



shaded perspective drawings automatically, although the actual rendering style is not

the focus of my work.

Sketching Interfaces

An active area of research is the development of sketching interfaces for three-dimen-

sional modeling [3, 18, 34]. These approaches acknowledge the difficulty of using

standard interfaces to build three-dimensional models. Their main premise is that

three-dimensional shape can be inferred from freehand strokes that follow a certain

syntax, thereby allowing models to be generated very quickly. However, since the

models have higher dimensions than the interface, these systems typically make as-

sumptions about the model shapes, or enforce constraints upon the user, such as

assuming that the initial point of a stroke lies on a pre-existing three-dimensional

plane. In my work, I do not infer three-dimensional geometry, rather I make two-

dimensional drawings that appear as if they were three-dimensional.

1.3 Thesis Overview

Chapter 2 gives a review of traditional perspective drawing techniques and how they

are formalized in projective geometry. Chapter 3 introduces the perspective draw-

ing system, including its projective camera and basic drawing guides and primitives.

In Chapter 4, I describe how the drawing primitives are manipulated in a way that

preserves their three-dimensional illusion. Chapter 5 introduces new primitives that

are aggregates of the basic planar primitives and mimic specific categories of three-

dimensional shapes. Shading of perspective drawings and casting shadows is explained

in Chapter 6. The system also supports photographs and integrates well with conven-

tional drawing media. Chapter 7 covers these capabilities. Finally, I conclude with

discussion of the benefits and limitations of my approach and suggest areas of future

work.



Chapter 2

Background

The work I present in this thesis is based on two main interrelated topics: traditional

perspective and projective geometry. Projective geometry gives concrete formulation

of perspective views, their formation, and structure. In this chapter I present these

two topics. First, I introduce some concepts in traditional perspective. My goal is to

orient the reader with regard to this thesis rather than provide a primer on perspective

drawing. Second, I present the basics of projective geometry, with emphasis on central

projection of three-dimensional space and the resultant projective two-dimensional

space. Two models of projective space are discussed: the straight, corresponding to

planar perspective, and the spherical, which is the preferred model for this thesis.

2.1 Perspective Drafting Techniques

Traditionally, accurate perspective views are constructed from two or more ortho-

graphic views (plans, sections, and elevations) containing three-dimensional informa-

tion. The process involves the intersection of vision rays from two such views (see

Figure 2-1-a). The illustration of an entire scene using this process is tedious, involv-

ing numerous construction lines. As an alternative, skilled artists use special tech-

niques and shortcuts to simplify and accelerate this process. The simplest and most

commonly used technique is the vanishing point (see Figure 2-1-b). Such shortcuts

aim to reduce the number of rays generated from orthographic views. For example,
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(a) (b)

(c)

Figure 2-1: A square is drawn using different perspective drafting techniques: (a)
ray intersection, (b) vanishing points, and (c) pre-formatted grids. Note how the use
of vanishing points greatly reduces the number of construction lines, and the use of
grids eliminates them completely.

artists often do away with orthographic views and rely on pre-formatted grids (see

Figure 2-1-c). References and guides on perspective techniques are too numerous to

list here. However, some useful starting points are [9, 7, 33, 13, 10].

Vanishing points are the most fundamental tool in perspective. In fact, many of

the techniques described in this section, including grids, measuring points, and ex-

trusion, use special kinds of vanishing points geared toward specific tasks. Although

perspective line drawings can give an impression of three-dimensional structure due to

foreshortening and occlusion relationships, a scene that includes shading and shad-

ows is much more realistic. Shading gives surfaces additional texture and relative

orientation with regards to a common light source, while shadows convey information

about how far objects are from each other. I discuss shading and shadows at the end

of this section.



Figure 2-2: Direr's diagram 61 on perspective.

Vanishing points. A set of receding parallel lines in a three-dimensional world

appear to converge at a common point when viewed in perspective. Such a point,

originally called the point of convergence [20], is widely known as a vanishing point.

Scenes that contain man-made or architectural objects usually contain edges that

belong to three mutually orthogonal directions, each of which results in a unique

vanishing point. When any of these directions is parallel to the viewing plane, the

corresponding lines no longer appear to converge. The view is thereby classified as a

two-point perspective view. The so-called single-point perspective takes place when

two of the directions in the scene are parallel to the viewing plane (see, for example,

the view in Figure 2-2). The third remaining direction aligns with the viewer's gaze

direction. Often, artists will use single-point and two-point views because they are

easier to construct than the more general three-point views.



(a) (b)

Figure 2-3: Viator's perspective construction of a tiled floor (a), and a grid superim-
posed on plan to simplify the drawing of a map in perspective (b).

Grids. In addition to vanishing points, which help with directions, artists need

tools to determine lengths of line segments and relative positions within foreshortened

planar surfaces. One such tool is the perspective grid, whose construction methods

rely on auxiliary vanishing points that represent the direction of the grid's diagonals.

Often, grids are evident in the finished views in the form of tiled floors or ceilings (see

Figure 2-3-a) .

Grids can also be used to transfer free-form or complicated shapes from their

orthographic representation. The process is similar to the one used for transferring

drawings from small sketches into large murals, except that the target includes a per-

spective grid rather than a Euclidean one. Additional height or extrusion information

is often added later (see Figure 2-3-b) ([13] pp. 29-31).

Prior to the common use of computer graphics, some artists relied on ready-

made perspective grids. The grids were created for a variety of viewing position and

published in drafting manuals. However, many artists feel that grids are inflexible

and of limited use due to their static nature.



Figure 2-4: Rotating a line segment in perspective by the measuring-point method.

Measuring points. So-called "measuring points" are particular types of vanishing

points that facilitate length measurements to be performed directly in the perspective

view rather than transferring them from orthographic views by means of visual rays.

While regular vanishing points typically represent directions of actual object sides,

measuring points include directions of construction lines-lines that do not appear in

the final drawing. The direction of the diagonals of a grid are one such example.

In one particularly interesting technique, the length of a line segment is measured

on the viewing plane. Then a special measuring point is used to transfer the mea-

surements (points) onto the desired perspective line, which is oblique to the viewing

plane (see Figure 2-4). This measuring point represents the common trajectory that

all points on the line follow due to the rotation ([13] pp. 73-87).

Our interest in this technique stems from its potential use in rotating objects in

perspective relying entirely on vanishing points. Even if we deem this specific tech-

nique impractical for computer implementation, it provides motivation for exploring

three-dimensional-like object rotation in perspective. In chapter 4, I show a compu-

tational method for simulating object rotation that is completely different from this

technique and is quite easy to use.



Figure 2-5: Viator's diagrams showing extrusion from plan.

Extrusion. A typical architectural perspective scene is first constructed in plan

view, using the above-mentioned techniques, then walls are extruded in the vertical

direction (see Figure 2-5). For single-point and two-point views, the extrusion direc-

tion is parallel to the viewing plane. The distance of an extrusion is first measured on

the viewing plane then transferred with vanishing points. In the case of a three-point

perspective, where the viewing plane tilts either up or down, the extrusion becomes

much more complicated.



Figure 2-6: An etching by Diirer showing different shading patterns for perspective.

Shading. Shading greatly enhances the three-dimensional effect of a drawing by

providing texture and illumination to the depicted surfaces. The actual texturing

technique varies according to the specific drawing medium. For example, in an oil

painting, a combination of brush strokes and color variation are used to convey both

texture and illumination. On the other hand, in a medium like pen-and-ink or etching

the artist is limited by the mono-tonal strokes. Usually, a certain pattern is chosen

for a given surface material and the density of the pattern varied to convey changes

in illumination. Hatching and stippling also enhance the picture by adhering to the

vanishing points of the shaded surface (see Figure 2-6).

Artists also vary the density of the shading pattern as they depict objects at vary-

ing distances from the viewer. A delicate tradeoff between the texture's density and

its perceived three-dimensional granularity must be achieved. Effects of atmospheric

haze may also be taken into consideration when depicting distant objects [7].



I Light Rays

(a) (b)

Figure 2-7: Construction of shadow from a directional light source (a) and a point

light source (b).

Shadows. Shadows have the powerful effect of relating the perceived position of

one object (the shadow-casting object) to another (the object receiving the shadow).

Outdoor scenes require the use of a directional light source representing the sun,

while indoor scenes have one or more local light sources. A directional light source is

represented in perspective by a single vanishing point and is relatively easier to use

than local light sources. This vanishing point is used in constructing shadow outlines.

Each edge in a shadow outline is projected by imagining a three-dimensional plane

that is parallel to the direction of light and encompasses the shadow-casting edge. A

shadow edge lies at the intersection of such a plane and the surface that receives the

shadow. Using this conceptualization, the artist determines the directions of shadow

edges and plots them as vanishing points that are used to draw the final shadow

outline. The artist then uses shading techniques to emphasize the area of the shadow

(see Figure 2-7).

2.2 Projective Geometry

Different kinds of two-dimensional spaces exist. The most commonly used type is the

Euclidean plane, which is usually parameterized by a Cartesian coordinate system,

in which the position of a point is specified by its distance from two orthogonal

axes. When the axes are non-orthogonal, the space is labeled "affine". Extending



the Euclidean (or affine) plane by postulating a line at infinity creates a more general

type of two-dimensional spaces known as the projective plane [5]. This is called the

straight model of projective space. Another mental model of projective space is the

spherical model (see [29] for details). Both models are useful for studying perspective

images. We can envision the viewing plane, 7r, of perspective, extended to infinity, as

a copy of the straight model, while points in the spherical model can represent vision

rays of perspective.

Projective points can be expressed analytically by means of homogeneous coor-

dinates, where a point is a non-zero triplet of real numbers, and non-zero scalar

multiples are considered equivalent. In this thesis, I will always write this triplet as a

column vector: m = [x, y, w]T. A line is also represented by a non-zero triplet called

the line's homogeneous coefficients, which will be written as a row vector: 1 = (a, b, c).

