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Abstract.  

Accurate and detailed spatial soil information about within field variability is essential for 

variable-rate applications of farm resources. Soil total nitrogen (TN) is important fertility 

parameter that can be measured with visible and near infrared (vis-NIR) spectroscopy, whose the 

calibration method may considerably affect the measurement accuracy. This study aims at 

comparing the performance of local farm scale calibrations with those based on spiking of local 

samples into an European continental dataset (ECD) for TN estimation using two modelling 

techniques, namely, random forest (RF) and partial least squares regression (PLSR). An on-line 

sensor platform equipped with a mobile, fiber type, vis-NIR spectrophotometer (AgroSpec from 

tec5 Technology for Spectroscopy, Germany), with a measurement range of 305–2200 nm was 

used to acquire soil spectra in diffuse reflectance mode from two fields in the UK. After dividing 

spectra into calibration (75%) and validation (25%) sets, spectra in the calibration set were 

subjected to RF and PLSR with leave-one-out cross-validation to establish calibration models of 

TN. Results showed that RF outperformed PLSR models for both datasets used, whereas the 

lowest model performance was obtained with the local dataset. The effect of spiking of local 

samples into the ECD was significant, and resulted in high coefficients of determination (R
2
) 

values of 0.97, low root mean square error (RMSE) of 0.01, and high residual prediction 

deviations (RPD) of 5.78. The on-line predicted maps showed considerable spatial similarity 

with measured TN. Therefore, these results suggest that spiked ECD based vis-NIR RF 

calibration models can be successfully used to predict TN under on-line measurement conditions.  

Keywords. Vis-NIR spectroscopy, spiking, random forest, partial least squares regression, soil 

mapping. 

 

Introduction  

Estimation of nitrogen status in the soil is crucial from both agriculture and environment 

points of view. Soil total nitrogen (TN) has for long been identified as a factor that is important 

to soil fertility and crop production (Kucharik et al., 2001; Muñoz & Kravchenko, 2011). It is 

well known that mineral nitrogen is the macronutrient that often limits the growth of plants and 

significantly affects yield (Michopoulos et al., 2008). But, mineral nitrogen is either provided to 

the soil by chemical or organic fertilizer, or became available from the mineralization of TN. 

Therefore, spatial predictions of soil TN contents is needed for a wide range of agricultural and 

environmental applications (Muñoz & Kravchenko, 2011; Wang et al., 2013). 

Traditional laboratory analysis methods for TN are laborious, time consuming, costly and 

destructive (Wang et al., 2015). Therefore, there is a growing demand for a quick, cost-effective, 

nondestructive and sufficiently accurate approach for predicting TN in situ (Wang et al., 2015). 
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Proximal soil sensing (PSS) techniques have the potential to eliminate the aforementioned 

constraints (Viscarra Rossel et al., 2011; Kuang et al., 2012). As common PSS technique, visible 

and near-infrared (vis-NIR) diffuse reflectance spectroscopy has attracted increasing interest 

among soil scientists in recent times and has been proposed as a possible method of soil analysis. 

It offers the possibility of collecting high spatial resolution data, compared with conventional 

laboratory analyses (Shepherd & Walsh, 2002; Mouazen et al., 2007; Wetterlind et al., 2010). 

This spectroscopy technique allows for both in field (in situ) non-mobile (Viscarra Rossel & 

Chen, 2011; Brodský et al., 2013) and mobile (on-line) measurements (Maleki et al., 2008; 

Kuang & Mouazen, 2013). However, compared to laboratory analysis that is done under 

controlled conditions, field spectroscopy analysis are affected by ambient and experimental 

conditions that need to overcome for accurate prediction to be achieved (Mouazen et al., 2007; 

Stenberg et al., 2010). One way to reduce these negative influences is by adopting advanced 

modelling techniques, particularly those approaches that account for nonlinearity in the soil. 

