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Abstract: Rapid, cost-effective, and environmentally friendly analysis of key soil fertility attributes
requires an ideal combination of sensors. The individual and combined performance of visible and
near infrared (VNIR) diffuse reflectance spectroscopy, X-ray fluorescence spectroscopy (XRF), and
laser-induced breakdown spectroscopy (LIBS) was assessed for predicting clay, organic matter (OM),
cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients in tropical
soils. A set of 102 samples, collected from two agricultural fields, with broad ranges of fertility
attributes were selected. Two contrasting data fusion approaches have been applied for modeling: (i)
merging spectral data of different sensors followed by partial least squares regression (PLS), known
as fusion before prediction; and (ii) applying the Granger and Ramanathan (GR) averaging approach,
known as fusion after prediction. Results showed VNIR as individual technique to be the best for the
prediction of clay and OM content (2.61 ≤ residual prediction deviation (RPD) ≤ 3.37), while the
chemical attributes CEC, V, ex-P, ex-K, ex-Ca, and ex-Mg were better predicted (1.82 ≤ RPD ≤ 4.82)
by elemental analysis techniques (i.e., XRF and LIBS). Only pH cannot be predicted regardless the
technique. The attributes OM, V, and ex-P were best predicted using single-sensor approaches, while
the attributes clay, CEC, pH, ex-K, ex-Ca, and ex-Mg were overall best predicted using multi-sensor
approaches. Regarding the performance of the multi-sensor approaches, ex-K, ex-Ca, and ex-Mg,
were best predicted (RPD of 4.98, 5.30, and 4.11 for ex-K, ex-Ca and ex-Mg, respectively) using
two-sensor fusion approach (VNIR + XRF for ex-K and XRF + LIBS for ex-Ca and ex-Mg), while clay,
CEC and pH were best predicted (RPD of 4.02, 2.63, and 1.32 for clay, CEC, and pH, respectively)
with the three-sensor fusion approach (VNIR + XRF + LIBS). Therefore, the best combination of
sensors for predicting key fertility attributes proved to be attribute-specific, which is a drawback of
the data fusion approach. The present work is pioneering in highlighting benefits and limitations of
the in tandem application of VNIR, XRF, and LIBS spectroscopies for fertility analysis in tropical soils.

Keywords: proximal soil sensing; data fusion; green chemistry; hybrid laboratory; soil testing

1. Introduction

Spectro-analytical techniques that allow direct analysis of samples are promising
for environmentally friendly soil fertility characterization [1]. Integrating these sensing

Agronomy 2021, 11, 1028. https://doi.org/10.3390/agronomy11061028 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-2097-0536
https://orcid.org/0000-0001-7250-3780
https://orcid.org/0000-0001-6108-7689
https://orcid.org/0000-0002-8242-8435
https://orcid.org/0000-0003-0875-3261
https://orcid.org/0000-0002-0354-0067
https://www.mdpi.com/article/10.3390/agronomy11061028?type=check_update&version=1
https://doi.org/10.3390/agronomy11061028
https://doi.org/10.3390/agronomy11061028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11061028
https://www.mdpi.com/journal/agronomy


Agronomy 2021, 11, 1028 2 of 17

techniques with laboratory analytical methods in hybrid laboratories [2] can modernize the
traditional methods for soil analysis [3] that will enable a new paradigm in soil management.
The maturation of direct analysis techniques—i.e., those requiring minimal or no sample
preparation—would also enable more accurate mapping of agricultural fields by means
of in situ or mobile laboratory analysis [4]. Proximal soil sensing technologies are also
promising for precision agriculture [5] and pedometrics [6] approaches.

For optimal fertilizer management, spatio-temporal information of key soil fertility
attributes as clay, organic matter (OM), cation exchange capacity (CEC), pH, base satu-
ration (V), and extractable (ex-) nutrients is required [4]. Although studies using single
sensing techniques have demonstrated the potential to assess some of the above-mentioned
attributes [7], it is unlikely that a single sensor can completely characterize the soil fertility
to a sufficient degree of accuracy [5,8]. Each sensor presents a perspective regarding the
possibilities of predicting soil attributes, which is related with the fundamentals of each
technique and its operation mode. Thus, multi-sensor approaches allow the integration of
information related to distinct soil properties, yielding more comprehensive and accurate
characterizations of key soil fertility attributes [9–11].

Visible and near infrared diffuse reflectance spectroscopy (VNIR), X-ray fluorescence
spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS) are multi-source
techniques compatible with direct analysis of soil samples. The visible part of VNIR spectra
is sensitive to valence electron excitations of some atoms and functional groups, while
the near infrared part responds to non-fundamental vibrations of specific molecules [12].
In soil analysis, the spectral features present in the VNIR region are strictly related to
mineralogical and organic components [13]. In turn, elemental analysis techniques, as
XRF and LIBS, provide the characterization of the elemental constitution of a wide variety
of chemical elements present in soil samples [14]. XRF and LIBS are also considered
complementary [14]. For example, elements with atomic number (Z) lower than 12 are
hardly detected by XRF technique; however, elements such C (Z = 6) and Na (Z = 11) can
be detected by LIBS. Hence, this study hypothesizes that the combination of data provided
by VNIR sensors with those from elemental analysis sensors—i.e., XRF and LIBS—might
provide complete characterization of key soil fertility attributes [8,15].

Although VNIR, XRF, and LIBS techniques have been evaluated individually for
predicting fertility attributes [16–21], the combination of these techniques is still at its early
stages of development. Recent studies have evaluated different data fusion approaches for
combining VNIR and XRF data for predicting fertility attributes [22–24]. To the best of our
knowledge, only Xu et al. [11] combined VNIR, XRF, and LIBS sensors for predicting soil
fertility attributes (OM, pH, ex-P, ex-K, ex-N, and total N). Although these studies show the
synergy among these techniques, they do not make a comprehensive evaluation of all the
key soil fertility attributes. Moreover, the combination of these three sensors have never
been evaluated for the analysis of key fertility attributed in tropical soils.