Any such line is incident to all points m, such that: 1 m = ax + by +cw = 0. Non-zero

scalar multiples of line coefficients correspond to the same line.

The standard coordinates in the straight model are [X/w, y/w, 1]T, with the special

case that homogeneous coordinates with w = 0 are mapped to the line at infinity,

, of the straight model. Point coordinates (and line coefficients) in the spherical

model are scaled such that x2 + y2 + w2 = 1. The straight and spherical models are

related by these scaling operations. Geometrically, a point on the sphere, its straight

model equivalent, and the center of projection are collinear. Points on the great circle

parallel to the plane 7r are projected to Q of the straight model.

There are many advantages to the spherical model over the straight model, es-

pecially when using computers. For example, the special role that Q plays in the

straight model disappears in the spherical model. In addition, the division by w in

the straight model may yield unpredictable results for very small values of w.

By envisioning the spherical model of the two-dimensional projective space as a

unit sphere embedded in three-dimensional space, we can use this model to interpret

and manipulate perspective imagery. Intuitive and useful interpretations of points in

the spherical model are given throughout this thesis. However, I will start with a few

basic examples that I build upon later.



Central projection. The simplest form of central projection can be expressed in

matrix form as follows:

/X
X 1 0 0 0

y = 0 1 0 0,

( Zw 0 0 1 0 W

where [X, y, Z, W]T are homogeneous coordinates of projective three-dimensional

space and [X, y, W]T are homogeneous coordinates of projective two-dimensional space.

The function of this matrix is merely to discard the forth coordinate W-the scale

factor--of three-dimensional space. Therefore, a point at infinity (W = 0) becomes

indistinguishable from any Euclidean point. This formulation is independent of the

model of projective two-dimensional space. A straight model, such as planar perspec-

tive, is the result of dividing the left-hand vector by w, while a spherical model results

from normalizing it (dividing the vector by its Euclidean length V/z-2 + y2 + 02).

Projective lines. In the spherical model, a line corresponds to a great circle on the

unit sphere. To understand this, one can envision a three-dimensional plane passing

through the center of projection at the origin of the world. The equation of such a

plane is similar to the equation of the projective line: ax + by + cm = 0, with the

vector (a, b, c) representing the surface normal of the three-dimensional plane. Thus,

the equation of the line yields a great circle at the intersection of this plane and the

unit sphere. We may use the triplet (a, b, c) in all geometric operations involving lines.

For example, the intersection of two lines (a, b, c) and (r, s, t) is the point represented

by the homogeneous coordinates [bt - cs, cr - at, as - br]T. This result can be achieved

with the cross product of the two vectors (a, b, c) and (r, s, t).

Vanishing points. Any line in three-dimensional space has a direction that is

independent of its position. This direction can be represented as a point on the

celestial sphere (sphere at infinity) of the projective three-dimensional space. The



homogeneous coordinates of this point are [x, y7 Z, 0]T. Under central projection, this

point maps to the two-dimensional point [x, y, z]T, which is incident to the projection

of any three-dimensional line that is parallel to the original three-dimensional line.

In planar perspective, such a point is termed a vanishing point due to the fact that

projections of parallel lines generally appear to converge at this point (except when

it lies on Q).

Duality of points and lines. Every point [x, y, w]T is said to have a dual line

(x, y, w). This duality plays a fundamental and useful role in projective geometry.

Every definition, theorem, or algorithm of projective geometry has a dual, obtained

by exchanging the words "point" and "line", and any previously defined concepts

with their duals. In the spherical model, if a point is envisioned as the pole of the

sphere, its dual line is an equatorial circle, termed the polar complement of the point.

Images of Three-dimensional Planes. The set of all directions parallel to a

three-dimensional plane form a great circle on the celestial sphere. We shall call this

great circle the line at infinity for the plane. Since these directions depend only on the

orientation of the plane rather than its position, an infinitely large number of parallel

planes share a single line at infinity. Its central projection yields a great circle on

the unit sphere, which may be envisioned as the intersection of the unit sphere and

a representative plane passing through the center of projection. Since all points on

this circle are perpendicular to the planes surface normal, it is easy to see that this

circle is the polar complement of the point representing the plane's normal. In other

words, the homogeneous coordinates of the image of the line at infinity of a plane are

the same as those of its surface normal.

Surface normals can be inferred from a perspective image. For example, the

surface normal of a three-dimensional rectangle seen in perspective is simply the cross

product of its two vanishing points (see Figure 2-8). Later in this thesis I present

techniques for inferring surface normals of more complicated geometric shapes. The

duality of a plane's surface normal and the image of its line at infinity is a very
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Figure 2-8: Surface normals are inferred by computing the vector cross product of
any two vanishing points belonging to the plane. The line joining the two vanishing
points is the "horizon" (line at infinity) of that plane, along which all its vanishing
points must lie.

useful concept. For example, the direction of a three-dimensional line parallel to a

given three-dimensional plane is at the intersection of this line with the plane's line at

infinity. This intersection can be computed in projective two-dimensional space using

only the images of the three-dimensional line and the the plane's line at infinity. More

concretely, if the image of the line and the plane's surface normal were represented

with vectors, their cross product yields the direction (vanishing point) of the line.

Collineations. A one-to-one mapping that transforms a set of points and lines in

a two-dimensional projective space to an alternate set of points and lines is said to be

a collineation if collinear points remain collinear, concurrent lines remain concurrent,

and the incidence is preserved (i.e., if a point is on a line in the original set it remains

on that line after the transformation). A collineation is written as linear mapping of

points as follows:

x' hnl h12 h13  x

y A h21 h22 h23  Y
m' h31 h32 h33  w

or simply,

m' = AHm,

where H is a non-singular matrix (also called a homography of the two-dimensional

projective space) and A is an arbitrary scale factor insuring that the left-hand side is



Collineation

Figure 2-9: Example of a collineation: image of a three-dimensional plane before and

after translation and rotation. It is easy to see that the mapping of points from one

to the other preserves collinearity, concurrency, and incidence.

a unit-length vector. The matrix representing a collineation is unique up to a single

scale factor (i.e., multiplying the matrix by any positive scale factor does not affect

the mapping). An example of a collineation is one that relates points in the image of

a three-dimensional plane to points in the image of the same plane after translation

and rotation (see Figure 2-9).

2.3 Summary

In this chapter I gave brief overviews of traditional perspective techniques and pro-

jective geometry. I illustrated that projective two-dimensional geometry-and in

particular its spherical model-is well suited for describing and manipulating per-

spective views. This fact is well-understood and has many existing applications in

computer vision and image-based rendering. However, as mentioned in Chapter 1,

the contributions of this thesis lie in demonstrating the use of projective geometry

as the basis for a two-dimensional drawing program. This involves more than the



mere implementation of a drawing system. There are new problems that require a

fresh look at the mathematics of previously understood relationships. The result is a

surprisingly new set of drawing manipulations that are previously thought to require

three-dimensional models.



Chapter 3

Drawing with Projective Points

In traditional drawing programs, primitives are specified via a collection of two-

dimensional points. Generally, these points are described by two coordinates, which

can be imagined to lie in a plane. The coordinates specify the position of a point

relative to a specified origin and two perpendicular basis vectors. In mathematical

parlance, such points are considered two-dimensional Euclidean points.

This Euclidean representation of points is practically universal in all two-dimen-

sional drawing systems. There are, however, alternative representations to two-

dimensional points, which are not only more powerful than Euclidean points, but

also contain them as a subset. In particular, the set of projective two-dimensional

points can be represented using three coordinates in conjunction with the following

rules: the origin is excluded, and all points of the form [x, y, wIT and A[x, y, w]T,

where A is non-zero, are equivalent. The subset of projective points for which a value

of A can be chosen, such that A[x, y, w]T = [Ax, Ay, 1]T, is the Euclidean subset.

There are several possible mental models for projective two-dimensional points,

which are comparable to the plane of the Euclidean points. I adopt a model in which

all projective points lie on a unit sphere. Thus, the preferred representation of the

point [x, y, w]T is the one with A chosen such that X2 + y2 + w2 = 1. We will further

restrict all values of A to be strictly positive. This additional restriction results in a

special set of projective points called the oriented projective set [29].



One advantage of projective two-dimensional points is the ease with which they

can be manipulated. Unlike Euclidean points, translations of projective points can be

described by matrix products, thus allowing them to be composed with other matrix

products, such as scaling and rotation. Projective points also permit re-projection

to be described as a simple matrix product. Another advantage of projective points

is that points at infinity are treated as regular points. For example, in a Euclidean

system the intersection of two parallel lines must be treated as a special case, while

using projective geometry it is computed using the line intersection formula: m ~

11 x 12, with the case of two parallel lines resulting in a point whose third coordinate

vanishes. By the principle of duality, this advantage also holds true for the line passing

through two points: 1 ~ mi x m 2 . These properties of projective point representations

give unique capabilities to a two-dimensional drawing system.

Based on the projective two-dimensional point representation described above, I

have implemented a perspective drawing system whose interface is, for the most part,

like any other two-dimensional drawing and illustration program. However, the use

of projective two-dimensional points provides the system with viewing and drawing

tools that preserve and enhance the three-dimensional illusion of perspective. For

example, a virtual camera provides an immersive experience that is quite similar to

the one found in three-dimensional systems when the viewing position is constant.

In addition, built-in primitives enhance the realism and utility of the drawing due

to shading, shadow casting capabilities, and powerful three-dimensional-like manip-

ulation. Such tools are not available in existing drawing systems that are based on

Euclidean two-dimensional points.

In this chapter I describe the basic capabilities of the perspective drawing system.

The first section introduces the new drawing representation while the second section

explains how the chosen projective representation allows for flexible and dynamic

perspective viewing. A third section describes different types of visual guides that

the system supports, and the final section illustrates the basic drawing tools in the

system.
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Figure 3-1: Two-dimensional drawing points are stored on the surface of the unit

sphere centered about the viewer. They are displayed by projecting them onto a
user-specified image plane.

