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Abstract: Large parts of the urban layout of the abandoned Roman town of Bassianae (in present-

day Serbia) are still discernible on the surface today due to the deliberate and targeted quarrying of 

the Roman foundations. In 2014, all of the town's intramural (and some extramural) areas were 

surveyed using aerial photography, ground-penetrating radar, and magnetometry to analyze the 

site's topography and to map remaining buried structures. The surveys showed a strong agreement 

between the digital surface model derived from the aerial photographs and the geophysical pro-

spection data. However, many structures could only be detected by one method, underlining the 

benefits of a complementary archaeological prospection approach using multiple methods. This ar-

ticle presents the results of the extensive surveys and their comprehensive integrative interpreta-

tion, discussing Bassianae's ground plan and urban infrastructure. Starting with an overview of this 

Roman town's research history, we present the details of the triple prospection approach, followed 

by the processing, integrative analysis, and interpretation of the acquired data sets. Finally, this 

newly gained information is contrasted with a plan of Roman Bassianae compiled in 1935. 

Keywords: Roman town; Bassianae; GPR; magnetometry; image-based modeling; UAS; archaeolog-

ical prospection; Serbia 
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1. Introduction 

1.1. Bassianae´s History 

Roman Bassianae or Bassiana (Serbian: Basijana/Басијана) is located in the Vojvodina 

province of present-day Serbia, in the eastern part of the Syrmia region near the village of 

Donji Petrovci, some 15 km east of the modern town of Ruma (Figure 1). The site is aban-

doned today but was once a flourishing Roman settlement, well-positioned along the road 

between the larger towns of Sirmium and Singidunum in the hinterland of the Danube li-

mes. Thanks to this favorable geographic location, the settlement gradually developed 

until Emperor Hadrian (reign: AD 117–138) granted Bassianae its municipal status in the 

2nd century AD [1]. Although it remains unclear to which extent the Marcomannic Wars 

(AD 167–180) affected Bassianae and its region, the plentiful epigraphic sources do shed 

some light on the town’s later history. From the reign of Emperor Caracalla (reign: AD 

211–217), Bassianae became referred to as Colonia and was home to numerous soldiers and 

veterans [1,2]. The town also remained largely unaffected by the late 3rd-century crisis in 

the Roman Empire [2,3]. 

 

Figure 1. Location of Bassianae between Singidunum and Sirmium in present-day Serbia. 

Due to its location, Bassianae kept its importance in the following century. However, 

Sarmatian raids in AD 374-375 and the Goths’ movements after AD 378 must have affected 

the town and its territory. This crisis of the Later Roman Empire was characterized by the 

presence of new population groups, mostly of Germanic origin, and the impoverishment 

of the entire Roman province Pannonia Secunda. It is very illustrative that the Notitia Dig-

nitatum (or. XI.46) [4] mentions the transfer of the late antique textile factory of Bassianae 

(Lat. gynaecium Bassianense) to the safety of Salona on the Adriatic coast. Invasions by, and 

fights against, the Ostrogoths and Huns during the 5th century AD would only add more 
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burden to the region's population [2,3]. After the Roman Empire re-establishes control 

over the Bassianae area in AD 510, the town slowly vanishes from the sources. 

1.2. Research History 

In the first half of the 20th century, the Bassianae town area was locally denoted the 

‘mine’, a nickname for which an 1874 newspaper article provides the first explanatory 

clue, as it mentions how the local population has been quarrying this uninhabited site 

(Štrosmajer 1874, as cited in [5]). Eight years later, Bassianae’s unique characteristics would 

disillusion Šime Ljubić from the National Museum in Zagreb. In 1882, Ljubić opened nu-

merous excavation trenches—marked B–O on his plan (Figure 2a)—in areas where the 

apparent topographic features led him to assume the existence of town ramparts and tow-

ers (in Figure 2a indicated as “nasip”, Croatian/Serbian for mound or bank). A total of five 

trenches targeted four assumed towers (B–E in Figure 2) and a location where he believed 

the ramparts to meet (Figure 2F). However, no substantial building traces were found, 

apart from a lead water pipe and a round stone column. Despite unearthing well-pre-

served walls at the eastern rampart (Figure 2O) and smaller wall fragments inside the 

fortification (I, L, M, N in Figure 2), the underwhelming amount of urban remains left 

Ljubić disappointed. He abandoned the site and concluded that Bassianae was merely a 

military camp with earthen ramparts [5]. 

 

Figure 2. Plan from 1883, indicating Ljubić´s excavation trenches (a) which are still visible in the present-day terrain (b). 

Plan: [5] p. 45. Image of b: Esri basemap by Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aer-

ogrid, IGN, IGP, and the GIS User Community. 

This interpretation was refuted by Miodrag Grbić, who led excavations at Bassianae 

in 1935 organized by the Historical Society of Novi Sad. Initially, Grbić unearthed the 

southern part of a three-nave basilica in the northern part of the town (Figure 3a1), along 

with three buildings in the central area at the intersection between the Cardo and the Decu-

manus streets (Figure 3a2). Whereas the severely damaged basilica only revealed a partial 
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floor mosaic, more unaffected structures such as a hypocaust system, floral mosaic pave-

ment, mortar floors, and a brick-built canal were attested in the central excavation area. 

In contrast, additional trenches dug in the southern and northwestern parts of the town 

later that year failed to reveal substantial wall remains [6]. These results convinced Grbić 

that the ramparts and walls had been quarried away for centuries by the local population 

searching for building material. Because this part of the Syrmian lowlands is poor in stone, 

Bassianae must have been considered a convenient source for ‘mining’ construction mate-

rial, which explains their absence in most excavation trenches [7]. 

 

Figure 3. Aerial photograph of the site, taken in 1935 (a), marking the excavated areas of the basilica (1) and the three 

central buildings (2). Respective archaeological interpretative map from Richard Staudinger (b). Photo and plan are georef-

erenced versions of the illustrations in [8] (pp. 27 and 29). 

Since Bassianae was never built over after its abandonment (or at least not with stone 

structures), and thanks to the characteristic topographic traces left by quarrying, the lay-

out of the town’s main elements is remarkably well observable from the air (see Figure 2b, 

Figure 3a, and Figure 4). The earliest known airborne records of Bassianae date to Septem-

ber 13th 1935 (Figure 3a), when the Royal Yugoslav Air Force conducted an aerial survey 

above the site as part of the 1935 excavation campaign. Based on these airphotos and a 

geodetic plan of the Bassianae area (also made in 1935 to support the excavations [8]), the 

Belgrade-based German architect Richard Staudinger drew a detailed situation plan of the 

town (Figure 3b), in small parts confirmed by the 1935 excavations [8]. 