Therefore, the present study aimed at assessing the performance of the individual and
combined use of VNIR, XRF, and LIBS sensors for predicting key soil fertility attributes in
tropical soils. Two contrasting approaches of data fusion modeling has been applied: (i) a
front-end approach that combines the raw data of each sensor, followed by partial least
squares (PLS); and (ii) a back-end approach, that applies an adapted approach from the
Granger and Ramanathan (GR) averaging method. While the former method can be called
fusion before prediction, the latter can be designated as fusion after prediction.

2. Materials and Methods
2.1. Soil Samples and Reference Analysis

A total of 102 samples were selected from the soil sample bank of the Precision
Agriculture Laboratory (LAP) of the University of São Paulo (USP). These samples were
selected because their chemical analyses conducted prior to this study yielded broad ranges
of variation in the studied soil fertility attributes. These samples were from two agricultural
fields with soils characterized as Lixisol and Ferralsol [25], which are common soil types
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found in Brazil’s tropical areas [26]. The coordinates of the Lixisol field and Ferrasol field
are 22◦41′57” S and 47◦38′33” W and 14◦06′05” S and 57◦45′58” W, respectively. The
samples were collected from 0–20 cm depth, and stored after air-drying for 48 h and sieving
(≤2 mm). The samples were again subjected to laboratory analyses, which provided the
results of the reference data (y-variables) that were used to build the predictive models
using the different spectral datasets. The contents of clay, OM, CEC, pH, V, ex-P, ex-K,
ex-Ca, and ex-Mg were determined following the methods described by Van Raij et al. [27],
in which, extractable nutrients were determined using ion exchange resin extraction; OM
content by oxidation with potassium dichromate solution, pH by calcium chloride solution,
and clay by using the Bouyoucos hydrometer method. The CEC was calculated by the sum
of the soil potential acidity determined via buffer solution (SMP) plus the sum of bases.
The V was calculated by the ratio between the sum of bases and CEC. Interrelationships
between different soil attributes were calculated using Pearson correlation matrix.

2.2. Sample Preparation

The data acquisition with XRF and VNIR sensors was performed on the dry and
sieved samples. For the XRF measurements, about ten grams of each loose soil sample was
placed in a polyethylene cup of 31-mm in diameter (Chemplex Industries Inc., Palm City,
FL, USA), whose bottom was sealed with a 4-µm thick polypropylene film (SPEX CertiPrep
Inc., Metuchen, NJ, USA). For the LIBS analysis, approximately eight grams of each soil
sample was mixed (10% w w−1) with a binder material (microcrystalline cellulose, Merck,
Darmstadt, Germany), grounded, and homogenized using a planetary ball mill (PM 200
mill, Retsch, Haan, Germany) for 20 min before they were finally pelletized.

2.3. VNIR Measurements and Spectra Pre-Processing

The spectrometer of Veris MSP3 (Veris Technologies, Salina, Kansas, USA) was used in
benchtop mode to acquire the VNIR spectra. This system uses a tungsten halogen lamp as
the energy source and two detection systems, a CCD array (USB4000, Ocean optics, Largo,
FL, USA) and an InGaAs photodiode-array (C9914GB, Hamamatsu Photonics, Hamamatsu,
Japan), to register spectra from 343 to 2222 nm, with ±5 nm of spectral resolution. The
same spectrometer used in this study was described elsewhere by Knadel et al. [28] and
Debaene et al. [29]. As a quality control, the instrument automatically checks its spectrum
intensity using four factory reference materials during its initialization. The sensor was
self-calibrated, by making a dark and white reference measurements, before each spectra
acquisition. For laboratory scanning, the samples were placed in a sample holder that
prevents ambient light. Each sample was scanned in triplicate, by repositioning the sample
after each reading to account for the micro heterogeneity of the sample [30]. Before the
spectra pre-processing steps, the replicates were averaged.

The raw spectra were first reduced from 343–2222 nm to 437–2149 nm range due to
noise at the spectrum edges. Thereafter, the link between the two detectors, an artifact
at 1040 nm, was corrected following the method proposed by Mouazen et al. [31]. These
spectra were then pre-processed following the successive order: standard normal variate
(SNV) > maximum normalization > first derivative with Savitzky–Golay > smoothing
with Savitzky–Golay. These four pre-processing algorithms are frequently adopted in the
literature. The SNV is a scattering correction method that is applied to soil VNIR spectra to
remove the multiplicative interferences of particle size [32]. The maximum normalization
was carried out to get all spectral data to approximately the same scale [33], while the first
derivative was applied to improve the signal-to-noise ratio by enhancing weak spectral
features [34]. The smoothing approach was used to remove noise and improve the signal-
to-noise ratio [35,36] further. All data pre-processing steps were performed using the
Unscrambler® version 10.5.1 (Camo AS, Oslo, Norway).
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2.4. XRF Measurements and Spectra Pre-Processing

A portable device Tracer III-SD model (Bruker AXS, Madison, Wisconsin, EUA) was
used for XRF data acquisition. This instrument has a 4 W Rh X-ray tube and a Peltier-cooled
Silicon Drift Detector with 2048 channels. The X-ray tube was configured for voltage and
current of 35 kV and 7 µA, respectively [18]. No filter was used and the scanning time
was 90 s, which was performed under atmospheric pressure [18]. Three readings were
taken from each soil specimen at three different spots, and these were then averaged to be
considered for spectra pre-processing and modeling.

The acquired spectra were normalized by the detector live time and evaluated in
counts of photons per second (cps). Considering the area under each peak, 12 spectral lines
(K-lines of Al, Si, K, Ca, Ti, Mn, Fe, Ni, and Cu, and the scattering peaks Rh-Lα Thomson,
Rh-Kα Compton, and Rh-Kα Thomson) were selected to be used as explanatory variables,
following the criteria recommended by Tavares et al. [37]. Finally, the K-lines of Al, Si, K,
Ca, Ti, Mn, Fe, Ni, and Cu were normalized by the Compton peak. XRF emission lines
were obtained using Artax® software (Bruker AXS, Madison, USA), whose pre-processing
was conducted in Excel 2016 (Microsoft Corporation, Redmond, WA, USA).