As a linear multivariate analysis, partial least squares regression (PLSR) is the most 

commonly used technique for soil spectral analysis (Viscarra Rossel et al., 2006; Vohland et al., 

2011; Conforti et al., 2015). However, the accuracy of PLSR as a linear multivariate regression 

technique tends to decrease due to the non-linear nature of the relationship between spectral data 

and the dependent variable (Araújo et al., 2014). Non-linear regression introduced in the 

literature as better alternatives to PLSR for spectroscopic analyses of soils (Morellos et al., 2016; 

Nawar et al., 2016). Among those models artificial neural networks (ANN) (Mouazen et al., 

2010), support vector regression (SVR) (Vohland et al., 2011), boosted regression trees (Brown 

et al., 2007), multivariate adaptive regression splines (MARS) (Nawar et al., 2016) and random 

forests (RF) (Viscarra Rossel & Behrens, 2010) were proven to provide improved prediction 

performances. Recently, RF has received growing attention in vis-NIR spectral analyses in 

different domains. It is an ensemble learning technique introduced by (Breiman, 2001) as a 

combination of tree predictors. It has many advantages such as resistance to noise, ability to be 

used even when the predictor variables are higher than observations, suffering of small 

overfitting, and provides an assessment of variable importance (Díaz-Uriarte & Alvarez de 

Andrés, 2006; Prasad et al., 2006; Ishwaran, 2007). Accordingly, RF can handle nonlinear and 

hierarchical behaviors when introducing variability to the general spectral library for predicting 

local samples. Although few studies on the use of RF for the analyses of soil properties under 

laboratory non-mobile measurement conditions have been reported, to our best knowledge no 

study of RF modelling based on on-line collected vis-NIR spectra can be found in the literature. 

This study aims at comparing the performance of local farm scale calibrations with those 

based on spiking of local samples into an European continental dataset (ECD) for TN estimation 

using two modelling techniques, namely, random forest (RF) and partial least squares regression 

(PLSR) analyses. 

 

2. Materials and Methods 

2.1. Experimental sites 

Two experimental fields were used in this study, namely, Hessleskew (longitudes -0.590° 

and -0.586° W, and latitudes 53.844° and 53.844° N) with total area of about 12 ha, and Hagg 

(longitudes of -1.172° and -1.166° W, and latitudes of 53.936° and 53.941° N) with total area of 

about 21 ha, both located in Yorkshire, the UK (Fig. 1). Hessleskew field is cultivated with 
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cereal crops in rotation, where Hagg field is cultivated with vegetables crops (leeks, cabbage, 

carrots and onions). The soil texture for the Hessleskew and Hagg fields is clay and sandy loam, 

respectively, according to United States Department of Agriculture (USDA) textural soil 

classification system (Soil Survey Staff, 1999).  

 

Fig. 1. Location of the Hessleskew and Hagg fields in Yorkshire, UK, showing sampling points 

collected along on-line survey transects. 

2.1. On-line soil measurement and collection of soil samples 

Both fields were scanned using the on-line system designed and developed by Mouazen 

(2006). It consists of a subsoiler, which penetrates the soil to any depth between 5 and 50 cm, 

making a trench, whose bottom is smoothened by the downwards forces acting on the subsoiler 

(Mouazen et al., 2005). The subsoiler was retrofitted with the optical unit and attached to a frame 

(Fig. 2). This was mounted onto the three point linkage of a tractor (Mouazen et al., 2005). An 

AgroSpec mobile, fibre type, vis–NIR spectrophotometer (Tec5 Technology for Spectroscopy, 

Germany) with a measurement range of 305–2200 nm was used to measure soil spectra in 

diffuse reflectance mode. The sampling interval of the instrument was 1 nm. A differential global 

positioning system (DGPS) (EZ-Guide 250, Trimble, USA) was used to record the position of 

the on-line measured spectra with sub-meter accuracy. The on-line measurements were carried 

out in 2015 and 2016 for the former and latter fields, respectively, pulling the sensor at 12 m gap 

between adjacent transects, setting the subsoiler tip at 15 cm average depth. A total of 122 and 

149 soil samples were collected during the on-line measurement from Hessleskew and Hagg 

fields, respectively and used for the calibration and validation modelling described below.  