Although O.G.S. Crawford interpreted structures observed in aerial photographs 

from the 1920s onwards [9], and Dache Reeves implies that such interpretative maps were 

already more common at the time of Grbić´s campaign [10], this example of airphoto in-

terpretation can still be considered an innovative methodological approach for that time 

[11], especially in combination with the geodetic survey. Grbić eventually also published 

his research on Bassianae in the journal Antiquity [7], to which the editor, Crawford him-

self, although wishing for better aerial photographs, expressed his fascination with the 

site [12,13]. 
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Figure 4. An oblique aerial photograph portraying the central and southern zone of the site’s west-

ern part, acquired in 2014 with an unmanned quadcopter. The trenches following the former walls 

are still visible in the microtopography. The global contrast of the foreground has been slightly in-

creased to enhance the visibility of the topographic undulations. Photo: Geert Verhoeven. 

1.3. New Goals and Research Questions 

To evaluate the accuracy of this early interpretative mapping and assess the added 

archaeological insight that different non-destructive prospection methods can bring to a 

site largely devoid of substantial material remains, the Vienna-based Ludwig Boltzmann 

Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) surveyed 

Bassianae in June 2014 in collaboration with the Institute of Archaeology in Belgrade, the 

Römisch-Germanisches Zentralmuseum Archaeological Research Institute (RGZM) in 

Mainz as well as the Austrian Academy of Sciences (OeAW-IKAnt) in Vienna. In line with 

the research competence of the LBI ArchPro, a three-layered prospection approach with 

terrestrial and airborne sensors was established: geophysical prospection with motorized 

Ground-Penetrating Radar (GPR) and Fluxgate magnetometer gradiometer systems, com-

bined with aerial photography sorties executed by an unmanned aerial system (UAS). 

This airborne imagery was intended for processing inside an image-based three-dimen-

sional (3D) modeling pipeline to generate an orthophoto and a Digital Surface Model 

(DSM) representing the site’s topography. The following parts of the article present the 

data acquisition and processing stages (Part 2), detail the archaeological interpretation of 

the survey results (Part 3), and discuss the methodological and archaeological insights 

when compared to the research status from almost a century ago (Part 4). 

2. Materials and Methods 

In recent years, a growing number of Roman towns and military camps have been 

investigated with mechanically non-destructive methods to large extents [14–31]. Among 

those, Carnuntum [15,18,21,25,32,33], Falerii Novi [14,30,34], and Portus [16,20,27,28] can be 

mentioned as three prominent examples. Although many of these Roman towns were re-

searched through a combined terrestrial geophysics-airborne imaging approach, the Bas-

sianae area is unique in its uniformness and emptiness. No Roman remains are directly 

visible on its uninhabited grassland surface situated on an alluvial fan. However, most of 
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their removal can be decoded from the undulating surface, below which any archaeolog-

ical remains are buried. Apart from the cemetery, the entire town area is construction-free 

and accessible to any form of archaeological prospection. In this case, motorized GPR sur-

veys and magnetometer measurements along a UAS-based photographic survey took 

place between June 25th and June 30th, 2014. Much of the high vegetation present in large 

parts of the site was removed to enable the surveys. Because most of this clearance took 

place simultaneously to the fieldwork, the aerial images' processing was seriously ham-

pered (see Section 2.2.2). 

2.1. Geophysical Prospection 

2.1.1. Data Acquisition 

The high-resolution near-surface geophysical archaeological prospection surveys in-

volved the deployment of motorized GPR array systems as well as motorized multi-chan-

nel magnetic gradiometer carts. The GPR surveys were conducted with a six-channel Sen-

sors and Software SPIDAR antenna array mounted in a custom-built trailer towed by an 

All-Terrain Vehicle (ATV). Six 500 MHz PulseEkko PRO GPR antenna pairs were ar-

ranged next to each other with 25 cm crossline spacing, sampling GPR traces with a con-

stant measurement frequency of 50 Hz. This resulted in an inline trace spacing of approx-

imately 5 cm. The recording time window was set to 60 ns, yielding a maximum penetra-

tion depth of circa three metres at an assumed subsurface GPR pulse velocity of 10 cm/ns. 

A standardized GPR pulse velocity of 10 cm/ns has been assumed, corresponding to a 

dielectric constant or relative dielectric permittivity (RDP) of 10. While dry sands would 

show RDPs from 3 to 5 with velocities of 13 cm/ns to 17 cm/ns, increased silt or clay con-

tent reduces the velocity to values of 5 cm/ns to 13 cm/ns with corresponding RDPs rang-

ing from 40 to 5. A reduced pulse penetration depth was encountered, indicating in-

creased contents of silt and clay in the soil of the alluvial fan. Data acquisition was realized 

with the application SPIVIEW from Sensors and Software. For efficient navigation, the in-

house developed application LoggerVis was used. 

The magnetometer system consisted of eight Förster FEREX CON650 gradiometer 

probes mounted with 25 cm crossline spacing on a six-metre long, bespoke, non-magnetic 

cart, providing sufficient distance to the metal parts and engine block of the towing ATV 

to prevent measurement induced disturbances in the prospection data as much as possi-

ble. Data acquisition was realized with a ten-channel Eastern Atlas EAL analogue/digital 

converter and the software LoggerVis, which functioned as data logger as well as naviga-

tion and guidance system. LoggerVis provided the possibility for real-time data visuali-

sation and thus instantaneous data quality control in the field. A constant sampling fre-

quency of 50 Hz resulted in an inline measurement spacing of 15 cm or less, depending 

on the driving speed. 

To guarantee appropriate data positioning, three temporary fixed points were estab-

lished by a local land surveyor in the WGS 84 / UTM zone 34N (EPSG 32634) coordinate 

reference system. Every day, a JAVAD TRIUMPH-1 Global Navigation Satellite System 

(GNSS) base system was positioned above any of these fixed points, enabling Real-Time 

Kinematic (RTK) communication of positional data with TRIUMPH-1 rovers mounted on 

the GPR and magnetometer prospection systems. In field conditions without disturbances 

caused by trees or high-rise buildings, a planimetric positioning accuracy of 2 cm is as-

sumed at a 5 Hz position data rate. 

Due to technical issues with one of the ATVs, some GPR and some magnetometry 

measurements outside of the former town walls had to be conducted with a van as towing 

vehicle (Figures 5 and 6). This resulted in a somewhat reduced, yet sufficient data quality 

in case of the magnetic prospection data due to the increased magnetic influence of the 

car. The survey campaign's total coverage amounted to roughly 19.8 ha of GPR measure-

ments and circa 27.4 ha of magnetometry. 
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Figure 5. Aerial photograph of the 6-channel SPIDAR GPR system (center) and the magnetometer 

system (bottom) with their corresponding towing vehicles on site, photographed from the UAS. 

Photo: Geert Verhoeven. 

