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Abstract

Even though machine translation (MT) systems such as Google Translate and
DeepL have improved significantly over the last years, a continuous rise in
globalisation and linguistic diversity requires increasing amounts of profes-
sional, error-free translation. One can imagine, for instance, that mistakes in
medical leaflets can lead to disastrous consequences. Less catastrophic, but
equally significant, is the lack of a consistent and creative style of MT systems
in literary genres. In such cases, a human translation is preferred.

Translating a text is a complex procedure that involves a variety of mental
processes such as understanding the original message and its context, finding
a fitting translation, and verifying that the translation is grammatical, con-
textually sound, and generally adequate and acceptable. From an educational
perspective, it would be helpful if the translation difficulty of a given text can
be predicted, for instance to ensure that texts of objectively appropriate dif-
ficulty levels are used in exams and assignments for translators. Also in the
translation industry it may prove useful, for example to direct more difficult
texts to more experienced translators.

During this PhD project, my coauthors and I investigated which linguistic
properties contribute to such difficulties. Specifically, we put our attention to
syntactic differences between a source text and its translation, that is to say
their (dis)similarities in terms of linguistic structure. To this end we developed
new measures that can quantify such differences and made the implementation
publicly available for other researchers to use. These metrics include word
(group) movement (how does the order in the original text differ from that
in a given translation), changes in the linguistic properties of words, and a
comparison of the underlying abstract structure of a sentence and a translation.

Translation difficulty cannot be directly measured but process information
can help. Particularly, keystroke logging and eye-tracking data can be recorded
during translation and used as a proxy for the required cognitive effort. An
example: the longer a translator looks at a word, the more time and effort they
likely need to process it. We investigated the effect that specific measures
of syntactic similarity have on these behavioural processing features to get
an indication of what their effect is on the translation difficulty. In short:
how does the syntactic (dis)similarity between a source text and a possible
translation impact the translation difficulty?

In our experiments, we show that different syntactic properties indeed have
an effect, and that differences in syntax between a source text and its transla-
tion affect the cognitive effort required to translate that text. These effects are
not identical between syntactic properties, though, suggesting that individual
syntactic properties affect the translation process in different ways and that
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not all syntactic dissimilarities contribute to translation difficulty equally.
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Samenvatting

De kwaliteit van machinevertaalsystemen (MT) zoals Google Translate en
DeepL is de afgelopen jaren sterk verbeterd. Door alsmaar meer globalisering
en taalkundige diversiteit is er echter meer dan ooit nood aan professionele
vertalingen waar geen fouten in staan. In zekere communicatievormen zouden
vertaalfouten namelijk tot desastreuse gevolgen kunnen leiden, bijvoorbeeld
in medische bijsluiters. Ook in minder levensbedreigende situaties verkiezen
we nog steeds menselijke vertalingen, bijvoorbeeld daar waar een creatieve en
consistente stijl noodzakelijk is, zoals in boeken en poëzie.

Een tekst vertalen is een complex karwei waarin verschillende mentale pro-
cessen een rol spelen. Zo moet bijvoorbeeld de brontekst gelezen en begrepen
worden, moet er naar een vertaling gezocht worden, en daarbovenop moet tij-
dens het vertaalproces de vertaling continu gecontroleerd worden om te zorgen
dat het ten eerste een juiste vertaling is en ten tweede dat de tekst ook gram-
maticaal correct is in de doeltaal. Vanuit een pedagogisch standpunt zou het
nuttig zijn om de vertaalmoeilijkheid van een tekst te voorspellen. Zo wordt
ervoor gezorgd dat de taken en examens van vertaalstudenten tot een objec-
tief bepaald moeilijkheidsniveau behoren. Ook in de vertaalindustrie zou zo’n
systeem van toepassing zijn; moeilijkere teksten kunnen aan de meest ervaren
vertalers worden bezorgd.

Samen met mijn medeauteurs heb ik tijdens dit doctoraatsproject onder-
zocht welke eigenschappen van een tekst bijdragen tot vertaalmoeilijkheden.
We legden daarbij de nadruk op taalkundige, structurele verschillen tussen de
brontekst en diens vertaling, en ontwikkelden verscheidene metrieken om dit
soort syntactische verschillen te kunnen meten. Zo kan bijvoorbeeld een ver-
schillende woord(groep)volgorde worden gekwantificeerd, kunnen verschillen
in taalkundige labels worden geteld, en kunnen de abstracte, onderliggende
structuren van een bronzin en een vertaling vergeleken worden. We maakten
de implementatie van deze metrieken openbaar beschikbaar.

De vertaalmoeilijkheid van een tekst kan niet zomaar gemeten worden,
maar door naar gedragsdata van een vertaler te kijken, krijgen we wel een goed
idee van de moeilijkheden waarmee ze geconfronteerd werden. De bewegingen
en focuspunten van de ogen van de vertaler en hun toetsaanslagen kunnen
worden geregistreerd en nadien gebruikt in een experimentele analyse. Ze
geven ons nuttig informatie en kunnen zelfs dienen als een benadering van
de nodige inspanning die geleverd moest worden tijdens het vertaalproces.
Daarmee leidt het ons ook naar de elementen (woorden, woordgroepen) waar
de vertaler moeilijkheden mee had. Als een vertaler lang naar een woord kijkt,
dan kunnen we aannemen dat de verwerking ervan veel inspanning vergt. We
kunnen deze gedragsdata dus gebruiken als een maat voor moeilijkheid. In ons
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onderzoek waren we voornamelijk benieuwd naar het effect van syntactische
verschillen tussen een bronzin en een doelzin op dit soort gedragsdata.

Onze resultaten tonen aan dat de voorgestelde metrieken inderdaad een
effect hebben en dat taalkundige verschillen tussen een bron- en doeltekst
leiden tot een hogere cognitieve belasting tijdens het vertalen van een tekst.
Deze effecten verschillen per metriek, wat duidt op het belang van (onderzoek
naar) individuele syntactische metrieken; niet elke metriek draagt even veel
bij aan vertaalmoeilijkheden.
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Chapter 1

Introduction

1.1 Preamble
The digital age has facilitated communication to an astounding level. We are
at a point in time where we can use machine translation (MT) relatively re-
liably to get the gist of a text in many different languages, have PowerPoint
subtitle our presentation in real time in a different language, and we can even
install apps on our phone that can serve as a multilingual interpreter, listening
to and translating what is being said. Whereas these examples do a good job
of making translation tools available to the masses, no guarantee of quality
is given. If a translation contains an error, then that is almost expected, “it
is a machine after all”. One can easily imagine specific cases or general do-
mains where mistranslation can lead to catastrophic consequences such as the
translation of legal, medical, and technical documentation. In other scenarios,
such as literary translation, poor translations miss their mark of conveying an
idea or atmosphere and can destroy the immersion that the original text was
striving for. There is no question about it: machine translation has its flaws
and in many cases a post-editor is required who makes changes to the MT
version, or preferably, if the available resources allow it, a human translator
should translate the text from-scratch. Expert translators are needed, even in
this digital age.

Translation, human or otherwise, comes with its own set of problems. Most
notable for this thesis is the difficulty of translation and possible errors that
may result from it. Professional translators would undoubtedly agree that
some texts or even specific constructions are more difficult to translate than
others. Being able to predict the translation difficulty (or translatability) of a
source text (ST) before translating would have some considerable applications.
It could be a helpful tool in both educational and production environments:
(i) in (machine) translation research to select texts of similar or contrasting
translation difficulty; (ii) in the translation industry to deliver source texts to
translators with the appropriate expertise; (iii) in an educational environment
where texts of a relevant difficulty level needs to be attained. For instance
during exams and assignments to ensure that all students receive texts of sim-
ilar translation difficulty. Unfortunately such a general-purpose system does
not exist. However, in research focused on machine translation, Underwood
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Chapter 1. Introduction

and Jongejan (2001) proposed a statistical tool that can highlight possibly
problematic elements in a source sentence that may be difficult for MT. Fea-
tures such as “long sentence of more than 25 words” or “one or more nominal
compounds” are used to this end. (It should be noted that this tool dates from
2001 and that it probably is not applicable to contemporary MT systems.) In
this paper we are only interested in human translation, however.

This PhD project set out to contribute to the field of translatability. Ini-
tial goals were conceived, and due to follow-up research findings, and perhaps
particularly my own interests, the course of the project changed over time. At
the start of the project, the intent was to create a translatability system that
could quantify the translation difficulty of a given text as well as highlight
specific constructions in that text that contribute most to translation issues.
However, it quickly became clear that translation difficulty is not easily re-
ducible to only specific constructions or language properties (as Chapter 2 will
show). Translation difficulty is influenced by a range of factors and I chose to
take a deep dive into a couple of them. Therefore, a translatability prediction
system has not been created and instead more time was dedicated to lay out
the syntactic, methodological foundation for such a tool.

In what follows a brief overview of the individual papers and book chapter
is given. These publications follow each other chronologically and they each
start where the previous left off. The works themselves are provided in full as
they were published (or submitted) in the following chapters. Small (formal)
changes have been made for consistency purposes or to add glossary references,
but the content itself was not altered. I apologise in advance to the reader:
because these publications all touch on the same topic, overlap is inevitable.
Particularly literature studies and data set descriptions will be similar across
studies.

Chapter 2: Correlating Process and Product Data. Keeping in
mind that the initial goal was to create a translation difficulty prediction sys-
tem that exclusively makes use of source text features, we first tried to answer
the question How does translation process data correlate with the translation
product? The crux here, and in what follows, is that translation process mea-
sures (such as eye-tracking data) are often used in the field as a proxy for
cognitive effort. By analysing someone’s behaviour during a task, you can get
a good idea about the cognitive effort that was required and, by extension,
the difficulties that they were facing. The idea behind this question is that
if we know which product features correlate with cognitive effort (difficulty),
then we can try to model and use such features as part of a translatability
prediction system. The product-based measures that we used were number
of annotated translation errors, word translation entropy (certainty of a lexi-
cal translation choice), and word reordering. Those measures were correlated
with process features of three different categories: keystroke information, eye-
tracking data, and duration. As a pilot study of sorts we investigated whether
we could confirm the findings of related research where a relationship was
proven between product-based measures and data of the translation process.
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Weak, but significant, correlations were found. Low correlations are no sur-
prise: the mental processes involved in translation are complex and highly
interactive, and high correlations are hard to expect. Significant correlations
for word translation entropy and syntactic equivalence indicated to us that
these features could be used as difficulty predictors in future work. In this and
the next chapter, “syntactic equivalence” is reduced to a single facet of syntax,
namely word (group) order. Also see the literature section (Sec. 1.2.1) below
on equivalence.

Chapter 3: Predicting Syntactic Equivalence. The results of Chap-
ter 2 suggested that syntactic equivalence, which in this case means “word
reordering”, is correlated with cognitive effort (as other research also con-
firmed). It would therefore make a fitting feature for a translatability sys-
tem. Put differently: if we know before translating that a source sentence will
need a lot of word reordering, we can assume that it will be more difficult
to translate. We created two new metrics to measure this reordering on the
sentence-level: word_cross and sequence cross. The former is different from
the word reordering metric used in Chapter 2 (bidirectional and absolute in-
stead of directional and relative, as the paper will explain), and the latter of
which is word group based. The (applied) research question in this article is:
How well can a machine learning system predict word (group) reordering by
only making use of source text information? Because we know from Chap-
ter 2 that word reordering correlates with cognitive effort, it would be helpful
if we could predict such a feature to eventually use in a translation difficulty
prediction system. We therefore built different machine learning systems and
trained them on a large parallel corpus of Dutch and English to predict such
word (group) reordering. The best system, a neural architecture that com-
bines semantic and morphosyntactic features, achieved a moderate Pearson r
correlation of 0.54 for word reordering and 0.58 for word group reordering.
These results made it clear to us that word (group) reordering for a given lan-
guage pair is predictable, even if only the source text is available. But surely,
syntactic equivalence is more than reordering alone?

Chapter 4: Metrics of Syntactic Equivalence. In this book chapter,
we built on the previous work and introduced different measures to calculate
the difference between syntactic properties of a source sentence and its trans-
lation. The emphasis lied on trying to disentangle the broad concept of syntax
into more specific syntactic properties. More formally, Which fine-grained
metrics can quantify syntactic divergences between a source and target text
on the sentence level? and additionally, What is the effect of sentence-level,
syntactic metrics on process data? First, the word groups in Chapter 3 were
determined merely by constraints on word alignment. These groups were there-
fore not guaranteed to be linguistic entities. In Chapter 4, we further restrict
those word groups to ensure that a word group must consist of a meaningful
linguistic unit as determined by the word’s position in their linguistic, struc-
tural tree. Second, we measure the changes in dependency label (e.g. subject,
adverbial clause) for a word compared to its translated word(s). The last, but
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most complex, measure, is ASTrED (Aligned Syntactic Tree Edit Distance). It
compares the abstract, linguistic structure of the source sentence to its trans-
lation. Similar to Chapter 2, we related these product features to process
features. We found that, on the sentence level, label changes had a signifi-
cant, positive effect on the production duration.1 In addition, linguistically
motivated word group reordering positively and significantly affect the total
reading time on the source sentence. So, the more divergent a source sentence
is from its translation in terms of linguistic labels and word group order, the
more cognitive effort is required to translate it.

Chapter 5: The Effect of Product-based Metrics. Up to this point,
our previous work focused on the sentence as a single unit. We were particu-
larly interested in which syntactic, quantifiable phenomena lead to difficulties
when translating a sentence. However, a fine-grained approach is bound to pro-
vide a more detailed insight of specific difficulties on smaller linguistic units.
With a translatability prediction system in mind, word-level features would be
helpful because they would allow a machine learning system to better identify
sub-sentential difficulties that translators may be faced with in addition to
coarse-grained, sentence-level problems. Rather than aggregating our metrics
on the sentence level, as we did in the previous chapters, Chapter 5 re-imple-
mented all the previous work on the word level. In succession to the previous
chapter, the research question to answer was What is the effect of word-level,
syntactic product-based metrics on process data? Particularly, we measured
the effect of word (group) reordering and the structural comparison metric
ASTrED alongside other existing metrics on different stages of the translation
process. Significant, positive effects were found, indicating the impact of word
(group) reordering and structural divergences on translation difficulty. This
suggests that if a given word (or its group) needs to be reordered, the difficulty
to translate that word will be higher. Similarly, higher cognitive effort can also
be observed when the position of a word in its respective linguistic tree differs
from its related position in the target tree.

Before presenting these publications in full, three more preliminary sections
will be given. In Section 1.2, a summary of the most related research is given.
Next, the data sets that were used in different chapters will be introduced
(Sec. 1.3). Even though these are described in their respective publications
as well, it is worth condensing them in one place for reference. Finally, an
extensive section is preserved for the description of the open-source library
that is the culmination of this PhD project (Sec. 1.4). In that section, the
library itself, its uses, and the metrics involved are exemplified and explored.
The section brings together the different metrics that have been introduced
over time in Chapters 3, 4, and 5.
1Positive, or negative, effects in this thesis always refer to the statistical concept where an
effect indicates that as a given predictor variable increases, the dependent variable increases
or decreases in a significantly meaningful way, respectively.
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1.2 Literature
Even though the literature sections of the following chapters each refer to
topic-specific related research, three specific topics deserve emphasis. First
and foremost, the concept of equivalence has a special meaning in TS, but
also in (computational) linguistics. It is therefore necessary to explain how it
is used in this thesis. Second, a general section discusses (mostly theoretical)
approaches and models of how language is represented in the mind, particularly
in light of translation and bilingualism. In a final section, specific research on
translatability is summarised to illustrate how it has been explored. This
section shows overlap with the literature sections in the separate publications.

1.2.1 Equivalence
In the early chapters that follow, the term equivalence is discussed in a limited
context within Translation Studies (TS) (Sec. 2.2.3.2, Sec. 3.2), but it is never
clarified in light of my own research. As it might not be clear to the reader
what is intended with “(syntactic) equivalence” in the backdrop of Translation
Studies, this section hopefully disambiguates its meaning for the remainder of
this work. Below I will first provide a non-exhaustive overview of how the
concept has been notably studied in TS and end with a motivation of how I
intend to use it throughout this thesis. For a more complete discussion, see
the work by Panou (2013) and Pym (2014), which served as a reference for
this section.

As early as 1958, Vinay and Darbelnet mention equivalence to mean a
semantic correspondence where the meaning representation of a situation is
the same for both the source and target expressions. From the translated
edition in 1995: “The equivalence of the texts depends on the equivalence of
the situations” (Vinay & Darbelnet, 1995, p. 5). As one of seven methods of
translation (Vinay & Darbelnet, 1995, p. 30 and onwards;), equivalence aims
to transfer the meaning of one text to its translation as closely as possible,
even if that implies the complete abandonment of the original style or form.
Idioms, for example, illustrate such an equivalence well, where a direct (rather
literal) translation often does not have the desired meaning in the target text
(TT).

From the point of Structural Linguistics, where form and meaning are
deeply intertwined, Jakobson argues that full equivalence rarely exists in trans-
lation “between code-units” (Jakobson, 1971, p. 261; originally published in
1959), similar to how synonymy is never complete equivalence because of that
intimate relationship between a (lexical or linguistic) item and its meaning.
That does not mean, however, that two texts cannot be equivalent: when
translators choose to focus on the transfer of meaning of the whole source
message, rather than systematically translating such “code-units” individu-
ally, a (non-formal) equivalent target text can be created. This interpretation
is largely similar to Vinay and Darbelnet (1995) above.
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In a more strict sense than Jakobson (1971), Nida (1964) claims that there
can be “no fully exact translation” (p. 156). The job of the translator, then,
is to find the translation that is as close as possible to the original, but this
closeness (or sameness) can be approached from different angles, and is de-
termined by what the translation is intended to achieve. Formal equivalence,
according to Nida, emphasises both form and content and is for instance typ-
ical when translating poetry or when one is concerned with the one-on-one
correspondence of sentences and concepts. On the other end of the scale lies
dynamic equivalence, where a translator focuses on the “naturalness of ex-
pression” (p. 159) and conveys the source meaning into the target context
and culture. This type is closer to what Vinay and Darbelnet and Jakobson
understand as equivalence, with a focus of a meaning equivalent of the whole
message instead of a formal one.

Observing translation as a (formal) linguistic phenomenon, Catford dis-
tinguishes between textual equivalence and formal correspondence. Whereas
(textual) equivalence is similar to (dynamic) equivalence as it has been dis-
cussed so far, formal correspondence is the language-systematic comparison of
a source language unit to its translated unit, or put differently “[a] formal cor-
respondent [...] can be said to occupy, as nearly as possible, the ‘same’ place
in the ‘economy’ of the TL [target language] as the given SL [source language]
category occupies in the SL” (p. 27). Crucial to this thesis, Catford continues
to discuss two major types of translation shifts where a translator deviates from
formal correspondence. In level shifts, a linguistic property of the source text
is translated by means of a characteristic on a different level, typically a shift
from grammar to lexis or vice-versa. Such shifts are for instance used when
the valence or implication of a verb cannot easily be transposed grammatically
into the target language, requiring a lexical change or addition instead. In ad-
dition, four types of category-shifts are discussed. Structure-shifts are cases
where the linguistic structure of the target text has changed compared to its
original. This involves alterations to language structure across different levels
(such as phrases and clauses) as well as word (group) order changes. Class-
shifts occur when the classification of a given linguistic unit (such as a word)
differs from its translated unit, for instance when its word class or function in
the sentence has changed. When the linguistic unit in the source text differs
from the unit of its translation (e.g. word-to-phrase), a unit-shift has taken
place, for instance when a single lexical item is translated as a phrase. Fi-
nally, intra-system shifts describe those cases where the two language systems
involved correspond formally, i.e. their monolingual language rules are approx-
imately similar, but where a correct translation requires non-correspondence.
As an example, Catford refers to plural versus singular surface forms of the
same concept (EN “the dishes” vs. FR “la vaisselle”; p. 80) or the explication
of articles (EN “He is a teacher” vs. FR “Il est professeur”; p. 81). Panou
(2013) notes that Catford was criticised for his pinpoint-focus on the almost
exclusive role of linguistics on translation with disregard for the importance of
extra-textual context.
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Baker (2011, first published in 1992) tears open equivalence and uses it in
a very broad context to touch upon a variety of levels in which equivalence can
be present. She states that equivalency relations can exist on the (sub-)word
level, in syntax and grammar, semantics, pragmatics and beyond. For this
literature overview, especially her discussion on grammatical equivalence is
relevant, which is related to the structure and unit shifts of Catford, above.
Particularly, nonequivalence of grammar systems (morphology and syntax)
can, perhaps unsurprisingly, pose difficulties for translators. If the SL has
grammatical rules or categories that are not present in TL (e.g. concerning
gender, number, voice), the translator has to add or remove additional linguis-
tic units (morphological or lexical) in the target text to compensate for this
difference in expressiveness.

Pym (2014, first published in 2010), finally, considers two opposing paradigms
of equivalence in translation literature. On the one hand, directional equiv-
alence is based on the assumption that translation is not a symmetric rela-
tionship between a source text and its translation (Pym, 2014, Chapter 3). In
other words, when back-translating a translation, the generated text will not
have the same equivalence relation to TT as TT has to the original ST. In
this light, Pym refers to the work of Kade (1968) and his different types of
equivalence on the word and phrase level. One-to-one (or “total”) equivalence
is relatively rare and restricted to technical terms. This type of relationship
holds in two directions and is therefore more keen to natural equivalence, which
will be mentioned next. One-to-several equivalence occurs when translators
have a number of alternatives to choose from, and one-to-part where a trans-
lation equivalent only covers part of the source concept. Lastly, one-to-none
occurs when a translation is simply not available and the creation of a ne-
ologism or borrowing of an existing term in another language is necessary.
Natural equivalence (Pym, 2014, Chapter 2) dictates that, in principle, “the
things of equal value are presumed to exist prior to anyone translating” (p. 6).
In other words, language systems have corresponding tools to their disposal
to make the same meaningful statements. Note that such a view clashes with
aforementioned (structuralist) convictions by Jakobson (1971) and Nida (1964)
that posit that the lexical surface forms of different languages per definition
cannot be equivalent because language, in structuralism, is a realisation of
a world view which inherently must be different between languages and cul-
tures. Furthermore, natural equivalence does not depend on directionality but
rather the equivalency relationship between ST and TT holds regardless of the
translation direction. From a product-oriented, methodological viewpoint, the
operationalisation of syntax in this thesis is most related to natural equiva-
lence. Not because I am of the conviction that only one correct translation
can ever exist but because given a final product (i.e. the given translation),
the quantifiable properties in my view are not dependent on the translation
direction. This is also in line with the interpretation of equivalence in Formal
Language Theory (FLT).

(Formal) Grammars in FLT are considered weakly equivalent if (and only
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if) they generate the same string language and strongly equivalent if and only
if they have the generative power to create the same tree language (Chomsky,
1963, p. 395; and Bod (1998) for an overview). As such, equivalence in FLT
indicates a mathematical and algorithmic property. I use equivalence in a sim-
ilar way applied to syntax to mean the relationship between a source unit and
an aligned target unit (word, phrase, sentence etc.) that can be measured by
means of quantifiable properties such as the suggested metrics introduced in
this thesis. These metrics are independent of the translation direction, which
follows Pym’s natural equivalence. As is hopefully clear by now, literature
tends to focus greatly on the importance of equivalence of meaning whereas
I almost exclusively emphasise the “relevant similarity” (Chesterman, 2011,
p. 26) between syntactic structures – as one does in FLT. In the case of the
suggested metrics lower values indicate a higher equivalence, or – synonymous,
here – higher similarity. Note that in such an interpretation a syntactically
equivalent, and hence syntactically literal, translation is not necessarily a cor-
rect one, neither semantically nor grammatically.