2.2. Laboratory chemical and optical measurements 

Fresh soil samples were used in the laboratory spectral and chemical analyses. Each soil 

sample was placed in a glass container and mixed well then divided into two parts. The first part 
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was used to fill three Petri dishes of 2 cm in diameter, and 2 cm deep, representing three 

replicated measurements. Each soil in the Petri dishes was pressed gently before levelling with a 

spatula to ensure a smooth surface; and therefore maximum light reflection and a large signal-to-

noise ratio (Mouazen et al., 2005). Soil samples were scanned by the same spectrometer used in 

the on-line measurements. A total of ten scans were collected from each replicate, and these were 

averaged into one spectrum. The second part of each sample was air dried before it was analyzed 

for TN using the Dumas method (British Standard BS EN 13654-2:2001). 

 

Fig. 2. The on-line visible and near infrared (vis-NIR) spectroscopy sensor developed by 

Mouazen (2006) 

2.3. Spectra pretreatment 

The same pretreatment of soil spectra of on-line and laboratory measurements was carried 

out using R packages (Stevens & Ramirez Lopez, 2013). First, the spectral range outside 370–

1979 nm was cut to remove the noise at both edges. Then, moving average with five successive 

wavelengths was used to reduce noise. Maximum normalization was followed, which is typically 

used to get all data to approximately the same scale. Spectra were then subjected to first 

derivation using Gap–segment derivative (gapDer) algorithms (Norris, 2001) with a second-

order polynomial approximation. Finally, the Savitzky-Golay smoothing was carried out to 

remove noise from spectra and to decrease the detrimental effect on the signal-to-noise ratio that 

conventional finite-difference derivatives would have.  
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2.4. Dataset set selection and modelling 

The following two different data sets (Nawar & Mouazen, 2017) were considered in this 

study: 

1- Single-field dataset (SFD; n=122, and 149), where samples from one field either Hessleskew 

or Hagg fields were used, respectively, and 

2- European continental dataset (ECD; n=528), where samples from sixteen fields collected from 

five European countries were used. These included samples from Germany (two fields), 

Denmark (five fields), the Netherlands (one field), Czech Republic (four fields) and the UK (four 

fields), where 150, 147, 43, 99, and 89 samples were collected, respectively (Kuang & Mouazen, 

2011, 2013).  

Kennard-Stone calibration sample algorithm (Kennard & Stone, 1969) was used to select the 

calibration set (75%), and the remaining samples (25%) were assigned to the prediction set, 

which was used for assessing the model’s prediction performance. Based on a spectral distance 

measure, the Kennard-Stone algorithm selects a set of samples having a uniform distribution 

over the spectral space. Here, we defined the Mahalanobis distance in the normalised score space 

of the principal components explaining more than 95% of the spectral variation. 

Spiking was used to introduce the local variability of the two experimental fields (e.g., SFD) 

into the existing data sets (e.g., ECD). A total of 85 and 110 samples that have been selected 

from the Hessleskew and Hagg fields, respectively, using Kennard-Stone were spiked into the 

ECD. 

2.4.1. Partial least squares regression 

PLSR is a widely multivariate analysis method often used in chemometrics. This method is 

introduced first by  Geladi and Kowalski (1986). PLSR is very often used to conduct quantitative 

spectral analyses. The algorithm uses a linear multivariate model to relate two data matrices – the 

predictor variables, X, and the response variables, Y. Successive orthogonal (latent) factors are 

selected, thereby maximizing X and Y covariance – between (X, spectra and Y, the measured 

value). As opposed to multiple linear regression, PLSR is appropriate for managing data with 

severe co-linearity in the independent variables, particularly in cases where the sample size is 

small. The number of latent factors is defined by using leave-one-out cross-validation (LOOCV) 

(Efron and Tibshirani, 1994). This helped to prevent over- or under-fitting of the data, which 

may produce models with poor performance. PLSR with leave-one-out cross-validation was used 

to establish models to predict TN using package ‘pls’ available in R software (R Core Team, 

2013).  