3.1 Drawing Representation

Each stroke (or shape) in the drawing system is stored as a list of such projective

points obtained by back-projecting drawn image points to lie on the surface of a unit

sphere centered about the viewer, while assuming that the drawing window subtends

some solid angle viewing port. The stroke also supports auxiliary attributes such as

color and thickness. A drawing is a collection of strokes and shape primitives. This

projective representation allows us to generate novel re-projections of the drawing

(Figure 3-1). These re-projections can be interpreted as rotations and zooming about

a single point in a three-dimensional space. Re-projection of two-dimensional projec-

tive points does not, however, permit the changes in viewing positions that result in

parallax changes.

The system also uses projective points to represent directions, such as vanishing

points, motion trajectories, and infinite light sources. In order to facilitate drawing

and manipulation of images of three-dimensional planes, I take advantage of the

duality of points and lines in the projective space. For example, using the above-

mentioned coordinate system, the dual of the projective point [a, b, c]T is the line

containing all points [x, y, w]T, such that ax + by + cw = 0. In my work, I use a

projective point to represent the surface normal of a three-dimensional plane. Its



dual is the line at infinity for that plane, as well as any plane that shares this surface

normal.

3.2 Perspective Viewing

In traditional two-dimensional drawing programs, it is not possible to generate new

views looking in a different direction except by reconstructing the drawing from

scratch. However, in a projective drawing system it is possible to generate these

views instantly, merely by using the computer to re-project the points (see Figure

3-2). This results in panning, tilting, and zooming of a virtual camera analogous

to a real zoom camera mounted on a tripod. A similar virtual camera interface is

provided by the "QuickTime VR" system [2]. The virtual camera is not only useful

for creating and exploring wide angle (panoramic) views, but also in ordinary views

because it enhances the immersive feeling of the drawing.

The camera's rotation is controlled by dragging a pointing device left/right and

up/down, and the zoom level is changed while dragging via keyboard modifiers (shift

and control). This direct way of interacting with the drawing allows the user to

implicitly specify the camera's rotation and field of view. Alternatively, the user may

enter precise angles of rotation and field of view. Such precision may be required for

revisiting the view or for aligning the view with a specific direction in the scene.

In the remainder of this section I describe a method for determining the two-

dimensional mapping associated with a particular three-dimensional camera motion.

An equivalent mapping can be derived by eliminating a row and column from the 4 by

4 matrix describing the three-dimensional camera's motion and projection directly.

This technique, however, incurs a greater computation and representation overhead

than the approach described here. Furthermore, this method is comparable in terms

of the intuition that it provides.

As stated earlier, the perspective drawing system uses projective two-dimensional

image points that lie on the surface of a unit sphere centered about the viewer. Unit-

length vector (typically labeled m in this thesis) are used for representing such points:
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Figure 3-2: A drawing of an outdoor plaza shown as points on the unit sphere centered
about the viewer (a), and an array of views (c-h) generated with the drawing system
from the same drawing. The bottom row views look in the same directions as the
top row but tilt up. The plan drawing in (b) is not generated by the system, it is a
schematic drawing that shows where the viewer may have been located in the plaza.
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We desire to specify a projection of these projective points according to a specific

class of view changes. All such mappings can be specified by a 3 by 3 matrix called

a planar homography, H [27]:

w'x (h 11  h12 h13  X

I w'y' h21 h22 h23  y =Hm,

w' h31 h32 h33  W

where the displayed point is (x', y'). Note that only points with positive values of w'

are considered in front of the viewer. Those with negative values of w' are considered

behind the viewer, while points with w' = 0 can be interpreted as directions in the

image plane. Standard clipping algorithms can be used to determine the drawing

primitives, or parts thereof, that actually lie within the viewing frustum. Alterna-

tively, any three-dimensional computer graphics system may be used to render the

drawing, thereby potentially taking advantage of hardware acceleration.

We desire to specify the nine elements of the matrix H according to the desired

camera's view. Furthermore, since the projective points that vary by a positive scale

factor are considered equivalent, so too will the homographies that vary by such

scale factors. Hence, there are only eight parameters, which can be meaningfully

interpreted in terms of the virtual camera.

The matrix H can be decomposed into an upper triangular matrix U and a rota-

tion matrix R 1:

1The matrix H 1 can be decomposed, via QR decomposition [30], into a rotation matrix R1

and an upper triangular matrix U 1 : H = R 1U1 . From this decomposition, we can derive

an alternate decomposition of H into an upper triangular matrix U and a rotation matrix R:

H = (H-1)-1 = U 'R7 = UR.
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Figure 3-3: Viewing geometry.

H=UR.

The operation of this homography can be easily understood in terms of these two

matrices. The upper triangular matrix U specifies the projection of those points onto

a plane. The five non-zero elements of this matrix specify the viewing frustum of the

desired projection [11].

( f a - x'O

U= 0 pf yo ,

\0 0 1

where o represents skew (as related to the image plane's axes x' and y'), p is the

image's aspect ratio, f is the viewer's distance from the image plane, and (x', yo)

determine how the image is centered relative to the visual axis (see Figure 3-3).

However, we limit the system to typical views that are non-skew and have unit aspect

ratio.

The rotation matrix R is analogous to a three-dimensional rotation of the unit



sphere constructed from the specified angles of rotation about the principal axes (see

any standard computer graphics text for more details; e.g., [12]). This matrix clearly

has three parameters (the angles of rotation about the axes, 0, #, @), making the total

number of parameters eight. In our case, however, only the first two of these angles

are changeable by the user during panning and tilting. Rotation about the visual axis

is disallowed in order to avoid user dis-orientation (i.e., @ = 0).

The resulting homography specification gives an intuitive method for specifying

the re-projection of the two-dimensional projective points used in the representation.

f 0 x'/

H = 0 f y' Rop.

0 0 1

This process of projecting points from the unit sphere onto an image plane can be

reversed to map drawn coordinates to their corresponding projective representation.

x'

ffn = H-1 y'
Ih=JL1

and the point on the unit sphere is given as m=

We may now revisit the virtual camera interface in order to clarify how the draw-

ing system converts user interaction into camera motion. When the user drags the

input device, the drawing system decomposes the motion into two components: a

horizontal component indicating panning, and a vertical one for tilting. More pre-

cisely, if the initial device position is (x'/, y') and the final position is (x', yj), we

define an intermediate one (x2, y1) that helps us compute the desired angles. Next,

we back-project these points:

x1 X2 X2

1~n=H4 y'i , 112= -1 y' , 1i21= - y'
fl-H 1 1 1n



Figure 3-4: The drawing system supports skewed perspective frustums, thereby en-
abling the user to draw on frontal planes. In (a) the user wished to draw the bricks
and window on the facade but the wall occupies a small portion of the screen. Using
the "image center" and zoom tools, the grey region can be made to fill the screen.
The resulting view is a skewed but narrower field of view (b).

The desired panning and tilting angles are given as follows:

sin # = t||mi x m 2 1 ||, sign(#) = sign((mi x m 2 1) -Y),

sin6 = tIIm21 x m211, sign(9) = sign((m 21 x m2 )- x),

where, as before, m1 = M , m 2 = 2 , and M 21 = M21

Skewed Perspective Frustums. In addition to rotating the sphere and zooming,

the system includes controls for moving the image center (XO , yo), thereby allowing

the user to work on parts of the drawing that would otherwise either lie outside the

field of view, or be too small if the field of view were made very wide. For example,

when a user orients the view such that a chosen plane is viewed frontally (i.e., parallel

to the viewing plane), the plane may be located outside the picture. The user may

then use the "image center" tool to bring the plane into the picture in order to draw

"on it" proportionately. Useful examples include drawing bricks and windows on a

facade (see Figure 3-4). In computer graphics terminology, this operation yields a

skewed perspective frustum.
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.. ...... ...

..... ........ . ... ..... ...

I-., ........... 4. ..........

(a) (b)



3.3 Perspective Guides

The use of projective points provides two new types of visual guides beyond the rulers

and regular grids used by traditional two-dimensional drawing systems. These two

types are vanishing point guides and perspective grids.

Vanishing Point Guides. Vanishing points are traditionally used as directional

guides as well as a means for geometric construction. I maintain them in the drawing

system for use as guides when drawing lines and rectangles. I also use vanishing

points throughout this thesis to compute various directions and object points. How-

ever, some operations that traditionally use vanishing points, such as apparent object

motion, can be carried out using mathematical tools that do not rely on vanishing

points (see Chapter 4).

The drawing system supports all of the conventional perspective view categories,

such as "single-point," "two-point," and "three-point" perspective, since the viewing

direction can be changed dynamically, thereby transforming single-point perspective

into two- or three-point perspective, and vice-versa. In fact, vanishing points can be

specified in arbitrary directions, which need not even be orthogonal (see Figure 3-5).

There are always two active vanishing points, which the user selects from built-in

directions or creates arbitrary new ones. The system then infers a third vanishing

point perpendicular to the selected ones. All three directions can be used in drawing

and editing. This third point is not displayed, however, in order to avoid visual

clutter.

Vanishing points are directions represented by points on the unit sphere. They

can be visualized as poles of a sphere centered about the viewer. When projected

onto the image plane, the longitudinal lines of the sphere appear as straight lines

converging at the vanishing point, providing the desired visual effect (see Figure 3-6).

The fact that a great circle on the unit sphere represents a straight line in perspective

was illustrated in Chapter 2.
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Figure 3-5: The drawing system provides flexible vanishing points and perspective
grids as visual guides. Users may select from built-in directions, such as "north"
and "east" (a), or "north-east" and "north-west" (b). The directions need not be
orthogonal (c), and entry of new arbitrary ones is allowed (d). The "rectangle" tool
respects the current vanishing points as well as a third direction that is perpendicular
to both of them.
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Figure 3-6: Each vanishing point is a direction represented by a point on the unit
sphere. A pencil of lines passing through the vanishing point is displayed in perspec-
tive for use as visual guides (top row). When visualized on the unit sphere, these
lines resemble lines of longitude converging at the vanishing point (bottom row).