2.1.2. Data Processing 

The geophysical prospection data were processed with the specialist software solu-

tions ApMag and ApRadar developed over the past ten years by the ZAMG and the LBI 

ArchPro. Since the Windows-based LoggerVis data acquisition software [35] is not real-

time capable regarding the exact simultaneous sampling of the two ports on which the 

magnetic and position data streams arrive, a pulse-per-second marker is fed into the mag-

netic data stream from the RTK-GNSS rover. This exact time stamping enables to merge 

both data streams during data processing for exact data positioning.  

In case of the magnetic prospection data, the individual sensor readings were first 

calibrated to a zero level and despiked then filtered to remove the directional effect of the 

tow vehicle and finally levelled by subtracting a running mean computed along data 

stretches of 40 m length [36]. The resulting data images were generated as georeferenced 

254-values greyscale TIFFs ranging between white for the lowest and black for the highest 

data values. Images were produced with different dynamic ranges (−2 nT, +3 nT; −4 nT, 

+6 nT; −6 nT, +6 nT; −8 nT, +12 nT; −16 nT, +24 nT; −32 nT, +64 nT) to improve visualization 

and analysis of the magnetic anomalies. Shapefiles for sensor positions and coverage were 

generated automatically. 
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Figure 6. UAS-based aerial photograph showing the magnetometer prospection system towed by 

the van, superimposed with magnetic prospection data. The driven survey lines visible in the field 

as vehicle tracks match with the georeferenced magnetic data swaths. Due to the influence of the 

tow vehicle, some striping can be seen in the raw data, but the magnetic anomalies of archaeological 

interest are nevertheless clearly recognizable and enhanced after the application of respective filter-

ing. Photo: Geert Verhoeven. 

In case of the time-triggered GPR data, the following processing steps were applied: 

position assignment using a constant time delay to account for the inherent latency of the 

system, data alignment, adaptive time-zero correction, frequency band-pass filtering, av-

erage trace removal calculated along 20 m windows, weak stripe removal, inline data bin-

ning, grid mapping and interpolation, trace interpolation along one metre windows, and 

gain correction. A 2D migration with a velocity model decreasing from 12 cm/ns at the 

surface to 10 cm/ns at 40 ns was applied to focus the scattered energy as well as a Hilbert 

transformation for the GPR trace envelope calculation. As output, georeferenced GPR 

depth layer images of 5, 10, 20, 30, 40, and 50 cm thickness were generated from the 2.5 m 

deep interpolated 3D data volume for subsequent analysis in a GIS. GPR depth-slice ani-

mations in the form of GIFs were prepared in addition to the possibility to animate the 

data images in a GIS using the custom developed ArcGIS toolbox ArchaeoAnalyst, which 

as well permits the interactive visualization of variable depth ranges (see [37]). 

The GPR signal penetration depth was limited at Bassianae. This may be due to a high 

electrical conductivity of the soil possibly caused by a high clay content and probably 

amplified in many cases by a reduced ground coupling of the antenna array due to the 

strong topographic variations caused by the quarrying trenches. However, where possi-

ble, the antennae were towed directly on the surface to achieve optimal signal penetration. 

2.2. Airborne Imaging 

2.2.1. Data Acquisition 

The UAS survey above Bassianae took place from Friday 27th to Sunday 29th of June 

2014. Over three days, aerial imagery was acquired during nine UAS sorties (Table 1). All 

flights featured the md4-1000, a high-end electrical quad(ro)copter from microdrones 
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GmbH (Figure 7). The multi-copter was equipped with a Sony NEX-5N, a 16.1-megapixel 

APS-C format mirrorless camera, with a Sigma 30 mm f/2.8 EX DN lens attached. 

 

Figure 7. The md4-1000 quadcopter with a Sony NEX-5N mounted in a small carbon fibre camera 

mount on site. Photo: Geert Verhoeven. 

Because the aerial imagery was intended for image-based modeling (IBM) using pho-

togrammetric and computer vision-based approaches [38], the acquired photographs had 

to facilitate the Structure from Motion (SfM) and Multi-View Stereo (MVS) algorithms that 

are at the core of such hybrid 3D modeling pipelines. Second, the airborne data should 

enable the creation of a raster DSM with a 5 cm cell size (and corresponding orthophoto). 

This means that image acquisition followed specific rules to ensure that both goals could 

be met. 

Before every flight, the Sigma lens was pre-focused on infinity and its focus ring fixed 

with cellophane tape. In that way, the camera's interior orientation was assumed to remain 

relatively stable throughout every flight. The camera's shutter was released every two 

seconds and images were acquired with an f/5.6 aperture in aperture-priority mode. The 

ISO value and shutter speed were allowed to vary with the illumination conditions, but 

their respective values neither surpassed ISO 400 nor dropped below 1/1000 s. All photo-

graphs were saved in Sony’s Alpha RAW image file format *.ARW. 

A partly broken UAS ground station necessitated manual operation of the md4-1000. 

Luckily, its planimetric position could still be monitored in real-time on-screen, and the 

entire survey area featured an unobstructed line of sight. The copter was steered in 

straight and long parallel lines over the site at a predefined altitude of about 150 m. Given 

the 30 mm lens and 4.8 µm-detector pitch of the Sony NEX-5N, this altitude yields images 

with a 2.4 cm Ground-Sampling Distance (GSD), considered suitable for extracting 3D 

topographic details up to 5 cm (and enabling a DSM raster cell size of 2.4 cm, which is 

twice as small as needed). The copter continuously moved at about 5 m/s to maximise the 

area covered by each flight and avoid platform vibrations originating from slowing down 

and hovering. The slowest shutter speed of 1/1000 s was still fast enough to avoid pixel 

smear exceeding half a GSD (at 5 m/s, pixel smear is only 1 µm in image space or 5 mm in 

object space). A handful of long cross lines were flown at a lower altitude in addition to 

the parallel flights. Both sets of nadir images were complemented by over one hundred 

oblique images, obtained in three panorama-style acquisitions at different spots of the 

survey area. These deliberate changes in image scale (intra- and inter-image) and sensor 

rotation create a more robust camera network geometry and improve the camera self-cal-

ibration accuracy during the SfM stage [39]. 

Due to the faulty ground station, the operational altitude changed from flight to flight 

(see Table 1). Such varying flight altitudes yield photographs with different GSDs, which 

is problematic for an image-based modeling pipeline that aims to extract a minimum 

amount of pre-defined spatial detail. However, the more severe implication for extracting 

complete and accurate 3D geometry was the violation of the foreseen 65% lateral image 
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overlap. Three flights were unintentionally executed at altitudes much lower than the an-

ticipated 150 m, which led to smaller image footprints and a resulting drop in image over-

lap to only 55 % in a few instances. For a scene that primarily consists of monotonic grass 

patches (some of which dynamically changed—see later), this is a problematic situation. 

Fortunately, the other flights' higher-than-anticipated flying altitudes largely mitigated 

this lack of overlap at the expense of a lower and variable GSD. 

Table 1. Overview of some important parameters of all nine UAS sorties. 