2.5. LIBS Measurements and Spectra Pre-Processing

A benchtop LIBS system composed by a pulsed Nd:YAG laser at 1064 nm, generating
5 ns pulses of up to 365 mJ (Brilliant, Quantel, France) and an ESA 3000 spectrometer
(LLA Instruments GmbH, Berlin, Germany) was used. The laser was focused on the
sample surface by a convergent lens. Pressed pellets were placed into a plastic sample
holder positioned in a two axes manually-controlled translation stage, movable in the plane
orthogonal to the laser direction. A laminar stream of argon (5.0 L min−1) was continuously
fed from the bottom of the sample holder in order to dislocate the atmospheric air around
the sample surface. The emission from the plasma was collected by using a telescope
composed of 50 mm and 80 mm focal length fused silica lenses and coupled to the entrance
slit of the spectrometer using an optical fiber. The collection angle with respect to the
laser optical axis was 25◦. This spectrometer registers spectra from 200 to 780 nm with a
resolution oscillating from 5 pm at 200 nm to 19 pm at 780 nm (totaling 53,717 variables).
The same LIBS system used in this study was described elsewhere by Nunes et al. [38].

LIBS experimental conditions were carried out with 65 mJ laser pulses, 19.5 cm of lens-
to-sample distance (180 µm spot size providing 255 J cm−2 laser fluence), 15 accumulated
laser pulses, 2 µs of delay time, and 7 µs of integration time gate. These instrumental
conditions were optimized in initial tests to obtain the maximum signal-to-noise ratio of
the emission lines of interest, as suggested by Nunes et al. [39]. In order to consider the
analytes micro-heterogeneity in the test samples, 21 laser shots were applied at different
positions of the pellet surface, and the corresponding analytical signals were averaged in
one reading to be used for the following pre-processing and modeling steps.

Initially, the LIBS spectra were pre-processed by downscaling them from 200 to 540 nm,
which is a region containing the most valuable and high-intensity emission lines [40]. After-
wards, the interval successive projection algorithm (iSPA) was applied to select significant
variables [41]. To employ this algorithm, the LIBS spectra from 200 to 540 nm were divided
into 160 intervals of 243 variables. The LIBS spectra were pre-processed in MATLAB (Math-
Works Inc., Natick, MA, USA) using the script developed by Gomes et al. [41]. The regions
selected for each fertility attribute are shown in Table A1 (Appendix A). The mean raw spectra
acquired with the VNIR, XRF, and LIBS technique are shown in Figure 1.
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sensors. Snapshot of some XRF and LIBS emission lines are also shown. VNIR spectra are presented with their standard
deviation (dash line) above and below the mean curve. The emission lines identified with the following letters correspond to:
Al-Kα (a), Si-Kα (b), Rh-Lα Thomson (c), Ar-Kα (d), K-Kα (e), Ca-Kα (f), Ti-Kα (g), Ti-Kβ (h), Mn-Kα (i), Fe-Kα (j), -Fe-Kβ

(k), Ni-Kα (l), Cu-Kα (m), Rh-Kα Compton (n), Rh-Kα Thomson (o), Rh-Kβ Compton (p), Rh-Kβ Thomson (q), P I 213.62
(r), and P I 214.91 (s). Arbitrary units and counts of photons per second have been abbreviated as a.u. and cps, respectively.
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2.6. Modeling

After pre-processing, spectral variables were associated with the laboratory measured
soil attributes by establishing predictive models. This was done using the spectral data
of each single-sensor and for all possible combinations of sensors, through the follow-
ing associations: VNIR + XRF, VNIR + LIBS, XRF + LIBS, and VNIR + XRF+ LIBS. The
calibration and validation subsets comprised, respectively, of 70% and 30% of the total
number of samples, which were divided using the Kennard–Stone algorithm [42] executed
on the measured soil attributes. The prediction performance was evaluated through the
determination coefficient (R2), root mean square error (RMSE), and the residual prediction
deviation (RPD). Based on the RPD values, the prediction quality of developed models
were classified into four classes adapted from Chang et al. [43]: poor models (RPD < 1.40),
reasonable models (1.40 ≤ RPD < 2.00), good models (2.00 ≤ RPD < 3.00), and excellent
models (RPD ≥ 3.00). The relative improvement (RI) of the predictions accomplished
by means of the multi-sensor approaches were also calculated, in terms of percentage of
RMSE [44,45], and compared to the best prediction obtained using the single-sensor (VNIR,
XRF, and LIBS, individually) and two-sensor approach (VNIR + XRF, VNIR + LIBS, and
XRF + LIBS).

2.6.1. Single-Sensor Predictive Models

The predictive models using VNIR and LIBS data individually were established by
means of PLS regression [16,21]. The number of latent variables adopted for each PLS
model was determined for the model in cross-validation that resulted in the lowest RMSE.
For the XRF, models were calibrated with multiple linear regression (MLR), as suggested
by Tavares et al. [37]. All the calibrations and validations were performed using the
Unscrambler software, version 10.5.1 (Camo AS, Oslo, Norway).

2.6.2. Data Fusion Approaches

Two data fusion approaches were used to build the predictive models using multi-
sensor data. The first was designated as spectral fusion (SF) method. It is a front-end
approach, consisting of merging the pre-processed spectral data of each combination of
sensor (VNIR + XRF, VNIR + LIBS, XRF + LIBS, and VNIR + XRF + LIBS) in one matrix.
The merged data were scaled by the standard deviation to create an even distribution of
variances, before they were subjected to PLS regression to develop a model for each soil
attribute. The number of latent variables for each PLS model was determined according to
the leave-one-out cross-validation that resulted in the lowest RMSE.

The second data fusion method was adapted from the Granger and Ramanathan (GR)
averaging method [46], as performed by Tavares et al. [9]. In the present study, the GR
approach consisted of calibrating a multiple linear regression (MLR) with independent
variables being the predictions made with the sensors, plus the prediction made with the
multi-sensor merged data (i.e., SF approach). For example, for the combination between
XRF and VNIR sensors, the GR method was applied according to Equation (1)

Y = W0 + (WVNIR · XVNIR) + (WXRF · XXRF) + (WSF · XSF), (1)

where Y is the soil property to be estimated; XVNIR and XXRF are the predictions made by
VNIR and XRF single-models, respectively; XSF is the prediction made by the SF approach
using the VNIR and XRF merged data; W0, WVNIR, WXRF, and WSF are the parameters of
the MLR determined by least squares method, where the first parameter is the value of the
line intercept and the others are the weights of the predictions.