Early chapters in this thesis will focus on (my quantification of syntactic)
equivalence between a source text and its translation, and gradually the re-
lated concept of literal translation takes the spotlight. Literal translation can
be operationalised in very specific ways. Important to repeat, though, is that
literal translation is often thought of as the early, default mode of translation,
or as Balling et al. (2014) put it: “literal translation is likely to be a univer-
sal initial default strategy in translation” (p. 234). The metrics that will be
introduced in this thesis all, in a specific but practical sense, model parts of
the syntactic component of literal translation. Put differently, by quantify-
ing (syntactic) differences between a source text and its translation, we are
also measuring how close the translation is to a literal alternative, i.e. how
syntactically equivalent they are. This will be explained in greater detail in
Chapters 4 and 5.

1.2.2 Bilingual Models of the Mind
Although each of the following chapters deals with a specific angle of the
translation process, mental processes involved, and the differences with other
language-involved tasks, the current section will address different dichotomies
of translation as a means to set the stage on which the following chapters will
be played. Particular attention will be paid to the historical difference between
horizontal and vertical processing.

While discussing the processes of interpreting and translation, Seleskovitch
(1976) compares two different approaches of reformulation, namely code switch-
ing versus the transfer of ideas. Code switching here refers to the almost purely
technical task of switching a set of sequential symbols in one language to a
corresponding sequence in another. In the extreme case, understanding the
complete sequence is not a requirement to substitute the source symbols for
the target symbols (although there is no guarantee that that leads to a correct
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translation). On the other end of the spectrum, deverbalization of the meaning
on the source side is key. The relevance of surface forms of the source and tar-
get text (or speech) are superseded by the transfer of semantics and prosody.
Either the symbols are translated between one language and the other (like
a dictionary where one consciously goes from the source lemma to the target
translation), or the source message is first understood and deverbalized be-
fore being transferred to the target language (TL). Seleskovitch stresses that
translation and interpreting are not to be identified as these extremes, but
rather each individual instance of such a task is positioned on the continuum
between the end points (p. 96). de Groot (1997) describes two different points
of view that she calls vertical and horizontal translation. In the vertical view,
the different stages in the translation process are considered self-contained in
terms of the activated language. Particularly, the source language text needs
to be understood within its context and pragmatic intention, after which the
deconstructed meaning can be reformulated in TL. This is similar to the de-
verbalisation process of Seleskovitch (1976), above. In contrast, the horizontal
view holds that translation is a transcoding process where specific units in
the source text (words, phrases, clauses) are replaced by their TL equivalent,
similar to what Seleskovitch called code-switching. In such an interpretation,
de Groot suggests, translated words have a shared representation in the bilin-
gual lexicon of the translator. It follows, then, that during translation the
two involved language systems are co-activated, because lexical entries are
shared in memory. Although a vertical orientation is often strongly defended,
“[e]ven strong advocates of the vertical view acknowledge that translation in-
volves some horizontal processing” (de Groot, 1997, p. 30-31). Even though
Seleskovitch (1976) does not discuss co-activation and bilingual, shared repre-
sentations, de Groot notes that Seleskovitch is one of many “advocate[s] of the
vertical view” (p. 31), who consider the parallel process to be inferior, because
in such a view the target text is (or can be) influenced too greatly by the
source text through shared (active) representations.

de Groot (1997) was definitely not the first to suggest that representations
are shared between a bilingual’s languages, but her work provides an insight-
ful overview of such literature that has suggested different views on shared (or
independent) representations of the mental lexicon (particularly in the sec-
tion on “Bilingual memory representation”, p. 34-37). Important to highlight
is that in this specific case, the emphasis lies on the lexicon and conceptual
representation, and that other linguistic aspects were not directly involved.
Perhaps most notable for us, is the Revised Hierarchical Model (RHM) of
Kroll and Stewart (1994). The authors discuss two different viewpoints that
have been described in related work: either a bilingual’s language systems are
independent of each other or “common” (i.e. shared). Alternatively, more
coordinated work suggests that a hierarchical model is perhaps a more natural
approach to the translation process. In such a view, it is argued that words
are stored in language-specific memory systems but that concepts are shared
between languages. Links exist between the language systems themselves and
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between the systems and the shared conceptual memory. The RHM, then,
claims that the strength of the connection between the languages themselves
and the shared lexicon is determined by the dominance of one language (L1)
over another (L2). The link between L1 and the conceptual memory is par-
ticularly strong and the lexical link from L2 to L1 is most prominent. That
means that translating from L2 to L1 is more straightforward by using lex-
ical transfer, and that translating from L1 to L2 requires so-called “concept
mediation”, making translation slower from L1 to L2 than from L2 to L1.

In a similar contrasting study, Grosjean (1985) makes the distinction be-
tween two views of research in bilingualism. In the monolingual or frac-
tional view a bilingual is considered to have two separate language compe-
tences, and the “covert or overt contact between their two languages should
be rare” (p. 470). Either one language is used (and activated) or the other,
but simultaneous use is accidental or comes down to language borrowing and
code switching. In this context, code switching is the bilingual concept of
switching languages rather than the technical symbol-transfer process that
Seleskovitch (1976) refers to. An important implication in this view is that
language activation is seen as a conscious choice by the bilingual and that au-
tomatic, unconscious access to both languages in the mind is rare or at least
unexplained. On the other side, and further discussed in Grosjean (1989, 1997,
2001), stands the bilingual or holistic view. In this perspective of bilingualism,
a bilingual is not only the combination of two equally monolingual parts but
rather they contain a blended linguistic system that encompasses both their
languages in co-existence. This view is most similar to the horizontal view dis-
cussed above. Bilinguals can activate the desired language systems alongside a
continuum depending on the situation. On one side of the spectrum is mono-
lingual mode, where they only activate one of their languages. On the other
end, a person can mix the languages when in bilingual mode (e.g. code switch-
ing and borrowing). The bilingual speaker can position themselves anywhere
on this continuum between these two end points depending on the situation.

More recent, experimental studies provide evidence to support the idea
that horizontal processes are more highly involved in translation than vertical
ones. Experiments by Macizo and Bajo (2004, 2006), for instance, compare
reading for comprehension with reading for translation for the Spanish-English
language pair and find that reading for translation is significantly slower. They
argue that these results support the claim that horizontal processes are active
during translation. Such processes integrate code switching and target lan-
guage forms before ST comprehension has concluded, which means that both
language systems are active at the same time during the translation process. In
a vertical view, one would expect that reading for translation has no negative
impact on reading time: it should be very similar to reading for comprehen-
sion because the level of co-activation in such a view is small or non-existent.
Instead, the authors find that accessing the target language occurs before the
comprehension phase of the source text is finished, thus imposing additional
cognitive load on the translator. These findings concerning the simultaneous
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activation of both lexical and syntactic levels of processing, were confirmed in
Ruiz et al. (2008).

Such results about shared representations are in line with the conclusions of
priming studies in cognitive psychology. In (monolingual) structural priming,
the choice between two equally grammatical and correct syntactic structures
is influenced by a previously processed prime structure (Bock, 1986; Levelt
& Kelter, 1982). Extending such paradigm to bilingualism and related to
the shared representation implication of the horizontal view on translation,
Hartsuiker et al. (2004) experimented with Spanish-English bilingual partic-
ipants and showed that syntactic priming (active or passive constructions)
occurs across languages and that syntax of two languages can be shared in the
mind. This so-called shared-syntax account implies that language rules that
are shared between language systems lead to a facilitating effect and prim-
ing of the same rule in the different languages. This theory was confirmed
in Hartsuiker et al. (2016). In later research, Hartsuiker and Bernolet (2017)
suggest that shared representations of syntax are not static and that syntactic
priming works in function of language proficiency. Put differently, language
learners will be primed differently than bilinguals, and the way in which syn-
tax is shared in the mind develops in function of the language learner’s profi-
ciency. The underlying warning is that researchers should be cautious about
making claims involving priming depending on the proficiency level of partic-
ipants. Jacob et al. (2017) find that in German speakers of L2 English, both
the level of embedding (whether a construction is part of a subordinate or
main clause) and the constituent order influence the choice of target struc-
ture. They conclude that, because both these variables play their own part in
causing cross-lingual priming, “the effect can presumably only be caused by
a linguistic representation. ... an obvious candidate for this is a hierarchical
syntactic tree representation” (p. 279). For an in-depth overview of research
on cross-linguistic structural priming see Hartsuiker and Bernolet (2017).

From a production-oriented viewpoint, Gile (1995) introduces the Sequen-
tial Model of translation. The model entails that for a meaningful translation
unit (be it a word or a larger unit), the translator creates a mental Meaning
Hypothesis. If the hypothesis is found to be plausible in terms of the source lan-
guage and world knowledge, this meaning can be reformulated into the target
language. During this reformulation phase, the unit of translation is translated
using TL knowledge as well as any required extralinguistic information. The
translation of this particular unit is then verified to make sure that the infor-
mation of the source side is transferred correctly. In addition, the translation
is tested for contextual, stylistic, and pragmatic appropriateness. During the
translation process, the translator occasionally verifies that larger groups of
translation units are correctly translated, too. This model is “not designed to
be an accurate description of the actual translation process ... it represents an
idealized process in which pedagogically important components are stressed”
(p. 106) and Gile does not go into shared representations or co-activation: the
Sequential Model solely serves as a pedagogical tool that illustrates the indi-
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vidual, sequential phases that contribute to the production of a translation. It
is for instance possible that during this sequential process of translation the
languages or specific language properties are both active (perhaps to different
degrees). This model does, however, highlight the step-by-step, sequential view
of understanding the source text and reformulating it into the target language.
Such an approach is common in (pedagogy involving) interpreting (Gile, 1995;
Lederer, 1994, 2003) where the deverbalization process is a marked step in the
translation process (e.g. Lederer, 2003, Section 1.5). “Ideas” (as Seleskovitch
calls it) should be transferred after abstracting the meaning from the form of
ST and then they can be reformulated in the target language.

Rather than exclusively contrasting vertical and horizontal processes Scha-
effer and Carl (2013) propose a Recursive Model of translation that implies
that translation consists of both. In recursive cycles horizontal and vertical
processes are integrated in the translation process. Early, horizontal processes
access shared representations which, as Seleskovitch (1976) warned, lead to a
target text that is highly influenced by the source text. By default the source
text is, almost automatically, very closely followed, leading to a literal trans-
lation as suggested in the literal translation hypothesis of Tirkkonen-Condit
(2005). Vertical monitor processes verify the acceptability of the translation
and ensure equivalence between the source and the target text, and interrupt
the automatic translation processes if a problem is encountered. The authors
provide supporting evidence of such interconnected view of horizontal and ver-
tical processes from a priming study where they tested whether reading and
translating a sentence primes shared representation more than reading for com-
prehension only. Because participants could recall previously seen sentences
better in the translation condition, it is suggested that during translation the
shared representations are activated alongside monolingual representations. If
a monolingual and bilingual representation overlaps then such aspects are ac-
tivated twice, allowing for easier recall. Later experiments by Schaeffer and
Carl (2017) confirm this view. That study also reaffirms the aforementioned
shared-syntax account (Hartsuiker et al., 2004) by observing an effect of word
order differences among translators on the eye-key span (EKS; Dragsted, 2010;
Dragsted & Hansen, 2008) and on the likelihood of concurrent ST reading and
TT typing. EKS measures the time between the first or last fixation on a
word and the first keystroke that contributes to the prediction of that word
(Schaeffer and Carl (2017) calculated EKS from the first fixation). The au-
thors conclude that their results confirm the shared-syntax account because
“when the word order in the ST and the TT is dissimilar, also the eye-key span
(EKS) is shorter and fewer different word orders are observed” (p. 147). The
Recursive Model of translation of Schaeffer and Carl (2013) is inspired by an
interpreting model by Christoffels and de Groot (2005) in which the source and
target lexicon is activated simultaneously to allow for parallel comprehension
and monitoring of the produced translation. It is also heavily influenced by
the Monitor Model by Tirkkonen-Condit (2005), who revived the “monitor”-
moniker from earlier work by Toury (1995, p. 191-192), who in turn used it
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to describe a statement by Ivir (1981) who famously wrote that a translator
deviates from literal, formal correspondence “only when the identical-meaning
formal correspondent is either not available or not able to ensure equivalence”
(p. 58).

1.2.3 Translation Difficulty
This thesis focuses specifically on syntactic difficulties in translation, but issues
in translation can manifest itself on different linguistic levels. In this section I
will summarise relevant literature in the field of (human) translatability. Most
content of this overview is also spread out over the following chapters, where
each chapter highlights specific aspects of its topic with respect to translation
difficulty. This overview section should therefore be seen as complementary to
the following chapters rather than an independent whole. Translatability in
this section does not refer to the, almost philosophical, discussion whether or
not a source text can truly and fully be translated (see Sec. 1.2.1 in this thesis,
as well as Catford, 1965, Ch. 14 “The Limits of Translatability”). Instead,
the focus lies on difficulties that can hinder a translator. For a deep-dive into
(source) text complexity and translation difficulty, also see the overviews in
Akbari and Segers (2017); Heilmann (2020); Sun (2012, 2015).

Although not directly using the term translation “difficulties”, Ervin and
Bower (1952) discuss translation distortions where the meaning of the source
text has been changed in the translation due to a number of language-related
categories. As a first category, direct lexical translations may not share the
exact conceptual meaning with the original text, leading to an incorrect trans-
lation. Second, grammatical rules and requirements may differ between the
source and target language system, which may cause either a loss of informa-
tion or, conversely, uncertainty or vagueness (e.g. languages where the gender
of the speaker is part of the grammar compared to those where such informa-
tion is not represented). Syntactic variations may also result in unintended
emphasis or even other, unwanted meaning. Cultural factors, finally, can have
an important effect on which translation should be produced, and depend on
the languages and cultures involved.

Nord (2005, p. 167; first published in 1991) makes the distinction between
translation difficulties and translation problems, the former of which, she ar-
gues, is subject to the specific translator. Translation problems, however, can
be categorised as follows. Pragmatic problems are caused by a difference in
the source and target situation in which the text and its translation are used.
Convention-related problems are cultural-bound, similar to the cultural factors
of Ervin and Bower (1952). Linguistic problems relate to structural differences
between source and target language systems. Text-specific problems, finally,
arise from specific properties of (parts of) the source text.

In addition to such broad, categorical approaches translation difficulty has
also been investigated with empirical methods. A pioneer of sorts, Campbell
(1999) defines translation difficulty in terms of the cognitive processing effort
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involved with the task – a methodological approach that is assumed in this
thesis as well. In addition to text-intrinsic difficulties, the author mentions
translator competence and the mode of translation as contributing factors to
translation difficulty. Those will not be discussed in this thesis (or barely,
cf. the distinction between students and professional translators in Ch. 2) and
the focus lies on properties of a text and its relation to a potential transla-
tion. Campbell specifically refers to two cognitive approaches to translation
difficulty. First, limitations of a translator’s working memory with respect to
the task are indicative of difficulty (Gathercole & Baddeley, 1993). In terms of
(source text) syntax, the author gives the example of grammatically difficult
items where a lexical item, perhaps ambiguous, needs to be held in the lim-
ited capacity of the working memory until another disambiguating element is
encountered, for instance its grammatical head. Because the working memory
has a limited capacity, it can only hold (and process) a limited amount of in-
formation at a time. Supplementary to that approach, a lexis-driven language
processing paradigm can be utilised as seen in follow-up research to the speech
production model of Levelt (1989), particularly de Bot and Schreuder (1993).
In such a view, difficulties in the source text are either those lexical items for
which no lemmatised form is available in the mental lexicon or whose lemma is
underspecified so that the (semantic) concept cannot be readily retrieved. In
an initial experimental study, Campbell hypothesises that translation alterna-
tives across translators of the same text can serve as an indicator of difficulty
and motivates that decision by its correlation with the number of edits that
translators made to a segment. Number of edits are indicative of dealing with
problems or difficulties. Such a focus on translation variation left its mark and
was later refined by means of an entropy-based component (both on the lexi-
cosemantic and syntactic plane; Carl & Schaeffer, 2014; Carl et al., 2019), as
will be discussed later in this thesis. Among Campbell’s results is the impact
on translation difficulty of word class (particularly verbs and adjectives), com-
plex (and ambiguous) noun phrases, and the level of abstractness. Similarly,
considering difficult lexical items, Dragsted (2005) emphasises the effect that
difficult terminology has on the translation procedure.

Campbell continued research into translatability, most notably with his
colleague Hale. Initially in Campbell and Hale (1999) and later in Campbell
(2000), they present the Choice Network Analysis (CNA), which is a contin-
uation of Campbell’s earlier work involving variation amongst the generated
translators. The underlying assumption here is that “target texts are a tan-
gible source of evidence of mental processing in translation” (Campbell, 2000,
p. 32) and that a larger sample of possible translations approximates the total
number of possible translations and, as such, must reflect the decision-making
process of the subject-translators. However, contrary to the hypothesis in
Campbell (1999), Hale and Campbell (2002) found that it is not necessarily
the case that higher variation (multiple translation choices) lead to higher
difficulty, which in this study is taken to be reflected by translation accuracy.

Campbell (and Hale) above touch on two different aspects that can con-
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tribute to translation difficulty. On the one hand, source text specific proper-
ties can be responsible for a number of problems and on the other, translation-
specific issues may give rise to higher translation difficulty. Translation is a
complex process that involves interacting mental sub-processes (cf. Sec. 1.2.2)
but, broadly speaking, we can say that the source text needs to be read,
understood, and its meaning translated. Text reading and comprehension is
therefore an important component of the translation process. The relation
with the field of readability should be clear. It has been suggested that formu-
las to quantify the readability level of the source text can to some extent be
used as approximates for translation (Jensen, 2009, and see Sec. 2.2.2 in this
thesis for more on readability). These formulas typically use textual informa-
tion such as number of (difficult words), sentence length, number of syllables,
and so on. Such a claim that translation difficulty relates to translation diffi-
culty was later confirmed in experimental research by Sun and Shreve (2014),
who found that a source text’s readability explains its translation difficulty,
but – and this should be emphasised – only partially. Translation difficulty
in this research was measured by (a variation of) the NASA task load index
(TLX) (Hart & Staveland, 1988), a subjective rating scale for assessing work-
load where participants fill out self-assessment surveys. Similarly, Liu et al.
(2019) used TLX scales to assess subjects’ translation difficulties, and they
used readability formulas alongside frequency metrics and non-literalness (e.g.
idioms) to quantify text complexity. This way of measuring text complex-
ity (readability, frequency, and non-literalness) is in line with previous work
by Hvelplund (2011). Other studies have also used readability scores to con-
trol for text complexity in experimental translation studies (e.g. Daems, 2016;
Sharmin et al., 2008).

Liu et al. (2019) found that a moderate correlation exists between the
self-assessment of TLX data and behavioural data. In translation process re-
search such data is often used as an approximation of cognitive processes, and
hence difficulty. By observing translators’ behaviour through their process
data, a window is provided to look into the difficulties they face. This mea-
sure is bound to reflect cognitive problems more accurately than only using
translation accuracy as a measure of difficulty, as was frequently done before
eye-tracking technology was available (e.g. Hale & Campbell, 2002). The first
to use eye-tracking in studies related to the translation process was O’Brien
(2007) who made use of this technology to identify cognitive effort during the
use of translation memories. Since then, many researchers have followed this
experimental approach (Alves & Vale, 2009; Balling et al., 2014; Daems et al.,
2017; Dragsted & Hansen, 2009; Jakobsen, 2011, and many more). In fact,
most references to translation process research in this thesis make use of eye-
tracking data as an approximation of cognitive effort. Another type of process
data that can provide insights into the mental processes of a translator, is
keystroke logging. In relation to cognitive effort, they are frequently used to
measure pauses during the production process of a translation. If a translator
pauses their typing activity for a given amount of time, these pauses can be
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indicative of problem-solving mental processes (e.g. Carl et al., 2008; Daems
et al., 2015; Immonen & Mäkisalo, 2010; Lacruz et al., 2012; O’Brien, 2006).
There is some debate about how long a meaningful pause is supposed to be,
however (Lacruz, 2017).

Some examples of studies that use behavioural data to investigate transla-
tion difficulty follow. Daems et al. (2017) found that from-scratch translation
is more effortful than post-editing a machine translated text, as measured
by the number of eye fixations on source text tokens. Immonen and Mäk-
isalo (2010) used pauses to show that the processing of main and subordinate
clauses differs depending on the task (monolingual text production or transla-
tion). During translation the length of the pauses (and hence effort) preceding
a subordinate or main clause are almost identical. The conclusion that they
make is that during translation main and subclauses are processed indepen-
dently, even though the latter is grammatically embedded in the former. In
his thesis, Heilmann (2020) finds that it can be generally shown in empirical
data that a syntactically more complex source text requires more cognitive
processing effort but with the important side note that “[t]he human cognitive
system seems to be equipped to deal with some types of complexity better than
with other” (p. 254). Here as well, syntax refers to source text operationali-
sations such as number of main/embedded clauses or non-clausal chunks, and
word group length. Keystroke and eye-tracking metrics served as a proxy for
translation effort and difficulty. As said before, in addition to source text dif-
ficulties such as the ones discussed above, translation-specific properties that
involve both the source and target text likely play a crucial role in translation
difficulty as well. Sun (2015) notes that, indeed, many translation difficulties
come down to problems of equivalence between a source text and (a) possi-
ble translation(s) (cf. Sec. 1.2.1). The Choice Network Analysis of Campbell
(2000) was discussed before and is a prime example of how the process of se-
lecting a translation from a variety of options can be modelled. As alluded
to before, some work has continued in that direction. Dragsted (2012), for
instance, confirmed that target text variation across subjects relates well with
process data indicative of cognitive effort. Carl and Schaeffer (2014) adapt
the concept of CNA by applying entropy, a measure of uncertainty based on
the distribution of probabilities, to lexical choices (HTra). Their goal was to
model the literality of a translation. The concept of literality and ways to
operationalise it, has been referred to before in Section 1.2.1 and will be dis-
cussed in more detail in the following chapters, especially Section 5.2.1. Carl
and Schaeffer find that word translation entropy correlates with gaze duration
and that more uncertainty in lexical choice thus has an effect on cognitive ef-
fort. These results have been replicated a number of times, and supplemented
by similar findings about the positive effect of word translation entropy on the
translation process (Carl & Schaeffer, 2017; Schaeffer & Carl, 2017; Schaeffer,
Dragsted, et al., 2016).