Parameter Flight 1 Flight 2 Flight 3 Flight 4 … 

Date (day/month in 2014) 27/06 27/06 27/06 27/06 … 

Starting time 14:15 14:46 15:33 16:04 … 

Ending time 14:38 15:11 15:53 16:21 … 

Flight duration (minutes) 23 25 20 17 … 

Useful IBM images 604 679 451 468 … 

Average object distance (m) 195 164 260 207 … 

Average image GSD (cm) 3.1 2.6 4.1 3.3 … 

Footprint (width (m) × height (m)) 152 × 101 128 × 85 203 × 135 161 × 108 … 

 Flight 5 Flight 6 Flight 7 Flight 8 Flight 9 

 28/06 28/06 28/06 29/06 29/06 

 09:24 15:54 16:27 11:44 12:16 

 09:50 16:20 16:47 12:12 12:36 

 26 26 20 28 20 

 685 671 228 877 432 

 112 171 37 127 144 

 1.8 2.7 0.6 2 2.3 

 87 × 58 133 × 89 29 × 19 99 × 66 112 × 75 

Finally, white circular cardboard plates with a diameter of 25 cm were distributed 

over the survey area. Their center coordinates were measured with the JAVAD TRI-

UMPH-1 rover, resulting in a collection of 96 3D point coordinates that could be used as 

ground control points (GCPs) to constrain the SfM bundle adjustment. This GNSS receiver 

had to be held close to the ground by the surveyor because only a short mounting pole 

was available (due to personal oversight), which decreased the hope of obtaining highly 

accurate coordinates. Because the UAS flights took place during the geophysical surveys, 

it was impossible to position and measure all targets in one run: the GPR instruments 

would ruin the targets, while the iron nails would interfere with the magnetic sensors. 

Positioning and topographically surveying these targets took, therefore, place during 

three consecutive days. Some targets were surveyed twice in this process, which meant 

that one could compare both coordinate triples. The resulting mean coordinate difference 

of 2.7 cm in planimetry (with a maximum of 6.5 cm) and 6.9 cm in elevation (with a 13.3 

cm maximum) indicate that the accuracy of some measurements had indeed suffered from 

the effects mentioned above. 

2.2.2. Data Processing 

The sub-optimal GNSS survey and image acquisition geometry brought about a very 

time-consuming processing phase. On top of that, the scene itself also changed during 

image acquisition. Upon arrival, long vegetation was still partly covering the Bassianae 

survey area. Because geophysical prospection occurs ideally on fields void of long grass 

and bushes, the latter were cut (and sometimes also removed) during the survey days, 

thereby creating a few drastic changes across certain parts of the site (see Figure 8a,b). 

Towing the geophysical instruments also patterned the grass (Figure 8c,d). However, 

these scenery changes posed only a minor issue during the data processing. In the end, 
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the whole IBM processing pipeline consisted of numerous tests and many workflow iter-

ations. Since this paper cannot solely focus on processing these data, the following para-

graphs summarise the DSM's creation, while [40] provides more details. 

 

Figure 8. During Bassianae's UAS survey, the scene was anything but spatially invariant. Images (a,b) cover the same scene, 

but they look quite different, which illustrates some of the severe surface changes that occurred due to vegetation clearing. 

These changes are also observable on the left sides of insets (c,d). The grass patterns resulting from the geophysical survey 

were less obtrusive (compare the right sides of (c,d)). 

After the conversion of the *.ARW files into 8-bit JPEGs using Adobe Lightroom 5, 

blurry and documentation-style images were deleted to yield a final set of circa 5100 pho-

tographs. All image pixels belonging to persons, cows, cars, and geophysical instrumen-

tation were masked in Agisoft Metashape Professional version 1.7.1. Image areas depict-

ing vegetation changes were left unmasked as masking typically prevented the estimation 

of these images’ exterior orientation. Photos were grouped to compute flight-specific in-

terior camera orientations. After an outlier detection based on a leave-one-out cross-vali-

dation (LOOCV) [41], the coordinates of 93 out of 96 reference points were withheld and 

used as GCP. The center of these 93 targets was indicated in every photograph that de-

picted them, resulting in approximately 3900 Metashape markers. Upon running the SfM 

algorithm, Metashape was instructed to use maximally 40 000 interest and 4 000 tie points 

per image; the camera self-calibration solved for three radial (k1, k2, k3) and two decenter-

ing lens distortion parameters (p1, p2). The coordinates of the 93 GCPs were determined to 

be 2 cm accurate, whereas indicating these points in the images was quantified with a 3-

pixel accuracy. Many tests revealed that these two values provided the best weighting of 
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the control data within the SfM's bundle adjustment. They resulted in the lowest posi-

tional inaccuracy (see later) of a DSM with minimal surface artefacts (see also later). 

With the interior and exterior camera orientations from the SfM step as input, the 

MVS step can yield a dense and continuous 3D surface encoding. To that end, Metashape 

offers two different approaches, both based on the computation of a depth map for each 

input view. However, rather than a 3D surface, the aim was to create a regularly gridded 

2.5D DSM of the Bassianae area. The 2.5D elevation rasters are, together with triangu-

lated/triangular irregular networks or TINs, the prevalent surface representation schemes 

used within GIS environments because most GIS software struggles till this very day with 

large, meshed 3D elevation models [42]. The 2.5D height fields and TINs effectively dis-

card half a geometrical dimension when compared to 3D surface encodings. The associ-

ated information loss notwithstanding, this dimensional reduction makes 2.5D rasters 

suited for the fast execution of specific computational methods (such as relief visualiza-

tions). Besides, such elevation rasters can often satisfactorily approximate any surface that 

lacks quasi-vertical walls, overhangs, and under-cuttings. 

Although Metashape could derive this 2.5D DSM from a dense 3D point cloud or 3D 

mesh, Figure 9 reveals that a depth maps-based approach—available since version 1.6.0 

(build 9617) [43]—offered much cleaner surfaces with fewer artefacts for the Bassianae da-

taset. In agreement with the initial aim, the cell size for this 2.5D DSM was 5 cm, extracted 

using aggressive depth map filtering to maximally remove surface noise resulting from 

changing vegetation. Even though the image set comprised varying GSDs, the final DSM 

looks very convincing, apart from four zones that feature medium surface artifacting (see 

Figure 9 for the region with the most noticeable artefacts). These unsolvable artefacts are 

likely due to erroneous exterior orientation values of the cameras in areas with low image 

overlap. Luckily, these zones are not coincident with important topographic features and 

did, as such, not hamper the interpretive mapping of the DSM. Finally, this DSM was also 

used to compute the site’s orthophotograph with a 5 cm GSD (see Figure 10d). 

 

Figure 9. The 2.5D DSM computed from a meshed dense 3D point cloud (a) and directly from the merged depth maps (b). 

