

FARMFUSE - MULTI-SENSOR INFORMATION

Abdul M. Mouazen

Odysseus Chair in Site Specific Soil & Crop Management

Conference on ICT and Robotics for a Sustainable Agriculture

24 November 2017 @ The National Museum of Denmark, Copenhagen

OUTLINE

- Project information
- Overview of current VR practices
- Project aim & WPs structure
- Main results
- Dissemination & Exploitation
- Personal opinion on funding
- Conclusions

PROJECT INFO

Sponsor:

ICT-AGRI – National delegates

Budget:

€ 664.562

Partners:

Aristotle University of Thessaloniki (AUTH) – Greece – Prof. Dimitrios Moshou Cranfield University (CU) – UK – Dr. Abdul M. Mouazen Rostock University (RU) – Germany – Prof. Ralf Bill Duck end Farm **UK** Uludag University (UU) – Turkey – Prof. Yucel Tekin

Coordinator:

Abdul M. Mouazen - CU

tec5, AG (tec5) – Germany – Mr. Steffen Piecha

Karacebey Farm Turkey

Premslin Farm, Germany

CURRENT VR N PRACTICES

AIM & WP STRUCTURE

To fuse a set of data on soil and crop together with auxiliary data on topography, land use and weather to delineate management zones for site specific fertilisation and spraying.

MULTI-SENSOR 'ON-LINE' KIT

- High resolution data (1500 2000 readings per ha).
- Any depth between 5 50 cm.
- Can be fit onto different soil equipment e.g., tillage, planters & seeding machine.
- Particularly successful for organic carbon, moisture, total nitrogen, clay and organic matter.
- Less accurate for pH, phosphorous, calcium cation exchange capacity and magnesium.

$$BD = \left(\sqrt[3]{\frac{D + 21.36MC - 73.9313d^2}{1.6734}}\right) \times (1.255 - 0.772MC)$$

Mouazen, A.M. (2006). Soil Survey Device. International publication published under the patent cooperation treaty (PCT). World Intellectual Property Organization, International Bureau. International Publication Number: WO2006/015463; PCT/BE2005/000129; IPC: G01N21/00; G01N21/00.

Direction of trave

On-line multi-sensor platform (Mouazen, 2006)

MULTI-SENSOR & DATA FUSION FOR QUANTIFYING YIELD LIMITING FACTORS

	Calculated individual contribution to NDVI							
		2013		2015				
r C	Input	Мау	June	April	Мау			
	TC (%)	10.25	16.46	5.86	3.52			
	K (cmol kg ⁻¹)	9.82	3.19	5.90	4.12			
	P (mg kg ⁻¹)	6.00	12.33	31.31	0.00			
	рН	2.69	0.91	3.21	0.00			
	MC (%)	1.71	1.39	2.31	2.83			
	TN (%)	0.45	1.14	0.23	0.88			
	Total (SERR)	30.92	35.42	48.59	11.35			

Calculated individual contributions to yield						
Input	2013	2015				
K (cmol kg ⁻¹)	7.66	0.23				
P (mg kg ⁻¹)	4.28	1.96				
TC (%)	3.99	3.23				
рН	3.51	1.45				
TN (%)	1.56	4.46				
MC (%)	0.00	1.18				
Total (SERR)	21.00	12.51				

Non-linea parametrio modelling

After: Whetton et al. (2017), Computers and Electronics in Agriculture

ed individual	contributions f	o vield
		yicia

Measured

Predicted

equency Class	Network Prediction (%)				
	Low	Medium	High		
	91.3	6.96	1.74		
	10.87	64.35	24.78		
	1.54	16.98	81.48		
	90.09	9.29	0.62		
	9.57	69.86	20.58		
	2.11	24.40	73.49		
	87.91	11.21	0.89		
	5.76	85.15	9.09		
	2.11	38.67	59.21		

MULTI-SENSOR & DATA FUSION FOR VR N FERTILISATION

- Common Raster Grid Creation
- Data Fusion by Clustering
- Mapping

+

GHENT UNIVERSITY

Fertility zone map

N application map

After: Halcro el al. (2013) – 3rd International Workshop on PSS Nawar et al. (2017) – Advances in Agronomy

DISSEMINATION AND EXPLOITATION

- **17 Peer Reviewed Journal Papers**
- **20 Conference Contributions**
- A project website run by Rostock Univ. 0
- Presentations: farmers & policy makers
- 2 PhD theses

- •
- •

Very positive farmers' feedback

Contribute to new service provider FarmingTruth Ltd. Contribute to a new commercial NIR spectrometer A sugar factory in Turkey expressed interest

PERSONAL OPINION ON FUNDING

- Projects are focused
- Promote new technology solutions
- Smooth collaboration among partners
- Value for money (total budget 664 K EUR)
- Projects can be of large impact

CONCLUSIONS

- Need for advanced sensing technologies
- Innovative multiple sensors and data fusion approaches
- Integration of all information on soil, crop, weather, topography, etc
- Potential for increase profitability
- Reduce environmental impacts

Abdul M. Mouazen Professor of Site Specific Soil and Crop management

DEPARTMENT OF SOIL MANAGEMENT

- Е abdul.mouazen@ugent.be
- Т +32 9 264 6037
- Μ +32 484 7707 23

www.ugent.be

- **Ghent University** f ¥ @ugent
- in **Ghent University**