Equation (1) was also applied for combinations of LIBS + VNIR, LIBS + XRF, and VNIR
+ XRF + LIBS. All data fusion models were calibrated and validated using the Unscrambler
software, version 10.5.1 (Camo AS, Oslo, Norway).
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3. Results
3.1. Characterisation of the Laboratory Measured Soil Properties

The boxplots in Figure 2 show that the range and standard deviation (SD) of soil
attributes in the calibration set are close to those in the validation set, which is expected
since we applied Kennard Stone method in sample split to avoid undesirable influences
on the prediction accuracy that are not sensor-related [12,47]. If different range and SD
exist between the validation and the calibration sets, this would result in poor prediction
of concentrations that are not accounted for in the calibration set.
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(ex-) P, K, Ca, and Mg content for the calibration (Cal; n = 68) and validation (Val; n = 34) dataset. The standard deviation
(SD) for each dataset was also shown.

Figure 3 shows the correlation matrix of the soil fertility attributes. These interrelation-
ships aid to understand reasons of successful determination of soil attributes having only
indirect spectral signatures in the studied sensors. For example, pH or V has no emission
lines in XRF and LIBS spectra, nor direct spectral signature in the VNIR range. In this
study, it is important to highlight the following interrelationships: (i) CEC, V, ex-Ca, and
ex-Mg were closely related with one another, showing Pearson correlations ranging from
0.85 to 0.94; (ii) ex-K had strong correlations with clay and V (r = 0.73 for both); (iii) clay
showed strong correlations with V, ex-K, and ex-Ca (0.73 ≤ r ≤ 0.82); (iv) OM content
was moderately correlated with all attributes (0.44 ≤ r ≤ 0.62), except for ex-P and pH
(r of 0.06 and −0.02, respectively); (v) pH presented moderate correlations with CEC, V,
ex-K, ex-Ca, and ex-Mg (0.40 ≤ r ≤ 0.50); and (vi) ex-P was the attribute that presented
weaker correlations (−0.23 ≤ r ≤ 0.06), indicating P as an independent attribute from the
other attributes, with potential of poor prediction using spectroscopic methods that do not
present spectral response for P (e.g., VNIR and XRF).
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3.2. Prediction Performances of Single-Sensor and Data Fusion Approaches

The prediction results of individual and combined application of VNIR, XRF, and LIBS
sensors are presented in Table 1 (see details in Table A2, in the Appendix A). Considering
the single-sensor prediction performance, VNIR presented excellent and good prediction
performance for clay (RPD = 3.37), OM (RPD = 2.61), and V (RPD = 2.26). Among the three
sensors, VNIR showed the lowest RMSE for clay and OM prediction (Table A2). The XRF
sensor showed good prediction performance for clay (RPD = 3.13), CEC (RPD = 2.57), and
ex-Mg (RPD = 2.99), and excellent predictions for V (RPD = 4.18), ex-K (RPD = 4.26), and
ex-Ca (RPD = 4.82). Meanwhile, the LIBS sensor achieved excellent prediction performance
for clay (RPD = 3.06), V (RPD = 4.27), ex-Ca (RPD = 4.07), and ex-Mg (RPD = 3.65), and
good prediction performance for OM (RPD = 2.14). Among the three sensors when used
individually, XRF exhibited the lowest RMSE for CEC, ex-K and ex-Ca prediction, while
LIBS showed the lowest RMSE for the prediction of pH, V, ex-P, and ex-Mg (Table A2). The
pH was the only attribute that could not be satisfactorily predicted (RPD < 1.12) by any
of the single-sensor approaches, while the ex-P was only satisfactorily predicted by LIBS
(RPD = 1.82).

Table 2 shows the RI for the predictions performed using multi-sensor data through
the two applied data fusion approaches (SF and GR), compared with the best single-sensor
approach. This indicator shows the improvement (when positive) or the deterioration
(when negative) obtained in the sensor fusion relative improvement [44,45]. The attributes
OM, V, and ex-P were better predicted by the individual than combined sensors. All
the other attributes (clay, CEC, pH, ex-K, ex-Ca, and ex-Mg) were better predicted by
multi-sensor approaches.
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Table 1. Residual prediction deviation (RPD) obtained for the validation set (n = 34) of clay, organic matter (OM), cation
exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg) using
the visible and near infrared (VNIR), X-ray florescence (XRF), and laser-induced breakdown spectroscopy (LIBS) data
individually and different combination of them through spectra fusion (SF) and Granger and Ramanathan (GR) approaches.

Clay OM CEC pH V ex-P ex-K ex-Ca ex-Mg
VNIR 3.37 2.61 1.40 1.10 2.26 0.88 1.89 1.79 1.45
XRF 3.13 1.82 2.57 1.11 4.18 0.80 4.26 4.82 2.99
LIBS 3.06 2.14 2.45 1.12 4.27 1.82 2.05 4.07 3.65

VNIR + XRF—SF 3.51 2.39 1.96 1.22 3.67 0.90 3.09 2.83 2.33
VNIR + XRF–GR 3.53 2.35 1.94 1.26 4.24 0.89 4.98 3.90 2.66
VNIR + LIBS–SF 3.90 2.38 2.55 1.31 3.69 1.07 1.96 3.71 2.86
VNIR + LIBS–GR 3.97 2.43 2.49 1.31 3.65 1.48 2.08 3.89 3.28

XRF + LIBS–SF 3.03 1.84 2.57 1.05 3.69 1.54 3.78 5.14 3.94
XRF + LIBS–GR 3.26 2.38 2.40 1.14 3.57 1.44 4.52 5.30 4.11

VNIR + XRF + LIBS–SF 4.02 2.42 2.60 1.31 3.88 1.05 2.42 3.97 3.47
VNIR + XRF + LIBS–GR 3.73 2.44 2.63 1.32 3.77 1.43 4.83 4.96 3.83

RPD values for the same soil attribute were compared and presented on green scale, highlighting the highest values within each soil
attribute. The root-mean-square error (RMSE) are given in g dm−3 for clay and OM; in mmolc dm−3 for CEC, ex-K, ex-Ca, and ex-Mg; in %
for V; and, and in mg dm−3 for ex-P. Results of coefficient of determination (R2) and RMSE are detailed in the Appendix A (Table A2).