More interesting for this thesis on syntax, are those efforts that quantify
syntactic, translation-specific characteristics. Cross is a word-based metric to
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quantify for a source word how its translation has been reordered relative to
the translation of the previous word Schaeffer and Carl (2014). Cross can ei-
ther be negative (regression), positive (progression), or zero (no movement).
Word order divergences, as measured by this metric, have been shown to have
a positive effect on eye-tracking data indicating that word reordering leads to
increased cognitive effort (Schaeffer, Dragsted, et al., 2016). The measure has
also been adapted to consider variations of multiple translators, similar to word
translation entropy above. Entropy of word reordering (HCross) correlates
with word translation entropy, which is perhaps unsurprising: different lexical
realisations may require different positions in the sentence and different word
orders may need different lexical items. In addition, HCross affects eye-key
span (Schaeffer & Carl, 2017), a cognitive measure that combines eye-tracking
information with keylogging data. The idea is that the time between the first
visual contact with a word and the first keystroke that contributes to its trans-
lation quantifies the processing time of that word (Dragsted, 2010; Dragsted
& Hansen, 2008). The results of Schaeffer and Carl suggest that higher en-
tropy in word order leads to more difficulties. Bangalore et al. (2015) define
syntactic entropy (HSyn) based on three manually annotated properties of the
target text: clause type (independent, dependent), voice (active, passive), and
valency of the verb (transitive, intransitive, ditransitive, impersonal). Similar
to the other entropy metrics above, they found that more variance has a posi-
tive effect on both keystroke and eye-tracking measures. A last entropy-based
metric is joint source-target alignment / translation distortion entropy (HSTC;
Carl, in press, further discussed in Sec. 5.3.3). It incorporates both semantic
and syntactic information (similar to word translation entropy and HCross,
above) and also involves word groups rather than only single words. In line
with the other entropy metrics, a positive effect on the translation process was
observed, specifically on production duration. More variance in translation
choices thus corresponds to a slower translation process.

As stated before, this thesis contributes to the field of translation difficulty,
particularly by providing new ways of measuring the syntactic relationship
between a source text and a given translation. Quite some work involving
syntactic complexity of the source text exists, but here I focus on translation-
specific difficulties. Some work has been done in this respect, too, particularly
Cross, HCross, HSyn, and HSTC as mentioned above. HCross, HSyn, HSTC
are entropy-based and require multiple translations, which may not always
be available. Carl (in press) finds that around ten translations are needed
to approximate word translation entropy values of a real statistical popula-
tion. In addition, HSyn requires manual annotations. Of these metrics only
HSTC can take word group information into consideration, but the metric
also explicitly includes semantic information, so it cannot be used as a purely
syntactic measure. The suggested metrics therefore fill in some gaps in how
syntactic translation difficulties can be quantified (Sec. 1.4). They should give
researchers more control over and insights into specific syntactic differences.
They are intended to complement the previously discussed metrics by provid-
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ing a fine-grained means to measure syntactic divergences. They differ in some
respects from the other metrics that were just described. First, none of my
suggested metrics require multiple translations (although one can easily apply
entropy to them2). Second, they are intended to cover more syntactic ground
than previous measures did, including word and word group based information
as well as structural linguistic features. An alternative approach to word re-
ordering is included, accompanied by ways to quantify word group reordering,
shifts of linguistic word groups, changes in linguistic label and finally modifi-
cations in (aligned) deep linguistic structure. Finally, manual annotations are
not required – but if researchers have access to highly accurate annotations
those can be used as well.

1.3 Data
In the following chapters we will make use of two existing data sets. For exper-
iments involving translation process data we used the ROBOT data set that
was created during the PhD project of Daems (2016). It contains post-edited
and from-scratch translations by ten student translators and twelve profes-
sional translators. Out of eight texts, each participant post-edited four texts
and translated four others so that in total every text had around ten trans-
lations and around ten post-edited versions. These texts were all chosen to
be comparable in terms of complexity and readability. In addition to the fi-
nal translations, the translation process of the translators was also recorded,
giving us access to valuable keystroke and eye-tracking information. The trans-
lation process was recorded using an EyeLink 1000 eye tracker and the software
packages Inputlog (Leijten & Van Waes, 2013) and CASMACAT (Alabau et
al., 2013). The final translations were manually word aligned with YAWAT
(Germann, 2008) and finally processed with the Translation Process Research
DataBase (TPR-DB; Carl et al., 2016)3, which creates useful overview tables
of the translation product and process measures on both the word and segment
level. In our studies we only made use of the from-scratch data because the
focus is on written translation without access to a prior translation (such as in
post-editing or revision). The processing steps of this data set differ between
studies, though. For instance, in Chapter 4 the outlier exclusion of data points
was specifically chosen to be identical to a previous study by Bangalore et al.
(2015), and in Chapter 5 residual outliers were excluded. In Chapters 2, 3
and 4 we made use of sentence measures whereas word-based metrics were
investigated in Chapter 5.

It should be noted that we did consider creating and using our own trans-
2Rather than categorical entropy Shannon (1948), which the aforementioned metrics are
based on, I would suggest entropy implementations that handle continuous data better,
such as differential entropy, particularly the formulation by Jaynes (1963, 1968).

3https://critt.as.kent.edu/cgi-bin/yawat/tpd.cgi (You can access public studies with
username: TPRDB, password: tprdb)
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lation process data. We contemplated using data that was generously given to
us by language educators (with students’ consent) and that contained correc-
tions of students’ assignments and exams, but at that time our attention had
shifted to a need for process data as a proxy for cognitive effort in addition
to the translations themselves. Our following efforts to gather process data
was greatly hindered by the COVID-19 situation because we could not set
up eye-tracking experiments, which would be the prime source of translation
process information. Instead, we asked ten participants to translate the mul-
tiLing dataset4 from home while using the key-logging software Translog-II
(Carl, 2012). They were not allowed to make use of external resources such as
dictionaries or Wikipedia. The participants were native Dutch speakers who
had recently obtained a master’s degree in translation involving English into
Dutch translation. In addition to these human translations, machine transla-
tions of these texts were collected with Google Translate and DeepL, but of
course no process data is available in the latter case. The tokenisation of the
data was manually corrected5 and the source and target tokens were manually
aligned with YAWAT (Germann, 2008). The final data was processed with the
TPR-DB. Still, in the research that followed we decided to use the ROBOT
dataset because it contained those interesting eye-tracking measures that are
frequently used as a representation of cognitive effort. Even though we did not
use the created data set, it might prove useful in future research. The data is
also publicly available as a public study in the TPR-DB, so fellow researchers
are free to make use of it. ENDU20 contains the human translations and
ENDU20-MT contains the translations by DeepL (P20) and Google Translate
(P21).

For the machine learning systems that were built in Chapter 3, a large
parallel corpus was required. Because the goal was to predict word (group)
order differences between a source sentence and its translation, no process data
was needed. We could therefore make use of the Dutch Parallel Corpus (DPC;
Macken et al., 2011), which contains more than 140,000 parallel English-Dutch
sentence pairs. This data set was automatically tokenised and lower-cased
by using the preprocessing scripts provided by Moses (Koehn et al., 2007).6
Word alignment was also done automatically by means of GIZA++ (Och &
Ney, 2003).

1.4 Metrics and Implementation
Over the course of the PhD project, a number of equivalence metrics have
been suggested. The focus was mainly on syntax as that aligned most with my
4https://sites.google.com/site/centretranslationinnovation/tpr-db/public
-studies#h.p_iVVuCQOHJx2O

5This is an intricate procedure of manually changing individual XML files. Code was writ-
ten to facilitate the process. This code is available on GitHub: https://github.com/
BramVanroy/predict-translate-annotation.

6https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer
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interests and background. Initially, these measures were limited to aggregated
values on the sentence level (Vanroy et al., in press; Vanroy, Tezcan, & Macken,
2019). Those metrics were implemented in such a way that one output value
was given per source sentence. However, when analysing translation process
data, it is desirable to have access to metrics on the word level because it
provides a more fine-grained perspective of the translation process. With that
in mind, those metrics were re-implemented and extended in Vanroy et al.
(2021) so that for each word a meaningful value can be extracted. This section
provides a detailed overview of all the equivalence measures that were created
during the PhD project. A lot of information provided here will return in some
form or other in the following chapters, but because different articles highlight
different aspects, it seems useful to have a complete description in one place.
The implication is that this section is quite dense. The reader may prefer to
use this section as a reference later on, and first read the following chapters
which build up to the final metrics discussed here.

The full implementation of this library, called ASTrED after one of the
metrics, is available on GitHub.7 I am a staunch proponent of open source
software (OSS), and I hope that by making this library publicly available fel-
low researchers can make use of it to push the field further. The library is
easy to use and is specifically designed to make it accessible for researchers
with a variety of backgrounds (including non-technical ones). By providing to-
kenised source and target sentences and their word alignments, all equivalence
measures can be calculated. Functionality is present to automatically create
the word alignments for the given source and target sentence, and in addition
the tokenisation process can be automated, too. The implication is that one
only needs a parallel, sentence-aligned corpus and the library does the rest:
tokenisation, parsing, and word alignment are all taken care of. To be able to
do this, the library integrates the tokenisation and parsing capabilities of the
Stanford pipeline stanza (Qi et al., 2020)8 as well as word alignment capabili-
ties of the recently introduced library Awesome Align (Dou & Neubig, 2021)9.
Both libraries claim to be state-of-the-art in their respective field. Although
such a highly automated approach may be useful, and even required, for large
corpus studies, other researchers may choose to provide manually tokenised
data and verified word alignments instead because their quality will undoubt-
edly be higher. Taking it a step further, it is also possible to add linguistic
information such as dependency labels and part-of-speech tags (POS) manu-
ally. In sum, the automated capabilities of the library can be (dis)used to the
user’s preference.

In what follows the available metrics will be discussed but first a short
detour is required. Some metrics rely on a linguistic representation of the
source and target sentence. In our case, these representations need to be
7https://github.com/BramVanroy/astred
8See https://stanfordnlp.github.io/stanza/available_models.html for all 66 available
languages

9https://github.com/neulab/awesome-align
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comparable across languages. To this end, we will use and discuss Universal
Dependencies (UD). During my PhD project I have only investigated English-
to-Dutch translation (because I have a strong formal linguistics background
in those languages), but because of the dependency on UD, any language pair
that can be represented with this annotation scheme can be used in the tool.

1.4.1 Universal Dependencies
Particularly, we are interested in a dependency structure where each word has
a dependency relationship to one other word. That means that each word has
a to-relationship with another word (its head). For example, in Figure 1.1, the
word baker is a subject (nsubj) to tastes. Some terminology that will be used
throughout this thesis: baker is the child (or direct descendant) of tastes, and
tastes is the parent of baker (or direct ancestor or head). Every sentence must
have exactly one root.

tastes:root

baker:nsubj

The:det

cookie:obj

the:det warm:amod

Figure 1.1. Example of a dependency tree of the sentence “The baker tastes the
cookie”

For our purposes, these representations need to be comparable between lan-
guages, that is, they must use the same label set in the two different languages.
That is not straightforward because historically, different annotation schemes
have been created for different (families of) languages or different use cases
(e.g. de Marneffe et al., 2006; Kromann, 2003; Nivre & Megyesi, 2007). For
this reason, we make use of the Universal Dependencies annotation scheme10

(Nivre et al., 2016). It was created to allow cross-linguistic analyses by con-
structing one linguistic annotation scheme for as many languages as possible
and is heavily inspired by previous efforts to this common goal, such as the
Google Universal Dependency Treebank project (UDT; McDonald et al., 2013)
and Stanford Dependencies (SD; de Marneffe et al., 2014, 2006; de Marneffe
& Manning, 2008).11

One of our word-based metrics (Sec. 1.4.2) makes use of the universal part-
of-speech (POS) tagset12 which is also part of the Universal Dependency an-
10All UD labels and their descriptions can be found on the website https://

universaldependencies.org/u/dep/index.html. To minimize the effect of slight differ-
ences between languages, we only consider main dependency labels and not their subtypes

11For the history of UD, see the historical overview on the website https://
universaldependencies.org/introduction.html#history, particularly the history sec-
tions in McDonald et al. (2013); Nivre et al. (2016).

12https://universaldependencies.org/u/pos/
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notation scheme and which builds on previous work by Petrov et al. (2012).
Part-of-speech tags indicate the word category that a word belongs to given its
meaning in the sentence (e.g. adjective ADJ, noun NOUN, auxiliary verb AUX).
Whereas dependency labels indicate the relationship of a word to its parent,
the POS tag of a word does not depend on any other words but the word’s
own meaning in its current context. This also means that a sentence can be
represented as a tree by using the dependency label of each word (Figure 1.1),
which is not possible with POS tags because there is no relationship between
the POS tag of one word and another. The example sentence visualised as a
dependency tree in Figure 1.1 “The baker eats the warm cookie” is enriched
with POS tags in Example 1.13

(1) The
det
DET

baker
nsubj
NOUN

tastes
root
VERB

the
det
DET

warm
amod
ADJ

cookie
obj
NOUN

1.4.2 Changes in Dependency Label and POS Tag
A simple way to see whether the syntax of a word has changed, is by com-
paring its dependency label to the dependency label of its translation(s). The
intuition here is that we expect that a change in dependency label, and thus a
change in the relationship between words, requires more processing effort from
the translator. Note that this change compares the “flat” labels. As described
above, dependency labels are assigned to a word to indicate its relationship to
the word’s head. When we simply compare the labels of the word, we do not
take into account the head. The metric is thus superficial and does not take
the specific word relations of words to their head into account but merely the
label. On the word level, the number of label changes L of a word w can be
formulated as Equation 1.1.

L = # {t ∈ T : t 6= l} (1.1)

where:

T the collection of labels of all words aligned to w
l the label of word w

A similar method of checking the linguistic equivalence between the source
and target text is comparing the universal POS tags of a source word with
the POS tag of its translation. A change in part-of-speech tag indicates that
a word has been translated by a word of a different word group.
13From a formal perspective, the difference between the POS tag DET and the dependency
label det for “The (baker)” is that the POS tag is simply a word category, not in relation
to any other word, whereas its dependency label specifically expresses the relationship
between the word and its parent “baker”
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Although these metrics are not complex nor innovative (see the use of word
class changes in Serbina et al., 2017), they measure interesting changes between
a source text and its translation. A change in dependency label highlights a
functional shift where a source word has changed its grammatical relation or
function in the dependency tree, e.g. passivisation where a subject nsubj she
is translated as a case marker case by accompanied by an oblique nominal
obl her. A different POS tag on the other hand indicates a change in word
class, often caused by a different choice of word surface form or by a radically
different translation. It is therefore likely that a change in POS tag goes hand
in hand with a change in dependency label because a different word class will
often require a change in dependency structure.

ST

TT 

Dockx
POS
DEP

POS
DEP

ΔPOS
ΔDEP

oakentransported furniture

doorHet meubilair van eikenhout werd vervoerd

the

Dockx

PROPN   VERB            DET   ADJ       NOUN

nsubj       root                det     amod     obj

DET   NOUN       ADP   NOUN         AUX   ADP    PROPN   VERB
det     nsubj         case   nmod          aux    case    obl           root

1              1                    0        2            0
2              1                    0        2            1

Figure 1.2. Changes in dependency label and POS tag for an English-to-Dutch
translation. The ∆ rows indicate the number of differences between the source
word’s label and the label of its translation(s)

Figure 1.2 illustrates how these two metrics, dependency label change and
POS tag change, differ. This translation contains two noteworthy phenomena.
First, the active sentence is translated as a passive. That means that the de-
pendency label subject nsubj turns into an object (technically a case marker
case and oblique nominal obl). In terms of POS tag, however, it only dif-
fers from the added case marker, which is a preposition ADP and not a proper
noun PROPN like the company name “Dockx”. Additionally, the source-side
object obj turns into the subject nsubj without a change to its POS. The
second phenomenon involves modifiers: the translator has chosen to translate
the adjectival modifier “oaken” as a marked nominal modifier case nmod “van
eikenhout” of oak-wood, which is a valid translation alternative to “eiken meu-
bilair” oaken furniture. Hence both the POS tag and the dependency labels
are different from those of the source word in the two translated words.

Around the same time that we created and implemented these two mea-
sures, Nikolaev et al. (2020) suggested similar metrics. Their approach is
somewhat more complex as they measure dependency path differences in the
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dependency tree rather than merely dependency labels. It is therefore more
abstract than the suggestion above, and similar to (but less intricate than) our
ASTrED measure described below.

1.4.3 Cross and word_cross

Schaeffer and Carl (2014), reiterated in Carl et al. (2016), introduced a local,
word-based metric to calculate the similarity between a source and target
sentence in terms of their word order. These values can be calculated from
the source to the target side (CrossS) and vice-versa (CrossT). In this thesis,
the focus always lies on the source side. The metric is generated for each
word incrementally. That means that the Cross value of a word is relative
to the position of the translation of the previous word. Figure 1.3 shows an
example of CrossS for the sentence “Killer nurse receives four life sentences”,
translated as “El enfermero asesino recibe cuatro cadenas perpetuas”. “Killer”
is translated by “asesino” which is the third word in the sentence (CrossS = 3).
For “nurse” the translator has to jump backwards by two words to translate
the first word in the one-to-two alignment “El enfermero” (CrossS = −2).
“receives” is translated as “recibe” which is three positions further than the
previous translation (“El”) (CrossS = 3), and so on. Cross is not implemented
in our library but serves here to show that other word reordering metrics exist.

CrossS
ST

TT 

Killer nurse receives four life sentences

El enfermero recibe cuatro perpetuascadenasasesino

    3           -2               3               1       2                -1 

Figure 1.3. CrossS values for an English-to-Spanish translation with word
reordering. Taken from Carl et al. (2016), originally shown in Schaeffer and Carl
(2014)

In Vanroy, Tezcan, and Macken (2019), we suggested an alternative ap-
proach to the Cross value. Rather than having an asymmetrical metric where
the values differ on the source and the target side, we opted for a bidirec-
tional/symmetrical one. This means that the number of reordering steps to
change the source sentence into the target sentence is the same as the other
way around, or, more formally, that the number of crosses in the source and
the target sentence are equal. On the word level, the Cross value (Schaeffer
& Carl, 2014) of a word is determined by the position of its translation rel-
ative to the position of the previous word’s translation. In our proposal, the
word_cross values take the movement of all other words into account. In
other words, whereas a word’s Cross value is determined by the reordering of
its translation relative to the previous word’s translation, its word_cross value
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is impacted by the reordering of all words in the sentence, including its own.14

If a word is aligned with multiple target words, that word’s word_cross is the
sum of all the word crosses attached to it. Whether two alignments a1 and a2
cross each other can be formulated as Equation 1.2 and should be interpreted
as: two alignments cross each other if the positions of the involved source
words relative to each other are reversed on the target side.

cross((k, l), (i, j)) =


1, if i < k & j > l

or k < i & l > j

0, otherwise
(1.2)

where:

k source index of the first alignment link
l target index of the first alignment link
i source index of the second alignment link
j target index of the second alignment link

In Figure 1.4, both the CrossS and word_cross values are given for each
word. Circles indicate a word_cross. The example should make clear that
whereas CrossS models regression (negative values) and progression (positive
values), word_cross does not. The metric is intended to measure the amount
of word reordering that a word’s translation has to undergo with respect to
the other words and their translation in the sentence and not only relative to
its preceding word. For example, the word nurse has a CrossS of −2 because
its first aligned word is two positions back from the translation of the previous
word asesino. It is translated as two words, El and enfermero. Both of these
words are reordered and have crossed the translation of another source word
Killer. Therefore, the word_cross value of nurse is 2.

CrossS
word_cross

ST

TT 

Killer nurse receives four life sentences

El enfermero recibe cuatro perpetuascadenasasesino

    3           -2               3               1       2                -1 
    2            2               0               0       1                 1 

Figure 1.4. CrossS and word_cross values for an English-to-Spanish translation
with word reordering. Circles indicate crossing alignment links that correspond to
word_cross. Adapted from Carl et al. (2016), originally shown in Schaeffer and
Carl (2014)

14When we use the term Cross we refer to the metric introduced in Schaeffer and Carl
(2014). On the other hand, word_cross is in reference to Vanroy, Tezcan, and Macken
(2019)
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For both metrics, smaller (absolute) values indicate a translation where
the word order of the source text can be largely maintained. A translation
that has the exact same word order as its source text and where each word
has a one-to-one translation will have zero word crosses. That means that the
word_cross of each word is 0 and their CrossS value 1. Such a scenario is
visualised in Figure 1.5.

CrossS
word_cross

ST

TT 

The volunteers keep us company

De gulle houden ons gezelschapvrijwilligers

    1            1                     1                 1         1           1 
    0            0                     0                 0         0           0

generous

Figure 1.5. CrossS and word_cross values for an English-to-Dutch translation
without word reordering

1.4.4 Sequence Cross
Whereas previous research most often focuses on the properties of a word
in solitude, we also provide a means to take larger units into consideration.
seq_cross is calculated in the same way as word_cross (Equation 1.2) but
the unit involved is different.

The fundamental property of the word groups that will be discussed in
this and following sections is consecutiveness. This property can be defined as
Definition 1.

Definition 1 (Consecutiveness).

• All words on the source side need to be aligned with at least one word
on the target side and vice-versa

• Words cannot be aligned to any word that does not belong to the aligned
group (so-called “external alignments”)

• All words on both the source and target side must be consecutive, that
means that all the words between the first and the last word of the group
must be included in that respective group

Note that the term “groups” is used interchangeably for a monolingual
group itself and the alignment between such source and target groups. In other
words, when a a set of aligned source and target words meet the requirements
set by the definition, a source and target word group is created as well as an
“alignment” between these two groups. Creating these word groups, then, is
a way of increasing the unit size of the alignments, leading to fewer or equal
alignments between the source and target text.

More specifically than Definition 1, a sequence group adds an additional
requirement that states that word alignments within a group cannot cross each
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other. Words that do not form a valid group with other words form their own,
singleton, sequence group.

Definition 2 (Sequence group).

• Includes requirements for Consecutiveness (Definition 1)
• Word alignments of this group cannot cross each other (as per Equa-

tion 1.2)

As said before, the consequence of forming groups is that instead of hav-
ing all the word alignments between all source and target words, the source
and target sequence groups are connected with one alignment. This can lead
to greatly reduced cross values compared to word_cross because the metric
then measures crossing groups rather than individually moving words. The
seq_cross value of a word is the cross value of its sequence group. Similarly,
the SACr value of a word is the cross value of the SACr group that that word
is part of but this will be discussed in Section 1.4.5.

Example 2, taken from our dataset, contains an English source sentence, a
Dutch translation, and their word alignments (Ex. 2c). These word alignments
are written in an often-used i-j format where i is an index of a source word
and j the word that it is aligned with (also called the Pharaoh format; Koehn,
2004). If a word’s index is not included in the alignments, it means that that
word has no translation equivalent (also called a null alignment).

(2) a. The
0

show
1

is
2

billed
3

as
4

the
5

museum
6

’s
7

largest
8

ever
9

.
10

b. Dit
This
0

is
is
1

de
the
2

duurste
most-expensive
3

voorstelling
show
4

ooit
ever
5

in
in
6

het
the
7

museum
museum
8

.

.
9

c. 0-0 0-2 1-4 2-1 3-1 4-1 5-7 6-8 7-6 8-3 9-5 10-9

In Figure 1.6, only the first part of the sentence in Example 2 is shown. “is
billed as” is the only sequence of words that meets all the criteria (Definition 2)
to form a sequence group (rectangle). Therefore, instead of having each word
aligned individually (dashed grey lines), it is aligned as a single group to “is”.
All the other words are singletons, meaning that they constitute a group by
themselves without any change to their alignments.