2.4.2. Random Forest Regression 

Random Forest (RF) is an ensemble learning method generally used for data classification 

and regression algorithm developed by Breiman (2001). The algorithm worked by growing an 

ensemble of regression trees based on binary recursive partitioning, where the predictor space at 

each tree node was partitioned based on binary splits on a subset of randomly selected predictors. 

RF does not need any data pretreatment which is one of its main advantages. RF runs very fast, 

and that is a very important factor in the field of on-line and in situ measurements of soil 

properties. Tree diversity guarantees RF model stability that is achieved by two means: (1) a 

random subset of predictor variables is chosen to grow each tree and (2) each tree is based on a 

different random data subset, created by bootstrapping, i.e., sampling with replacement. The data 
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portion used as training subset is known as the “inbag” data, whereas the rest is called the “out-

of-bag” data. The latter are not used to build the tree, but provide estimates of generalization 

errors (Breiman, 2001). The mean square error calculated from prediction with the test dataset 

averaged over all trees is called the out-of-bag (oob) error. As forest size increases, this 

generalization error always converges (Breiman, 2001). For each tree in the bootstrapped set, a 

modified algorithm is used for splitting at each node instead of testing the performance of all p 

variables. The size of the subset of variables used to grow each tree (mtry) has to be selected by 

the user. The default mtry value is the square root of the total number of variables (Abdel 

Rahman et al., 2014). Therefore, ntree needs to be set sufficiently high. Consequently, RFs do 

not overfit when more trees are added, but produce a limited generalisation error (Prasad et al., 

2006; Peters et al., 2007). The same datasets used in PLSR (e.g., 75% calibration, 25% 

validation) were utilised for analysis. The optimal number of trees to be grown (ntree), number 

of predictor variables used to split the nodes at each partitioning (mtry), and the minimum size of 

the leaf (nodesize) were set to 100, 2, and 3, respectively. These parameters were determined by 

the tune RF function implemented in the R software package, named Random Forest Version 

4.6-12 (Liaw and Wiener, 2015), based on Breiman and Cutler's Fortran code (Breiman, 2001). 

2.5. Evaluation of model accuracy 

Model performance for the prediction of named soil properties were evaluated by means of 

the coefficient of determination (R
2
 ), root mean square error of prediction (RMSEP) and ratio of 

residual prediction deviation (RPD). Viscarra Rossel et al. (2006) classified the RPD values 

referring to accuracy of modelling into six classes: excellent (RPD > 2.5), very good (RPD = 

2.5–2.0), good (RPD = 2.0–1.8), fair (RPD = 1.8–1.4), poor (RPD = 1.4–1.0), and very poor 

model (RPD < 1.0). This classification was adopted in this study to compare between different 

RF models in cross-validation and in laboratory and on-line prediction. 

2.6. Soil TN mapping 

Two types of maps were developed, namely, comparison and full-data points maps. The 

comparison maps were developed to compare on-line predicted with laboratory reference 

measurement of TN based on randomly collected soil samples in the field. This comparison also 

included maps of predicted values based on laboratory scanned spectra of the same randomly 

selected samples. To developed the full-point maps, all on-line predicted data points (1200–1500 

point per ha) were used. The comparison maps were developed based on the inverse distance 

weighing (IDW) interpolation method in ArcGIS 10.4.1 (ESRI, USA) software. To produce the 

latter maps, the geoR package in R program was used for the estimation of the parameters of the 

model variogram, so as to typify the spatial variation by a fitting variogram model. After a 

satisfactory variogram was obtained, it was applied in ArcGIS using Geostatistical analyst 

toolbox to predict the variable qualities at un-sampled sites to make a prediction map and 

produce the full-data point maps of on-line measured TN. 

3. Results and discussion 

3.1 Laboratory measured soil properties and spectra 

The descriptive statistics for soil TN is shown in Table 1. For Hessleskew field, TN 

concentration is low, with minim and maximum of 0.19 and 0.34%, respectively. The mean and 

median is equal (0.25%), wheraes the 1st quartile and 3rd quartile are 0.23 and 0.26%, 

respectively. TN in the Hagg field is similar to Hessleskew field with minimum, mean, and 
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maximum values of 0.13%, 0.21, and 0.35%, respectively (Table 1). The small range of 

variability in TN indicates these fields are not the ideal case study fields, as the smaller the 

variability is the less successful results to be expected for the prediction capability of the 

calibration models established (Kuang & Mouazen, 2011). 