Table 2. Relative improvement (RI) and root-mean-square error (RMSE) achieved for each multi-sensor approach using
spectra fusion (SF) and Granger and Ramanathan (GR) data fusion methods, in comparison with the best prediction obtained
using the single-sensor approaches.

Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4

Best single-sensor
approach

RMSE 27.32 2.10 10.19 0.33 5.49 5.84 0.53 4.09 4.28
Tech 5 VNIR VNIR XRF LIBS LIBS LIBS XRF XRF LIBS

VNIR + XRF
SF

RMSE 26.19 2.29 13.35 0.30 6.38 11.81 0.73 6.97 5.51
RI (%) 4.1 −9.2 −31.1 8.6 −16.2 −102.3 −37.6 −70.2 −28.5

GR
RMSE 26.05 2.33 13.45 0.29 5.52 11.91 0.45 5.06 4.82
RI (%) 4.7 −10.7 −32.0 11.2 −0.7 −104.1 14.4 −23.5 −12.4

VNIR + LIBS
SF

RMSE 23.57 2.30 10.26 0.28 6.34 9.97 1.16 5.32 4.48
RI (%) 13.7 −9.5 −0.7 14.5 −15.6 −70.7 −117.4 −30.0 −4.5

GR
RMSE 23.18 2.25 10.49 0.28 6.42 7.20 1.09 5.07 3.90
RI (%) 15.2 −7.1 −2.9 14.5 −16.9 −23.3 −104.5 −23.9 8.9

XRF + LIBS
SF

RMSE 30.35 2.98 10.17 0.35 6.34 6.90 0.60 3.84 3.25
RI (%) −11.1 −41.8 0.2 −6.5 −15.6 −18.2 −12.6 6.2 24.2

GR
RMSE 28.19 2.30 10.89 0.32 6.56 7.39 0.50 3.72 3.12
RI (%) −3.2 −9.3 −6.8 1.9 −19.5 −26.6 5.8 9.2 27.2

VNIR + XRF +
LIBS

SF
RMSE 22.88 2.27 10.04 0.28 6.04 10.17 0.93 4.96 3.70
RI (%) 16.3 −7.8 1.4 14.8 −10.0 −74.2 −75.7 −21.2 13.7

GR
RMSE 24.68 2.25 9.95 0.28 6.22 7.47 0.47 3.98 3.34
RI (%) 9.7 −6.9 2.3 15.3 −13.3 −28.0 11.9 2.9 22.0

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg); 5 related
technique. The positive RI values for the same soil attribute were compared and presented on green scale, with higher RI values having
darker color and vice versa. For each soil attribute, bolded RMSE values indicate the approach with the lowest prediction error.

The RI values for clay prediction ranged from −11.1% to 16.3%, for the SF approach,
and from −3.2% to 15.2%, for the GR approach. For CEC prediction, the RI ranged from
−31.1% to 1.4%, using SF, and from −32.0% to 2.3%, using GR. Although the pH models
did not perform satisfactorily, their RI values ranged from −6.5% to 14.8% and 1.9% to
15.3% for SF and GR, respectively. For the ex-K prediction, the RI ranged from −117.4% to
−12.6% for SF, and −104.5% to 14.4% for GR. For ex-Ca, the RI varied between −70.2%
and 6.2% for SF, and between −23.9% and 9.2% for GR. For ex-Mg prediction, the RI values
ranged from −28.5% to 24.2%, using SF, and from −12.4% to 27.2%, using GR. VNIR +
XRF led to positive improvement in the prediction of clay, pH and ex-K (with GR only),
although improvements were larger in VNIR + LIBS for clay and pH only. As expected, the
fusion of XRF and LIBS improved the prediction of the extractable nutrients mainly, ex-K,
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ex-Ca, and ex-Mg, with minor improvement in CEC, with SF, and pH, with GR (Table 2).
The fusion of the three sensors have scored the largest number of improvements with
positive RI values for all studied attributes except for OM, V, and ex-P. In general, the
performance of the back-end data fusion strategy using the GR approach outperformed the
SF approach in 72.2% of cases. In summary, the improvement in predictive performance
varied according to the combination of sensors as well as the data fusion strategy used;
there was no one optimal approach for the prediction of all the attributes analyzed.

Table 3 compares the prediction performances of the three-sensor approach with the
best performances obtained with the two-sensor and the single-sensor approaches. Results
revealed that the best predictions of OM, V, and ex-P were obtained using the single-sensor
approach (with VNIR for OM, and with LIBS for V and ex-P). Predictions of these attributes
using two sensors showed degradation in predictive performance, with the best two-sensor
approach showing an RMSE increment of 7.1%, 0.7%, and 18.2% for OM, V, and ex-P,
respectively. A similar deterioration in the prediction performance of these attributes
(OM, V, and ex-P) was also observed by the three-sensor approach, with an increase in the
prediction error oscillating between 6.9% and 74.2% in comparison to the best performing
single-sensor approach.

Concerning ex-K, ex-Ca, and ex-Mg, better prediction results were obtained when
using the two-sensor approach. The VNIR + XRF combinations were the most promising
for ex-K, while XRF + LIBS stood out for ex-Ca and ex-Mg. The performance increment
obtained by the above-mentioned two-sensor approaches, relatively to the best single-
sensor strategy, was 14.4%, 9.2%, and 27.2% for ex-K, ex-Ca, and ex-Mg, respectively. When
combining a third sensor, the predictive performance was degraded, with a reduction
of 2.9%, 6.5%, and 6.8% for ex-K, ex-Ca, and ex-Mg, respectively, relative to the best
two-sensor approach.

Concerning the clay, CEC, and pH the best prediction performances were recorded by
the three-sensor approach, which reduced the error to a range between 2.3% and 16.3%, in
comparison to the best single-sensor approach, and between 0.9% and 2.2%, relative to the
best approach using two sensors.