27



Chapter 1. Introduction

word_cross
ST

TT 

The is billed as

Dit is duurste voorstellingde

    3           4        2        2        2    
show

seq_cross     1           2        2        2        2      

Figure 1.6. Partial visualisation of Example 2 illustrating sequence cross
compared to word_cross. Solid box indicates sequence group of more than one
word

If all words and their movement are considered individually, then the cross
value is quite high. However, considering the word group as a candidate for
the translation unit, leads to lower reordering values because we then consider
that a translator has translated (and/or moved) a whole word group at once.
In this thesis we do not make any statements about the size of the translation
unit (cf. Chapter 5) but we accept that it is possible – and perhaps likely
– that a translator also considers larger word groups and not only focuses on
individual words. For instance, “show” has a relatively high word_cross value
of 4 because it crosses all the words in “is billed as” as well as “duurste” which
is aligned with “largest”. In our sequence approach, however, we suggest that
“is billed as” moves as a single sequence of words with no internal reordering.
As such it could be seen as a single word group movement operation by a
translator, which leads to a reduced cross value (seq_cross) of 2 for “show”
as it only crosses the aforementioned group and “duurste”. Note that the
example also highlights the corner-stone of our implementation of how cross
is calculated: the seq_cross values of the words in the larger group do not
necessarily change compared with their word_cross, but forming such groups
does impact the seq_cross values of the context. In other words, the move-
ment of words and word groups impacts cross values of surrounding items as
much as it impacts its own cross value.

1.4.5 Syntactically Aware Cross (SACr)
Sequence groups create larger units of alignment that inevitably lead to smaller
cross values than word_cross. These groups, however, are seemingly arbitrary
in terms of the syntactic properties of its words. We therefore suggested a
linguistic correction of these groups (Vanroy et al., in press). To make sure that
word groups constitute a linguistically meaningful whole, we add an additional
requirement to Definition 2 as follows (Definition 3):

Definition 3 (SACr group).

• Includes requirements for Sequence groups (Definition 2)
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• Both the source group and target group must constitute a valid subtree
in their respective dependency tree

This means that, from a monolingual perspective, the words in a group
must form a meaningful part of the dependency tree of that sentence. In
practice, that means that the parent of a word must be present in the same
group with the exception of the topmost word in this subtree.

SACr can be illustrated with the same example as before (Example 2).
It is clear that “is billed as” fulfils all the requirements of Definition 2 but
it does not comply with the added requirement in Definition 3. Looking at
the dependency tree of the source sentence in Figure 1.7, it is clear that the
words of this group (underlined) do not constitute a valid subtree per the
requirements described above. Particularly, the parent of “as” is not present
in the word group. If “largest” had been part of the group, then the group
would have been valid but it does not belong to the group because it violates
the other requirements. Particularly, it does not directly follow the other words
in the group as it is separated from them by the phrase “the museum’s”.

3:billed:root

1:show:nsubj

0:The:det

2:is:aux 8:largest:obl

4:as:case 6:museum:nmod

5:the:det 7:’s:case

9:ever:advmod 10:.:punct

Figure 1.7. Dependency tree of the sentence “The show is billed as the museum’s
largest ever .’

The consequence is that the initial sequence group “is billed as” needs to be
corrected and split up into smaller groups that are valid. Because “is billed”
does fulfil all requirements in Definition 3 to constitute a SACr group, the
initial group is split up into “is billed” and “as”, as shown in Figure 1.8. This
in turn leads to an increase of SACr cross values compared to sequence cross
values for involved words because sequence groups that do not form a valid
subtree are split up into smaller SACr groups. And more groups, and thus
more alignments, lead to more crossing alignments.
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word_cross

ST

TT 

The is billed as

Dit is duurste voorstellingde

    3           4        2        2        2    

show

sacr_cross     2           3        2        2        2      
seq_cross     1           2        2        2        2      

Figure 1.8. Partial visualisation of Example 2 illustrating SACr cross compared
to sequence and word_cross. Solid boxes indicate SACr groups created out of the
sequence group “is billed as”

Whereas sequence groups provide a way to model word group movement,
ultimately lowering cross values compared to word_cross due to its larger
units (thus less alignments), SACr can split those sequence groups up again
to ensure that they are linguistically motivated. As such, sequence cross is
always less than or equal to both SACr and word_cross due to the size of the
units that are taken into account.

1.4.6 Multi-word Groups (MWG)
The observant reader may have noticed that our requirements for creating
sequence groups has one important shortcoming when applied to real-word
translations. It will occur that a specific construction of multiple words is
difficult to transfer to the target language in terms of alignment, i.e. where
a one-to-one mapping of meaning of source to target words is tedious. Even
if such one-to-one or one-to-few alignments are possible, the translator may
simply opt for a less straightforward construction, either because of personal
preference or to create a target text that is more natural. Ultimately, such
translation choices will lead to m-to-n alignments where all m source words
are aligned to all n words in the group because all words contribute to the
meaning that is being transferred and a smaller compositional alignment is
not possible.

We consider all m-to-n alignments to be MWG candidates in cases where
both m and n are greater than 1 (if m = 1 or n = 1, the group is a valid
sequence group anyhow as there can not be an internal cross). That means
that when calculating the sequence cross and SACr cross metrics for words,
we can consider whether MWGs are allowed or not and base our calculations
on the groups that are formed on said condition. If MWGs are considered
valid groups, all MWG candidates are interpreted as valid sequence and SACr
groups, even if they do not meet the criteria of the aforementioned Definitions
2 and 3. Instead, an alternative Definition 4 defines what we consider to be
MWGs. If MWGs are not considered in the calculation of word group crossings,
the words in m-to-n alignments do not constitute valid groups according to
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our criteria (Definitions 2 and 3 above) and each alignment will be considered
individually.

Definition 4 (Multi-word group).

• Includes requirements for Consecutiveness (Definition 1)
• All words in the source group need to be aligned with all the words in

the target group and vice-versa

Note that our inclusion of MWGs for word groups only has an effect on the
sequence and SACr cross values and not on word_cross. When considering
groups of words, we calculate cross on the sequence level or on the SACr level,
and in both cases we can (dis)allow the creation of MWGs as a alternative
group type.

It is no surprise that not considering MWG as valid group alignments
can lead to incredibly high sequence and SACr cross values, similar to the
word_cross value for the same construction, because in such an event the
unit of alignment does not increase in size. Instead, rather than forming a
group, all alignments would constitute their own singleton group because they
do not meet the requirements to form a sequence or SACr group. When
we do allow MWGs, however, such alignment constructions are considered as
valid coherent units, which leads to a considerably lower cross value. This is
illustrated in the following example.
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seq_cross

seq_cross_mwg

 6     6     6     0     0    25    25  38    38   38   38   38    38   25   25    0    

 0     0     0     0     0     2      2    2      2     2     2     2      2     2    2      0   

un
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st

Figure 1.9. Alignment table of Example 3. Blue squares (dashed lines) indicate
MWG candidates, orange squares (solid line) are valid sequence groups

In Figure 1.9, an English source sentence is translated as a Dutch target
sentence. For clarity’s sake, the example sentence and its translation and
alignments are also given in text in Example 3. The example contains two
MWG candidates, “Climate change scientists” aligned with “Wetenschappers
inzake klimaatverandering” and “may increase by as much as” aligned with
“meer kans is op”.

(3) a. Climate
0

change
1

scientists
2

predict
3

that
4

civil
5

unrest
6

may
7

increase
8

by
9

as
10

much
11

as
12

56
13

%
14

.
15

b. Wetenschappers
Scientists
0

inzake
of
1

klimaatverandering
climate-change
2

voorspellen
predict
3

dat
that
4
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er
there
5

56
56
6

%
%
7

meer
more
8

kans
chance
9

is
is
10

op
of
11

sociale
civil
12

onrust
unrest
13

.

.
14

c. 0-0 0-1 0-2 1-0 1-1 1-2 2-0 2-1 2-2 3-3 4-4 4-5 5-12 6-13 7-8 7-9 7-10
7-11 8-8 8-9 8-10 8-11 9-8 9-9 9-10 9-11 10-8 10-9 10-10 10-11 11-8
11-9 11-10 11-11 12-8 12-9 12-10 12-11 13-6 14-7 15-14

In the figure, black squares indicate word alignments, blue squares (dashed
lines) are MWG candidates, whereas orange groups (solid lines) are valid se-
quence groups (no internal or external cross; consecutive source and target
words).15 At the top, the cross values for each word are given. word_cross
serves as a baseline. seq_cross* values show the cross value of the group
that a word belongs to, as before in Section 1.4.4. The distinction between
the two versions is that for seq_cross_MWG we allow MWG candidates (blue
squares) to be valid groups but in the other variant, they are not. That means
that rather than having large units that possibly cross each other, the words
themselves constitute their own group. Because every word in a MWG crosses
every other word, that leads to large values. The number of internal crosses
in an m-to-n aligned group scale with the number of words on the source (m)
and target side (n) according to Formula 1.3. The proof for this formula is
given in Appendix A.

crossMW G = 1
4 ·mn(m− 1)(n− 1) (1.3)

where:

m number of words on the source side of the MWG
n number of words on the target side of the MWG

In the kind of word alignment visualisation in Figure 1.9, a literal, one-
on-one translation would be a straight diagonal descending line from left to
right. Disruptions in word order are those parts where an alignment deviates
from that diagonal. Looking at the individual word alignments in the figure,
that is the case for instance for “civil” (positioned relatively early in the source
sentence) which is aligned with “sociale” (near the end of the target sentence).
The corresponding alignment point does not directly follow the previous word
“that” diagonally. Looking at the figure, all the alignments of the words of
“may increase by as much as 56 %” needs to be crossed to align “unrest” with
“onrust”. That leads to a significant word_cross value of 26.

In terms of word groups, “civil unrest” (aligned with “sociale unrust”)
and “56 %” have swapped places between the source and target sentence. If
we create sequence groups as per Definition 2, then only the orange groups
15For simplicity’s sake we do not include SACr but the results would be identical to the

seq_cross* values because the sequence groups “civil unrest” (aligned with “sociale on-
rust”) and “56 %” (“56 %”) are valid subtrees so the SACr groups are identical to the
sequence groups, leading to the same respective cross values
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(solid lines) are acceptable sequence groups: if we do not allow MWG, then
the blue groups (dashed lines) are not valid groups and the individual word
alignments constitute each their own individual sequence (and SACr) group.
That means that on the sequence group level, even though “civil unrest” is a
single group, it still has to cross with every single alignment (black box) in
“unrest may increase by as much as” (aligned with “meer kans is op”) and the
newly formed sequence group “56 %” (“56 %”). That decreases the sequence
cross value of “unrest” by one compared to the word_cross value (because it
only crosses with the group “56 %” rather than the individual alignments),
but it still is quite high at 25. If, however, MWGs are allowed and groups can
be formed according to Definition 4, then the blue groups (dashed lines) are
valid groups, too. If that is the case, the sequence group “civil unrest” only
needs to cross two other alignments, namely the one between the MWG “may
increase by as much as” and its translation, and the alignment between the
sequence group “56 %” and its translation. This leads to a seq_cross_MWG
value of only 2.

As is clear by the seq_cross_mwg values in Figure 1.9, interpreting MWGs
as single units greatly reduces the word group cross values. Also here the
principle holds that the larger the units of alignment, the lower the cross value
can be. So the decision whether or not to allow MWGs in either sequence or
SACr groups not only impacts the cross values in the word group at hand,
but also the cross values of the surrounding groups. In the example discussed
above the seq_cross_MWG was reduced greatly for all words inside the MWG
“may increase by as much as” but as a consequence of this word group also
the seq_cross_MWG value for words in “civil unrest” decreased significantly.

1.4.7 Aligned Syntactic Tree Edit Distance (ASTrED)
Words in a sentence establish a hierarchical structure where each word is a
dependent to its head (except for the root node). It would therefore be an
interesting endeavour to compare the source tree with the tree representation
of the translation. To compare tree structures, we can make use of tree edit
distance (TED), a metric that calculates the minimal edit operations that
a source tree needs to be transformed into the target tree. Particularly, we
make use of a Python implementation16 of the APTED algorithm (Pawlik
& Augsten, 2015, 2016). TED will recursively investigate each node and its
position in the tree with respect to the target tree to see whether this node
can be matched in the target tree (and no operations are needed) or whether
something needs to change. Three operations are possible, namely deleting,
inserting and substituting a node in the tree (the latter also referred to as
“renaming”). Every operation has a cost attached to it, in our case all edit
operations have a cost of 1 whereas matching has no cost (0). The goal of the
algorithm, then, is to find a number of sequential operations with the lowest
16https://github.com/JoaoFelipe/apted
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possible total cost to transform the source into the target tree.
A straightforward approach would be to calculate tree edit distance be-

tween the source and target dependency trees as-is. However, such a method
would be rather naive as it does not consider alignment information. This
is important because we are interested in structural differences between the
source and target sentences while also taking the alignment between those two
into account. In other words, when comparing a source tree to a target tree, we
only want to match those nodes with each other that are translations of each
other and find operations that need to occur to fill in the rest of target tree. We
call this method Aligned Syntactic Tree Edit Distance (ASTrED). It was first
introduced for sentence-level quantification of structural differences between
a source sentence and its translation in Vanroy et al. (in press) (particularly
Section 4.3.4) but has since been adapted to provide meaningful information
for each individual word, as will be discussed below.

Terminology might be confusing here. Throughout the text, “TED” will
be used as an indicator for tree edit distance. That is, the metric itself; the
process to find differences between tree structures. Different implementations
(algorithms) of TED have been proposed, mostly with a goal to make the
metric as fast as possible or to consume less memory, but the results of all im-
plementations should be the same. APTED is one of those implementations.
ASTrED makes use of tree edit distance, particularly the APTED implemen-
tation, to calculate syntactic differences, but instead of just calculating TED
on the source and target syntactic trees, those trees are first changed to in-
corporate word alignment information. So ASTrED is a name to indicate the
preprocessing of the source and target trees to include word alignment infor-
mation, followed by calculating TED on those modified trees.

Example 4, where an adverbial clause (advcl) has been translated as a
nominal oblique (obl) and shifted to the end of the sentence, can illustrate
the difference between regular TED matching and ASTrED matching.

(4) a. Scared
0

and
1

scarred
2

by
3

the
4

global
5

crisis
6

,
7
families
8

hoard
9

their
10

money
11

b. Gezinnen
Families
0

sparen
save
1

intensief
intensively
2

uit
out
3

angst
fear
4

voor
of
5

de
the
6

wereldwijde
world-wide
7

crisis
crisis
8

c. 0-3 0-4 1-3 1-4 2-3 2-4 3-5 4-6 5-7 6-8 8-0 9-1 9-2 10-1 10-2 11-1
11-2

Note that the example contains two MWGs (“Scared and scarred” – “uit
angst”, and “hoard their money” – “sparen intensief”). The source and target
dependency trees of Example 4 are given in Figure 1.10 and 1.11 respectively.
It is visually clear that the source tree is extended on the left side whereas the
target tree extends on the right.
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10:hoard:root

1:Scared:advcl

3:scarred:conj

2:and:cc

7:crisis:obl

4:by:case 5:the:det 6:global:amod

8:,:punct

9:families:nsubj 12:money:obj

11:their:nmod

Figure 1.10. Dependency tree of the source sentence “Scared and scarred by the
global crisis , families hoard their money”

2:sparen:root

1:Gezinnen:nsubj 3:intensief:advmod 5:angst:obl

4:uit:case 9:crisis:nmod

6:voor:case 7:de:det 8:wereldwijde:amod

Figure 1.11. Dependency tree of the target sentence “Gezinnen sparen intensief
uit angst voor de wereldwijde crisis”

In regular tree edit distance, 10 edit operations (Example 5) are required
to transform the source tree into the target tree. These operations do not
take into account word alignments and are a means to simply compare the
structure of two (unrelated) sentences. Below, the full node representations
are given for illustrative purposes, but in reality this example solely compares
the dependency labels between trees (not the words or indices). When a node
is deleted, its children are re-attached to the deleted node’s parent. A node
can be inserted anywhere, also between a parent and (a subset of) its children.
On the word level, we keep track for every word what the edit operation is
that is necessary to give this node a place in the target tree. As such, from
a directional perspective (e.g. source to target or vice-versa), none of the
starting words can be “inserted” as these are always the starting point and
already present. We can only speak of “insertions” about words on the other
side, i.e. the tree that we want to end up with.

(5) 1. Delete (src): 12:money:obj
2. Delete (src): 11:their:nmod
3. Delete (src): 9:families:nsubj
4. Delete (src): 1:Scared:advcl
5. Delete (src): 8:,:punct
6. Delete (src): 3:scarred:conj
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7. Insert (tgt): 3:intensief:advmod
8. Rename: 2:and:cc – 1:Gezinnen:nsubj
9. Insert (tgt): 9:crisis:nmod
10. Insert (tgt): 6:voor:case

These operations can be described more technically as follows, but keep
in mind that for clarity’s sake the words are used when in reality the tree
only consists of the word’s dependency label. The subtree of “their money”
is deleted, as is the word “families”. The latter needs to be deleted and re-
inserted because on the target side it is on the left rather than the right of the
deeper subtree of “angst”. “Scared” is deleted, which means that the subtrees
of “scarred”, “crisis”, and “,” are now directly attached to the root. The
punctuation “,” is deleted as is “scarred”, which means that “and” is now a
direct child of the root. This node must then to be renamed because “and” is a
coordinating conjunction cc and it needs to be renamed to nsubj (to turn into
“Gezinnen”). A nmod (src: “crisis”) needs to inserted between the obl (tgt:
“crisis”) and most of its children except for case, which becomes a sibling of
the nmod rather than its child.17 Finally, the missing case “voor” needs to be
inserted.

Up to now, we have looked at the edit operations that are necessary. How-
ever, an important part of TED is finding identical nodes between the source
and target tree, also called “matches”. A match is preferred over any other
edit operation as the cost for a match is 0. The matched nodes in the example
are the following, which is evident from their identical dependency label.

(6) • 4:by:case – 4:uit:case
• 5:the:det – 7:de:det
• 6:global:amod – 8:wereldwijde:amod
• 7:crisis:obl – 5:angst:obl
• 10:hoard:root – 2:sparen:root

Two of these are noteworthy. First, “by” is matched with “uit” but for
our purposes of comparing a source structure with the syntactic structure
of its translation, it does not seem to be a very sensible decision. “uit” is
not the translation of “by” nor is it it in the same position with respect to
its initial siblings det amod but rather one level higher. Second, “crisis” is
matched with “angst” because they are both oblique nominals obl. They are
not, however, the match that we may want because those two words “crisis”
(src) and “angst” (tgt) have nothing to do with each other in terms of word
17Note how both “uit” and “voor” are case. Therefore, one may expect that nmod (src:
“crisis”) would be inserted between obl and all children, followed by the insertion of “uit”
because that would mean that the sequence “by the global” – “voor de wereldwijde” could
be transferred as a whole. However, because the TED algorithm procedurally finds the
fewest number of operations needed, its decision ensures that the subtree “uit angst crisis”
is correct before completing the lowest subtree “voor de wereldwijde”
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alignment but because of the algorithm’s naive look at the two syntactic trees,
this is the most efficient match that it can find. With ASTrED we suggest an
alternative approach that can take word alignment information into account
with more sensible matches as a consequence.

The main idea behind ASTrED is keeping the tree structure of both the
source and target sentence as “the skeleton” but changing the node labels to
contain information about the word(s) that this node is (in)directly aligned
with. So rather than dependency labels, the underlying TED algorithm –
which is identical to regular TED used above – needs to compare structures
whose labels consist of an aligned representation of the respective word (also
called its “connected representation”). For a given group, this representation
is created as a mapping from source dependency label to target labels for all
alignments involved in the group,18 separated by a colon 0-:. If a source word
has multiple alignments, then the target tokens are separated with a comma,
e.g. s:t1,t2. If the group consists of multiple alignments, then those source-
to-target mappings are separated by a pipe |. In both the source and the
target tree this “serialised” representation will then replace the initial node
labels that belong to this group. An example follows below. By doing so, all
items in the group will have the same label in both the source and target tree.
As such, matching must be done on words that belong to the same group and
cannot be incidental.

To find all word’s connected representations, we group all words together
that are directly or indirectly “connected” to each other. Note however, that
the connected groups that we use in ASTrED are different from the criteria for
sequence or SACr groups, or MWGs. Particularly, groups in ASTrED consist
of all directly or indirectly connected items. In other words, sequence, SACr,
and multi-word groups are valid ASTrED groups but ASTrED groups are not
necessarily valid sequence groups as they do not have to comply with any of the
given definitions. That means that in the theoretical example in Figure 1.12,
“A B D” aligned with “E G” is a group, even though that is not a valid
sequence, SACr or multi-word group according to our definitions. All words
are connected to each other in a way, e.g. “A” is connected to “G” via “E”
and then “B”. The connected representation of this group is A:E|B:E,G|D:G.

ST

TT 

A B C D

E F G H

Figure 1.12. Minimal example of ASTrED groups

18In practice, the index of a word in its sentence is also included in this representation to
avoid that groups that consists of the same dependency labels match each other. For
illustrative and conciseness reasons, we only show the examples with dependency labels.
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Back to Example 4, we will further focus on two of these groups and not
discuss all of them. Figure 1.13 can help in visualising the connected groups.
A simple, one-to-one group is “crisis” obl on the source side aligned with
“crisis” nmod on the target side. These two words form one group because
they are exclusively aligned to each other. Another group is “Scared and
scarred” aligned with “uit angst”. This is an MWG but as explained above,
such connected groups are valid ASTrED groups.

ST

TT 

Scared and scarred by the global

Gezinnen uit angst devoorintensief

crisis , families hoard their money

wereldwijde crisissparen

advcl     cc    conj       case   det  amod  obl     punct  nsubj    root     nmod   obj

 nsubj         root      advmod    case   obl      case  det  amod           nmod

DEP

DEP

Figure 1.13. Alignment visualisation of Example 4

Using the template that was discussed above, these groups have the fol-
lowing connected representations:

• obl:nmod (crisis:crisis)
• advcl:case,obl|cc:case,obl|conj:case,obl

(Scared:uit,angst|and:uit,angst|scarred:uit,angst)

Now the labels in the source and target trees of words that belong to these
groups are replaced with the connected representation. In Figure 1.14 and
1.15, the labels for the words in these groups have been replaced by the full
group representation. The words are included below the labels for clarity only
and are not actually used when calculating TED. Dots (. . . ) are given for all
nodes that are not part of the two groups that we discuss to save space.

. . .

advcl:case,obl|cc:case,obl|conj:case,obl
Scared

advcl:case,obl|cc:case,obl|conj:case,obl
scarred

advcl:case,obl|cc:case,obl|conj:case,obl
and

obl:nmod
crisis

. . . . . . . . .

punct
,

. . . . . .

. . .

Figure 1.14. Modified dependency tree of the source sentence “Scared and
scarred by the global crisis , families hoard their money”
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. . .

. . . . . . advcl:case,obl|cc:case,obl|conj:case,obl
angst

advcl:case,obl|cc:case,obl|conj:case,obl
uit

obl:nmod
crisis

. . . . . . . . .

Figure 1.15. Modified dependency tree of the target sentence “Gezinnen sparen
intensief uit angst voor de wereldwijde crisis”

It is clear now that the labels in the source and target tree are identical
for words belonging to the same group. If we calculate tree edit distance on
these modified trees, the algorithm will prefer matching a source word with
an (indirectly) aligned target word because it has the same label and matches
are preferred over other operations because a match has no cost attached to
it. That means that the matching nodes now take alignment information
into account, i.e. a source node can only match with a target node if it is
(in)directly aligned with that word in the sentence. For the example at hand,
that leads to the following matches in 7. (Exclamation marks indicate new or
changed matches compared to regular TED discussed above in 6.)