Table 1. Descriptive statistics for soil total nitrogen (TN) in % for Hessleskew, Hagg 

fields, and European continental dataset (ECD). 

 Min 1st Qu. Median Mean 3rd Qu. Max St.dev 

Hessleskew (n=122) 
      

 
0.19 0.23 0.25 0.25 0.26 0.34 0.02 

Hagg (n=149) 
      

 
0.13 0.19 0.21 0.21 0.24 0.35 0.04 

 

ECD 

 

(n=528) 

 

 

 

 

 

 

 

 

 

 

 

 

 
0.03 0.11 0.14 0.15 0.17 0.30 0.04 

 

3.2. Performance of calibration models in cross-validation 

Table 2 summarises the cross-validation results for TN calibration models developed with 

SFD and ECD datasets, whereas Fig. 3 shows the scatterplots for the measured versus predicted 

values. Examining Tables 2 and Fig. 3 one can conclude that the best results in cross-validation 

are achieved with the ECD using the RF calibration (R
2
 = 0.97, RMSEcv = 0.01%, and RPD = 

5.72 for Hagg field, and R
2
 = 0.96, RMSEcv = 0.01%, and RPD = 4.83 for Hessleskew field). 

PLSR calibration models developed with the SFD has resulted in the lowest results with R
2
, 

RMSE, and RPD of 0.56 and 0.62, 0.01 and 0.02%, and 1.48 and 1.62, for Hessleskew and Hagg 

field, respectively (Table 2 and Fig. 4). 

Adopting Viscarra Rossel et al. (2006) classification system of RPD for the evaluation of 

model prediction performance, reveals that results achieved in this study is excellent for RF 

modelling in cross-validation (RPD = 4.83–5.72). These results are in line with those reported by 

Nawar & Mouazen (2017) based on multivariate adaptive regressing splines (MARS) method 

(R
2
 = 0.96, RMSEcv = 0.01% and the ratio of performance to the interquartile range (RPIQ) = 

6.57). However, RF model performance based on the ECD dataset obtained in this study is better 

than that obtained by Kuang and Mouazen (2013) using PLSR (RMSEcv and RPD values of 

0.023% and 2.61). This is because the RF modelling technique typically yields better results 

when a nonlinear relationship between reflectance and concentration exists (typical in soils), 

whereas the PLSR model fits only linear relationships (Viscarra Rossel & Behrens, 2010; Nawar 

et al., 2016).  
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Table 2. Hessleskew and Hagg fields results for soil total nitrogen (TN) in cross-validation, 

laboratory and on-line predictions based on partial least square regression (PLSR) and 

random forest (RF) calibration models developed with single field dataset (SFD), and 

spiked European continental dataset (ECD). 

  

SFD  ECD  

RMSE 

(%)  R
2
  RPD  

RMSE 

(%)  R
2
  RPD  

Hessleskew Field 

PLSR  n.LV  

     
  

Cross- valid.  6 0.01 0.56 1.48 0.02 0.73 1.91 

Lab Valid.  6 0.01 0.55 1.51 0.03 0.73 1.96 

On-line Valid.  6 0.02 0.53 1.48 0.03 0.68 1.79 

RF  n.tree 

     
  

Cross- valid.  100 0.01 0.84 2.49 0.01 0.96 4.83 

Lab Valid.  100 0.01 0.84 2.53 0.02 0.82 2.38 

On-line Valid.  100 0.01 0.73 1.95 0.03 0.62 1.63 

Hagg Field 

PLSR  n.LV  

     
  

Cross- valid.  6 0.02 0.62 1.62 0.02 0.75 2.02 

Lab Valid.  6 0.02 0.61 1.63 0.03 0.55 1.5 

On-line Valid.  6 0.02 0.62 1.64 0.03 0.65 1.71 

RF  n.tree 

     
  

Cross- valid.  100 0.01 0.84 2.49 0.01 0.97 5.72 

Lab Valid.  100 0.02 0.79 2.19 0.02 0.84 2.54 

On-line Valid.  100 0.02 0.76 2.07 0.02 0.83 2.37 
 

nLV=number of latent variables, n.tree = number of trees , RPD = residual prediction deviation, 

RMSE = root mean square error. 