Due to the presence of synergistic information in the data, improved predictions were
obtained for a large number of attributes (six out of nine) when using the three-sensor
approach. The combination between XRF and LIBS showed synergy for the prediction of
five out of nine attributes, while both the combinations VNIR + LIBS and VNIR + XRF
showed synergy for three out of nine attributes.

Table 3. Relative improvement (RI) achieved for the predictions using the best three-sensor approach in comparison with
the best prediction obtained using the two-sensor, and the single-sensor approaches. The root mean square error (RMSE) of
each approach was also presented.

Best Single-Sensor
Approach Best Two-Sensor Approach Three-Sensor Approach

RMSE Tech 5 RMSE Tech 5 DF 6 RI Comp.
Single-Sensor 7 RMSE DF 6 RI Comp.

Single-Sensor 7
RI Comp.

Two-Sensor 8

Clay 27.32 VNIR 9 23.18 VNIR +
LIBS GR 12 15.2 22.88 SF 13 16.3 1.3

OM 1 2.10 VNIR 2.33 VNIR +
XRF GR −10.7 2.25 GR −6.9 3.5

CEC 2 10.19 XRF 10 10.17 XRF +
LIBS SF 0.2 9.95 GR 2.3 2.2

pH 0.33 LIBS 11 0.28 VNIR +
LIBS GR 14.5 0.28 GR 15.3 0.9

V 3 5.49 LIBS 5.52 VNIR +
XRF GR −0.7 6.04 SF −10.0 −8.5

ex-P 4 5.84 LIBS 7.20 VNIR +
LIBS GR −23.3 7.47 GR −28.0 −3.6
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Table 3. Cont.

Best
Single-Sensor

Approach
Best Two-Sensor Approach Three-Sensor Approach

RMSE Tech 5 RMSE Tech 5 DF 6 RI Comp.
Single-Sensor 7 RMSE DF 6

RI Comp.
Single-Sensor

7

RI Comp.
Two-Sensor

8

ex-K 4 0.53 XRF 0.45 VNIR +
XRF GR 14.4 0.47 GR 11.9 −2.9

ex-Ca 4 4.09 XRF 3.72 XRF +
LIBS GR 9.2 3.98 GR 2.9 −6.5

ex-Mg
4 4.28 LIBS 3.12 XRF +

LIBS GR 27.2 3.34 GR 22.0 −6.8

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients; 5 related technique or combination of techniques;
6 related data fusion approach; 7 RI compared with the best single-sensor approach; 8 RI compared with the best two-sensor approach;
9 visible and near infrared diffuse reflectance spectroscopy; 10 X-ray fluorescence spectroscopy; 11 laser-induced breakdown spectroscopy;
12 Granger and Ramanathan approach; and 13 spectral fusion approach. For each soil attribute, bolded RMSE values indicate the approach
with the lowest prediction error.

4. Discussion

Soil spectral analyses via the tandem use of VNIR, XRF, and LIBS sensors have two po-
tential benefits: (i) extend the set of predicted soil attributes in comparison with single-sensor
approaches; and (ii) improve the models’ predictive performance by exploring synergy in the
data through data fusion approaches, both are discussed in Sections 4.1 and 4.2, respectively.

4.1. Individual Performance of VNIR, XRF, and LIBS Sensors: Coverage of Key Soil
Fertility Attributes

The results observed in this work show that the tandem application of VNIR, XRF, and
LIBS techniques, allows extending the number of predicted fertility attributes with optimal
performances (Table A3, in the Appendix A). For individual sensor, limited number of
attributes could be detected and optimal predictions are technology specific. For example,
excellent and good predictions could be achieved for clay and OM, respectively, with both
the VNIR and LIBS sensors; although, the VNIR sensor allowed more accurate predictions
of these attributes, since both attributes have direct spectral responses in the NIR range [48].
A similar trend was observed for the chemical attributes CEC, V, ex-K, ex-Ca, and ex-Mg,
whose optimal prediction performances were obtained with elemental analysis sensors
(with RPD oscillating between 2.57 and 4.82) due to the fact these attributes are closely
related to the emission lines present in these sensors.

The LIBS spectra presented emission lines for C, P, and Mg (C I 247.856 nm, P I
213.6182 and P I 214.914 nm, Mg I 277.983, and Mg I 285.213 nm), elements not observable
in the corresponding XRF spectra. The presence of these emission lines explains the better
performance of LIBS for OM, ex-P, and ex-Mg prediction than XRF. The XRF spectra showed
K emission line (in 3.31 keV), which was not observed in the LIBS data, explaining its
superior performance for ex-K prediction. The excellent ex-Ca prediction of both elemental
techniques is well supported by appropriate detection of Ca emission lines (Ca Kα 3.69 keV
for XRF, and Ca II 315.887 nm and Ca II 317.933 nm for LIBS). The presence of Ca emission
lines also explains the similar performance for V and CEC prediction obtained by both
XRF and LIBS (good predictions for CEC and excellent for V), since both attributes showed
strong correlation with the ex-Ca (r ≥ 0.92; Figure 3).

The attributes with the worst predictive performance were the ex-P and the pH.
Regarding ex-P, LIBS was the only sensor to present a satisfactory prediction for this
attribute. Although LIBS shows well defined emission lines for P, total contents of P may
not always correlate with ex-P contents due to the complex chemistry of this element
in tropical soils [49]. P in tropical soils is commonly associated, in a non-extractable
manner, with Fe and Al oxides [50], which makes the modeling of ex-P via elemental
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analysis techniques challenging [18,19]. A possible alternative to improve the predictive
performance of ex-P and pH models is through the integration of electrochemical sensors
(e.g., ion-selective electrodes (ISE) and the ion-sensitive field-effect transistor (ISFET)) to
the multi-sensor array used, since with the former technology ensure direct soil analysis of
the extractable contents of some ions (e.g., H+ and PO4

3−) [4,7].
In general, the predictive capability of key soil fertility attributes decreased as follows:

LIBS > XRF > VNIR. These results differed from those presented by Xu et al. [11], which is
the only research that explored VNIR, XRF, and LIBS sensors for predicting soil fertility
attributes. The authors obtained better prediction performances with the VNIR sensor, in
comparison to the XRF and LIBS sensors, for OM, pH, ex-P, ex-K, and ex-N. Our results,
however, are in line with those of other research carried out in tropical soils that also
evaluated the standalone use of VNIR [2,51–54] and XRF [19,55–58] techniques. Studies
using LIBS sensors for the assessment of fertility attributes are incipient in tropical soils.
However, the satisfactory performance obtained for clay is supported by that obtained by
Villas-Boas et al. [59]. In turn, our poor pH predictions contrasted with the satisfactory
predictions obtained by Ferreira et al. [60].