Perspective Grids. Following a long tradition of using grids as aids for drawing

and scene construction, the drawing system supports perspective grids. The system

automatically adjusts the grids to align with the currently active vanishing points.

Grids, like vanishing points, can lie in general positions. This provides the interface

necessary for drawing views containing parallel lines, rectangles, boxes, etc. (see

Figure 3-5).

3.4 Drawing Tools

The drawing system provides great flexibility allowing the user to work with both

freehand strokes and built-in primitives. While freehand drawing is desirable for

quick sketching and for free-form objects, such as trees, built-in primitives enhance

the realism and utility of the drawing due to their shading capabilities and powerful

three-dimensional-like manipulation.

Freehand Strokes. Each stroke is stored as a list of projective points obtained

by back-projecting drawn image points to lie on the surface of a unit sphere. The

stroke also supports auxiliary attributes such as color and thickness. A drawing is

a collection of such strokes and other primitives. The system also includes straight

line segments, drawn in the familiar rubber-band interface. Lines adhere to vanishing

points if the user chooses so.

Built-in Primitives. In addition to basic freehand drawing and straight lines, the

system support higher level shape primitives such as "perspective rectangles," which

the user specifies with two corner points. Other closed polygons are also supported.

Such primitives can have colored interiors for depicting opaque or semi-transparent

objects. When these primitives overlap, the order in which they are drawn is used to

convey occlusion. As with current two-dimensional drawing programs, the user can

adjust this stacking order at any time.

Traditional perspective drawings use shading to convey subtleties of an object's

shape. Shading is depicted with a certain light source in mind, and approximately
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Figure 3-7: A floor plan can be drawn while looking down with a perspective grid
parallel to the viewing plane (a), then re-projected into regular perspective views for
vertical line extrusion (b, c).

resembles shading in current three-dimensional graphics systems. The drawing system

provides this capability by inferring surface normals (see Chapter 2) and allowing the

user to insert infinite light sources into the scene. The picture can then be rendered

with flat-shaded solid color (e.g., using a Lambertian lighting model) or with artistic

styles such as stippling and hatching. Shading with such artistic styles is covered in

Chapter 6.

Frontal Views. As mentioned earlier, frontal views, where the image plane is par-

allel to a specific plane in the scene, are useful for adding strokes that are envisioned

to lie on that plane. This is due to the absence of perspective foreshortening in the

image of the plane. The geometry of the image becomes, in effect, Euclidean, pre-

serving angles, parallelism, and relative distances (see Figure 3-7.a). Thus, the user

can draw with increased accuracy. This technique is one of many ways drawings can

be constructed in the system, and may be used when the initial design is expressed

in orthographic views, such as plan or elevation, and a perspective visualization is

required (see Figure 3-7).

Layered Drawings. The drawing system supports the use of drawings as backdrops

in a similar fashion to what traditional drawing programs provide. Such underlays are



(a) (b)

Figure 3-8: Drawings can be layered in order to facilitate visual comparison of different
drawings. For example, the drawing in (a) is displayed in subdued color when viewed
as an underlay to the design revision shown in (b).

analogous to the traditional use of trace paper, although considerably more flexible.

The system displays underlays in subdued color, thereby mimicking the traditional

medium, or the user may choose any other color (see Figure 3-8.a, b). Underlays are

typically used for either refining design ideas or for drawing on top of drawings of

pre-existing site conditions.

3.5 Summary

In this chapter I presented a new point representation for a perspective drawing

system based on projective two-dimensional points; i.e., points that lie on the surface

of the unit sphere centered about the viewer. I also described key user interface

capabilities that enable the user to draw with freehand strokes and simple geometric

primitives. More significantly, the user interface supports a virtual three-dimensional

camera that provides an immersive viewing experience.



Chapter 4

Perspective Shape Manipulation

The drawing system supports manipulations of shape primitives that appear as 3D

rigid-body translations and rotations. These manipulations (together with operations

for copying primitives) facilitate the creation of scenes containing symmetric or repet-

itive elements. These operations require no knowledge of distance or depth of objects,

as may initially be imagined. For example, it is possible to carry out transformations

of a planar object knowing only its surface normal, which the system automatically

infers from user input (see Chapter 3).

The desired user interface lets the user manipulate shapes by dragging them, as

in traditional drawing programs. In this chapter I introduce this user interface and

mathematical formulations of two-dimensional transformations that cause a planar

primitive to appear to undergo three-dimensional motion. Aggregate shapes, such as

extrusion shapes, also support this type of manipulation (see Chapter 5 for details).

4.1 Apparent Translation

Techniques for moving a planar object along a linear trajectory in perspective are

well known to skilled illustrators. Extensive use of construction lines and multiple

vanishing points are needed to perform such an operation. For example, in Figure 4-1

we show a polygon P1P2P3P4 and the new desired position for one of its points (e.g.

p'). The remaining points are re-positioned using a series of line intersections. For



motion trajectory

P 2

Figure 4-1: The traditional method of performing apparent translation of the plane
using vanishing points.

example, p' lies at the intersection of p2t and p'v, and so forth.

A projective drawing system can support this capability using an intuitive inter-

face, both for moving objects and drawing extruded shapes (see Chapter 5 for details

of extrusion). The user selects a vanishing point as the motion trajectory (direction

of translation) and then uses a pointing device to "drag" the object along the chosen

trajectory.

A direct implementation using vanishing points as illustrated in Figure 4-1 is

possible. However, this method fails when the trajectory coincides with one of the

object's vanishing points. A better approach uses mappings of the projective plane,

or in this case, the unit sphere, to accomplish this transformation. Such a mapping,

or homography, can be thought of as a warping function applied to the object's points

through multiplying them by a 3 x 3 matrix H as follows:

m' ~ Hm, (4.1)

where a ~_ b denotes a = Ab, and A is an arbitrary scale factor.

It is known that the projected image of a translating three-dimensional plane is



plane after translation

plane before translation (0,0,0)

(n.p = d)

Figure 4-2: Geometry of the translation of a three-dimensional plane.

described by the following homography [19]:

H ~ I+ -tnT
d

where I is the 3 x 3 identity matrix, t is the motion trajectory, 6 is the translation

distance, and n is the surface normal of the moving plane, whose initial equation in

three-dimensional space is n - p = d (see Figure 4-2). Since in a two-dimensional

projective setting we have no knowledge of the distance d from the surface to the

viewpoint or the actual displacement of the plane 6, we deduce a new quantity a =

S/d. This yields a single-parameter family of homographies compatible with the

translation of a three-dimensional plane:

T(a) ~ I + atnT. (4.2)

All the quantities on the right-hand side of Equation 4.2 are known except for the

scalar parameter a, which can be inferred from a single pair of points (m, m') given

the location of a point on the surface before and after the translation. Such a pair can

be specified using the pointing device, and must be constrained to lie on the selected

trajectory, hence the single degree of freedom (see Figure 4-3). We determine a as

follows:



warp

,_ user input (dragging)

Figure 4-3: Apparent translation of the plane as it is carried out in the drawing
system: Image points are transformed (warped) using a homography that is inferred
from two input points (M, m') and the plane's normal. The motion trajectory is
selected by the user from a list of active vanishing points.

a = itm'-AmII , sign(a) = sign(t - (m' - Am)).
A(n -m) (4.3)

The value of A is given in the following derivation:

From Equations 4.1 and 4.2 we have:

m' = A(I+ atnT )m = Am+ Aat(n -m), (4.4)

where A is a scale factor needed to solve for a. First, we eliminate a by taking the

cross product of Equation 4.4 with t:

m' x t = A(m x t).

This is an equation of the form: a = Ab (vector a is A-times vector b), the solution

for which is:

= sign((m' x t) - (m x t)).A = i1m i , sign (A)
||m x t||



rotation plane's Vr v' -v
line at infinity

Vr v' v V

pivot m -
m

(a) (b)

Figure 4-4: Traditional method for rotating a line in perspective (a). We wish to map

points on the line 1, which has an initial direction v, onto the line 1' passing through

the pivot but oriented towards v'. Since all such points travel in a common trajectory

v, we can accomplish this with line intersections. In the spherical representation (b)
this trajectory is computed as v, ~ V - v.

In our application, A is always positive. We then rewrite Equation 4.4 as: m' - Am

aA(n - m)t, and solve for a as shown in Equation 4.3.

Note that n - m = 0 in the denominator of Equation 4.3 means that if the plane

passes through the origin (d = 0), or is viewed "edge-on," the image of the planar

shape is reduced to a line. In this case we cannot use a homography to simulate

three-dimensional motion.

4.2 Apparent Rotation

The traditional techniques for performing object rotations in perspective are less well-

known than those for object translation. However, one of the traditional techniques

reviewed in Chapter 2 implicitly applies rotations to line segments using special van-

ishing points. The so-called "measuring point" technique derives its name from the

fact that one can measure the length of a line segment coincident with the image plane

then rotate the line segment into the desired direction. More generally, however, it is

possible to accomplish this for any pivot and initial direction (see Figure 4-4).

As with apparent translation, the apparent rotation of a two-dimensional perspec-

tive primitive about a fixed point, or pivot, can be simulated using homographies.

For example, a perspective rectangle can appear to revolve about an arbitrary axis
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T3)
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Figure 4-5: Apparent rotation of the plane is carried out in two steps: In the first step,
the plane is rotated about the viewpoint. Then, using an apparent three-dimensional
translation, it is moved back to the pivot point.

passing through a user-selected pivot. Once we have established the rotation axis,

pivot and angle, we rotate the object in two conceptual steps (see Figure 4-5):

1. In the first step, we rotate the object about the viewpoint (at the origin of

the world) using the rotation axis and angle desired for the local rotation. All

object points, including the pivot itself, move to an intermediate position:

m = R(a, 0) m.