Notice the reduction of surface artefacts in (b). Both DSMs are rendered as hillshade with 55° solar azimuth and a 35° solar 

elevation. 

With all 93 reference points used as GCP, the DSM and orthophoto's positional accu-

racy had to be determined via a LOOCV procedure [44,45]. The mean of all 93 LOOCV 

residuals yielded: X = 2.3 cm, Y= 2.8 cm, Z = 4.2 cm, XYZ = 6.2 cm. However, it is important 

to note that this and similar positional accuracy metrics (such as a common hold-out val-

idation) often fail to account for DSM artefacts such as those depicted in Figure 9. 
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3. Results 

The datasets gathered with the three survey methods are comprehensive and many 

features mapped show a high degree of correlation. However, due to the different char-

acteristics of the respective datasets, as well as the distinct properties of the survey sys-

tems, there are also differences visible in the data (Figure 10). 

 

Figure 10. Archaeological prospection data of the central area at Bassianae. (a) Magnetic data image with greyscale values 

of -6 nT (white) and +6 nT (black); (b) GPR depth-slice from approximately 1.0 to 1.2 m depth; (c) multidirectional hill-

shade of the DSM with 3 x Z exaggeration; (d) orthophotomosaic of all UAS images. In contrast to the 1935 aerial photo 

depicted in Figure 3a, the orthophotograph shown in (d) does not reveal all surface undulations. These are only visible 

from the air through the proxy of shadow marks. However, the 2014 aerial sorties were not solely flown during low-

slanting sunlight conditions (as those of Figure 4) because the DSM offers many ways to visualize these topographic 

differences. 

These variations are partly caused by the difficulties posed by the rugged terrain, 

which prevented ideal ground-coupling of the GPR antenna array and rendered the use 

of the motorized magnetometer system with the large, towed sensor cart, as well as the 

GPR array, very difficult across the deep trenches. More importantly, the differences in 

the datasets concern the fringes of the measured area along the former town walls. This 
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area could not be investigated by geophysical prospection due to the steep slopes and the 

high vegetation. Luckily, the image-based DSM made it possible to investigate this area, 

depicting major parts of the town wall and its towers (Figures 11c and 13). Thus, the com-

bined interpretation (Figures 11d and 17) provides considerably more information than 

that of any individual dataset, clearly demonstrating the advantages of an integrative, 

multi-methodological archaeological prospection approach [46–48]. 

 

Figure 11. Comparison of the archaeological interpretations of the (a) magnetic, (b) GPR, and (c) topographic data sets, 

showing the respective coverage areas shaded in grey. (d) Combined information on wall structures derived from the 

interpretation of all three data sets. 

To enable a quantitative comparison of the detected structures in the area covered by 

all three methods, the cumulative length of all subjectively interpreted walls in the respec-

tive datasets was calculated. In the radar data, walls with a total length of 3537 m were 

detected, in the DSM 4998 m, and in the magnetic data 6010 m. These numbers would 

suggest that magnetometry yielded overall the best results. However, some additional 

aspects should be considered. First, each method revealed (parts of) structures that were 
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not picked up in the other datasets (Figure 11). Second, the individual methods often re-

veal different aspects of the same features (e.g., excavation trenches versus buried wall 

remains). In this way, each dataset contributes to the overall picture of archaeological 

structures that once were present or still are buried, permitting an integrative archaeolog-

ical interpretation. The next paragraphs will detail the interpretation of the three datasets. 

3.1. Digital Surface Model 

A major advantage of the 2.5D raster DSM, apart from providing access to steep or 

heavily overgrown zones, is that it enables the fast computation of visualizations that can 

clearly reveal topographic features. The origin of these features seems rather unambigu-

ous. They primarily correspond to trenches dug to deliberately quarry Roman walls. 

However, these DSM-derived features do not disclose any temporal information, nor their 

creator. In addition, one cannot assume that every trench corresponds to a former Roman 

structure. Although it is very probable that most quarrying took place when the structures 

were (partially) preserved above ground, numerous search trenches and ditches connect-

ing neighbouring walls are to be expected. Despite this uncertainty, the DSM and its nu-

merous visualizations constitute an important basis for the archaeological interpretative 

mapping. However, cross-checking with the geophysical results remained crucial. Inter-

preting the topographic undulations was carried out on local dominance [49], positive 

openness [50,51] and simple local relief model [52] visualizations computed with the Re-

lief Visualization Toolbox [53,54]. To enhance their interpretative power, these three vis-

ualizations were also fused inside Adobe Photoshop (version 22.1.1) with a multidirec-

tional hillshade computed within QGIS 3.14 (e.g., Figure 12a). Avenza's Geographic Im-

ager 6.3 plugin enabled the handling of georeferencing information inside Photoshop. 

 

Figure 12. (a) Detail of a fused DSM visualization: a simple local relief model (circular kernel with 40 cells radius, (−0.15 

m, 0.15 m) clip, blue-yellow-red colour map) merged with a multidirectional hillshade (35° solar elevation, vertical exag-

geration factor of 3) using two iterations of the “hard light” blending mode with varying opacity levels. The contrast of 

both source layers was slightly altered before the initial blending. (b) Corresponding archaeological interpretation. 

Regarding an overall understanding of the town, with its fortifications, road network 

and separate insulae, the DSM-orthophotograph blend should probably be considered the 

most informative source (Figure 13). This fused rendering offers a clear representation of 
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all major building complexes and structures, while simultaneously allowing for the exact 

tracing of the town walls and its towers in areas where no geophysics could be applied. 

Furthermore, in the north of the town in an area with very few other structures, there are 

several parallel and rather shallow banks to be recognized in the terrain (Figure 12 light 

green, Figure 13). These are superimposed by other topographic features, which gives 

some stratigraphical clues about their age, and are oriented to the insulae emerging in the 

town center. Also, they are respected by most other archaeological structures found in the 

geophysical data. Thus, in most of the cases, they were interpreted as the remains of the 

former streets´ embankment, in an area with rather small dwellings, of which there is little 

left. 