4.2. Combined Performance of VNIR, XRF, and LIBS Sensors: Synergy for Predicting Key Soil
Fertility Attributes

The prediction of OM, V, and ex-P did not show any synergy by the multi-sensor ap-
proaches evaluated in this study, as they were better predicted by each sensor individually.
However, improved prediction performance was obtained for all the other attributes (clay,
CEC, pH, ex-K, ex-Ca, and ex-Mg), with RI ranging between 0.2% and 27.2% when using
at least one of the multi-sensor approaches. The absence of synergy in the information pro-
vided by VNIR and elemental analysis sensors has already been reported in the literature
for pH, ex-K, and OM [9,11]. Conversely, O’Rourke et al. [44], assessing the combination
XRF + VNIR in Australian soils, reported RI ranging from 15% to 44% for clay, CEC, pH,
ex-K, ex-Ca, and ex-Mg. Also evaluating data fusion between VNIR and XRF sensors,
Zhang and Hartemink [24] obtained RI values oscillating from 3% to 20% for the prediction
of clay, pH, and total carbon in North American soils. A similar study achieved RI of 26%
for CEC in Chinese soils [22]. Also in Chinese soils, Xu et al. [10] reached an RI varying
between 4% and 35% for OM prediction by the combination of LIBS and attenuated total
reflectance Fourier-transform mid-infrared spectroscopy (FTIR-ATR).

In general, the prediction quality of the studied attributes by the sensor fusion de-
creased in the order of: VNIR + XRF + LIBS > XRF + LIBS > VNIR + LIBS > VNIR + XRF.
Our results showed that there was no unique optimal sensor combination for predicting
all the key soil fertility attributes, and that this is attribute specific. A similar behavior
was also observed by Xu et al. [11]. Thus, the performance of different combinations of
sensors should be evaluated by trial-and-error and that it is too soon to establish a clear
trend, which requires further research. This means that data fusion is in its infancy stage,
and more works will be necessary to recommend the optimal set of sensors for one or a set
of soil attribute.

This study was conducted using 102 soil samples with broad variation of fertility
attributes. They belong to Lixisols and Ferralsols, which are representative and common
types of soil in Brazilian tropical agricultural lands. In addition, this pioneering evaluation
provided useful information to help PSS users to understand the advantages and drawbacks
of the combined use of VNIR, XRF, and LIBS sensors for soil fertility analysis. Nevertheless,
future studies should consider larger datasets that account for other types of soils, soil
mineralogy, textural classes, concentration range, and different agricultural practices.

4.3. Operational Aspects Related to Sample Preparation

It is important to consider practical aspects of sample preparation necessary to ensure
the application of each technique. The VNIR and XRF techniques are less demanding in
terms of sample preparation, and can be applied on loose soil samples (i.e., dried and sieved
with 2 mm of particle size) without major impacts on the sensors performance [30,51].
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However, the LIBS demands further sample preparation steps including particle size
reduction with grinding, the addition of binding agent, followed by pressing to create
pellets that are necessary for optimal LIBS performance. Pelletizing promotes a more
reproducible laser–sample interaction that is necessary to maintain the stoichiometric
proportion of the craters formed by the laser pulses [61]. These extra sample preparation
steps to ensure the collection of reliable data make it challenging to apply LIBS to run
analyses directly in the field [62]. However, despite the extra time consigned to sample
preparation, it would not make it unfeasible to use LIBS in controlled environments (e.g.,
hybrid laboratories and mobile laboratories) that enable the execution of such sample
conditioning [4].

5. Conclusions

This study shows that the fusion of data from visible and near infrared diffuse re-
flectance spectroscopy (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced
breakdown spectroscopy (LIBS) can extend the number of fertility attributes predicted with
optimal performance, as well as improve the prediction accuracy by exploiting the synergy
through data fusion techniques.

Comparing among the individual sensor performance, the VNIR technique performed
best for the prediction of clay and organic matter (OM) (2.61 ≤ RPD ≤ 3.37), while the
elemental analysis techniques showed better performance for the prediction of cation
exchange capacity (CEC), base saturation (V), and the extractable (ex-) K, Ca, and Mg
(2.61 ≤ RPD ≤ 3.37). The LIBS stood out for V, ex-P and ex-Mg prediction, while the XRF
resulted in optimal predictions for CEC, ex-K, and ex-Ca. The attributes with the worst
predictive performance were the ex-P (0.80 ≤ RPD ≤ 1.82) and pH (RPD ≤ 1.12), with the
latter performing poorly in all individual and combined sensor options tested in this study.

Regarding the performance of the multi-sensor approaches, ex-K, ex-Ca, and ex-Mg,
were better predicted when using two sensors (VNIR + XRF for ex-K, and XRF + LIBS for ex-
Ca and ex-Mg), while clay, CEC and pH were best predicted with the three-sensor (VNIR +
XRF + LIBS). However, the combined use of sensors did not always lead to improvement in
the prediction results. For instance, the best sensing method for OM, V, and ex-P prediction
was the single-sensor approach, showing that there was no synergy between the evaluated
sensors for the prediction of these attributes. Furthermore, the best combination of sensors
for predicting key fertility attributes proved to be attribute-specific, which is a drawback of
the in tandem application of these analytical techniques. Another drawback to integrate
the addressed techniques is the need for different sample preparations, where LIBS needs
extra steps to conform the loose soil samples into pellets.