2. Then, we use apparent three-dimensional translation (Equation 4.2), where t ~

p - p", to move the object back to the original pivot:

m' ~, T (a : p"/ - P) m"

Thus, the desired apparent rotation homography is a composition of a three-dimen-

sional rotation matrix and a pseudo-three-dimensional translation homography:

m' ~- T (a) R (a, 0) m.

An intuitive user interface allows the user to specify the rotation parameters. First,

the user selects the axis from a list of active directions (vanishing points) and uses the

ringinal stroke

stroke apfer apparent rotation
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mn x p

,--' m'x p

rotation plane's
t' ~ (m'xp) x a line at infinity

t ~ (m x p) x a

Figure 4-6: The rotation angle 0 is inferred from a pair of input points (m, I')
indicating the position of a point before and after rotation. The point rotates in a

plane whose line at infinity is the dual of the rotation axis. By extending the lines

mp and m'p to this line at infinity we get the trajectories t and t', which completely
specify the rotation angle.

pointing device to specify the pivot. Then the rotation angle is specified by dragging

the pointing device about the pivot, in a manner similar to current two-dimensional

drawing programs. For proper visual feedback, however, we make the pointing device

appear to orbit in a three-dimensional plane perpendicular to the rotation axis and

passing through the pivot. Therefore, we infer the rotation angle from the change in

the direction of the line joining the pivot p and the pointing device m (see Figure

4-6):

0 = sin--1 (|t x t'll), sign(O) = sign((t x t') -a),

where t and t' represent the above-mentioned direction before and after the rotation,

given by: t ~ (m x p) x a, and t' ~ (m' x p) x a. We arrive at these directions by

computing the intersection of the lines mp and m'p with the rotation plane's line at

infinity, whose coefficients equal the coordinates of the rotation axis.



Figure 4-7: Examples showing the emulation of three-dimensional translation. This
drawing of a shelf cabinet is created from transformed copies of three planar primitives

(numbered 1 through 3).

N

N

K

Figure 4-8: Example showing the emulation of three-dimensional rotation.

4.3 Examples and Summary

In this chapter, I presented user interfaces and special projective mappings that allow

the user to manipulate drawing primitives in such a way that makes them appear to

undergo three-dimensional rigid-body translations and three-dimensional rotations.

These three-dimensional-like operations provide flexibility and, together with copying

operations, they facilitate the creation of composite three-dimensional-like objects

(see Figures 4-7, 4-8).

-- - ----- -------



Chapter 5

Aggregate Shapes

The planar primitives, along with associated shape manipulation operations, intro-

duced in Chapter 4, form the basis for constructing drawings with objects that mimic

three-dimensional models. The next logical step is to allow the artist to draw more

complex shapes with the same ease and fluidity as with freehand strokes. These

shapes must also support the apparent motion operations that I introduced in the

previous chapter. The principal idea behind modeling such shapes is to represent

them as aggregates of planar primitives. This approach enables us to build upon the

ideas and mathematical formulations explained thus far.

In this chapter I show how complex aggregate shapes can be modeled and displayed

as shaded two-dimensional polygons. I describe "extrusion" shapes as an example

of such aggregate shapes. However, the principles described here are potentially

applicable to other shapes as well, such as surfaces of revolution.

5.1 Extrusion

We wish to construct shapes that mimic three-dimensional extrusion surfaces, by

which I mean a three-dimensional surface that connects one instance of a three-

dimensional curve to another that has undergone some transformation (typically

translation only). Traditional perspective drawing relies heavily on extrusion for scene

construction. Typical scenes contain architectural elements, such as walls, openings



extruded stroke
extruded stroke n e (default position) extruded stroke

(after shifting)

base stroke

Figure 5-1: By default, the extrusion trajectory is perpendicular to the base stroke.
However, skewness can be introduced by shifting the extruded stroke in any chosen
direction.

and friezes, which are extruded from their cross-sections. The extrusion is facilitated

by vanishing points as shown for the apparent translation case (see Figure 4-1). The

projective drawing system provides an interface for modeling such shapes with ease.

Inside the drawing system, the user draws a freehand "base stroke," selects the

extrusion trajectory from the list of active vanishing points, and then drags the point-

ing device to specify the magnitude of the extrusion. The system responds by making

a copy of the base stroke, which I call the "extruded stroke," and applies apparent

three-dimensional translation to this copy using a variant of Equation 4.2:

T(ae) ~ I + acen T,

where a, is inferred from the dragging action (as described in Section 4.1), and e is

the selected extrusion trajectory. Segments of the new extruded stroke are connected

to corresponding ones in the base stroke, thereby forming the facets of the shape.

This approach assumes that the base stroke represents a planar curve in three-

dimensional space, with the extrusion perpendicular to it. Therefore, the system's

interface initially assigns the base stroke's normal as the extrusion direction. Later,

the user may shift the extruded stroke in any direction, thereby simulating a skewed



(a) (b)

Figure 5-2: Examples of freehand strokes extruded in various directions inside the
system (a). An extrusion shape is created by making a copy of the base stroke
and transforming it via a pseudo-three-dimensional translation along the extrusion
direction (b). The normal of each facet is computed by first intersecting the line
joining m1 and m±iM with the base stroke's line at infinity in order to determine
a vanishing point vi, and then computing the normal as the cross product of this
vanishing point with the extrusion trajectory.

extrusion shape (see Figure 5-1). The normal to each facet is inferred from the van-

ishing point of its base segment and the extrusion trajectory (see Figure 5-2), allowing

for shading of the facets and shadow projection using directional light sources.

Since an extrusion shape is composed of two planar strokes, it is possible to per-

form apparent object motion for each of the member strokes as described in the

previous chapter. However, we must derive methods for tying the two motions to-

gether in order to preserve the integrity of the shape. I describe such methods for

apparent translation and rotation in the following sections.

Apparent Translation

The system provides the ability to move an extrusion shape in the scene (see Figure 5-

3) using the same interface as for planar objects (Section 4.1). The apparent collective

motion of the aggregate shape is performed using two homographies T(a) and T(a')

for the base and extruded strokes respectively. The system infers the base stroke's

parameter a directly from user input as described in the planar object case, while the
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Figure 5-3: Example of an extrusion shape undergoing apparent translation inside
the projective drawing system.

base stroke's plane
(n.p = d)

'(0,0,0)

Figure 5-4: Geometry of the three-dimensional planes used in extrusion.
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parameter a' for the extruded stroke is determined as follows:

at a
1+ ae(e - n)

The validity of this equation can be shown by the following derivation:

Suppose that the base stroke lies in a three-dimensional plane whose equation is

n - p = d, and the extruded stroke lies in a parallel plane: n -p' = d'. From Figure

5-4 we can deduce that:

d' = d + 6e (e - n), (5.1)

where 6, is the extrusion distance. From our definition of a in Section 4.1, we have:

6e 6t , 6t
ae= -, a -, a =d , (5.2)

where S is the translation distance. By substituting the value of d' from Equation

5.1 into 5.2, we have:

6t

d + 6e(e -n)

Since 6e = dae (Equation 5.2), we have:

a' 6 6/d a
d + dae(e-n) 1+ae(e-n) 1+ae(e - n)

Apparent Rotation

Rotation of an aggregate shape about an arbitrary axis and pivot is also possible.

Any point can serve as the origin of the rotation. For simplicity, I assume the pivot

to be the first point on the base stroke. The system performs the rotation in a series

of steps (hidden from the user), during which the motion of the extruded stroke is

tied to that of the base stroke (see Figure 5-5):

1. Rotate the base stroke using its first point as pivot.



f prxy pivotor extruded stroke '

*-extruded stroke in
intermediate position

rotation pivot .
for base stroke .
&firstfacet -........ .

base stroke after rotation

m irst facet extruded stroke in
m, (as guide) intermediate position

--....- ..... .. extruded stroke in
2nalposition
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Figure 5-5: The drawing system rotates an extrusion shape in several steps (numbered
1-4), which are hidden from the user: First, both the base and extruded strokes are
rotated using their respective first points as pivots. The first facet is also rotated in
order to determine the final position of the extruded stroke (a). Then the extruded
stroke is moved to the correct position using the first facet as guide (b). Examples
of an extrusion shape undergoing different rotations inside the drawing system are
shown in (c).

2. Rotate the extruded stroke using its first point as pivot. This results in an

intermediate position for the extruded stroke.

3. Rotate the first facet of the shape using the base stroke's first point as pivot.

This establishes the correct positions for the first and second points in the

extruded stroke.

4. Move the extruded stroke from its intermediate position to the correct position

determined in step 3. For this operation, we use apparent three-dimensional

translation (Equation 4.2), where t ~ (mi x m') x (M 2 x M')-
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Figure 5-6: An edge of an extrusion shape is determined to be on the silhouette if
its neighboring facets are drawn in opposite directions (i.e., clockwise vs. counter-
clockwise).

5.2 Silhouettes

Rather than drawing all the facets of an extrusion, and in keeping with the hand-

drawn look, I have developed techniques to emphasize the boundaries and silhouettes

of extrusion shapes. Silhouettes of faceted surfaces lie at the edges between two

facets, one of which is front-facing while the other is back-facing [25]. A simple two-

dimensional method can be used to determine the existence of this condition [17]. If

the edges of two neighboring facets are drawn in opposite directions (i.e., clockwise

vs. counter-clockwise), the shared edge is on the silhouette (see Figure 5-6).

5.3 Visibility

The lack of relative depth information between objects does not allow the system to

hide parts of object that are occluded by other objects. However, the system provides

an interface that allows the user to adjust the stacking order of these objects, as is

commonly done in standard two-dimensional drawing packages. Objects lower in the

stack are rendered on top of ones higher above, thereby appearing closer to the viewer.