 

Figure 13. Visualization of present-day Bassianae using a “hard light” image fusion of the UAS imagery-based orthophoto 

with a relief rendering, the latter being the result of a “hard light” image fusion between a multidirectional hillshade (35° 

solar elevation, vertical exaggeration factor of 3) and local dominance visualization ((min, max) kernel radii = (20, 40) raster 

cells) of the DSM. Opacity levels and global contrast levels were tuned for each intermediary fused result to achieve opti-

mum clarity of the topographic features. 
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3.2. Ground-Penetrating Radar 

The archaeological prospection using GPR measurements faced several challenges at 

Bassianae, which also affected the archaeological interpretation of the data. Because the 

undulating terrain featured some steep slopes within deep and narrow trenches, several 

crucial areas could not be accessed with the GPR antenna array (Figure 14a), whereas 

magnetic measurements could still be conducted. In areas where the width of topographic 

depressions was smaller than the length of the GPR array towed perpendicular to it, it 

was not possible to maintain ground coupling for the antenna array, leading to reduced 

GPR pulse penetration depth and thus decreased data quality. Nevertheless, in many 

cases, the GPR measurements made it possible to determine the exact dimensions, orien-

tation, and internal structure of surveyed buildings (Figure 14). They were also the most 

significant data for a comprehensive interpretation of structures observed in the terrain 

model and the magnetic data. This concerned mainly the depth of the respective struc-

tures, which cannot be estimated at all from the other data sets, as well as their actual 

dimensions, which are better approximated by the radar data [37]. Archaeological struc-

tures primarily appeared in the GPR data as strongly reflective linear features, which were 

typically interpreted as the buried remains of stone walls. In between, numerous more 

extensive and less reflective structures also indicate possible stone floors and road foun-

dations. 

 

Figure 14. (a) Detail of the GPR data as depth-slice of the approximate depth range (0.8, 1.2) m. (b) Corresponding archae-

ological interpretation of all GPR depth-slice images. The label “deposit reflecting” marks observed reflective structures 

that could not be assigned unambiguously yet but were deemed relevant to the general interpretation. 

3.3. Magnetometry 

In areas where all three prospection methods could be applied, magnetometry 

yielded the most archaeologically relevant structures. Throughout, the wall remains show 

as negative magnetic anomalies, which suggests the presence of buried limestone walls 

rather than brick walls (Figure 15a). In contrast to the negatively magnetized walls, many 

assumed internal rooms show a slightly higher positive magnetization than the surround-

ing soil. Partly, this observation coincides with reflective layers visible in the GPR data, 
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which are interpreted as floors, possibly consisting of burned bricks. However, the posi-

tive magnetization could also be caused by infill material of higher magnetization, such 

as roof tiles. 

Throughout the town, particularly in the immediate vicinity of the indicated walls, 

strong accumulations of countless magnetic dipoles can be observed. These could possibly 

be caused by the debris of thermoremanent magnetized material, such as collapsed brick 

walls or roof tiles. In some cases, these accumulations still hint at right-angled structures, 

which is why it must be assumed that the thermoremanent magnetized rubble possibly 

overlays buried architectural wall remains. 

 

Figure 15. (a) Detail of the greyscale magnetic data image with clip-off values at -6 nT (white) and +6 nT (black). (b) 

Corresponding archaeological interpretation of the magnetic prospection data. 

Similar urban structures with negative magnetic walls and possible thermoremanent 

magnetized rubble, both of Roman and other origin, have been observed in magnetic pro-

spection data collected at various other archaeological sites [24,26,31,55]. In some of those 

cases, the interpretation of the prospection data has been well supported by a long re-

search history and numerous excavations, showing substantial material remains which 

caused the observed negative magnetic anomalies [55,56]. In the case of Bassianae, alt-

hough less intensively excavated, there is some comparative evidence available as well, 

among others in the form of mosaic floors, brick aqueducts, and hypocausts [2,6]. Buried 

remains of hypocausts also could explain the presence of strong dipole anomalies caused 

by thermoremanent magnetized elements [57]. The excavation trenches from 1935 are still 

clearly visible in the terrain today (Figure 16). A comparison between the excavation re-

sults and the magnetic data shows a high level of agreement, whereby the area of the 

hypocaust excavated in the east appears as positive anomaly (Figure 16 yellow box), as 

does the structure in the north-eastern corner. However, whether these anomalies are due 

to possible in situ remaining archaeology is difficult to decide, as the second excavated 

hypocaust is not visible in the magnetic data. Josip Brunšmid and Wilhelm Kubitschek 

also reported that the plain was still littered with bricks when they visited the site in 1879, 

while the large limestone blocks had been quarried so that no trace of any wall was left 

[58]. The question of what caused the majority of negative magnetic linear anomalies at 

Bassianae, interpreted as walls, thus remains open. 
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The greatest added value of the magnetic prospection data, however, lies in the de-

tection of numerous smaller buildings in the north-western and south-western parts of 

the town (Figure 11a). Some of which are as well indicated as shallow depressions in the 

DSM, but beyond that, the magnetic dataset is the only one providing more information 

on these zones and structures, significantly broadening our understanding of the town 

structure of Bassianae. 

 

Figure 16. Comparison between the magnetic data (a) and the excavation results from 1935 (b) superimposed on a simple 

local relief model fused with a hillshade. The excavated area is visible in the topography and partly can be recognized in 

the magnetic data (red line). While the excavation has left an imprint on the magnetic data, there still exists some agree-

ment between excavated structures and magnetic anomalies (e.g., yellow box). The magnetic data interpretation shown in 

(a) as dotted lines was done prior to and independently of the comparison with the excavation results. Drawing: [6] (p. 2). 

4. Discussion 

After combining all survey results (Figure 17), it can be concluded that Bassianae was 

built on an elevated landform in the center of an alluvial fan. The intramural town covers 

about 23.2 ha and rises on average 4 m above the surrounding terrain. The integrated 

interpretation of all prospection data resulted in an idealized interpretative map that not 

only considers all results and structures observed in the different survey data, but also 

tries to fill some of the many remaining voids (Figure 18). In this process, all available 

additional information was used. 

While Figure 17 is a mere presentation of all structures observed in the different sur-

vey datasets, with some interpretative preselection and division regarding their possible 

archaeological origin applied, Figure 18 shows a normalized interpretation of how the 

town layout may have looked like. However, the latter map might still contain archaeo-

logical structures from several asynchronous occupation phases and with different levels 

of certainty. Black polygons mark walls interpreted with relative high certainty, light grey 

polygons indicate roads, black and grey hatched polygons primarily mark towers and 

other buildings whose existence is rather certain, but whose dimensions could not be 

clearly determined. Dark grey walls and buildings are, however, typically less supported 

by the survey data and more based on the surrounding data, thereby considering general 

orientations, more subtle topographic features, the expected logical continuation of fea-

tures, and the suspected position of certain buildings. A similar approach was used trying 

to complete the road network with dotted lines. Here, there were usually some indications 

in various data sets, however, those were deemed too vague to draw them more promi-

nently. 
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Figure 17. Interpretative map showing the result of the integrated archaeological interpretation of all three datasets. 