(7) • ! 1:Scared:advcl – 5:angst:obl
• ! 2:and:cc – 4:uit:case
• ! 4:by:case – 6:voor:case
• 5:the:det – 7:de:det
• 6:global:amod – 8:wereldwijde:amod
• ! 7:crisis:obl – 9:crisis:nmod
• 10:hoard:root – 2:sparen:root

The edit operations that are needed to “fill in the gaps” left by the matching
nodes are not given for brevity’s sake, but 7 are needed for ASTrED compared
to 10 in regular TED.

The issues that were brought up earlier for regular TED have been averted.
First, “crisis” (src) now successfully matches with “crisis” (tgt) rather than
with “angst”. Second, the preposition “by” matches with “voor” rather than
with “uit”, which makes more sense because of its position in the tree and
because it is aligned with “by”. In addition, new matches can be made such
as “Scared” and “angst”. This leads to a full subtree match of “Scared by the
global crisis” and “angst voor de wereldwijde crisis”.

On the word level, this approach provides us with two values for each word,
namely the operation that is required on it (e.g. match for “crisis”) and the
cost attached to that operation (0 for matching, 1 for any other).
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Consequences that may not be immediately clear from the example above is
that ASTrED is also the only one of our metrics that can handle null alignments
and differences in number of words in an m-to-n translation, because such
occurrences will inevitably lead to insertions or deletions. For example, the
unaligned comma , in the source tree is still present in the modified source
tree in Figure 1.14 and will need to be deleted. However, ASTrED does not
successfully catch word order differences because the word order position of a
child relative to its parent is unknown, i.e. the tree structure does not indicate
the position in the sentence of words by itself. The only guarantee in our
implementation is that siblings are ordered in the same way as they occur in
the sentence.
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Chapter 2

Correlating Process and Product Data to Get an
Insight Into Translation Difficulty

Bram Vanroy∗ · Orphée De Clercq∗ · Lieve Macken∗
∗LT3, Language and Translation Technology Team, Ghent University

Abstract
Research in the field of translation studies suggests that translation product features
can indicate translation difficulty. In the current pilot study, we investigate three of
these features, namely the number of errors made in a translation, word translation
entropy, and degree of syntactic equivalence. We correlate these translation product
features with translation process features that can be put together into three cat-
egories: duration, revision, and gaze information. These features serve as a proxy
for the cognitive effort required to solve difficulties in translation. The data that
we used was gathered from professional translators as well as students of translation
studies. The product data contains manual error annotations of the translations, au-
tomatically calculated entropy values, and syntactic re-ordering metrics. The process
data are derived from keystroke and eye-tracking data gathered during the transla-
tion process. By correlating product and process data, we inspect how translation
difficulty is reflected in the translation process and whether it is feasible to use prod-
uct features to predict difficulties in translation. In addition, we also compare data
of professional translators and students. We will show that correlations between
process and product features exist, which opens many doors to further research on
translatability.

Keywords: translation studies · translation difficulty · user activity data ·
eye tracking · keystroke logging

Publication: Vanroy, B., De Clercq, O., & Macken, L. (2019). Correlating
process and product data to get an insight into translation difficulty. Perspectives,
27 (6), 924–941.
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2.1 Introduction
Measuring and predicting translation difficulty is of use in a number of domains
where it is required to have an objective indication of how difficult a given
source text in language x is to translate to target language y. For example,
(i) in (machine) translation research that depends on texts of a similar or
contrasting translation difficulty; (ii) in the translation industry so that source
texts can be dispatched to translators or machine translation (MT) systems
of appropriate expertise; (iii) in an educational environment where grading
students’ translating competences requires texts of a relevant difficulty level.

The PreDicT project (Predicting Difficulty in Translation)1 aims to build a
system that can analyse a source text that has been written in language x and
that subsequently can predict how difficult that text would be to translate
to language y by returning a translation difficulty score. Furthermore, the
PreDicT system should be able to indicate the segments (sentences, phrases,
words) in the source text that can give rise to difficulties.

This paper reports on a pilot study that investigates three indicators of
translation difficulty that have been suggested in related research, specifically
the number of errors in the product (Daems et al., 2013), word translation
entropy (Campbell, 2000), and the amount of syntactic (non-)equivalence be-
tween the source and target text (Sun, 2015). We correlate the difficulty
indicators with translation process data. The process data that we used can
be sorted into three categories, namely duration, revision, and gaze, which are
all derived from keystroke and eye-tracking data.

Our goal is to answer the question whether correlations can indeed be found
between translation process data, as proxy for cognitive effort, and product
data. If so, product-like features can be confidently used to predict translation
difficulty in future research. With the exception of the number of errors that
were made in a translation, we believe we can model word translation entropy
and syntactic equivalence off-line, i.e. before the translation process has taken
place, by using large parallel corpora.

The current paper is structured as follows. First, we will give an overview of
relevant research in readability and translation research in Section 2.2. Then
we will discuss the methodology and the data that we used in our research
(Section 2.3), followed by the results (Section 2.4) and their discussion (Sec-
tion 2.5). We summarise and end the paper in the conclusion (Section 2.6)
where we also hint towards future research.

2.2 Related Research
Readability prediction, which aims to predict the reading difficulty of a text,
has been subject to extensive research by the development of readability formu-
1https://research.flw.ugent.be/en/projects/predict
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las (see Benjamin, 2012; Collins-Thompson, 2014; DuBay, 2004; Klare, 1976,
for overviews and discussions). Predicting translatability – that is, the dif-
ficulty of a translation task – on the other hand has not received the same
attention.

It has been suggested that readability formulas can serve “to assess the rela-
tive amount of both production effort and comprehension effort needed during
a translation process” (Jensen, 2009, p. 61-62). However, even though there
is a clear overlap between readability and translatability, the latter cannot
simply be solved by copying the methodology of the former because transla-
tion is not limited to monolingual reading. Rather, “coordinating reading and
writing efforts seems to be an overarching activity in translation” (Dragsted,
2010, p. 43).

2.2.1 Cognitive Effort
In this paper we use translation process data as a proxy for cognitive effort.
Data gathered from keystroke logging and eye tracking are used as indirect
evidence of cognitive effort. With a focus on post-editing, Krings (2001) pro-
posed three types of effort: temporal effort, technical effort, and cognitive
effort. The first two are rather intuitive to understand. First, the longer it
takes to complete a task, the higher the temporal effort. Second, from a prac-
tical viewpoint, activities that require a high amount of technical gestures,
require more technical effort. For example, typing a text to convey a message
involves a certain technical effort. The third type of effort, cognitive effort,
is harder to define and measure, though. Activities that require mental effort
where the brain has to process information or generate new information can be
seen as high in required cognitive effort. These types of effort can overlap and
oftentimes they even influence one another. For examples and a comprehensive
overview of effort in translation process research, see Lacruz (2017). Because
of the high inter-influence of the three types of effort, we use cognitive effort in
a broader sense than Krings intends. In fact, we will use it exclusively as the
overarching class of effort and will only refer to cognitive effort and cognition.
Our reasoning is that technical and temporal effort are ultimately resolved by
a mental process, hence we place technical and temporal effort under a broad
umbrella-interpretation of cognitive effort.

2.2.2 Readability Research
Readability formulas have been vigorously drafted since the 1920s. According
to Klare (1984) (as cited in Sun, 2015), more than 200 formulas have been
proposed. Traditionally, these formulas use shallow source text statistics such
as average word or sentence length. But over the past decade more complex
language features have been proposed as well, for example lexical, syntactic,
semantic and discourse text features (for an overview, see Collins-Thompson,
2014). Promising developments in computer science and, by extension, natural
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language processing, have led to innovative approaches that are inspired by
statistical models and machine learning (Collins-Thompson & Callan, 2005;
De Clercq et al., 2014; Francois & Miltsakaki, 2012; Hancke et al., 2012; Si &
Callan, 2001).

Readability formulas are often used for monolingual reading, which means
that the focus lies on a single language. To be able to compare different types
of reading, Jakobsen and Jensen (2008) set up an experiment where they inves-
tigated the process data of four different reading tasks executed by six trans-
lation students (abbreviated as stud. below) and six professional translators
(prof.). These tasks were (i) reading for comprehension; (ii) reading in prepa-
ration for translating; (iii) reading while speaking a translation; (iv) reading
while typing a written translation. They focused their comparison on reading
time and eye-tracking data such as number of fixations, total gaze time du-
ration, and fixation duration. For our research especially the juxtaposition of
tasks (i) and (iv) are of importance.

Because a translator has to switch between two separate areas of interest,
namely the source text as well as the translated text under construction, it
is to be expected that reading for translation takes more time and requires
more eye movement than reading for comprehension. In the experiment of
Jakobsen and Jensen (2008), reading for translation takes between 15 and
20 times longer than reading for comprehension (prof.: 771 seconds vs. 40s,
stud.: 945s vs. 61s). Furthermore, eye-movement information shows that the
effort that is required for translating is considerably higher than for reading.
In particular, these features are the fixation count (1590 for translating vs. 145
for reading), gaze time (prof.: 288s vs. 29s, stud.: 223s vs. 31s), and fixation
duration (218 milliseconds on source text + 259ms on target text vs. 205ms).

2.2.3 Translation Studies
In addition to language features that are typically analysed in readability re-
search, predicting translation difficulty also has to take the source text and
source language into account, as well as the process of translating from the
source language to the target language. Research has focused on the issues
that machine translation systems encounter, as well as the difficulties that
human translators are faced with.

2.2.3.1 Machine translation

In the field of machine translation, researchers have focused on ways to im-
prove an MT system’s translation as well as analysing properties of the source
text where MT systems are having difficulties coming up with a good and cor-
rect translation (Bernth & Gdaniec, 2001; Naskar et al., 2011; O’Brien, 2004;
Underwood & Jongejan, 2001).

According to Underwood and Jongejan (2001), machine translation sys-
tems are prone to negative translatability indicators (NTIs, also referred to
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as “negative sentence properties”, or “translatability indicators”) that make
translating a given text difficult. Some of these pointers are lexical ambiguity
(e.g. polysemous words, homographs), structural ambiguity (e.g. caused by
prepositional phrases or multiple coordination), complex noun phrases, and
very long or very short sentences. Human translators are different from ma-
chines and not all the aforementioned negative translatability indicators will
cause problems for human translators. Furthermore, translators may have to
deal with difficulties that are non-existent in MT. Nonetheless, some overlap
between translation difficulties of MT systems on the one hand and human
translators on the other is to be expected. O’Brien (2004) applies negative
translatability indicators on post-editing effort. She found that when less
NTIs are present in a segment, the post-editing effort is reduced. However,
the author also found that not all NTIs have the same effect on editing effort.

Bernth and Gdaniec (2001) discuss a number of ways to improve what
they call MTranslatability, i.e. how well-suited a text is to be translated by an
MT system. They provide suggestions for improving an input text in prepa-
ration of machine translation, which can greatly improve the output quality
of a text. By doing so, they also highlight the problematic constructions that
MT systems are faced with. Such source-text difficulties are, among others,
ungrammatical constructions, ambiguity, coordination, and ing-words.

Rather than looking at how the source text should be tailored to the
MT system, Naskar et al. (2011) improved an MT system by “relying on
the advice of end-users on the basis of what they deem[ed] should be pri-
oritized” (p. 529). The researchers used linguistic checkpoints to evaluate a
system’s performance. A linguistic checkpoint is a point of importance that is
required for an adequate translation. These points of interests are subjective
and depend on the MT system as well as the end-users’ priorities. Exam-
ples of these checkpoints could be an ing-form, noun-noun compounds, and
any part-of-speech tag. The checkpoints are sorted into a taxonomy that as
a whole represents the important source-text features for a given task. By
analysing an MT system’s performance at these linguistic checkpoints, a sub-
jective performance test can be created where the importance of a correct
translation of specific linguistic features is determined by the research set-up.

2.2.3.2 Human translation

From the perspective of human translation, Campbell (1999) took an empir-
ical approach and found source-text specific constructions that were difficult
to translate to different target languages, such as multi-word units, complex
noun phrases, and abstract content words. Additionally including the type of
the translation task and the competence of the translator, he presents a general
framework that sheds light on translation difficulty. Particularly, the author
concludes that “since common difficulties were encountered across subjects
texts could be said to be inherently difficult to translate” (Campbell, 1999,
p. 57). This statement implies that source-text features play a considerable
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role in a text’s translation difficulty.
Building on those findings, and alluded to earlier by the same author

(Campbell, 1998), Campbell and Hale (1999) aim to chart the choices that
translators make during a task in a choice network. The idea of a choice
network was later generalised to a framework, namely Choice Network Anal-
ysis (CNA) in Campbell (2000). CNA tries to model the mental processes of
translation. It assumes that a translator’s target text is the evidence and the
product of his or her mental processes during translation. Mental processes,
in this context, are in fact the choices that the translator had to make during
the translation process. When multiple translators try their hand at the same
source text, the product of these translation processes can be combined in a
network that represents all the choices that can be made given an input text.

As an example (taken from Campbell, 2000, p. 36-37), one can imagine
a choice network analysis of complex noun phrases in English translated to
Spanish. Such an English construction of two nouns (N N) can be structurally
re-factored into a Spanish translation that, for instance, consists of a single
noun (N), a noun followed by an adjective (N Adj), a new complex noun phrase
(N N), or a noun and a prepositional phrase (N PP) which entails many choices
in itself (e.g. the choice of the preposition).

According to the author, “CNA [is] useful for estimating the relative dif-
ficulty of parts of source texts” (Campbell, 2000, p. 38). It follows that the
plurality of choices in itself can be quantified as a difficulty indicator as “the
more nodes and branches in the network, the more choices are faced”.

The Choice Network model can be used to discuss another way of quan-
tifying the choices that translators can choose from, namely word translation
entropy (Carl et al., 2016; Schaeffer, Carl, et al., 2016). Word translation en-
tropy indicates the uncertainty for a translator to choose (a) target word(s)
for a source token. It revolves around the idea that a translator has multiple
ways to translate a given source token. The more options that are available,
the harder it is to make a decision. Word translation entropy is situated on
the lexico-semantic level. The core idea of word translation entropy (i.e. the
number of different translation options) can be modelled and visualised in a
CNA. Figure 2.1 shows how precipice in the sentence Residents have to catch
a cable car to the top of a nearby precipice to get a dose of midday vitamin
D has been translated by different translators. Note that afgrond (abyss) is
written in italics because this translation is semantically incorrect; an abyss
does not have a top.

On the syntactic plane, syntactic equivalence can serve to indicate prob-
lems with translation. Sun (2015) proposes that difficulties that arise dur-
ing translating from one language into another can generally be attributed
to difficulties with equivalence, a concept from translation theory that has
been around since the second half of the twentieth century (Pym, 2014, p. 7).
Equivalence (or the lack thereof) can manifest itself on different levels in lan-
guage. On a microscopic layer in morphology, lexicon, and syntax, up to a
more global, macroscopic layer: a semantic, pragmatic and ultimately a cul-
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tural level (Baker, 2011). In this paper, we are mainly interested in syntactic
equivalence. Problems with equivalence can occur when there is non-equiv-
alence, one-to-several equivalence, and one-to-part equivalence according to
Sun (2015). This categorisation is in line with an earlier grouping by Kade
(1968, pp. 79-89) who uses the German terms Eins-zu-Null, Viele-zu-Eins,
and Eins-zu-Teil respectively. Equivalence issues arise “especially for novice
translators” (Sun, 2015, p. 36).

Carl and Schaeffer (2017) used both word translation entropy and syntactic
equivalence to model translation literality or the lack thereof. They found
“strong correlations of cross-lingual semantic [word translation entropy] and
syntactic similarities [syntactic equivalence] and that non-literal translations
were more difficult and time consuming [...] to produce than literal ones”
(p. 55). From this we can assume that word translation entropy as well as
syntactic equivalence give rise to higher cognitive effort. In other words, the
more choices (or the more elaborate the choice network) or the more syntactic
re-ordering has to take place, the more difficult a translation is to create.

2.2.3.3 Translation process research

In addition to the above similarity coefficients, cognitive effort is also often
measured by analysing user-activity data (UAD) gathered during the transla-
tion process. Detailed information concerning duration (e.g. time to translate,
pause information), revision (e.g. number of character insertions or deletions,
number of self-corrections), and gaze information gathered with an eye tracker
(e.g. number of fixations, fixation duration, regressions) are often used metrics
in this type of research (see for instance Carl et al., 2008, 2010; Daems, 2016;
Daems et al., 2017; Jakobsen, 2011; Lacruz et al., 2012; Schaeffer, Carl, et al.,
2016).

Revision information (such as number of inserted or deleted characters,
number of revisions) can shed a light on the cognitive effort a translator had to
muster during translation. According to Leijten and Van Waes (2013, p. 360)
“[t]he main rationale behind keystroke logging is that writing fluency and flow
reveal traces of the underlying cognitive processes. This explains the analytical
focus on pause [...] and revision [...] characteristics”.

Initially touched upon by O’Brien (2005) and further developed in O’Brien

Figure 2.1. A CNA of the translation options to Dutch for English precipice
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(2006), pauses and in particular pause ratio can be used as an indicator of
cognitive effort for post-editing tasks (PE) where translators receive a ma-
chine-translated text and correct mistakes or improve the text in other mean-
ingful ways. Pause ratio is the total time that a translator has paused (i.e. has
not provided keyboard input) relative to the total production time of a trans-
lated segment.

The underlying idea is that the longer a translator pauses (i.e. does not
provide keyboard input), the more cognitive effort is required to generate a
suitable translation. It should be noted, though, that it is currently not possi-
ble to ensure that the cognitive effort related to a pause is in fact present and
being directed towards the task at hand. In other words, it is nearly impossible
to find out the motivation of a pause with certainty (see for instance Kumpu-
lainen, 2015). With regards to our study, however, we assume that pauses that
are not related to an increased cognitive effort (e.g. day-dreaming) are scarce
and of small to no consequence for our results.

Lacruz et al. (2012, p. 24) reacted to O’Brien’s duration metric by altering
the concept of pause ratio and instead using average pause ratio, which is
calculated as the average duration per pause divided by the average production
time per word. The authors claim that “[pause ratio] does not take different
patterns of pause behavior into account. In particular, it is not sensitive to
the existence of clusters of short pauses”.

Even though the researchers note that their research was limited to a single
translator, they do believe that average pause ratio can be used as a valid
measure of cognitive effort, and that it at least is a better indicator than
O’Brien’s aforementioned pause ratio metric. In her research on the effect
of MT quality on PE effort indicators, Daems (2016, p. 131) confirms that,
indeed, “average pause ratio is a better measure of cognitive effort than [...]
pause ratio”.

The methodological work by O’Brien (2005, 2006) and Lacruz et al. (2012),
as well as the applied study by Daems (2016) above are restricted to post-edit-
ing tasks. A source text is fed into a machine translation system, and the
generated output is then post-edited by a translator. Concerning cognitive
effort, post-editing and translating are related but not identical tasks. The
effort required to create a translation from start to finish is more intensive
than post-editing an MT-translated text. Therefore, conclusions drawn in a
PE setting are not necessarily applicable to translation. However, due to a
lack of comparative research on pause ratio and average pause ratio in human
translation tasks, and the tested preference for average pause ratio by Daems
(2016), we will use this metric in the remainder of this study.

In Section 2.4, we will examine whether the number of translation errors
and selected aforementioned product features reflecting similarity between the
source and target text (word translation entropy and syntactic equivalence)
correlate with process features that are generally accepted to reflect cognitive
effort.
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2.3 Methodology

2.3.1 Data Set
The data we use in this pilot study was collected in the ROBOT2 project
(Daems, 2016) and consists of process data in the form of keystroke and
eye-tracking data, and product data in the form of the final annotated transla-
tions. Eight English source texts of seven to ten sentences each were translated
to Dutch by 23 translators who were native speakers of Dutch and had En-
glish as (one of) their working language(s). The translators consisted of two
well-defined groups: one group of 13 professional translators with minimally
five years of translation experience (with one exception, who had been work-
ing for two years), and the other of 10 students of a Master in Translation
programme at Ghent University. Every translator translated four randomly
selected texts. Leaving corrupt or unusable data aside, the ROBOT data set
that is used here consists of detailed process and product data of 690 segment
translations (314 by students, 376 by professionals).

The ROBOT process data was recorded using CASMACAT (Alabau et
al., 2013). This tool can track a user’s mouse and keyboard activity in a
controlled translation environment and can be extended with an eye tracker
to also monitor a user’s gaze. The researchers of the ROBOT project used
an EyeLink 1000 eye tracker. CASMACAT’s output data is compatible with
the CRITT Translation Process Research Database (TPR-DB; Carl et al.,
2016). By means of freely available Perl scripts3 CASMACAT’s data could
be converted into workable and analysable spreadsheets. These spreadsheets
show the aggregated values of a magnitude of features for each translated
segment. In this paper we will make use of these spreadsheets and some of the
features, as we will discuss in the next section.

2.3.2 Features
As mentioned in section 2.2, literature suggests that process data such as
duration, number of character insertions and deletions, and gaze information
can mark translation difficulty. In addition, product data such as the number
2The ROBOT project compared post-editing (PE) and human translation (HT) by stu-
dents (stud.) as well as professional translators (prof.). To this end, eye tracking and
keystroke logging was used for data collection, but the author also worked with question-
naires to gauge participants’ attitudes towards PE and HT. With respect to comparing PE
and HT, research topics included (but were not limited to) task speed, task effort, product
quality of tasks, and common error types of tasks. In all research questions, the differences
or similarities between stud. and prof. is discussed as well. Some of the author’s key find-
ings are: PE is faster than HT but their output quality is comparable, PE is cognitively
less demanding than HT, stud. behave differently than prof. with regard to processing
texts, and the overall translation quality of stud. and prof. is comparable. The project
page can be found at https://research.flw.ugent.be/en/projects/robot.

3See https://sites.google.com/site/centretranslationinnovation/tpr-db for guides
and tools concerning TPR-DB.
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of errors a translator makes, the number of translation choices a translator
can choose from (entropy), and the amount of syntactic (non-)equivalence are
plausible indicators of translation difficulty. We will calculate correlations
between these process (section 2.3.2.1) and product features (section 2.3.2.2).

In the following sections, feature names are set in monospace. They are
analogous with those used in Translation Process Research Database (Carl et
al., 2016) with the exception of AvgPauseRatio, Pausedur and EC_TOT, which
were added manually by the researchers of the ROBOT project.

2.3.2.1 Process features

The process data includes, but is not limited to, duration and pause infor-
mation, textual segment statistics such as length (in tokens or characters),
and keystroke and gaze information. In this paper we are only interested in
a few that may point to translation difficulty, as found in related research.
As Table 2.1 shows, our experiment includes a number of features that can
be categorised into three groups, specifically DURATION, REVISION, and
GAZE.

For DURATION, we use the features AvgPauseRatio (added manually
during the ROBOT project and already discussed in Section 2.2.3.3), and the
total production time Pdur that measures keyboard activity excluding pauses
> 1s. These pauses are summed up in Pausedur (also added manually during
the ROBOT project), which reflects the time that a translator did not use the
keyboard. The threshold is motivated by work by Carl and Kay (2011, p. 969),
who claim that one second or longer is the optimal duration to separate PUs
(production units), which are segments in time where the target text is being
produced. Therefore, the sum of all pauses longer than or equal to 1s is the
meaningful, production-less keyboard pause.