Three-dimensional graphics systems often resort to this technique, referred to as the

painter's algorithm [23], although the order of primitives in the stack is determined

automatically by the graphics system.



Figure 5-7: Points on a plane make a greater angle with the plane's normal as they
move farther away from the viewpoint. This observation is used to draw an extrusion
shape in a back-to-front order.

Although inter-object visibility cannot be unambiguously resolved for two-dimen-

sional representations, intra-object visibility can be determined in some instances. For

example, the facets of an extrusion shape can be drawn in a back-to-front order using

the simple observation that points on the base plane make a greater angle with the

plane's normal as they move farther away. For example, in Figure 5-7, mj -n > mi -n

(assuming n points in the opposite direction of m); therefore, a facet based at m

is potentially occluded by another based at mi (assuming the extrusion shape is not

skew). Based on this dot product criteria, the system creates a sorted list of facet

indexes that is uses for rendering. Re-sorting of this list is necessary if the object

undergoes apparent translation or rotation.

5.4 Example and Summary

This example shows the maze garden at Hampton Court Palace, which was generated

by extruding the plan drawing of the maze (see Figure 5-8). Care was taken to main-

tain a proper depth order amongst the hedges. Since the system relies on a stacking

order for conveying occlusion, it is not possible to have one shape wrapping around

another. Such a shape must be broken up during modeling into smaller fragments-

ones that are either exclusively behind or in front of other objects. This limitation,



Figure 5-8: Perspective view of the maze garden at Hampton Court Palace (left),
which was created by extruding its plan drawing (right).

however, can be mitigated with a "grouping" tool, whereby visibility within a group

is resolved on a facet-by-facet basis rather than by objects.

This concludes my discussion of drawing primitives and shape modeling and ma-

nipulation within a projective drawing system. I have alluded many times to the

possibility of shading and casting shadows from infinite light sources, which I will

make more concrete in the following chapter.



Chapter 6

Shading and Shadows

Perspective drawings that contain shaded objects and shadows can be more com-

pelling than line-art drawings, where only the silhouettes of the objects are drawn.

Shading permits the viewer to infer the orientation of the depicted surface, while

shadows can play an important role due to their effectiveness in conveying shape and

relative position information.

While accurate lighting simulations, as accomplished by three-dimensional sys-

tems, are not possible within a two-dimensional system, it is possible to provide

the user with lighting tools that are sufficiently automated to prove useful. In this

chapter, I present these tools and discuss the degree of automation they achieve.

First, I explain how illumination computation is carried out and the different

shading styles that the drawing system supports. Then I explain the process of

shadow projection in two-dimensions. At the end of this chapter, I present examples

of shaded drawings made with the system.

6.1 Illumination and Shading

The drawing system provides shading capabilities by inferring surface normals (see

Chapter 3) and allowing the user to insert directional light sources into the scene.

Illumination computation is carried out using this information and any local lighting

model (see Chapter 16 of [12] for a comprehensive introduction to shading in computer



Figure 6-1: Simple example rendered with the stippling style (a). The stippling
direction is determined from the surface normal and light direction (b).

COMPUTE-STIPPLE

StippleDirection <- n X s
Convert-StippleDirection-To-Screen-Coordinates
StippleDensity *- MaxDensity x (1 - min(O, n - s))

NumStipples <- StippleDensity x Bounding-Box-Area
for i <- 1 to NumStipples

do BeginPoint <- Random-Point-Inside-Bounding-Box
EndPoint <- BeginPoint + (Random-Length x StippleDirection)
Clip-Stipple-to-Shape; Back-Project-Stipple; Add-to-StippleList

Figure 6-2: Pseudo-code for stippling algorithm.

graphics). The picture can then be rendered with flat-shaded solid color or with

artistic styles, such as stippling and hatching.

The implemented system allows the user to specify the object's material proper-

ties, including diffuse color, reflection coefficient and transparency. The user can also

modify the direction and color of the light sources. This provides great flexibility in

modifying the final appearance of a drawing.

Stippling. I have implemented a basic stippling algorithm that employs short strokes

to shade planar surfaces. The direction of the strokes is determined by the vector

cross product of the surface normal and light direction (see Figure 6-1). This gives the

viewer added information about the surface orientation. The density of the strokes

is determined by a Lambertian shading computation, and their position and length

are randomized in order to emulate a hand-drawn look (see code in Figure 6-2).

Hatching. Another shading style that the system supports is a simple hatching

method (used in Figure 6-3). This method generates a look that is consistent with that



Figure 6-3: Simple example rendered with the hatching style.

of the manual illustrations in [13]. Instead of Lambertian shading, it generates four

levels of grey according to the following rules: Shadows are hatched with maximum

density, objects facing away from the light are hatched with lighter density, and light

stippling is applied to objects that are dimly lit (i.e., the angle between the normal

and the light source is greater than 45 degrees).

Due to the computational overhead of artistic shading (about 2 seconds for a

complex scene), I adopt the following strategy: Shading strokes are computed in

screen coordinates when there is no camera motion, then back-projected and stored

on the unit sphere. As the user rotates the camera, the stored strokes are used to

render the scene. Although the stored shading becomes somewhat inaccurate during

camera motion, this strategy provides adequate feedback during scene navigation and

avoids the flickering that would result from re-computing the strokes during camera

motion.

6.2 Shadows

Following classical line construction techniques, I have implemented an automatic

algorithm that computes the shape of an object's shadow as cast from a directional

light source like the sun. However, due to the lack of depth information, the shadow

is initially attached to the object casting the shadow, then the user may drag it to

the desired position (see Figure 6-4). This dragging operation is achieved with the

"apparent three-dimensional translation" method by using the light's direction as the
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Figure 6-4: Shadows are projected automatically using the surface normals and light
source's direction (shown with faded lines). The shadow is initially attached to the
object casting the shadow (a). Later the user may drag the shadow in order to
simulate distance between the shadow-casting and shadow-receiving objects (b). The
system automatically re-projects the shadow during this dragging operation.

translation trajectory. Later, if the user re-positions the light source, the new position

of the shadow is recomputed automatically, without any further user intervention.

All shadows are treated as surface-detail polygons associated with the shadow-

receiving object. These polygons are shaded using the color of the underlying object

as it would appear when hidden from the light source that was used for projecting

the shadow.

The information that is needed to compute the shadow is the surface normals for

both the object casting the shadow and the one receiving it. The shadow of a stroke

(or polygon) is determined by marching along the stroke and projecting its successive

segments onto the shadow-receiving object. The first shadow point is attached to the

corresponding point in the stroke. Thereafter, each shadow point is determined by

intersecting a shadow line with a shadow projector-a line joining the light source

and the shadow-casting point (see Figure 6-5). The trajectory of the shadow line

is determined by intersecting an imaginary shadow plane with the shadow-receiving

object. All these operations are performed in two dimensions using vector cross

products as shown in the pseudo-code (see Figure 6-6).



12 (shadow projector)
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S (light source)

,(shadow-casting object)
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Figure 6-5: The shadow of a stroke is determined by marching along the stroke
and projecting the shadow segments iteratively. m' is determined from m'i by
intersecting 12 and 13, where l2 is the shadow projector and 13 is the shadow line. l3 is
found by intersecting an imaginary shadow plane with the shadow-receiving object.

PROJECT-SHADOW
nj <- shadow-casting-object-normal
n2 - shadow-receiving-object-normal
m' m > Shadow attached to first point.
k <- length[stroke] > Number of points in stroke
for i <- 2 to k

do 11 - mi_1 x mi > Shadow-casting stroke line.
12 - s x mi Shadow projector.
v <- 11 x ni > Vanishing point.
n. <- s x v > Shadow plane's normal.
t <- n, x n2 > Intersection of 2 planes.
13<-n' 1 Xt c> Shadow line.

mi <- 12 x 13 > Shadow point.

Figure 6-6: Pseudo-code for shadow projection.



S (initial light source)
S' (new light source)

m (shadow-casting object)

w(new shadow projector)
shadow plane

(new shadow point)2

(initial shadow point)

Figure 6-7: A shadow point is re-projected after some change in the light source's
direction. The new shadow point is determined by intersecting the lines 11 and 12,

where 11 is the new shadow projector, and 12 is the line along which the movement of
shadow point is constrained. 12 is found by intersecting an imaginary shadow plane
with the shadow-receiving object.

REPROJECT-SHADOW-POINT
n <- shadow-receiving-object-normal

1 M x S[> Shadow projector.

n- s x s> Shadow plane's normal.
t -n,, x n > Intersection of 2 planes.
12 4-t X M'
m <- 11 X 12 [> New shadow point.

Figure 6-8: Pseudo-code for shadow re-projection.

Using similar techniques, shadows can be automatically re-projected as the light

source moves (see Figure 6-7). An imaginary shadow plane is constructed encompass-

ing the old and new shadow projectors-its surface normal inferred from the old and

new light directions. The intersection of the shadow plane with the shadow-receiving

object gives us the trajectory along which the new shadow point must lie. We inter-

sect this trajectory with the new shadow projector to arrive at the new shadow point

(see code in Figure 6-8).

Note that, by using this shadow construction interface, it is possible to construct

a scene with incomplete or even inconsistent shadows. It is the artist's responsibility

to maintain the scene's integrity.



6.3 Examples

Using the system, I created a perspective drawing of the Court of the Myrtles at

Alhambra Palace, Spain. It is shown in Figure 6-9-a rendered with the stippling

algorithm. Figure 6-9-b shows the hatching style applied to the same drawing.

Shadows, including those cast by the colonnade and lattice onto the back wall,

were projected semi-automatically. The shadow re-projection algorithm was then

used to visualize the motion of the sun across the courtyard (see Figure 6-10).