Finally, the present work evidenced benefits and limitations of the in tandem applica-
tion of VNIR, XRF, and LIBS spectroscopies for fertility analysis in tropical soils. Further
research should be encouraged to improve analytical protocols using multi-sensor ap-
proaches, to enable practical, environmentally friendly, and accurate analysis, allowing its
incorporation into future hybrid laboratories.
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Appendix A

Table A1. Intervals of variables selected by the interval successive projection algorithm (iSPA) in the LIBS spectra for the
predictive modeling of each soil fertility attribute.

Attribute Number of Intervals Selected Spectral Ranges of the Selected Intervals (nm)

Clay 3 220.84–222.21, 246.77–248.29, and 251.37–252.94
OM 1 1 295.08–296.92
CEC 2 52 201.31–272.37, 287.89–298.73, and 414.15–416.63

pH 3 220.84–222.21, 237.82–239.27, and 391.78–394.22
V 3 57 201.31–272.37, 279.18–300.60, and 396.59–399.10

ex-P 4 1 214.14–215.44
ex-K 4 1 375.28–377.53
ex-Ca 4 1 389.37–391.77
ex-Mg 4 1 284.36–286.14

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients.

Table A2. Prediction results of the validation set (n = 34) obtained using single VNIR, XRF, and LIBS data alone and using
multi-sensor data, combined through spectra fusion (SF) and Granger and Ramanathan (GR) approaches.

Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4

R2

VNIR 0.93 0.86 0.51 0.19 0.80 0.07 0.74 0.68 0.52
XRF 0.92 0.74 0.88 0.34 0.95 0.01 0.95 0.96 0.89
LIBS 0.89 0.81 0.84 0.31 0.94 0.72 0.76 0.94 0.93

VNIR + XRF – SF 0.94 0.83 0.77 0.36 0.93 0.14 0.91 0.89 0.82
VNIR + XRF – GR 0.94 0.83 0.77 0.39 0.95 0.13 0.96 0.94 0.86
VNIR + LIBS – SF 0.95 0.84 0.85 0.45 0.93 0.32 0.75 0.93 0.89
VNIR + LIBS – GR 0.95 0.84 0.84 0.45 0.92 0.59 0.77 0.94 0.92

XRF + LIBS – SF 0.90 0.75 0.85 0.24 0.93 0.61 0.94 0.96 0.94
XRF + LIBS – GR 0.92 0.86 0.82 0.35 0.93 0.55 0.96 0.96 0.94

VNIR + XRF + LIBS – SF 0.95 0.84 0.85 0.46 0.94 0.31 0.83 0.94 0.92
VNIR + XRF + LIBS – GR 0.95 0.85 0.86 0.47 0.93 0.57 0.96 0.96 0.94

RMSE
vis-NIR 27.32 2.10 18.66 0.34 10.38 12.05 1.20 10.98 8.85

XRF 29.40 3.01 10.19 0.33 5.60 13.27 0.53 4.09 4.28
LIBS 30.03 2.56 10.69 0.33 5.49 5.84 1.10 4.85 3.51

VNIR + XRF – SF 26.19 2.29 13.35 0.30 6.38 11.81 0.73 6.97 5.51
VNIR + XRF – GR 26.05 2.33 13.45 0.29 5.52 11.91 0.45 5.06 4.82
VNIR + LIBS – SF 23.57 2.30 10.26 0.28 6.34 9.97 1.16 5.32 4.48
VNIR + LIBS – GR 23.18 2.25 10.49 0.28 6.42 7.20 1.09 5.07 3.90
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Table A2. Cont.

Clay OM 1 CEC 2 pH V 3 ex-P 4 ex-K 4 ex-Ca 4 ex-Mg 4

XRF + LIBS – SF 30.35 2.98 10.17 0.35 6.34 6.90 0.60 3.84 3.25
XRF + LIBS – GR 28.19 2.30 10.89 0.32 6.56 7.39 0.50 3.72 3.12

VNIR + XRF + LIBS – SF 22.88 2.27 10.04 0.28 6.04 10.17 0.93 4.96 3.70
VNIR + XRF + LIBS – GR 24.68 2.25 9.95 0.28 6.22 7.47 0.47 3.98 3.34

1 Organic matter; 2 cation exchange capacity; 3 base saturation; 4 extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg). The coefficient
of determination (R2) values for the same soil attribute were compared and presented on green scale, highlighting the highest values within
each soil attribute. The root-mean-square error (RMSE) are given in g dm−3 for clay and OM; in mmolc dm−3 for CEC, ex-K, ex-Ca, and
ex-Mg; in % for V; and, for ex-P, the RMSE was given in mg dm−3.

Table A3. Qualitative interpretation * of the residual prediction deviation (RPD) performance obtained for each of the
evaluated approaches using single-sensor (VNIR, XRF, and LIBS) and multi-sensor (VNIR + XRF, VNIR + LIBS, XRF + LIBS,
and VNIR + XRF + LIBS).

VNIR XRF LIBS VNIR + XRF VNIR +
LIBS XRF + LIBS VNIR + XRF

+ LIBS
Clay Excel. Excel. Excel. Excel. Excel. Excel. Excel.
OM 1 Good Reason. Good Good Good Good Good
CEC 2 Reason. Good Good Reason. Good Good Good

pH Poor Poor Poor Poor Poor Poor Poor
V 3 Good Excel. Excel. Excel. Excel. Excel. Excel.

ex-P 4 Poor Poor Reason. Poor Reason. Reason. Reason.
ex-K 4 Reason. Excel. Good Excel. Good Excel. Excel.
ex-Ca 4 Reason. Excel. Excel. Excel. Excel. Excel. Excel.
ex-Mg 4 Reason. Good Excel. Good Excel. Excel. Excel.

* The qualitative interpretation was adapted from Chang et al. [43] by using the following classes: poor models for RPD < 1.40 (highlighted
in orange), reasonable models for 1.40 ≤ RPD < 2.00 (highlighted in light yellow), good models for 2.00 ≤ RPD < 3.00 (highlighted in light
green), and excellent models for RPD ≥ 3.00 (highlighted in dark green); 1 Organic matter; 2 cation exchange capacity; 3 base saturation;
4 extractable (ex-) nutrients.
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