REVISION categorises all features that have to do with keyboard input.
Mdel and Mins respectively indicate how many characters have been deleted
and inserted into the target window. Nedit is a broader concept, in the sense
that it keeps track of how many times a translator has gone back to a transla-
tion and edited the translation. Scatter, finally, counts how often two consec-
utively typed characters do not belong to the same word or consecutive words.
Put differently, how frequently a translator moves their cursor to a different
word (earlier or later in the text) to make changes to that word.

Lastly, we draw on FixS and FixT to indicate the number of fixations that
a translator has had on the source and target text respectively. These two
features constitute GAZE.
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Chapter 2. Correlating Process and Product Data

2.3.2.2 Product features

The produced translations in the data set were manually annotated according
to an extensive error typology (Daems et al., 2013).4 In the current study,
we are only interested in the total number of errors (EC_TOT), though. In
addition, we use two product features, word translation entropy and syntactic
equivalence, that were created by the TPR-DB scripts during the ROBOT
project prior to the current study. An overview of these three product features
can be found in Table 2.2.

Feature
Feat. name
in data set Description

Error count EC_TOT total number of errors made in a
segment

Entropy HTra word translation entropy
Syntactic equivalence CrossS Cross value for source tokens

Table 2.2. Product features

Translation difficulty can take place on different structural planes of lan-
guage, ranging from phonology (e.g. homophones) and morphology (e.g. irreg-
ular verb inflexion) up to the textual level (e.g. coindexing ambiguity). In this
study, we include select product features from the lexical as well as the syntac-
tic level. These features are word translation entropy (HTra in TPR-DB) and
syntactic equivalence between source and target text (CrossS) as they were
touched upon in section 2.2 .

In the context of TPR-DB, word translation entropy is calculated as shown
in Equation 2.1 (Carl et al., 2016, p. 31). Entropy is concerned with the impact
of new information on the current knowledge.

H(s) =
n∑

i=1
p(s→ ti) ∗ I(p(s→ ti)) (2.1)

In this equation, p(s→ ti) stands for the word translation probabilities of
a source token s and all its possible translations ti...n. They are computed
as how often a source token has been translated to the specified target token
(Eq. 2.2).

p(s→ ti) = count(s→ ti)
#translations (2.2)

4This typology is divided into two main categories, namely adequacy errors and accept-
ability errors. Adequacy entails issues such as contradiction, word sense disambiguation,
hyponymy and hyperonymy, deletion, addition and so on. Acceptability itself is divided into
five sub-classes namely Grammar & Syntax, Lexicon, Spelling & Typos, Style & Register,
and Coherence. These classes each contain even more fine-grained errors.
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The information I that is present in a distribution with equal probability
of an event p can be formulated as in Eq. 2.3. It is the smallest number of bits
necessary to encode the probability p.

I(p) = −log2(p) (2.3)

The word translation entropyH(s) of a source token s, then, can be phrased
as “the sum over all observed word translation probabilities (i.e. expectations)
of a given ST word s into TT words ti...n multiplied with their information
content” (Carl et al., 2016, p. 31).

To apply the metric, all the translations of the segment concerned are
put together to approximate the number of options a translator can choose
from. As an example, if a source token is translated exactly the same by all
translators then its entropy is H(s) = 0: there is only one option to choose
from, so choice – in itself – is non-existent.

In this study, the calculation of word translation entropy is based on the
final translations but in future research we intend to do away with the need of
product data. In the case of word translation entropy, we plan to calculate it
with information from large parallel corpora.

In contrast with word translation entropy, which operates on the lexico-se-
mantic level, syntactic equivalence is a syntactic feature. In TPR-DB’s gen-
erated features, there are two particularly interesting syntactic equivalence
features that map the amount of word re-ordering that has to take place to
transform the source text to the target text or vice versa. These features are
called CrossS and CrossT respectively. In our study, we are only interested in
going from the source text to the translation CrossS.

Figure 2.2 visualises such a re-ordering procedure. The higher the value for
CrossS, the more re-ordering steps have to take place to generate the target
text. The more syntactic transformations a translation requires, the higher
the difficulty of that translation task.

Figure 2.2. An illustration of syntactic re-ordering from English to Dutch

In the following section, a couple of methodological notes on the used corre-
lation metrics are highlighted. They are necessary to provide a comprehensive
overview of the results later on.

2.3.3 Correlation Metrics
In early tests it became clear that our data is not linearly distributed (e.g.
Figure 2.3) and outliers are frequent. Therefore, we opted to use Kendall’s tau
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τ as correlation metric. When calculating correlations, all features have been
normalised by the number of source tokens in the segment, hence the prefix
Norm in the labels in Figure 2.3. For conciseness’ sake, we do not prepend Norm
to the feature names in the text, but it is important to keep in mind that they
have been normalised by the number of source tokens.

Figure 2.3. Scatter plot showing a non-linear distribution of data points over
entropy (HTra, x-axis) and fixation on the target text (FixT, y-axis). Data set
restricted to professional translators

For the feature EC_TOT that designates the number of errors that were
annotated in a segment, we only look at a subset of the data (242 data points),
namely only those segments where the error count is larger than zero. In other
words, we are only interested in the final translations of segments that contain
errors. When a segment has errors, it can be assumed that it was difficult to
translate but when a segment has been translated without errors this does not
imply that it was easy to translate.

Because we are interested in the difference between professional translators
and students, both data sets have been analysed separately. By doing so,
differences between professionals and students (if any) are emphasised.

2.4 Results
This section discusses the results of the correlation tests. Only features with
a significant correlation (∗p < .05) are discussed. The absolutely largest cor-
relation between students and professionals is highlighted in boldface.
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2.4 Results

Duration Revision Gaze
APR Pausedur Pdur Mdel Mins Nedit Scatter FixS FixT

prof −.1746* .1606* .1240 .0556 .1498* .2858* .1204 .1545* .1842*
stud .0005 .1918* .0206 .0281 .0647 .3651* −.0312 .1778* .0992

∗p < .05

Table 2.3. Correlations between error counts (EC_TOT) and process features

2.4.1 Error Count
As mentioned before in Section 2.3, the number of errors made in each trans-
lated segment (EC_TOT) have been manually added to the data set using a fine
grained error typology (Daems, 2016). In this study, we are not interested in
the type of errors but in the number of errors.

Table 2.3 shows that the average pause ratio (AvgPauseRatio) is negatively
correlated with the number of errors in the final translation. This correlation
only exists for professional translators (−.1746) and it means that the more
errors were made in a segment, the lower AvgPauseRatio would be. More
verbosely, it means that the more errors occur, the smaller the average pause
is relative to the average time per word. Note that this does not mean that a
segment with a higher error count had less pause time. The opposite is shown
in Pausedur, which is correlated with the number of errors too (prof. .1606,
stud. .1918). There is no significant correlation between the total time of
keyboard activity excluding keystroke pauses > 1s (Pdur) and the number
of errors. The number of typed characters (Mins) is significant only for pro-
fessionals (.1498), meaning that the more errors have been made, the more
characters the translator will have typed. More obvious is the strong cor-
relation between Nedit and number of errors (prof. .2858, stud. .3651). This
correlation implies that the more often a translator has gone back to a segment
to revise it, the more errors will have been made, especially by students.

Finally, gaze is also moderately correlated with larger error counts. Fixa-
tions on the source text are correlated with error count for both professional
translators and students (prof. .1545, stud. .1778). Fixations on the target
text, however, are only of importance for professionals (.1842). This may in-
dicate that professional translators spend consistently more time fixating on
the target text when having difficulties than students.

2.4.2 Word Translation Entropy
Word translation entropy (HTra) is a quantifiable way to indicate the number
of translation choices at word level that a translator is confronted with.

Table 2.4 shows that AvgPauseRatio has slightly lower absolute values
for word translation entropy than it had for error count. More interesting,
though, is that AvgPauseRatio negatively correlates with word translation
entropy for professional translators as well as students of translation studies
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Duration Revision Gaze
APR Pausedur Pdur Mdel Mins Nedit Scatter FixS FixT

prof −.1160* .1854* .1668* .1038* .2068* .3729* .0479 .1567* .2011*
stud −.1119* .1864* .1338* .0930* .1576* .4708* .0568 .0991* .0643

∗p < .05

Table 2.4. Correlations between word translation entropy (HTra) and process
features

(prof. −.1160, stud. −.1119). Pausedur is correlated with word translation
entropy (prof. .1854, stud. .1864) similar to its correlation with error counts:
both product features correlate positively with Pausedur and the correlation
is stronger for students than for professional translators. Where the corre-
lation with Pdur was not significant for EC_TOT, it is for HTra (prof. .1668,
stud. .1338). This means that the number of options a translator has to
choose from influences the total time that a translator spends typing. In ad-
dition, the number of deletions and insertions is also indicative. For Mdel the
correlation is rather small (prof. .1038, stud. .0930), but it is larger for Mins
(prof. .2068, stud. .1576). Nedit scores high correlations again (prof. .3729,
stud. .4708) in addition to be highly correlated with the error count shown
before. Considering gaze it can be seen that there is a similar tendency as in
the correlations with error counts, but here FixS is more strongly correlated
for professionals (prof. .1567, stud. .0991). FixT is not correlated for students
here either (prof. .2011).

2.4.3 Syntactic Equivalence
CrossS is a feature that indicates the amount of syntactic re-ordering that
was needed to transform the source segment to the target segment. Moving
phrases around and re-ordering the translation requires more cognitive effort
(Sun, 2015). The correlations are given in Table 2.5.

Duration Revision Gaze
APR Pausedur Pdur Mdel Mins Nedit Scatter FixS FixT

prof −.1526* .1482* .1901* .1371* .2661* .3098* .0817* .1460* .2158*
stud −.1168* .1153* .0926* .0753* .1398* .1555* −.0345 .0213 .0614

∗p < .05

Table 2.5. Correlations between syntactic equivalence (CrossS) and process
features

AvgPauseRatio seems to correlate similarly with syntactic equivalence as
it does with word translation entropy with a small improvement for profes-
sional translators (prof. −.1526, stud. −.1168). The correlation is negative,
indicating that more re-ordering steps can be observed when there is a smaller
average pause ratio. Pausedur (prof. .1482, stud. .1153) and Pdur (prof. .1901,
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stud. .0926) are also correlated with CrossS, meaning that syntactic non-equiv-
alence generally occurs in segments with longer pauses and a longer production
time.

Syntactic re-ordering is correlated with all revision features for profes-
sional translators. Mins is correlated especially for professional translators
(prof. .2661, stud. .1398), and so is Mdel (prof. .1371, stud. .0753). Scatter
(prof. .0817) is not correlated for students. For Nedit the correlation is almost
twice as strong for professional translators as it is for students (prof. .3098,
stud. .1555).

Gaze information, finally, is only correlated with syntactic equivalence for
professional translators and not for students. In other words, when more
syntactic re-ordering is required, professionals will have more focused fixations
on the source (.1460) as well as on the target text (.2158).

2.5 Discussion
Going over the results presented above, we see that average pause ratio is
correlated with all three product features, with the exception of a correlation
with the number of errors (EC_TOT) for student translators. Because of the way
average pause ratio is calculated, as the average duration per pause divided by
the average production time per word, there are multiple ways to explain this
correlation. The negative correlation for all product features, seems to imply
that for high values for the product feature, the average duration of a pause
relative to the average duration of a word decreases, or that the average time
per word increases. What this means is that either the number of pauses in a
segment increases (without changing the total duration of the pauses) when a
product feature increases, or it means that the total pause duration decreases
without influencing the number of pauses. In the case that the average time
per word increases, it can only mean that translating the segment takes longer.
This latter option is excluded for the number of errors (EC_TOT) as it does not
correlate with the total production duration (Pdur), and we would expect a
correlated connection between the average pause ratio (AvgPauseRatio) and
the total production duration (Pdur) in that case.

The number of revisions that a translator made to a segment is the highest
correlating feature (Nedit). It is correlated with all studied product features.
This is especially true for word translation entropy with correlation values
of .3729 for professional translators and .4708 for students. For error counts
(prof. .2858, stud. .3651) and syntactic equivalence (prof. .3098, stud. .1555)
the values are lower. In the latter case, the correlation is notably stronger for
professionals, which is in contrast with the two other product features. This
means that a higher translation difficulty is likely when translators have gone
back to a segment’s translation more often to revise it.

The correlations with other process features are also significant in most
cases, with the exception of disrupted keyboard activity (Scatter), which
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is only slightly significantly correlated with syntactic equivalence (CrossS)
and only so for professional translators (.0817), and with the exception of the
total production duration (Pdur) and the number of deleted characters (Mdel),
which are not significantly correlated with error counts.

Students and professional translators clearly behave differently. For stu-
dents, correlations between process and product data are not significant more
often. Of particular interest is the persistent lack of correlation between fixa-
tions on the target text (FixT) and product data for students. The statement
by Sun (2015) that especially inexperienced translators have problems with
equivalence cannot be verified nor refuted with our data. We can only con-
clude that there is indeed a clear difference between students and professional
translators and that for students disrupted keyboard activity (Scatter) and
gaze information are not correlated with syntactic equivalence.

We are aware that Mishra et al. (2013) developed a system to automati-
cally predict translation difficulty. To the best of our knowledge, this has not
been done before. In their set-up, the researchers rely on eye-tracking data.
More particularly they use the sum of fixations and saccades on source and
target text divided by the sentence length as an indicator of translation dif-
ficulty. They then correlate this translatability indicator with three intrinsic
sentential properties, namely sentence length, degree of polysemy, and struc-
tural complexity. That allowed them to use these properties to train a Support
Vector Regression system. However, “[their] claim is that translation difficulty
is mainly caused by three features: Length, Degree of Polysemy and Structural
Complexity” (Mishra et al., 2013, p. 348), which are all source-text features.
The other side of the coin, namely translation-specific difficulties, is not taken
into account. We are convinced that features derived from the relation be-
tween the source and target language (i.e. language-pair specific features) are
important, too, and we will strive to include such features in our system.

2.6 Conclusion
In this paper, we have selected three difficulty-predicting features that were
proposed in related research (number of errors, word translation entropy, syn-
tactic equivalence) and we have correlated them with translation process data
(features that can be categorised as duration, revision, and gaze information).
By putting these data together, we have provided an insight in how particu-
larities in the process data change with the difficulty of the translation task.

We have shown that the proposed difficulty-predicting features correlate
with process data, as an intermediary indicating cognitive effort. In other
words, when a segment is hard to translate for a translator, the translation
process is different from a segment that is easy to translate. It follows that
these product features can be used as predictors for translation difficulties. In
our study, we have found that the impact of word translation entropy and syn-
tactic equivalence is similar to that of the number of translation errors. With
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respect to future research, this is interesting information. Even though error
counts can only be incorporated in an analysis after the translation process
has finished, and after the target text has been annotated, entropy and equiv-
alence may be modelled off-line, i.e. without the need of a translation. Future
research will address this intuition. We will borrow techniques from computa-
tional linguistics and investigate the feasibility of calculating word translation
entropy and syntactic equivalence values a priori with the help of parallel cor-
pora and dependency parsers. If the outcomes of these studies are positive,
word translation entropy and syntactic equivalence can be used as important
difficulty indicators in the final translation difficulty predicting system.
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Chapter 3

Predicting Syntactic Equivalence Between Source and
Target Sentences1

Bram Vanroy∗ · Arda Tezcan∗ · Lieve Macken∗
∗LT3, Language and Translation Technology Team, Ghent University

Abstract
The translation difficulty of a text is influenced by many different factors. Some
of these are specific to the source text and related to readability while others more
directly involve translation and the relation between the source and the target text.
One such factor is syntactic equivalence, which can be calculated on the basis of a
source sentence and its translation. When the expected syntactic form of the target
sentence is dissimilar to its source, translating said source sentence proves more dif-
ficult for a translator. The degree of syntactic equivalence between a word-aligned
source and target sentence can be derived from the crossing alignment links, averaged
by the number of alignments, either at word or at sequence level. However, when
predicting the translatability of a source sentence, its translation is not available.
Therefore, we train machine learning systems on a parallel English-Dutch corpus
to predict the expected syntactic equivalence of an English source sentence without
having access to its Dutch translation. We use traditional machine learning systems
(Random Forest Regression and Support Vector Regression) combined with syn-
tactic sentence-level features as well as recurrent neural networks that utilise word
embeddings and accurate morpho-syntactic features.

Publication: Vanroy, B., Tezcan, A., & Macken, L. (2019). Predicting syntactic
equivalence between source and target sentences. Computational Linguistics in the
Netherlands Journal, 9, 101–116.

1In the original publication, reproduced here, there is an error in the sequence alignments
in Ex. 10. The unaligned word “me” was incorrectly not considered. The right alignments
here are 0-0 1-2 2-1 4-3 5-5 6-4 7-6
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Chapter 3. Predicting Syntactic Equivalence

3.1 Introduction
In translation studies, equivalence is a concept that indicates how a source
text and its translation can be compared to each other. It works on low-level
language features such as morphology, lexicon, and syntax, as well as on
higher-level, general text properties such as semantic, pragmatic, and cultural
planes (Baker, 2011). In the current study, we focus on syntactic— that is,
structural—equivalence, which we operationalise as the amount of reordering
that is necessary to transform a source sentence into a target sentence. When
the syntactic equivalence between a source and target sentence is high (i.e. they
are structurally similar), no or few reordering steps are needed to transform
the source text’s syntactic form into the target structure. When syntactic
equivalence is low, many reordering steps are required to create a good trans-
lation. We investigate two approaches of quantifying syntactic equivalence.
The first one is based on word alignment whereas the second focuses on the
alignment of sequences of words. How exactly we calculate these metrics will
be discussed in Section 3.3.1.

In light of the PreDicT project2 (Predicting Difficulty in Translation), this
study aims to estimate an English source sentence’s syntactic equivalence to an
implied Dutch translation without the need for that translation. Our previous
study shows that syntactic equivalence is correlated with cognitive effort, and
thus the translation difficulty of a text (Vanroy, De Clercq, & Macken, 2019).
More related research will be discussed in Section 3.2. To predict syntactic
equivalence, we use the wealth of data available in word-aligned source and
target sentences of an English-Dutch parallel corpus to train machine learning
models that can predict a source sentence’s syntactic equivalence. The dataset
used will be discussed in Section 3.3.2, followed by a detailed run-down of the
machine learning systems that we have put to the test (Section 3.3.3). Then
we show the results for both the approach based on a word-alignment corpus
and the one utilising sequence alignment (Section 3.4), followed by a discussion
in Section 3.5. Finally, we will provide some hints towards future research in
Section 3.6.

3.2 Related Research
Translatability is a topic in translation studies that is still open to much de-
bate. Historically, there has been much discussion of whether or not texts
can in fact be truly translated, feeding an existential sense of untranslatabil-
ity. This absolute viewpoint is much less present today, even though “it is
assumed that the perfect translation, i.e. one which does not entail any losses
from the original is unattainable” (de Pedro, 1999, p. 556). In this paper
we understand translatability as the difficulty of translation rather than the
2https://research.flw.ugent.be/en/projects/predict
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more philosophical possibility or attainability of translation. It has been sug-
gested that the difficulty of translating a text can be measured by readability
formulas (Jensen, 2009), and that it can be modelled by using only source
text features (Mishra et al., 2013). However, empirical research found that a
text’s translatability is only in part related with its readability (Sun & Shreve,
2014). In addition to source text properties, the difficulties that translators are
faced with can also be attributed to language-pair specific features. One such
feature is equivalence, or the lack thereof, between a source text and its trans-
lation (Sun, 2015). As mentioned before, we put our attention to syntactic
equivalence between a source and target text.

Even though quantitative research on syntactic equivalence with respect to
human translation is scarce, syntactic equivalence is a much more discussed
topic in the field of machine translation (MT), where it can be seen as syn-
onymous for word reordering. Birch et al. (2008) show that the amount of
reordering necessary between a source text and its translation is a strong pre-
dictor of the performance of a statistical machine translation (SMT) system.
In other words, language pairs that require more reordering are more difficult
to translate by SMT systems. The reaction to this particular translation diffi-
culty was addressed by incorporating syntax into SMT systems. The interest
for this problem was large, at the time, and many different solutions were
proposed. Most of them require preprocessing the source text (often called
pre-reordering) to better match the expected target sentence’s structure. The
extent of this topic surpasses the scope of the current paper, but for more
details and different approaches see for instance Barone and Attardi (2013);
Collins et al. (2005); Xia and McCord (2004); Yamada and Knight (2001).

In recent years, advances in deep learning gave rise to neural machine
translation (NMT) systems, which outperform SMT in terms of translation
quality and yield fewer errors across almost all error types, including word
order errors (Bentivogli et al., 2016; Castilho & O’Brien, 2017; Van Brussel et
al., 2018). Hence, researchers have posed the question whether pre-reorder-
ing steps are actually still necessary (Du & Way, 2017). Due to access to
more context in NMT and the complexity and fine-grained feature analysis
that neural networks are capable of, it is no surprise that NMT can implic-
itly learn word orders from training a translation model. In fact, Toral and
Sánchez-Cartagena (2017) show that the reorderings that NMT introduces
are closer to the reorderings in the reference translations than those by SMT.
To further improve their performance, efforts have been made to teach NMT
systems the linguistic nuances of natural language, particularly syntax and
word (re)order(ing) (Huang et al., 2018; Zhang et al., 2017). Du and Way
(2017) found that preprocessing a source sentence by reordering it actually
lowers an NMT system’s performance. Instead they suggest an alternative
approach that improves translation quality by adding linguistic knowledge
such as part-of-speech (PoS) tags and word class to Japanese-to-English and
Chinese-to-English NMT systems. This addition was inspired by the work
of Sennrich and Haddow (2016) on NMT for the language pair German and
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English where they added lemmas, PoS tags, syntactic dependency labels,
and morphological features to the input of the neural network, leading to an
increased performance of the system. Similarly, on the task of detecting gram-
matical errors in SMT output, Tezcan et al. (2017) showed that word-level
morpho-syntactic features, consisting of PoS, dependency and morphology in-
formation, yield better results than using word embeddings as a word repre-
sentation technique. This approach is closely related to the recurrent neural
network (RNN) architecture that we test in this study on the task of predicting
syntactic equivalence (cf. Section 3.3.3.3). In a multi-task set-up, Niehues and
Cho (2017) successfully used PoS-tagging as a secondary task next to neural
machine translation. The idea being that the model learns the importance
of part-of-speech tags, and that this information propagates to the MT task.
Eriguchi et al. (2016) provided evidence that attentional NMT systems can
be extended with a linguistic tree representation of the source text for En-
glish-to-Japanese translation. A similar idea was worked out by Bastings et
al. (2017), who made use of graph convolutional networks (GCN) to encode
the source text as syntax-aware word representations through syntactic depen-
dency trees. This information contributes to improve over their baseline with-
out syntactic information for English-German and English-Czech. Conversely,
presenting the target text as a linguistic structure, Aharoni and Goldberg
(2017) found that using a string-to-tree model can improve the performance of
German-to-English NMT over a traditional string-to-string variant. Here, the
target text is presented as a linearised and lexicalised constituency tree. See
Currey and Heafield (2018) for a non-exhaustive yet comprehensive overview
of efforts to incorporate syntax into RNN-based NMT systems. The authors
also introduce their own approach of injecting syntactic information into an
English-to-German NMT system by using both the source text as well as its
linearised constituency parse as input. Especially the multi-task system per-
formed well, improving over the baseline.