4.1. Fortification 

Bassianae was enclosed by a 1.8 km long wall (Figure 18). It appears, as if an elliptical 

shape with flattened sides in the north and south was intended for the town’s general 

layout, which was only prevented from a more symmetrical shape in the northwest by the 

course of the creek, where the wall runs straight in a south-southwest to north-northeast 

direction. The wall could only be surveyed with GPR over a length of about 65 m in the 

southwest of the town. Derived from these data one can assume an average width of 1.8 

m for the wall. Most of the towers built along the wall, which can still be located with 

some certainty, are separated by 45 to 50 m. Since these regular intervals can be traced 

over a long distance of the fortification, they were also used for determining the likely 

positions of numerous towers in the east of the town, where they could be well integrated 

into the recognizable structures. 
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The towers were more difficult to interpret, since their square or rectangular excava-

tion pits, visible in the DSM, and in three cases as faint square anomalies in the magnetic 

data (Figure 17), did not make their exact size and extent discernible. However, it seems 

that a general distinction can be made between two types of towers: smaller towers along 

the walls, with an approximate size between 6 m × 6 m and 8 m × 8 m, and larger towers 

at corners or other critical points with a probable average size between 10 × 10 m and 12 × 

12 m. Most towers seem to have in common that they protrude outwards from the town 

wall. 

 

Figure 18. Idealized interpretative map of the town with the forum (a), the basilica excavated by Grbić in 1935 (b), two large 

courtyards (c,d), an insula also partly excavated in 1935 (e), suspected tabernae at the east gate (f), possible early christian 

buildings (g,h) that superimpose an older road (i), as well as several smaller individual buildings in the north (j). 
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In the plan from 1935 it is suggested that the eastern part of the town wall was con-

structed almost in north-south direction (Figure 19a), which can neither be comprehended 

by the 2014 survey data nor based on the reproduction of the aerial image from 1935 (Fig-

ure 3a). If this interpretation was not due to observations made on the ground in 1935 that 

have since vanished, this deviation of the wall’s general course might have been drawn 

due to the misinterpretation of other internal structures as possible towers. The latter der-

ivation would also explain why the wall was not drawn along the edge of the plateau by 

Staudinger here [8], like elsewhere, as well as the offset of the wall´s courses between 

north and south of the eastern gate. Thus, a regular convex course of the wall over the 

entire length of the eastern front of the town and following the topography seems more 

likely. 

The exact number and position of the gates are still tainted by uncertainty. The exist-

ence of both western and eastern gate can be assumed with great confidence due to the 

well-documented decumanus maximus. However, as with the eastern front of the fortifica-

tion, the east gate could not be discerned exactly; its hypothetical position and extent was 

thus merely interpreted. Apart from those two gates, several other possible gates in the 

north and south are indicated in the data yet could not be identified with certainty due to 

the equally vague information on the road network in these areas. 

4.2. Road Network and Insulae 

The east–west running decumanus maximus is the main axis of Bassianae (Figure 18) as 

part of the Singidunum-Sirmium route. It directly connects the west gate with the east gate 

with ca. 460 m distance in between. The survey data suggests that this main road has (at 

least in the west) an average width of ca. 13 m, which can be divided into three parallel 

elements. The central area of ca. 5 m width represents a continuous trackway. The two 

areas to the north and south, each approximately 3.5 m to 4 m wide, are interpreted as 

porticoes or sidewalks. Since it is rather difficult to derive exact distances and demarca-

tions from the magnetic and topographic data here, a certain degree of uncertainty must 

be considered. Due to the clearly visible quarrying activities along the main street, the 

exact construction of the porticos can only be described vaguely. The street front seems to 

be defined by individual column foundations placed at a distance of approximately 4 to 5 

m from each other. Only in the area of the forum this may have been changed to form a 

continuous wall. 

In the magnetic data, the central road is characterized by a significantly increased 

magnetization, which could be due to the accumulation of ferromagnetic minerals, under-

lying rubble of thermoremanent magnetized material, or canalization involving brick con-

structions. Along the entire northern side of the main road and on the southern side in the 

east, many building complexes show a rather narrow and uniform room layout. This 

building layout with the first row of rooms facing the main road, would suggest shops 

(tabernae). 

There exists no general right-angled construction grid. One can observe some right-

angled building blocks (insulae) south of the decumanus maximus. North of it, a second 

major street can be seen, whose orientation shows a distinct angle towards the orientation 

of the decumanus maximus. Oddly skewed building alignments appear in the peripheral 

areas, especially in the northeastern part of the town. 

It seems that the buildings in the central area were constructed with stone walls, 

probably large sandstone or limestone blocks. These massive walls were later quarried, 

leaving deep trenches in the topography which can be clearly visualized in the DSM. 

Many of the larger structures probably represent public buildings or outstanding private 

residential complexes. 

According to the available data, the area within the town walls appears to be une-

venly built-up. In contrast to the densely built zones along the main street, the peripheral 

areas in the north and south of the town show wide gaps between buildings (Figure 18). 
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The magnetic data shows a few buildings in these areas that evidently have not been ex-

cavated yet. One can assume that the topography shows the location of the majority of 

those buildings within the town walls that have been constructed as massive stone archi-

tecture. In the center of the town the forum-insula can be located (Figure 18a), with a central 

courtyard and possible forum temple in the west, as well as a probable forum basilica to the 

east. 

Clearly distinguishable from the other insulae are two large building complexes near 

the west gate, each grouped around a large courtyard. The complex north of the main 

street comprises a portico and several apse halls (Figure 18c). Access to this building from 

the street was apparently through a large entrance hall, which continued in a similar form 

on the south side of the street, where it led into a second large courtyard (Figure 18d). On 

the west side of this second courtyard, a rectangular building is indicated in the topogra-

phy in a very prominent position. Another temple could be interpreted here, as already 

suspected by Šime Ljubić [5]. 

Based on the geophysical survey data and the DSM, the building structures southeast 

of this second courtyard and of the forum can only be reconstructed fragmentarily. The 

interpretative plan from 1935 (Figure 19a) already suggests the existence of further court-

yards enclosed by long corridors as well as large rooms, some with apses. It is also notice-

able that most of the structures in this area are no longer strictly east-west oriented. The 

new investigations confirm this impression and add further details. Towards the south, 

the development continues with the same divergent orientation of the buildings. Near the 

town wall, however, very small structures with yet another deviating spatial alignment 

can be seen. 

In the southeast quadrant of the town, at least four more insulae can be expected, 

including one rectangular block of buildings (Figure 18e), directly to the east of the forum. 

More detailed statements on the exact extent and internal structure of these insulae are 

currently not possible. In contrast to the plan from 1935 (Figure 19a), however, the general 

orientation of the building alignments in the southeast seems to have been at right angles 

to the orientation of the forum and its surroundings. Buildings with a slightly different 

orientation could be attributed to later phases. Probably the greatest information gain 

from the 2014 surveys in this area can be seen in a large compound building block (Figure 

18f), south of the main street at the eastern gate and visible in the magnetic data. It shows 

many similarities to the structures north of the main street, as discussed above, and thus 

suggests further likely tabernae. On the opposite side to the north, behind the front of the 

decumanus maximus, the data are less clear, nevertheless it is possible to interpret two fur-

ther insulae. 