3.3. Performance of calibration models for laboratory prediction 

The RF and PLSR calibration models were validated under laboratory conditions using 

laboratory scanned spectra of the prediction sets. Similar trend to that of the cross-validation can 

be concluded for the laboratory prediction for TN, where the best predictions are achieved with 

RF-ECD based model (R
2
 = 0.84, RMSE = 0.02%, and RPD = 2.54) in Hagg field, whereas 

slightly less performance was achieved in Hessleskew field (R
2
 = 0.82, RMSE = 0.02%, and 

RPD = 2.38) (Table 2 and Fig. 3). The poorest results are produced by PLSR-SFD based models 

(R
2 

= 0.55 and 0.61, RMSE = 0.010 and 0.02%, and RPD = 1.51 and 1.63) in Hessleskew and 

Hagg fields, respectively. These results are supported by the findings of Nawar & Mouazen 

(2017), who showed that MARS provided robust predictions of TN with ECD (R
2
, RMSE, and 
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RPIQ of 0.87, 0.03%, and 5.21, respectively). However, the RF ECD prediction results in this 

research are comparable to those reported by Kuang & Mouazen (2013) (RPD of 2.52, 

respectively). Kuang & Mouazen (2011) reported higher prediction accuracy for non-mobile 

measurements coupled with PLSR (R
2
 = 0.93, RMSEP = 0.06% and RPD = 3.88) than that 

achieved in this study, probably due to the wide concentration range of TN in the prediction set 

(0.06 to 1.22%) compared to (0.13 to 0.35%) in the current work. 

3.4. Performance of calibration models for on-line prediction 

The on-line collected spectra were used to predict soil TN using the calibration models 

developed in advance, as explained above. Tables 2 summarises the accuracy of the on-line 

measurement for TN based on SFD and ECD datasets. As for cross-validation and laboratory 

prediction again RF method when combined with spiking of individual field samples into the 

ECD has resulted in the best on-line prediction (R
2
 = 0.83, RMSE = 0.02%, and RPD = 2.37) in 

Hagg field, and R
2
 = 0.62, RMSE = 0.03%, and RPD = 1.63 in Hessleskew field. Again the 

lowest results are produced by PLSR-SFD based models with R
2 

= 0.53, RMSE = 0.02%, and 

RPD = 1.48 in Hessleskew field (Fig. 3). Generally ECD models provide considerably better 

performance in on-line prediction than SFD, which perform almost equally in both fields. 

Generally, RF outperformed PLS models for on-line prediction for TN, which in line with those 

results reported by Kuang & Mouazen (2013), who reported lower prediction accuracy using 

PLSR with RMSE and RPD values of 0.08% and 2.22. Similar accuracies (R
2
 = 0.79, RMSE = 

0.02%, and RPIQ = 3.26) were reported by Nawar & Mouazen (2017) for almost equal 

prediction set size (n=39). Our results were better in terms or RMSE from the previous 

researchers, which reflect the accuracy of the RF model produced in the current study for on-line 

prediction of TN. 
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Fig 3. Scatter plots of visible and near infrared (vis-NIR) spectroscopy-predicted versus 

laboratory-analysed total nitrogen (TN) in Hessleskew and Hagg fields in cross validation 

(a), lab prediction (b) and on-line prediction (c), using (A) single field dataset (SFD) and (B) 

spiked European continental dataset (ECD). Results compares between (a) partial least 

squares regression (PLSR) and (b) random forests (RF) models. 
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3.5. Influence of dataset on models’ prediction performance  