In addition to shading and shadows, this example illustrates the use of many of

the features of the drawing system. For example, special vanishing points aided in the

drawing of the roof tiles. Symmetrical and repeating architectural features, such as

the colonnade, where copied and moved using the "apparent translation" operation.
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Figure 6-9: Using the system, I created this drawing depicting one of the courts
at Alhambra Palace, which was then rendered using the stippling style (a) and the
hatching style (b).
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Figure 6-10: This sequence, showing the motion of the shadow across the back wall,
was generated automatically.
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Chapter 7

Integration with Other Media

The approach that I propose for perspective drawing allows for the integration of

paper sketching and computer drawing at various points during the design process.

Paper drawings often have advantages over those made with computers because of

their immediacy, fluidity, and portability. On the other hand, the computer bet-

ter facilitates re-projection, editing and refinement. Hence, a dual-mode approach

combines the best of both worlds.

Another traditional medium that is supported by the projective drawing system

is photographs and scanned drawings, which provide a quick and easy way of adding

realism or visual interest to the final picture. Both traditional photographs and

cylindrical panoramas can be imported into a drawing.

7.1 Paper Sketches

Often designers prefer traditional illustration media over computer-aided drawing,

despite the shortcomings of these media. Therefore, designers need to sketch freely,

both while using the computer and away from it. Existing tools for digitizing paper

drawings, such as flatbed scanners, usually generate a rasterized version of the draw-

ing that does not preserve the original strokes. While such a representation may be

suitable for paint programs, it is foreign to drawing (stroke-based) programs. This

has generally prevented designers from using paper and computer sketching inter-
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Print Sketch / Edit Reproject

Traditional Media Computer Sketch

Figure 7-1: Integration of traditional media with computer sketching in a closed loop.

changeably. To address this issue, I have integrated the CrossPad portable digital

notepad [6] (that records strokes while the pen deposits ink on paper) with my sys-

tem. The drawing system was expanded to include perspective views drawn with this

pad in a manner that permits the use of the pad for recording new sketches as well

as augmenting ones created with the computer (Figure 7-1).

Since the camera rotation and field of view are unknown for a drawing imported

from the pad, the system provides interactive tools for defining these attributes. A

typical scenario for aligning an imported drawing starts with the user translating

and rotating the input drawing (in screen coordinates) to fit the horizon, followed

by panning and zooming to align the vanishing points. During this panning and

zooming, the imported strokes remain static on the screen while the vanishing points

and grids are animated in the background. The drawing may later be printed with a

different view and new strokes added on paper, and then the import/align procedure

may be repeated (Figure 7-2). In this way, the user may opt to use the pad at any

point during the design stage.

The system also provides a semi-automatic tool for aligning perspective drawings

containing two vanishing points. This tool requires the user to follow the same steps

for the manual alignment, except that, instead of panning and zooming to adjust

the viewing direction and field of view, the user specifies two vanishing points with



(a) (b)

(c) (d)

(e) (f)

Figure 7-2: Aligning an imported sketch: A person starts sketching with the digital
notepad (a), then imports the drawing into the system (b) and translates and rotates
it to fit the horizon (c). Manual or automatic tools are used to align the vanishing
points (d). The sketch can be printed with a different view and new strokes added
on paper (e), then the import/align procedure is repeated (f).
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Figure 7-3: Viewing geometry for aligning two-point perspective drawings.

the pointing device: (x', y') and (x, y'). The system then computes the camera

rotation and focal length using the viewing geometry depicted in Figure 7-3. Since

the vanishing points are assumed to correspond to two mutually orthogonal directions

lying on the horizon (x-w plane), this gives us the following equation that I use to

compute the focal distance f (which determines the drawing's field of view):

Xb

a 0 f ) 0 XaXb + f 2 = 0.

f

By making the reasonable assumption that the axes of the image plane, x' and y',

have the same directions and weights as those of the world, x and y, we can compute

Xa and Xb directly from user input as follows:

Xa=Xa -4 /

a - ' b = Xb - XO.

Note that, for a two-point perspective view, the image center (xO, yO) must lie on the

line that connects the two vanishing points and fall between them.
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Figure 7-4: An example of a projective texture: scanned painting of a tree (a), and a
black-and-white mask delineating its outline (b).

7.2 Conventional Photographs

In Section 7.11 demonstrated the usefulness of integrating traditional drawing media

with computer-based drawing. However, those techniques required the use of a digital

notepad to draw on paper. I have added the capability to use scanned drawings and

photographs as textures applied to perspective rectangles. Texture mapping in this

fashion is achieved with projective two-dimensional mappings and image re-sampling

[14]. Transparency channels are provided in the texture to alleviate the limitations

of a rectilinear shape. For example, a painting of a tree can be scanned and a binary

mask created using standard image editing software. The mask defines the tree as

opaque, while the rest of the rectangle and holes in the tree remain transparent (see

Figure 7-4). The texture and mask may then be applied to a perspective rectangle

inside the system.

The user retains the ability to manipulate the rectangle as before, thereby allowing

for precise placement of the textured rectangle in the scene. Thus, a row of trees

can be created effectively by translating copies of the textured rectangle along the

row's axis. In addition to this type of manipulation, which is reminiscent of clip

art in traditional paint and drawing programs, polygons with photographic textures

may undergo the projective alignment process described in Section 7.1 (by extracting

vanishing points). The photograph, having been aligned in this manner, serves as a

visual backdrop for drawing.



7.3 Panoramic Images

A panoramic image can be generated from site photographs using an off-the-shelf

image stitching program [2]. Many special-purpose cameras are also available that

record a single panoramic image. Panoramas may also be synthesized by traditional

modeling and rendering programs, thereby allowing the use of my drawing system for

quick design reviews and annotation.

The projective drawing system supports cylindrical panorama, which are the most

commonly used type of panorama and easily generated by stitching methods. All

panoramic images-cylindrical or otherwise-use projective representations similar

to my drawing system. Picture elements in a panorama correspond to vision rays

emanating from a single viewing position. These vision rays are equivalent to points

on the unit sphere that are used by my system. Re-projection of cylindrical panoramas

into planar perspective images is well-understood from the QuickTime VR system [2].

Currently, the drawing system places some restrictions on imported cylindrical

panoramas. In particular, the cylinder's axis must be perpendicular to the horizon.

Often, it is difficult to align the camera's axis in such a manner, thereby resulting

in a tilted panorama. The drawing system can be easily extended to allow the user

to specify the axis of a tilted panorama, for example by selecting two points on the

horizon. Another parameter of a cylindrical panorama that must be input by the user

is its vertical field of view. It is assumed that this information is known beforehand,

for example from the stitching program.

7.4 Examples

Paper Sketches. The example in Figure 7-5 shows a panoramic sketch created

entirely from freehand sketches originally drawn on paper. The panorama was as-

sembled from sketches pointing at four different directions by estimating the fields of

view visually.



Figure 7-5: Panorama of library interior shown as an unrolled cylinder (top), and
freehand sketches used to generate it (bottom).

(a) (b)

Figure 7-6: Restored elevation of the Peirene Fountain (darker lines) aligned with a
drawing of existing site conditions (a) and a photographic backdrop (b).

Panoramas. This example shows the use of panoramic image backdrops and a sketch

underlay. These techniques are applied to the study of a Greco-Roman fountain

building in Corinth, Greece. The objective was to visualize the restored elevation

of the Early Roman Period as depicted in the Corinth Series [28]. Tracing over

a cylindrical panorama created a drawing of the existing conditions. The restored

elevation was then imported into the system via a digitizer tablet and aligned with

the previous drawing as an underlay (see Figure 7-6). In a real application, the

archaeologist would use the system to study the restoration in conjunction with views

of the existing conditions and resolve any conflicts that might arise.



Figure 7-7: Photographic panorama of Killian Court at the M.I.T. campus (top), and
artist's rendering based on the photograph (bottom).

A second example shows a panoramic sketch by a different artist. It is drawn

more methodically with attention to detail, thereby exhibiting a slightly different

quality than the example in Figure 7-5. The artist used a photographic panorama as

a backdrop while constructing this drawing (see Figure 7-7).

Projective Textures. I created a scene using textured perspective rectangles com-

posed against a panoramic backdrop (see Figure 7-8). The objective was to visualize a

proposed architectural design by architect Frank Gehry within its context. An artist

used acrylic paint to create a perspective rendering of the proposed office building.

I also took a series of concentric photographs of the site from approximately the

same position as the painting, and used off-the-shelf software to create a cylindrical

panorama, which was further processed with image editing software to imitate the

look of the painting. In the system I displayed this panorama and placed a textured

rectangle containing the painting, with a mask delineating the building. I added

other rectangles to depict trees, people, and foreground objects, such as objects in

the real scene that occlude the proposed building. The system's tools for translating

and rotating rectangles provided a flexible means for placing them.



(a)

(b)

Figure 7-8: This scene depicts a proposed building within its real context (a). In
addition to the panorama of the site, the scene contains three perspective rectangles
with projective textures and transparency channels (b). Two of these textures include
proposed elements, while the third is an existing building (the building on the right)
that would occlude the proposed one.

In Figure 7-9 a classical perspective drawing by Vredeman de Vries [8] was applied

as texture to a rectangle and aligned using two vanishing points. The system was

then used to generate new views looking in different directions. The view in Figure

7-9-b reveals the distortion in the original drawing, which was deliberately introduced

to counter the effects of a very wide field of view. The artist compressed the depth

component as features grow closer to the viewer and further out into periphery vision,

thus achieving a believable picture despite its larger than ninety degrees field of view.



(a)

(b) (c) (d)

Figure 7-9: This classical perspective drawing by Vredeman de Vries (a) was imported
into the system and aligned using the vanishing points of the grid's diagonals. The
system was then used to generate new views looking in different directions: (c) shows
a view looking up into the ceiling, (d) looks frontally at the receding wall on the
right-hand side of the original image, and (b) reveals the intentional distortion of the
colonnade that the artist cleverly introduced to achieve convincing proportions in the
wider field of view.