In the northeast of the town, besides a disturbance caused by a 1.4 ha large modern 

cemetery, there are several buildings that do not respect the regular insula layout. This 

may be because the majority of the buildings in this area belong to a later phase, which 

certainly is true for two buildings that can be identified as early Christian churches (basil-

icae). The larger of the two (Figure 18b) was partly excavated by Miodrag Grbić in 1935 

(Figure 3a1). 

To the northwest of the two basilicae another prominent building can be seen (Figure 

18g), consisting of an elongated tract, about 67 × 15 m in size and divided into five or six 

pairs of elongated rooms, terminated to the north by a rectangular complex, about 24 m 

wide and at least 27 m long. Probably the length was up to 50 m, but this is impossible to 

ascertain as the eastern part was destroyed by the cemetery. 

Regarding another large building complex located to the west (Figure 18h), with the 

same orientation and probably divided by a road, there are major discrepancies between 

the 1935 plan and the new interpretation map (Figure 19). Apparently, only the southern 

part of this nearly 50 m wide and at least 30 m deep building is visible. These buildings, 

together with the two churches possibly formed an early Christian ensemble. This is also 

supported by the superposition of the latter compound building (Figure 18h) to a shallow 
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ridge (Figure 17), leading to the suspected north gate, and thus interpreted as possible 

older road (Figure 18i). 

Further to the northwest, several smaller individual buildings (Figure 18j) with sizes 

between 5 × 10 m and 12 × 17 m and different orientations can be seen in the magnetic 

prospection data. Most likely, these buildings were not quarried for stones deliberately 

but probably had not been constructed as massively. Neither regarding their use nor their 

temporal classification has it been possible to make a definite statement so far. The same 

applies to the few building remains that still can be made out in the north-west of the 

town, and which must have been heavily disturbed. Many of those structures are oriented 

along the parallel, north-south running ridges (Figure 17), and thus probably the original 

street system (Figure 18). However, this interpretation is as uncertain as the assumption 

that these possible streets further to the west could have been in use over the entire settle-

ment phase of Bassianae, as no superpositions or re-orientations have been identified here. 

4.3. Outer Area 

Before the archaeological prospection presented here, there had been no systematic 

study of the extramural areas. The 2014 survey campaign managed to investigate 5.5 ha 

with magnetometry and 3.2 ha with GPR on the pasture to the northeast of the town wall. 

With the UAS, the entire area of 47.5 ha could be photographed. In the magnetic data and 

the resulting DSM, there are several large pits visible, while the magnetic data possibly 

show remains of a rectangular building. In a Roman town, one would also expect signifi-

cant architectural remains outside the town walls. These include, above all, the cemeteries, 

which usually extended along the arterial roads. It can be assumed that the most promi-

nent sepulchral monuments and burial districts of the 1st–3rd centuries AD are to be lo-

cated along the east-west axis of the main road outside the town walls. The northern road 

leading to the Danube seems to have been of minor importance. 

The areas immediately to the west and south of the town are heavily built over by 

modern roads and buildings, so that no comparable evidence for extramural buildings 

and roads could be found here. During this investigation no clearly recognizable indica-

tions of the westbound road towards Sirmium, as well as the eastbound road towards Sin-

gidunum, could be identified in the data. However, in a recent project on the usefulness of 

Sentinel-2 images for the identification of Roman roads, Zanni and De Rosa [59] were able 

to map the entire extent of this very route section, which seems to agree rather well with 

the general assumption made here based on the accompanying structures, that the road 

to the east left the town heading roughly north-northeast. 

4.4. Round-up 

When considering the urban fabric in its totality, the here presented archaeological 

prospection results confirm much of the older investigations and add important new in-

formation (Figure 19). Despite the lack of building remains in the excavations by Ljubić, 

it is clear that the oval town fortification must have been built out of solid materials. Yet, 

all stone and brick have been quarried down to the bottom of the walls' foundations after 

Bassianae was abandoned. Besides Bassianae, the municipium Scarbantia/Sopron (Hungary) 

is the only known Roman town in Pannonia that featured a similar, mighty oval town for-

tification [60]. However, the Scarbantia towers’ shape is circular or semicircular, whereas 

those of Bassianae are rectangular or square. 

The central areas of the town of Bassianae stand out remarkably well: especially the 

central forum should be counted among the most important new discoveries on ancient 

urbanism in Pannonia. Although its small size and three-part ground plan are not unusual 

in the Roman world [61–63], and also the Roman town of Altinum near Venice shows some 

resemblances in its layout and forum [64], in Pannonia only the ground plan of the Carnun-

tum forum has been completely recorded so far [15,32,33], and like Bassianae, that forum 

was also investigated with modern archaeological prospection methods. Other town cen-
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ters, such as in Aquincum/Budapest [65] or Scarbantia/Sopron [66], could only be uncov-

ered in parts by excavations. Detailed interpretation of all existing and new data high-

lighted that the main urban Roman structure of Bassianae was preserved until late antiq-

uity. Only in the peripheral areas of the walled town, there have been more significant 

changes, which are expressed in deviating building alignments. This includes, especially 

in the north-eastern part of the town, an early Christian ensemble consisting of at least 

one three-naved church with adjacent buildings. Bassianae manifests, therefore, a devel-

opment that was absent in this form in northern Pannonia due to the political changes. The 

textile factory in Bassianae mentioned in the Notitia dignitatum has not been located so far. 

This is primarily because we have no detailed information on the layout of these large-

scale workshops (fabricae) in late antiquity. 

 

Figure 19. Comparison between the interpretative plan from 1935 (a) and the newly generated interpretation map (b). 

Plan: georeferenced version of the illustration in [8] (p. 29). 

5. Conclusions 

At Bassianae in present-day Serbia, a state-of-the-art approach to archaeological pro-

spection involving optical remote sensing as well as high-resolution near-surface geo-

physical methods (magnetometry and GPR) was applied to noninvasively map buried (or 

removed) archaeological remains with the goal to further the archaeological status quo 

which was based on excavation results and aerial photographs from the late 19th and early 

20th century. While the UAS-based aerial photographs led to the creation of a very in-

sightful digital surface model, the geophysical surveys were seriously hampered by the 

in parts very uneven topography with deep trenches. Lack of radar antenna ground cou-

pling and an apparently high electrical conductivity of the soil limited the signal penetra-

tion depth of the GPR pulse in many parts of the site. Likewise, the magnetometry survey 

was affected by these rough surface conditions. In some cases, it is difficult to differentiate 

the extent to which the observed GPR and magnetic anomalies are caused by surface un-

dulations or archaeological remains buried in the subsurface. Nevertheless, given the 

unique archaeological nature of this site and despite the challenging survey conditions, 



Remote Sens. 2021, 13, 2384 26 of 29 
 

 

an updated and more complete map of the small, late antique town of Bassianae could be 

derived from the 2014 prospection data, thereby illustrating the benefit of an archaeolog-

ical prospection approach integrating complementary survey methods. 
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