The dataset (scale) has shown to have a considerable influence on the performance of 

calibration and prediction of TN (Nawar & Mouazen, 2017), using other linear and nonlinear 

modelling tools. The same observation is applied in the current work for RF modelling. Spiking 

local samples in the ECD library almost always improved the model performance, particularly in 

cross-validation, compared with those obtained using the SFD (Table 2), which is in agreement 

with the results presented by Kuang & Mouazen (2013), who concluded that with the increase in 

the sample set scale (e.g., ECD) and concentration range, one should expect not only increases in 

RPD and R
2
 but in RMSE too. Examining the RPD values obtained with both datasets suggest 

that spiking of laboratory scanned spectra into ECD is a successful strategy to obtain accurate 

on-line predictions of soil TN. Figure 4 and Table 2 illustrate how spiking coupled with RF have 

led to the highest on-line prediction performance compared to SFD for both TN models. 

Moreover, the majority of on-line prediction models are classified as very good to good 

prediction performance according to Viscarra Rossel et al. (2006) classification scale of RPD. 

Compared to MARS-ECD model performance for on-line prediction reported by Nawar & 

Mouazen (2017) (RPD =2.35), and artificial neural network (ANN)-ECD model performance 

reported by Kuang et al. (2015) (RPD = 2.28), only slight improved results are achieved in this 

study with RF-ECD (RPD = 2.37). The current work confirms previous findings and provides 

additional evidence that the nonlinear modelling methods of soil spectroscopy is a better solution 

than the linear PLSR techniques, and that there will be always an opportunity to improve the on-

line prediction performance by adopting new data mining techniques (e.g., RF in the current 

work). Moreover, the concept of spiking a general dataset (ECD) with samples from measured 

target field (SFD) in particular with narrow variation range seems to be a successful calibration 

procedure for on-line vis–NIR measurement of soil TN. 

 

Fig. 4. Comparison between (a) partial least squares regression (PLSR) and (b) random 

forests (RF) analyses model performances in Hessleskew and Hagg fields for total 

nitrogen (TN) prediction in cross-validation (cross-val.) and laboratory prediction (Lab. 

P.) and online prediction (Online P.). Results are shown for residual prediction 

deviation (RPD) and root mean square error (RMSE). 
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A possible explanation for improved models performance (in both on-line and laboratory 

predictions) may be the wide range of variability TN, which can be secured with e.g., the ECD. 

This is supported by the fact that a vis-NIR model performance depends to a large extent on 

variability encountered in the dataset including soil types (Stenberg et al.,  2010;  Wang et al., 

2010), which is the case in the ECD of the current work. Thus, with large soil heterogeneity, 

regression can be more successful, and this may influence the model accuracy (Kuang & 

Mouazen, 2011). The high performance for estimating TN in the current work obtained with RF 

method may be attributed to the wide range of variation of the large-scale dataset (ECD). 

However, the higher R
2
 and RPD values of the spiked ECD model, the values of RMSE did not 

result in substantially lower compared with the results obtained with the local calibrations alone 

(e.g., SFD and TFD) (Fig. 4). This is maybe attributed to the small and variable differences for 

TN between the calibrations with the spiked ECD library, and the local samples, which is in 

agreement with observations found by Kuang & Mouazen (2013). 

3.5 Soil TN maps 

Figures 5 and 6 show the TN maps of laboratory reference values, laboratory predicted, and  

on-line predicted values for Hessleskew and Hagg fields, respectively. In order to allow 

objective comparisons between reference versus laboratory and on-line maps, exactly the same 

number of classes (6 classes) was considered along with similar range in the three maps. The 

comparison exhibits large spatial similarity, along with high and low areas match almost 

perfectly. No distinguished spatial differences between the on-line and laboratory predicted maps 

can be observed. This particular demonstrates the high quality of the on-line measured spectra, 

that displays the sensor stability as well as robustness. 