Generally speaking there seems to be an iterative process of linguistic fea-
tures being added to existing translation systems to try to further improve
their performance.

Even though the above only highlights the difficulties that MT systems
experience as a result of the lack of linguistic knowledge, there is also some
evidence that suggests that the syntax of a source and of its target text play a
role for human translators. Bangalore et al. (2015) found that syntactic vari-
ation— that is, syntactic entropy – correlates with cognitive effort. In other
words, the more possible variations in the target text structure, the more
difficult the translation process is. In this paper, we are more interested in
syntactic equivalence between a source and target text rather than the syntac-
tic entropy of a given source sentence. Translation difficulty is often reduced
to source text features such as its readability, but Sun and Shreve (2014) (re-
iterated in Sun, 2015) use the term equivalence to discuss translation-specific
difficulty that is not solely related to the source text. The (syntactic) equiva-
lence between a source text and its (possible) translation can cause difficulties
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for a translator when the source and target syntactic structure differ signifi-
cantly. We refer the reader to a previous study (Vanroy, De Clercq, & Macken,
2019), where we correlated translation process features with syntactic equiv-
alence. We found that, indeed, a correlation exists between word reordering
and a number of translation process features (taken from duration, revision
and gaze categories) as a proxy for cognitive effort and, thus, translation dif-
ficulty. We take this to mean that the more transformations the source word
order has to undergo during translation, the more cognitive effort is required
by the translator. Considering that the goal of PreDicT is to build a translata-
bility predicting system, we wish to model syntactic equivalence of a sentence
off-line, that is, without the need of a target sentence which brings us to the
current study.

3.3 Methodology
First, we elaborate on how we quantify syntactic equivalence by distinguishing
two approaches in Section 3.3.1: word alignment and sequence alignment.
Then we discuss the used dataset (Section 3.3.2), followed by the experimental
set-up consisting of a baseline (3.3.3.1), a traditional machine-learning (ML)
approach using sentence-level features (3.3.3.2), and finally a neural network
that uses word-level features (3.3.3.3).

3.3.1 Alignment Types
We present two similar approaches to quantify syntactic equivalence: the first
quantifies how words have moved position during translation; the second takes
the movement of word sequences into account rather than single words. The
core idea is that we calculate syntactic equivalence as the number of times
alignment links cross each other (hence its name cross value), averaged by the
number of alignment links. Visual examples are given below.

Our first approach works on the word level: by looking at how each individ-
ual word has moved with respect to other words in the sentence, we calculate
its word_cross value. Our measure of syntactic equivalence is bidirectional (or
symmetrical) and applicable to either translation direction (English-to-Dutch
or Dutch-to-English). This contrasts with Carl et al. (2016), who introduce a
similar metric but which is asymmetrical, i.e. the resulting Cross value differs
depending on the translation direction. Typically, a word-aligned corpus is
represented in the Pharaoh format. The format requires that every alignment
link is shown as a pair of source and target word indices si-tj. The indices
indicate the position of that token in its sentence. An example is given below
where 8a is the source sentence, 8b the target sentence, and 9 a representation
of the word alignments in Pharaoh format.

(8) a. Sometimes she asks me why I used to call her father Harold .
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b. Soms vraagt ze waarom ik haar vader Harold noemde .
(9) 0-0 1-2 2-1 4-3 5-4 6-8 7-8 8-8 9-5 10-6 11-7 12-9

We can visualise this as follows in Figure 3.1. The arrows3 indicate the
alignment links, i.e. where a given source word has moved to in the target
sentence. The circles highlight where alignments cross one another; these are
the crosses. In this example, we count ten crosses. This value is then averaged
by the number of alignments (arrows) to get our final, average cross value of
the whole sentence. In this case that is 10/12 = 0.8333....

　                  ㈀    ㌀            㐀   㔀       㘀         㜀           㠀            㤀  

匀漀洀猀  瘀爀愀愀最琀  稀攀  眀愀愀爀漀洀  椀欀  栀愀愀爀  瘀愀搀攀爀  䠀愀爀漀氀搀  渀漀攀洀搀攀  ⸀

匀漀洀攀琀椀洀攀猀  猀栀攀  愀猀欀猀  洀攀  眀栀礀  䤀  甀猀攀搀  琀漀  挀愀氀氀  栀攀爀  昀愀琀栀攀爀  䠀愀爀漀氀搀  ⸀

　                      ㈀       ㌀     㐀      㔀  㘀       㜀    㠀     㤀     　                ㈀

Figure 3.1. A visual representation of word alignment and cross values

The second approach that we tested is based on sequential words that move
together as a group (seq_cross). The intuition here is that words that move
together are one unit and as such can count as one alignment link. To this
end, we seek the longest possible word sequence alignments between the source
and target sentences with the following criteria:

(i) each word in the source sequence is aligned to at least one word in the
target sequence and vice versa;

(ii) each word in the source word sequence is only aligned to word(s) in the
target word sequence and vice versa;

(iii) none of the alignments between the source and target word sequences
cross each other.

The visualisation of Example 8 as sequence alignment in Figure 3.2 makes
this clear. To illustrate: why I is seen as a sequence because they are sequential
(there is no aligned word between them nor between their translations), and
the order is the same (why is aligned with waarom which stands before the
I→ ik alignment link), so they do not cross each other. These alignments are
also shown in Pharaoh format in Example 10.
3In the original publication, arrows were used instead of alignment lines. For consistency
with following chapters, the figure has been replaced with a figure without arrows.
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　                  ㈀    ㌀            㐀   㔀       㘀         㜀           㠀            㤀  

匀漀洀猀  瘀爀愀愀最琀  稀攀  眀愀愀爀漀洀  椀欀  栀愀愀爀  瘀愀搀攀爀  䠀愀爀漀氀搀  渀漀攀洀搀攀  ⸀

匀漀洀攀琀椀洀攀猀  猀栀攀  愀猀欀猀  洀攀  眀栀礀  䤀  甀猀攀搀  琀漀  挀愀氀氀  栀攀爀  昀愀琀栀攀爀  䠀愀爀漀氀搀  ⸀

　                      ㈀       ㌀     㐀      㔀  㘀       㜀    㠀     㤀     　                ㈀

Figure 3.2. A visual representation of sequence alignment and cross values

(10) 0-0 1-2 2-1 3-3 4-5 5-4 6-6

In the example, the cross value based on sequences is 2/7 = 0.286. We
would argue that, intuitively, using crosses of sequence alignment better rep-
resents the syntactic shifts that a source sentence has to go through to become
the target sentence because it indicates crossing groups of words rather than
single entities. Therefore, our hypothesis is that cross values based on sequence
alignment can be modelled better than those based on word alignment. To dis-
tinguish systems that use word alignment as input from those using sequence
alignment, we will identify the former with WORD and the latter with SEQ.

Even though not similar, Birch et al. (2008) propose a word reordering
metric that works by maximising aligned block pairs, too. The authors use
this metric as a predictor for the performance of machine translation systems.
A large difference with our approach is that they average their metric by the
number of source tokens in a sentence whereas we average by the number of
alignments. This is important, because in our approach, both for word align-
ment and sequence alignment, calculating cross is direction-agnostic, meaning
that going from source text to target sentence or vice-versa will yield the same
cross value. As such it is, indeed, a syntactic equivalence metric that compares
two sentences irrespective of the translation direction. Do note that sequences
are not linguistically motivated entities but only sequences that move as a sin-
gle unit. Sequences of words have been used as (structurally useful) phrases
before, perhaps most notably by the (H)TER evaluation metric which takes
sequence shifts into account to calculate the edit distance between a transla-
tion and a reference (Snover et al., 2006, (Human-targeted) Translation Edit
Rate).

Because our aim is to predict syntactic equivalence automatically, which we
measure with cross values in this study, we rely on automatic word alignment
methods, which are error-prone. Therefore, we first analyse the quality of
two widely-used automatic word alignment systems in order to (i) ensure that
automatic methods are sufficiently accurate compared to human alignments;
and (ii) to use the automatic method with the highest alignment quality in the
remainder of this study. In the following test we compare the human, manual
alignments (MA) of a small corpus, taken from the work of Macken (2010),
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to the output of GIZA++ (Och & Ney, 2003) and fast_align (FA) (Dyer et
al., 2013) to see whether the quality of automatic word alignment systems is
acceptable, and which tool performs best. For both GIZA++ and FA, we use
the grow-diag-final-and algorithm, which starts with the intersection of the
forward and backward alignments and then adds additional alignment points
(Koehn et al., 2003). The dataset contains 143 sentences after filtering out
outlying sentences that consist of less than three or more than 50 tokens in
either source or target text. As word alignment tools work better with larger
corpora, we obtained word alignments with GIZA++ and FA after appending
the manually aligned data to the Dutch Parallel Corpus (DPC; Macken et al.
(2011)). We evaluate the alignments between MA and GIZA++ and MA and
FA with Alignment Error Rate (AER), as proposed by Mihalcea and Pedersen
(2003), which is based on earlier work by Och and Ney (2000). We use the
AER implementation of NLTK in Python (Bird et al., 2009).

MA-GIZA++ ↓ MA-FA ↓
Min. 0.0 0.0
Max. 0.5758 0.6471
Mean 0.0822 0.1127
Median 0.0189 0.0691
SD 0.1110 0.1329

Table 3.1. Statistics about AER calculated on MA-GIZA++ and MA-FA

Table 3.1 shows that with mean AER 0.0822 and median AER 0.0189,
GIZA++ is closer to manual alignments than FA (0.1127 and 0.0691, resp.).
These results are in line with earlier findings by Peter et al. (2017) where
GIZA++ outperformed fast_align in terms of alignment quality. We consider
both AER scores to be sufficient for our task and that these automatic word
alignment tools can be used as a proxy for manual alignment. Because of its
better alignment quality, we will use GIZA++ as our word alignment tool of
choice.

3.3.2 Data Set
In our experiments we use the Dutch Parallel Corpus (Macken et al., 2011),
which, as the name implies, is a parallel corpus that centres around Dutch as its
core language. We make use of both English-to-Dutch and Dutch-to-English
parts of the corpus, which in total contain 148, 421 sentences after remov-
ing duplicates and sentences that are shorter than 3 tokens or longer than
70 tokens. The training set consists of 144, 421 sentences, leaving 2, 000 sen-
tences for the validation set and 2, 000 sentences for the test set. The data
was tokenised and lower-cased by using the preprocessing scripts4 provided by
4https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer
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Moses (Koehn et al., 2007).

3.3.3 Experimental Set-up
The objective of this paper is to predict the cross value of an English source
sentence without having access to the Dutch target sentence. As mentioned
before, we predict cross values based on word alignments as well as cross
values based on sequence alignments. We train two types of systems with their
own feature sets. The first type contains traditional ML systems combined
with sentence-level features and the second one makes use of recurrent neural
networks with word-level features. Additionally, we compare the estimation
performance of the two ML approaches to a mean baseline, which we discuss
first.

3.3.3.1 Mean baseline

As exemplified above, the cross values for the word alignment and sequence
alignment of a sentence can differ. The mean cross value of the whole training
set for WORD is 1.02 and for SEQ it is 0.91. We use these mean values as a
baseline. More explicitly: for all 2, 000 sentences in the test set, this baseline
predicts 1.02 and 0.91 as cross values obtained from word and sequence align-
ments, respectively. The results for this approach will be referenced as mean
baseline below.

3.3.3.2 Sentence-level features and RFR/SVR

In our traditional ML systems, we use sentence-level features as input (shown
in 11), derived from the sentence level which contrasts with the word features in
Section 3.3.3.3. These features have been chosen because— from a linguistic
point-of-view— they provide information about the syntactic structure of a
sentence. We used the Python package spaCy (Honnibal & Montani, 2017) to
extract the required information from the source sentences.

(11) • parse tree depth
• sentence length
• # coordinating conjunctions
• # subordinating conjunctions
• # punctuation marks
• # content words (adjectives, (proper) nouns, and verbs)
• # subjects
• # objects

We employ Random Forest Regression (rfr) and Support Vector Regres-
sion (svr) from the Python scikit-learn package (Pedregosa et al., 2011).5

5For more information about the fine-tuned parameters that we use in our experiments, see
the package’s documentation https://scikit-learn.org/stable/documentation.html.
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Both rfr and svr are optimised through grid search with mean squared er-
ror (MSE) as the criterion to minimise between predicted and actual values.
For rfr we tuned the number of trees (n_estimators) and found the best
results with 500 trees (WORD) and 1000 in (SEQ). In the case of svr, the best
parameters were C = 1 (C is the penalty of the error term), ε = 0.01 (ε is the
penalty-free distance with respect to training loss), using a radial bias function
kernel. This is the case for both WORD and SEQ.

3.3.3.3 Word-level features and RNN

In the previous section, we introduced the traditional machine learning sys-
tems that we use. These systems are relatively fast and rather intuitive in that
the features are hand-crafted. This can also be a downside, however: feature
extraction is a time-consuming process and the generated features are often in-
complete. Neural networks, on the other hand, try to learn high-level features
from data and eliminate the need of domain expertise and feature engineer-
ing. Combined with the success of word embeddings (Mikolov et al., 2013;
Pennington et al., 2014), especially in the last decade, neural networks have
been producing superior results compared to traditional machine learning al-
gorithms on various natural language processing tasks, including named entity
recognition (Turian et al., 2010), parsing (Socher, Lin, et al., 2011), sentiment
analysis (Socher, Pennington, et al., 2011), machine translation (Cho et al.,
2014) and quality estimation of MT (Deng et al., 2018). Inspired by previous
work on NLP and in addition to the traditional machine learning techniques
described above, we use an RNN architecture for the task of predicting syn-
tactic equivalence for a source sentence and an implied translation. RNNs can
learn from a sequence of inputs rather than a single data point which makes
them ideal for NLP tasks because sentences are sequences of words. Instead of
representing a sentence as a single set of sentence-level features, which is the
only option in the traditional ML systems, neural networks allow us to use a
sentence as a set of words, which all have their own features. In other words,
RNNs allow a sentence to be represented as a sequence of words, whereas tradi-
tional systems can only process a sentence as one unit. The RNN architecture
that we have used will be discussed later in this section.

Word embeddings represent a word as a vector of size n based on its context
and co-occurrences in a text. Each dimension in such a vector represents a la-
tent feature of a given word, capturing useful syntactic and semantic properties
(Turian et al., 2010). Despite its success and popularity on various NLP tasks,
Tezcan et al. (2017) suggest that word embeddings, as a word representation
technique, should not be considered as a one-size-fits-all approach. On the
task of detecting grammatical errors in statistical machine translation (SMT)
output, they report a marked improvement in performance over word embed-
dings by using accurate morpho-syntactic features. Moreover, in a more recent
study, Tezcan et al. (2019) showed that the combination of morpho-syntactic
features and word embeddings maximised the performance of an RNN system,
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in comparison to using either type of information alone, on the task of detect-
ing all types of fluency errors in SMT output, consisting of both semantic and
grammatical error types. Both studies suggest that such morpho-syntactic fea-
tures provide complementary information to word embeddings when syntactic
properties of texts are important in a given task. Considering the syntactic
nature of the task at hand, namely predicting syntactic equivalence in transla-
tion, we use morpho-syntactic features, as an alternative word representation
technique.

As described in Tezcan et al. (2017), we transform each token of a given
sentence into its morpho-syntactic representation, in the form of a multi-hot
encoded vector that provides accurate information about its part-of-speech tag,
dependency label, and morphology. For every word, the vector values are set to
0 except for the morpho-syntactic features that apply to it, which are set to 1.
Figure 3.3 shows the morpho-syntactic features that are extracted for the word
is, in a given English sentence. In this example, the morpho-syntactic feature
vector of the word is consists of all zeros except for the fields that represent its
PoS tag (VBZ ), dependency label (Root), and morphology information (finite,
present tense, singular, and third person).

Figure 3.3. A visual representation of how tokens are represented as
morpho-syntactic, multi-hot encoded features

We used spaCy (Honnibal & Montani, 2017) to extract the aforementioned
morpho-syntactic features on the English part of our dataset, as discussed
in Section 3.3.2. We set the length of morpho-syntactic feature vectors to
147, namely the total number of possible features obtained by spaCy. The
word embedding model was trained using word2vec (Mikolov et al., 2013) on a
merged data set consisting of the English part of our dataset and the English
news crawl dataset from the WMT shared task of 20176. To keep the amount
of information provided to the RNN system by the two types of input vectors
balanced, we trained word embedding models with 147 dimensions.

To go into more detail about the architecture: we built an RNN architec-
ture such that each input vector, word embedding or morpho-syntactic feature
vector, is fed into a dedicated Bidirectional Gated Recurrent Unit (BiGRU).
GRUs are a specialised variant of RNNs, which are well suited for capturing
long range dependencies on multiple time scales (Cho et al., 2014). Bi-direc-
tional GRUs consist of two recurrent layers, each processing the given input
6Available at http://data.statmt.org/wmt17/translation-task/.
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sequence in opposite direction, as a means to overcome the generalisation limi-
tations of RNNs in general, which have the tendency to represent recent input
nodes better (Bahdanau et al., 2015). As the final output of a GRU, we take
the concatenation of the last state of each layer. When both morpho-syntac-
tic features and word embeddings are provided as input, the outputs of both
BiGRU layers are concatenated before they are connected to the output layer,
which predicts the cross value for a given input sentence using a linear acti-
vation function. To help prevent overfitting, we apply dropout in the BiGRU
layers (for the input gates and the recurrent connections) and between the
BiGRU layers and the output layer (Srivastava et al., 2014).

We test three RNN architectures on this task, with different word repre-
sentation combinations as input:

• rnn_ms: Only morpho-syntactic features
• rnn_w2v Only word embeddings
• rnn_ms+w2v: Both morpho-syntactic features and word embeddings

All systems were built with Keras (Chollet, 2015) on top of a TensorFlow
backend (Abadi et al., 2015), using the Adam optimiser with a learning rate
of 1× 10−3, hidden layer of size 200 and a batch size of 200. We used tanh
as activation function between input and hidden layers, and linear activation
between hidden and output layers. As loss function, we used MSE. All systems
were trained for 100 epochs. We trained each system with three different
dropout values, namely 0, 0.2 and 0.4, and kept the model that performed
best on the development set as the best model. Figure 3.4 illustrates the
proposed RNN architecture, which takes both morpho-syntactic features and
word embeddings as input.

Figure 3.4. A visual representation of rnn_ms+w2v
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3.4 Results
In this section, we use the Pearson correlation (r) between the predicted val-
ues and the actual cross values as our primary evaluation metric. This is
done in order to be able to compare the results from WORD and SEQ: a sen-
tence’s cross value based on word alignment is different from the cross value
based on sequence alignment. We also provide values for mean absolute error
(MAE). MSE and MAE should be minimised whereas Pearson’s r has to be
maximised. In all results below, it holds that the Pearson correlations are
significant (p < .01). The figures that are given here show all metrics (MSE,
MAE and Pearson r) on the Y-axis, and all tested systems on the X-axis.
Pearson r values are given in boldface, MAE in italics.

The predictive performance of the systems that we built using input based
on word and sequence alignments are provided in Figure 3.5 and 3.6, respec-
tively.

Figure 3.5. Visualisation of results for WORD (dataset mean of 1.64)
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Figure 3.6. Visualisation of the results for SEQ (dataset mean of 0.91)

In a last graph (Fig. 3.7), the performance difference between systems using
input based on word alignment and sequence alignment is highlighted.

Figure 3.7. Comparison of WORD and SEQ

3.5 Discussion
The goal of this paper was to predict a Dutch source sentence’s syntactic
equivalence to an implicit English translation. To this end we introduced our
version of a cross value, which can be based on word alignments (WORD) as
well as on sequence alignments (SEQ), as discussed in Section 3.3.1. We found
that traditional machine learning systems (rfr and svr) are less performant

76



3.5 Discussion

than recurrent neural networks (rnn_*) across the board. Furthermore, SEQ
outperforms the WORD counterpart in all scenarios.

The neural network architectures with word-level features perform better
than the traditional machine learning systems using sentence-level features.
The best performing traditional ML system, svr, reaches a Pearson correla-
tion of 0.43 (WORD) and 0.47 (SEQ), outperforming rfr (0.37 WORD, 0.44 SEQ).
All RNN-architectures achieve better results, though. The reason for recurrent
neural networks performing better than traditional ML is two-fold, and already
touched upon before in Section 3.3.3. On the one hand, the traditional systems
require single data point features as input, meaning that a sentence can only
be represented as a number of features (cf. Section 3.3.3.2). These features are
thus more coarse grained and not as detailed as word-level features. In con-
trast, when using neural networks a sentence can be represented as sequences
of features. In other words, rather than having a single set of features for a
sentence, that sentence can be represented as a sequence of word-level features,
which gives much more detailed information to the system. Particularly, re-
current neural networks allow for the propagation of information through the
sequence. This means that the final output takes into account the order of
the words as well as the information of each word. On top of that, the archi-
tecture of our tested traditional ML systems are fundamentally different from
neural networks. The latter is much more capable of modelling data-specific
peculiarities while at the same time generalising sufficiently.

For the neural network systems, we can see that using only morpho-syntac-
tic features (0.49 WORD, 0.55 SEQ) performs slightly worse than using only word
embeddings (0.52 WORD, 0.56 SEQ). Because the task at hand is syntactic rather
than semantic, it is worth expanding on the performance of word embeddings
compared to morpho-syntactic features. Because our task is specifically di-
rected at modelling syntactic changes, we expected a high importance of the
morpho-syntactic features. Our morpho-syntactic features are very specific to
each word in its context and role in the sentence whereas word embeddings are
more general representations of words. Word2vec models do not specifically
model syntax or morphology or even semantics; rather, they represent each
word-type in relation to each other, implicitly modelling all kinds of language
features, including morpho-syntactic and semantic. Because of the different
goals of both word representations techniques (one specifically morpho-syn-
tactic, the other more general), we had especially hypothesised them to be
complementary, leading to a performance boost when combined. This is in-
deed the case, with a correlation of 0.54 (WORD), and 0.58 (SEQ).

Finally, comparing the Pearson correlations of both WORD and SEQ, we
clearly see that cross values based on sequence alignment can be modelled
better than those using word alignment.

In this paper we have presented a number of systems that can predict a
source text’s syntactic equivalence with an implicit translation, i.e. without
needing an actual translation. In our tests, we reached a Pearson correlation
of 0.58 but in future work we tend to improve this with more complex neural
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networks. Furthermore, and in line with Tezcan et al. (2019) who worked on
a classification problem, we showed that for this specific task, a regression
problem focused on a sentence’s syntax, a morpho-syntactic component can
be successfully used to improve the quality of predictions.

3.6 Future work
We have presented a way of calculating syntactic equivalence (with cross val-
ues) based on computational phrases, that is, phrases that are algorithmically
created. Building phrases in this way is often used in automatic systems to
create alignments between source and target sentences. However, we would
also like to take the linguistic route, and compute the cross values based on lin-
guistically motivated phrases. The phrases can be extracted automatically by
using a constituency parser, but this introduces yet another automatic compo-
nent prone to errors. Additionally, theoretical questions need to be answered
concerning how the constituency tree should be segmented, and how to deal
with linguistic phenomena such as separable verbs, conjunctions, (in)direct
speech, interjected adverbs, and so on. Despite these challenges, we think
linguistic phrases can improve performance over algorithmic phrases.