Chapter 8

Discussion and Future Work

I have presented a perspective drawing system that improves upon traditional perspec-

tive drawing and greatly expands the utility of traditional two-dimensional computer

graphics systems. The system has the same ease-of-use as two-dimensional systems,

but offers many three-dimensional-like qualities. It is intended for situations where

the construction of a full fledged three-dimensional model may not be necessary. The

system provides considerable advantages over a three-dimensional modeling system,

including considerable time savings, while retaining the expressiveness of the original

artwork.

My work also addresses the general need for better design tools to bridge the

gap between the designer and computer. I approached the problem by creating a

new computer drawing paradigm, based on projective two-dimensional points, and

incorporating traditional two-dimensional design media. New input devices and three-

dimensional traditional media, such as wood models, also need to be seamlessly inte-

grated with computer-aided design.



8.1 User Scenarios and Experience

User Scenarios

Perspective drawings are used across many disciplines for various purposes. In some

cases, such as in animation or graphic design, they become part of the final product.

In others, they serve as tools for design thinking and communication. The different

roles that drawings play during the design process are outlined in [22]. In particular,

during a private thinking phase, the designer may draw in a manner that helps the

thought process. In such drawings, solutions are suggested while unsolved aspects of

the design remain vague. On the other hand, drawings that are made to communicate

the design to a client are often stylized or embellished with decorations that help

highlight the designer's intent. Perspective plays an important part in these two roles

of design drawings because it is the only type of drawings that can convey the visual

experience of the final product.

The vagueness of thinking drawings and expressiveness of communication draw-

ings are the two main reasons for the minimal inclusion of existing computer graphics

technologies into the design process. A projective drawing system, however, is posed

to thrive under these circumstances. Its appeal for the early thinking process is en-

hanced by its integration with hand drawings and photographs, while its rendering

and shading capabilities are better suited for illustrative drawings.

User Experience

Some of the examples used in this thesis were created with the help of students who

were not developers of the system. They found the system's freehand and geometric

primitives easy to use. However, understanding how object manipulation and shadow

projection work required more experience with perspective drawing. The Alhambra

example (see Figures 6-9, 6-10) was also somewhat cumbersome to construct. It took

five to six hours to arrive at convincing proportions and to arrange the primitives

in the drawing stack. This kind of time investment, however, is common among

professional illustrators.



8.2 Comparison to Three-dimensional Modeling

In this section, I compare the projective drawing system to conventional three-

dimensional Computer-Aided Design and Drafting (CADD) systems, highlighting

both the benefits and limitations of the proposed approach.

Benefits of Projective Drawing

Projective drawing provides many benefits over a three-dimensional modeling system.

The process of specifying a three-dimensional model containing complex geometry

can be extremely time-consuming compared to drawing a single view. This process is

made lengthy primarily due to the limitations of two-dimensional user interfaces. The

use of a two-dimensional interface for three-dimensional modeling often means that

the user has to specify the shapes and coordinates in more than one view, thereby

making the process laborious. It also prevents the designer from sketching freely or

with ambiguity as many designer do during the early stages of design. While three-

dimensional interfaces promise to alleviate some of these limitations, they are difficult

and expensive to build and they consume more space than conventional interfaces. On

the other hand, projective drawing allows for artifacts that can be both expressive

and quick. Drawing can also be undertaken with portable conventional media or

hand-held computers.

Limitations of Projective Drawing

The most obvious limitation of projective drawing is the lack of relative depth infor-

mation between objects. To some extent, this limitation is overcome by allowing the

user to adjust the stacking order, as is commonly done in standard two-dimensional

drawing packages. However, the lack of true depth information prevents the user

from grouping objects and moving them collectively in a manner that preserves the

three-dimensional illusion of the drawing. While it is possible to use the apparent

three-dimensional translation or rotation tool after selecting multiple objects, the

objects move independently from each other-each behaving as if the motion of the



primitives befor translation

motion of pointing device

Figure 8-1: As a limitation of the system, primitives cannot be moved collectively in
a convincing manner. The illusion that these two primitives form an L-shaped object
is shattered as they move independently from each other.

pointing device "belonged" to it (see Figure 8-1). I use transformations of the im-

age of a planar object that are independent of its actual distance from the viewer.

In order to transform images of multiple objects, however, we need relative depth

information, which the system does not support. This limitation also explains why

true three-dimensional walk-throughs are not possible in this system. Furthermore,

general lighting operations, such as shading with a local light source, require relative

depth information.

8.3 Applications

My approach and representation have applications in different areas of computer

graphics:

e Architects often generate hidden-line perspective views from three-dimensional

modeling systems and embellish them by hand. My projective drawing system

provides a much more flexible means of drawing within a three-dimensional

environment. This can be achieved, for example, by generating a perspective



view from the CADD system, then applying the image as texture to a rectangle

inside the projective system. The picture can be aligned using two vanishing

points (see Section 7.1) and additional strokes drawn while viewing it in the

background (see Figure 8-2).

e Graphic designers frequently include perspective in their drawings using today's

illustration systems that have limited support for perspective. Such systems

could, for example, have a dedicated perspective mode.

* Animators commonly use paint systems to construct backdrops for cell ani-

mation. These systems are of limited use for perspective scenes. In order to

simulate camera panning, multi-perspective backgrounds are sometimes used.

Drawing multi-perspective views is difficult and requires a high degree of skill.

Using a projective system would greatly simplify the process of drawing back-

drops for cell animation.

A projective drawing system can be useful to designers in various disciplines and

situations. Interior designers, architects, landscape architects, and urban designers

may use it for recording site conditions and sketching new design ideas and alterna-

tives. They may also use it in design reviews, where the image backdrop is generated

from a CADD program, and the drawing system is used for design critique and anno-

tation. Archaeologists and cultural resource managers may use it for recording and

annotating existing site conditions as well as exploring and communicating historical

reconstruction ideas. It is also conceivable that students wishing to learn perspective

drawing will use such a system to enhance their understanding of the principles of per-

spective. Other applications include the creation of illustrative hall-size panoramas

for public exhibitions [24].

8.4 Future Work

In this section I will propose extensions to the drawing systems, as well as long term

research directions that are related to the work I presented in this thesis.



(b) (c)

Figure 8-2: An example illustrating the use of a crude three-dimensional model as
a backdrop for sketching in perspective. The basis for this example was a design
by Le Corbusier [4] depicted in (a). First, a three-dimensional massing model was
created using a conventional three-dimensional modeling system (b), on top of which
details of the facade were added (c). The final drawing is shown while looking in two
different directions (d, e).

(a)



Figure 8-3: Example drawing in the water color style.

Proposed Extensions to the System

Currently, the system has a limited set of primitives and modeling operations. The

addition of new built-in primitives, such as "boxes" and "cylinders," would be helpful

to the user. I also hope to embellish the system with additional modeling operations,

such as the ability to generate other types of aggregate shapes.

The drawing system can also be easily extended to support layers within a drawing,

as is currently common in CADD programs. The interface to these layers can evolve

into a sort of digital sketchbook, with multiple pages resembling different design

concepts or the refinement of a single concept. Such a sketchbook should allow tracing

over previous pages and transferring strokes between pages.

I would also like to add expressiveness to the drawings by emulating the strokes

and look of traditional media. The stippling and hatching rendering styles I presented

are by no means the only ones applicable to perspective drawings. I could use virtually

any rendering style. As more sophisticated automatic stippling or painterly rendering



algorithms become available, they can be added to the system. Alternatively, the

system's freehand strokes could be stylized by mimicking different pen and brush

types. This is akin to the stylized strokes of existing drawing programs that track the

speed of the user's stroke and make use of pressure-sensitive drawing tablets. Such

strokes require a more sophisticated rendering procedure than I currently employ. The

mock drawing in Figure 8-3 was created by capturing a static view of the outdoor

plaza example in my system and using a commercial program to add strokes in the

"water color" style.

Further work may lead to inferring actual three-dimensional models from pro-

jective drawings, which would require additional user input to specify a primitive's

distance from the viewer. This extension would link the initial sketches to other stages

of the design, where three-dimensional models are beneficial. Creating different rep-

resentations for the various stages of design in this manner provides an alternative to

techniques that enforce a three-dimensional representation very early on [34, 18].

Graphical Input Devices

Existing technologies for input devices often limit the creative drawing process. To-

day's digitizer tablets are often too small and divorce the hand from the display

feedback. The portable digital notepad I used, although useful for on-site drawings,

lacks the ability to quickly display new views. A better device would incorporate

input into a flat panel display that is significantly large and oriented like a drafting

board, in a manner that allows drawing freely at an arm's length. As new devices are

introduces I will extend my research to include them.

Other Projection Systems

In this thesis, I have considered only one form of planar geometric projections-

the perspective (or central) projection. Other systems that also project a three-

dimensional world onto a planar manifold include parallel projection systems. In some

sense, parallel projection can be envisioned as the dual of central projection. Instead

of a situation where the stationary viewer inspects and rotates a three-dimensional



Figure 8-4: Parallel projection views that are taken with different camera positions at
infinity pose a different kind of research problem than the stationary central projection
camera investigated in this thesis.

scene, the viewer (at infinity) orbits about a stationary scene (see Figure 8-4). Parallel

projection systems, including orthographic and oblique views [9, 33, 1], provide the

primary means of design thinking and communication in architectural, industrial

and engineering design. Throughout the design and construction (or manufacturing)

processes, they are used either as crude sketches or precisely measured drawings.

Parallel projections pose interesting and challenging research problems. While re-

projection of a single perspective view, as shown in this thesis, provides a sufficiently

convincing three-dimensional illusion, this may not be true with parallel projections.

At least two such views are needed to give a three-dimensional impression or generate

new views that orbit the depicted scene. Thus, the challenge to the researcher is to

find a new and easy way for the designer to input and manipulate parallel projection

views, while maintaining the three-dimensional illusion.
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