3.6. Full points’ TN maps 

Based on the spherical semivariagram parameters shown in Table 3, full-point maps based 

on PLSR and RF predictions of TN using all on-line measured spectra are shown in Figures. 7 

and 8. These maps showed high spatial variability for both TN in both fields, which encouraged 

the need for the on-line soil sensor for the characterisation of within field spatial variability of 

soil properties, as zones with different levels of concentrations should be managed differently in 

precision agriculture. However, from visual examination, it is rather difficult to conclude on 

whether or not the RF maps were better than those of the PLSR. But a rather more detailed 

characterisation of spatial distribution of TN could be observed with RF, particularly for Hagg 

field (Fig. 8). No clear difference between RF and PLSR maps could be observed in Hessleskew 

Field, which may be attributed to the small spatial variability of soil TN. 

Discussing these maps of TN with the English farmers revealed that the variation in TN for 

Helsesskew field is attributed to the fact that this field has received large amount of manure (Fig. 

7). The variation in Hagg field is attributed to the different type of crops grown within the field 

in a single cropping season, each receiving different amount of chemical fertilizers (Fig. 8). 

The high measurement accuracy of RF demonstrates the ability of RF to approximate the 

non-linear behavior of soil TN, and recommend RF for more accurate quantitative estimation of 

TN than PLSR. However, further research is needed to evaluate which of the two groups of full-

point maps should be used to develop VR Nitrogen application maps. 
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Fig 5. Total nitrogen (TN) maps of Hessleskew field based on laboratory 

measured (a), laboratory predicted (b), and  on-line predicted values (c).  

 
Fig 6. Total nitrogen (TN) maps of Hagg field based on laboratory measured (a), 

laboratory predicted (b), and  on-line predicted values (c).  
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Table 3 Semivariagram parameters used for the development of partial least squares regression (PLSR) 

and random forest (RF) predicted full-point maps of total nitrogen (TN) in Hessleskew and Hagg fields 

Model 

 

Field 

 

Model fit 

 

Nugget 

(C0) 

Sill  

(C0 + C1) Range 

Proportion  

(C1/C0 + C1) 

PLSR Hessleskew spherical 0.018 0.07 44.23 0.76 

RF Hessleskew spherical 0.022 0.08 33.85 0.77 

PLSR Hessleskew spherical 0.010 0.03 42.84 0.75 

RF Hessleskew spherical 0.005 0.01 62.25 0.66 

PLSR Hagg spherical 0.004 0.01 60.96 0.77 

RF Hagg spherical 0.004 0.01 44.41 0.66 

PLSR Hagg spherical 0.003 0.01 55.26 0.76 

RF Hagg spherical 0.003 0.01 51.87 0.77 

 

 

Fig 7. Full-point maps of on-line predicted total nitrogen (TN) using local 

dataset and spiked European dataset of Hessleskew field based on (a) 

partial least squares regression (PLSR) and (b) random forests (RF) 

modelling techniques. 
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Fig 8. Full-point maps of Hagg field based on (a) partial least squares regression 

(PLSR) and (b) random forests (RF) predictions of total nitrogen (TN) using local 

dataset and European dataset. 

4. Conclusions  

In this study, the performance of random forest (RF) modelling technique was compared 

with that of partial least squares regression (PLSR) for modelling of the visible and near infrared 

(vis-NIR) spectral data for laboratory (non-mobile) and on-line (mobile) prediction of soil total 

nitrogen (TN) in two fields (e.g., Hesselskew and Hagg) using two different datasets of different 

geographical scales. Generally, the performance of both RF and PLSR models varied in 

accordance with variations in the calibration scales (dataset). The most important finding was 

that spiking of selected samples collected from a target field into a spectral library with large 

variability (e.g., an European calibration dataset (ECD), has resulted in the best laboratory and 

on-line predictions of TN. The on-line prediction accuracies of TN are classified as good to very 

good models and were found to be better than those achieved so far with other researches using 

similar datasets but with different nonlinear modelling approaches. This may well confirm the 

superiority of the RF technique compared to PLSR for on-line predictions of TN in handling the 
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nonlinear relationship that exists in soils between the response variable and predictor variables. 

The on-line predicted maps showed considerable spatial similarity with measured TN. 

Further work is being undertaken to optimize the selection of the calibration dataset for 

spiking of the target field samples into existing spectral library. The concept of spiking of 

general calibration models needs to be tested for other soil properties with other dataset than 

those reported in this study. 
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