In our experiment we used recurrent neural networks, and even though
they are powerful, they have been surpassed by the transformer architecture
(Vaswani et al., 2017) in many natural language tasks. In future endeavours
we will use transformers and investigate how well they perform for our given
task.

The objective of the PreDicT project is to build a system that can predict
a source sentence’s translation difficulty. The present study discussed one fea-
ture (syntactic equivalence) that plays a role in predicting translatability, but
we plan to test more features and add those to the final system. These features
include semantic information such as word translation entropy, but also source
text specific features such as syntactic and semantic complexity. Finally, lan-
guage (pair) specific difficulties can be added, for instance the translation of
the English -ing form to Dutch.
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Metrics of Syntactic Equivalence to Assess Translation
Difficulty1

Bram Vanroy∗ · Orphée De Clercq∗ · Arda Tezcan∗ · Joke
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∗LT3, Language and Translation Technology Team, Ghent University

Abstract
We propose three linguistically motivated metrics to quantify syntactic equivalence
between a source sentence and its translation. Syntactically Aware Cross (SACr)
measures the degree of word group reordering by creating syntactically motivated
groups of words that are aligned. Secondly, an intuitive approach is to compare
the linguistic labels of the word-aligned source and target tokens. Finally, on a
deeper linguistic level, Aligned Syntactic Tree Edit Distance (ASTrED) compares
the dependency structure of both sentences. To be able to compare source and
target dependency labels we make use of Universal Dependencies (UD). We provide
an analysis of our metrics by comparing them with translation process data in mixed
models. Even though our examples and analysis focus on English as the source
language and Dutch as the target language, the proposed metrics can be applied to
any language for which UD models are attainable. An open-source implementation
is made available.

Keywords: translation studies · computational linguistics · tree edit distance ·
syntax

Publication: Vanroy, B., De Clercq, O., Tezcan, A., Daems, J., & Macken, L. (in
press). Metrics of syntactic equivalence to assess translation difficulty. In M. Carl
(Ed.), Explorations in translation process research. Springer International
Publishing.

1In this chapter, references to “other chapters in this book” refer to chapters in the original
book publication
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4.1 Introduction
Readability prediction is a well-studied problem. Traditional readability for-
mulas (e.g. Flesch-Kincaid Grade Level (Kincaid et al., 1975), Gunning Fog In-
dex (Gunning, 1952)) typically use shallow source text features such as average
word and sentence length and word frequency to assess the reading difficulty
level of a given text. Recently, more complex lexical, syntactic, semantic and
discourse text features have been used (see for instance De Clercq and Hoste
(2016); De Clercq et al. (2014); Francois and Miltsakaki (2012); Schwarm and
Ostendorf (2005), and Collins-Thompson (2014) for an overview). The efforts
in readability research contrast sharply with research into “translatability”:
there are no well-established methods yet to assess the difficulty level of a
translation task. That is not to say that translation difficulty itself has not
been studied, though. In fact, defining translation difficulty has been ap-
proached from a number of different directions.

It has been shown that genre, registerial and even cultural factors influence
the choices translators have to make (e.g. Borrillo (2000, Section 3) concerning
literary translation, and Steiner (2004) on registerial differences), which may
introduce difficulties of its own. In addition, there is no doubt that individual
translators may face different issues when translating the same text, and they
may even choose to translate the same text differently (see for instance Drag-
sted (2012)). In this paper, however, we will focus on the source and target
text itself.

According to Campbell (1999) and Sun (2015), translation difficulty can
be attributed to linguistic source text factors and translation-specific factors.
For the source text factors, we can refer to the vast literature on readability
research (see the survey by Collins-Thompson (2014) for an overview), though
a few findings specific to translation should be highlighted. Liu et al. (2019)
demonstrated that source text complexity plays an important role in perceived
translation difficulty, which supports earlier findings by Mishra et al. (2013).
Mishra et al. introduced a metric of translation difficulty that is based on
source text features alone, namely sentence length, degree of polysemy, and
structural complexity. Campbell (1999) looked into translation difficulty from
an empirical point of view and identified several source text elements that
were difficult to translate across different target languages, such as multi-word
units, complex noun phrases, abstract nouns and verbs. Campbell continued
their research and developed the Choice Network Analysis (2000) in an at-
tempt to model the mental process that underlies translation, particularly the
multitude of choices that translators can choose from given a specific source
text. Building on this, Carl and Schaeffer (2017) documented longer trans-
lation times when more elaborate choices were at the translators’ disposal.
This indicates that having more options available can increase the translation
difficulty in terms of duration.

However, readability prediction and source text complexity alone do not
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suffice to adequately assess the translation complexity level of a given source
text (Daems et al., 2013; Sun & Shreve, 2014). This is not surprising because
readability prediction is not designed to take into account co-activation of
shared bilingual resources. Specifically, Sun and Shreve (2014) and Sun (2015)
state that translation-specific difficulties can be ascribed, in part, to the lack of
equivalence due to inherent differences between languages. Hence, this paper
will focus on the equivalence between the source and target text, specifically
their syntactic similarity.

The notion of syntactic equivalence in a multilingual setting is not easy to
define (see the next section) because syntax in itself is such a broad concept,
so in this paper we restrict syntactic equivalence between a source and target
segment to mean three things:

(12) a. differences in word (group) order;
b. differences in dependency labels of aligned words (e.g. a subject

(nsubj) is translated as an object (obj));
c. differences in syntactic structure (dependency tree).

In Section 4.2 we will first discuss background literature concerning the im-
portance of syntactic equivalence with respect to translatability and previous
research of equivalence. In Section 4.3 we then introduce three linguistically
motivated metrics to quantify syntactic equivalence between a source sentence
and its translation. First, we introduce a metric to capture linguistic word
group reordering (Syntactically aware cross; SACr). The next metric measures
parse tree label changes between source and target sentences. Thirdly, we in-
troduce a method to calculate tree edit distance between aligned dependency
trees (Aligned Syntactic Tree Edit Distance; ASTrED). To illustrate the differ-
ent proposed metrics, we will discuss two example sentence pairs in Section 4.4
to highlight how each metric accounts for different linguistic phenomena. As
a proof of concept, we also apply our metrics to an existing dataset and mea-
sure the effect syntactic changes may have on the translation process by using
mixed models (Sec. 4.5). Finally, we end with a conclusion and thoughts for
future work concerning quantifying syntactic equivalence (Sec. 4.6).

4.2 Related Research

4.2.1 Background
In process-based translation studies, literal translation is conceived as the eas-
iest way to translate a text and has been suggested as the default mode of
translation, which is only interrupted by a monitor that alerts about immi-
nent problems in the outcome (Tirkkonen-Condit, 2005, and Carl, this volume,
Chapter 5). In other words, translators will translate a source text literally
into the target text but as soon as an issue is encountered, translators stop
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working in the literal translation mode and try to find a more appropriate
solution. Asadi and Séguinot (2005), for instance, observed that one group
of translators processed the source text in short phrase-like segments. They
translated while reading the text and followed the source language syntax and
lexical items closely, but then rearranged the completed text segments to create
a more idiomatic target text. Literal translation, in this sense of translating
word-per-word, is identical to the concept of simple transfer in transfer-based
MT, which can occur when the lexical surface forms are the only required
differences between the source and target segment for a successful translation.
In other words, when the underlying structure of the segments is the same, a
literal translation can happen and only the lexical values need to be changed
(Andersen, 1990; Chen & Chen, 1995).

From a cognitive perspective, literal translation is often explained by prim-
ing (Hansen-Schirra et al., 2017), i.e. the process in which the production of an
output (in the case of translation, the target sentence) is aided or altered by
the presentation of a previously presented stimulus (in the case of translation,
the source sentence). Priming can occur at different linguistic levels including
the morphological, semantic, and syntactic level.

In Carl and Schaeffer (2017, 46), building on earlier work (Schaeffer & Carl,
2014), “literal translation” is defined by three criteria:

(13) a. each ST [source text] word has only one possible translated form
in a given context;

b. word order is identical in the ST and TT [target text];
c. ST and TT items correspond one-to-one.

To quantify the first criterion 13a, they use word translation entropy (HTra),
which indicates the degree of uncertainty to choose a particular translation
from a set of target words based on the number and distribution of different
translations that are available for a given word in a given context. To measure
the second and third criterion they use word crossings (Cross) calculated on
word-aligned source-target sentences.

Criteria 13b and 13c for literal translation relate closely to what we con-
sider syntactic equivalence as described in 12. 12a (differences in word (group)
order) relates to criterion 13b (identical word order) above, and 13c is most
similar to 12c: if ST and TT items do not correspond one-to-one, this must
mean that the syntactic structure of the source and target sentences are dif-
ferent. In that respect, our interpretation for syntactic equivalence is closely
linked, in part, to the definition of “literal translation” by Carl and Schaeffer
(2017).

The affinity between “literal translation” on the one hand and equivalence
on the other can also be seen in other research. Sun and Shreve (2014),
repeated in Sun (2015), suggested that translation difficulties can be attributed
to the lack of equivalence between the source and target text. Non-equivalence,
one-to-several equivalence and one-to-part equivalence situations can be the
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root cause of translation difficulties. These situations can appear both at
the lexical and syntactic level. However, Carl and Schaeffer (2017) note that
it is possible that a source text has viable (“equivalent”) translation options
available, but that a plethora of choices actually implies that there is not one
single, obvious translation equivalent. In our current study, we will follow the
definitions of natural equivalence (Pym, 2014, Chapter 2), applied to syntax:

• equivalence is a relation of “equal value” between a source-text segment
and a target-text segment;

• equivalence can be established on any linguistic level, from form to func-
tion;

• natural equivalence should not be affected by directionality: it should
be the same whether translated from language A into language B or the
other way round.

Pym (2014) juxtaposes natural equivalence with directional equivalence,
which assumes that the equivalency relationship between a source and target
text is asymmetric. For a discussion between the two approaches, see the
particularly interesting discussion sections (Pym, 2014, Chapters 2.7, 3.9).

A similar idea to equivalence is that of translation shifts (Catford, 1965),
which dates back to an approach to translation that is based on formal lin-
guistics. Catford distinguished two major types of shifts, namely level shifts
(e.g. shifts from grammar to lexis in distant languages) and category shifts
(e.g. changes in word order or word class). They also contrast obligatory and
optional shifts; the former refer to shifts that are imposed as a result of dif-
ferences in the language systems, whereas the latter term is used to indicate
optional choices of the translator.

Bangalore et al. (2015) introduced syntactic entropy and as such expanded
translation entropy to the syntactic level. Syntactic entropy measures the ex-
tent to which different translators produce the same structure for one source
sentence. They analysed a corpus of six English source texts translated into
German, Danish and Spanish by a number of translators (24 for German and
Danish and 32 for Spanish) and manually coded the following three linguistic
features for all translations: clause type (independent or dependent), voice
(active or passive), and valency of the verb (transitive, intransitive, ditransi-
tive, impersonal) to quantify the syntactic deviation between translations of
the same source text, which is their implementation of syntactic entropy. They
obtained lower syntactic entropy values for target sentences that had similar
linguistic features as the source segments and obtained higher syntactic en-
tropy values for the cases where they diverged. Moreover, syntactic entropy
had a positive effect on behavioural measures such as total reading time on the
source text and the duration of coherent typing activity. This study is, to the
best of our knowledge, the only study in this field that uses linguistic knowledge
to quantify syntactic differences between a source text and its human transla-
tion. As an alternative to their three manually annotated linguistic features,
we will suggest metrics that can be automatically derived from comparing the
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syntactic structures of the source and target sentences (Sec. 4.3).
Carl and Schaeffer (2017) used word-order distortion, measured by length

of crossing links (called Cross) derived from word-aligned source-target sen-
tences to measure the degree of monotonicity in translations. A bidirectional
(symmetric) variant of Cross, which is applicable on either translation direc-
tion, was introduced by Vanroy, Tezcan, and Macken (2019) (from now on
referred to as word_cross). Using word alignment in this way provides a
fine-grained (word-based) method to quantifying syntactic equivalence. An
alternative, coarse-grained, approach was suggested in Vanroy, Tezcan, and
Macken (2019), who calculated cross on aligned word groups, or sequences,
rather than single words to calculate syntactic equivalence between English
source sentences and their Dutch translations (henceforth called sequence cross
or seq_cross). These sequences, however, were not linguistically motivated
but derived automatically adhering to a set of constraints. The lack of lin-
guistic motivation in seq_cross prompted the creation of the three different
metrics described in this paper. Each metric quantifies a different aspect of
syntactic equivalence but all are based on linguistic knowledge, specifically the
syntactic structures of the source and target sentences.

There are two main different ways of annotating syntactic structures: by
means of a phrase structure or using a dependency representation. The phrase
structure representation sees sentences and clauses structured in terms of con-
stituents. The dependency representation, on the other hand, assumes that
sentence and clause structures result from dependency relationships between
words (Matthews, 1981). While the phrase structure representation is more
suitable for analysing languages with fixed word order patterns and clear con-
stituency structures, dependency representations, in contrast, are able to addi-
tionally deal with languages that are morphologically rich and have a relatively
free word order (Jurafsky & Martin, 2008; Skut et al., 1997). The dependency
relation that each dependency label represents is relative to its root (with the
exception of the root node itself), and is effectively a to-relationship between
the word and its root. For instance, in a sentence “He eats the cookies”, “He”
is an nsubj (subject) to its root “eats”, “cookies” is an obj (object) to that
root, and “the” is a det (determiner) to “cookies”. The dependency labels,
then, are actually nodes in a directed acyclic graph, starting from the root
node of the sentence (in the example “eats”) and recursively going down to its
dependants. They can be represented as dependency trees. The dependency
tree of the example sentence “He eats the cookies” above, can be visualised as
in Figure 4.1.
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eats:root

He:nsubj cookies:obj

the:det

Figure 4.1. Example of a dependency tree of the sentence “He eats the cookies”

In recent years, research on automatic parsing methods has increased due
to the availability of linguistically annotated corpora (treebanks) for many dif-
ferent languages (Hajič & Zeman, 2017; Peng et al., 2019; Zeman et al., 2018).
However, despite their availability, the annotation schemes in treebanks vary
significantly across languages, such as between the Swedish Treebank (Nivre
& Megyesi, 2007), the Danish Dependency Treebank (Kromann, 2003), and
Stanford Typed Dependencies (de Marneffe & Manning, 2008). Such differ-
ences, in turn, restrict multilingual research on and comparability of syntax
and parsing (Nivre, 2015; Nivre et al., 2016), as well as research on natural
language processing (NLP) that relies on automatic parsers trained on tree-
banks. Universal Dependencies2 (UD) is an initiative to mitigate this problem
by developing a framework for cross-linguistically consistent morphosyntactic
annotation (Nivre et al., 2016), which we will discuss further in Section 4.3.1.

4.2.2 Word Alignment
The metrics suggested in this research aim to compare given source and target
sentences to each other. As a starting point, the sentences need to be word
aligned to be able to compare the source and target sides on the subsentential
level. In word alignment, source words are aligned with target words as a
way to find overlapping points of meaning and syntax. Aligned words should
either carry meaning that is similar to their aligned counterpart, or should
cover syntactic or morphological phenomena that are required to translate the
aligned word into the desired language (Kay & Roscheisen, 1993). In that sense
word alignment does not only involve semantic, conceptual agreement between
a source and target sentence, but also the (morpho-)syntactic connections
between them. As shown in Example 15c, alignments are typically written as
pairs of indices of the aligned source and target words separated by a dash, e.g.
0-0 1-1 2-3 3-2 4-4. Such alignments are often visualized with alignment
tables (e.g. Och & Ney, 2000, Figure 1), but in this paper we opt for line
diagrams such as Figure 4.2.

In the current paper, we manually aligned the source and target sentences
in the examples, but in the global scope of our research, we are interested in
translatability and we envisage to use large corpora to automatically detect and
extract patterns that may be indicative of translation difficulties. Manually
2See http://universaldependencies.org/ for label explanations, guidelines, and so on.
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aligning those corpora is not feasible because of their size. Instead, we rely
on automatic alignment systems. In previous research (Vanroy, Tezcan, &
Macken, 2019), we justified using GIZA++ (Och & Ney, 2003) in favor of
another tool, fast_align (Dyer et al., 2013), because of its lower Alignment
Error Rate (Mihalcea & Pedersen, 2003; Och & Ney, 2000).

Because word alignment occurs on the fine-grained word level, the connec-
tions between larger groups of words on each side (source and target) is not
taken into account. Take, for example, a simple English noun phrase (Ex. 14)
that has been translated into a Dutch noun phrase. The determiners “The”
and “De” are aligned, and the nouns “dog” and “hond” are aligned to each
other. The alignments are given in Example 14b.

(14) a. The
De

dog
hond

b. 0-0 1-1

In this example, the linguistic relationship between the determiner and its
noun is not present in the word alignments; it is not clear that the determiner
and the noun are somehow linguistically connected. Generally speaking, this
means that metrics based on word-based representation focus on the position
and movement into the target language of single words. As an alternative
approach, for one of our metrics (Syntactically Aware Cross (SACr); Sec-
tion 4.3.2), we want to capture the alignment of word groups. In previous
research (Vanroy, Tezcan, & Macken, 2019), we suggested a naive sequence-
based approach, but SACr expands on that by including linguistic information
to adjust those sequences. The goal is, then, to have a metric that is based
on alignment information, but where the alignment is done between linguisti-
cally motivated groups instead of words or arbitrary sequences. In the example
above, that would mean that “The dog” is aligned, as a group, with “De hond”
rather than as single words. We will expand on aligning word groups rather
than single words in the following sections.

4.2.3 Existing Word-reordering Metrics
The translation process research database (TPR-DB; Carl et al., 2016) imple-
ments a word-based, direction specific metric for reordering, and calculates a
cross value based on the movements of words relative to the previously trans-
lated word.3 Vanroy, Tezcan, and Macken (2019) take another approach by
introducing a translation-direction agnostic variant that measures the number
of times that translated words cross each other (word_cross). Example 15
(taken from Vanroy, Tezcan, & Macken, 2019, 104) is visualised in Figure 4.2,
where each cross is emphasised with a circle. The total number of these cross-
ing links is normalised by the total number of alignments, which constitutes
3We will not go into that version of Cross here but rather focus on our own implementations.
See the original work for more details and Carl et al. (2019) for an analysis.
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the word_cross value. The source and target segments can be aligned as
shown in Example 15c. Note that “me” in the source text is not aligned to
an equivalent on the target side. If the source sentence had been translated
differently as “Soms vraagt ze mij waarom ...”, “me” could have been aligned
with “mij”. However, in this specific translation, the indirect object is not
made explicit so the source word is not aligned.

(15) a. Sometimes
0

she
1

asks
2

me
3

why
4

I
5
used
6

to
7

call
8

her
9

father
10

Harold
11

.
12

b. Soms
Sometimes
0

vraagt
asks
1

ze
she
2

waarom
why
3

ik
I
4

haar
her
5

vader
father
6

Harold
Harold
7

noemde
called
8

.

.
9

c. 0-0 1-2 2-1 4-3 5-4 6-8 7-8 8-8 9-5 10-6 11-7 12-9

　                  ㈀    ㌀            㐀   㔀       㘀         㜀           㠀            㤀  

匀漀洀猀  瘀爀愀愀最琀  稀攀  眀愀愀爀漀洀  椀欀  栀愀愀爀  瘀愀搀攀爀  䠀愀爀漀氀搀  渀漀攀洀搀攀  ⸀

匀漀洀攀琀椀洀攀猀  猀栀攀  愀猀欀猀  洀攀  眀栀礀  䤀  甀猀攀搀  琀漀  挀愀氀氀  栀攀爀  昀愀琀栀攀爀  䠀愀爀漀氀搀  ⸀

　                      ㈀       ㌀     㐀      㔀  㘀       㜀    㠀     㤀     　                ㈀

Figure 4.2. Visualisation of word_cross in Ex. 15 with a total value of
10/12 = 0.83. (modified from Vanroy, Tezcan, & Macken, 2019)

This approach is word-based, but as discussed in Section 4.2.2, an alter-
native option is to encode the aligned order of the source and target sen-
tences with aligned word groups, or sequences. For that reason, Vanroy,
Tezcan, and Macken (2019) suggested to group consecutive tokens that are
word-aligned to consecutive target tokens together to form a sequential cross
metric (seq_cross). These sequences should be as large as possible while
also adhering to the following constraints (Vanroy, Tezcan, & Macken, 2019,
p. 104):

• each word in the source sequence (group) is aligned to at least one word
in the target sequence and vice versa;

• each word in the source word sequence is only aligned to word(s) in the
aligned target word sequence (and not to words in other target sequences)
and vice versa;

• none of the alignments between the source and target word sequences
cross each other.

Similar to word_cross, normalisation takes place based on the number
of alignments, only here it uses the alignments between the sequences rather
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than the word alignments. Following these requirements, the example in Fig-
ure 4.2 can be modified so that instead of word movement, group movement
is quantified (Figure 4.3).

　                  ㈀    ㌀            㐀   㔀       㘀         㜀           㠀            㤀  

匀漀洀猀  瘀爀愀愀最琀  稀攀  眀愀愀爀漀洀  椀欀  栀愀愀爀  瘀愀搀攀爀  䠀愀爀漀氀搀  渀漀攀洀搀攀  ⸀

匀漀洀攀琀椀洀攀猀  猀栀攀  愀猀欀猀  洀攀  眀栀礀  䤀  甀猀攀搀  琀漀  挀愀氀氀  栀攀爀  昀愀琀栀攀爀  䠀愀爀漀氀搀  ⸀

　                      ㈀       ㌀     㐀      㔀  㘀       㜀    㠀     㤀     　                ㈀

Figure 4.3. Example of seq_cross in Ex. 15 with a total value of 2/7 = 0.286
(modified from Vanroy, Tezcan, & Macken, 2019)

The problem with seq_cross is that, even though the metric works on the
sequence level rather than the word level, its groups are linguistically arbitrary.
Words are grouped together based on their relative reordering but irrespective
of their linguistic properties (e.g. “why I” and “waarom ik” in the above
examples). The need for grouping words founded on linguistic motivation
gave rise to the current research. This specific issue involving word reordering
is addressed in Section 4.3.2.

Motivated by the findings in previous studies, the main goal of this study is
to introduce linguistically motivated, automatic, language-independent met-
rics to measure syntactic equivalence between source and target sentences in
the context of translation.

4.3 Metrics
As discussed in Section 4.1, we restrict ourselves to three sub-components
of syntactic equivalence,4 namely word (group) order differences, changes in
the dependency labels, and structural differences with respect to the source
and target dependency trees. To address these three individual differences,
we introduce three corresponding metrics. First, we build on seq_cross and
propose an improved version to quantify reordering of syntactic word groups
(syntactically aware cross, SACr, Sec. 4.3.2), then we discuss how label changes
play a role (Sec. 4.3.3), and finally we introduce a method to calculate aligned
syntactic tree edit distance (ASTrED, Sec. 4.3.4). A concise overview table
of the metrics is given in Section 4.3.5. As all three metrics are based on
comparing the syntactic structures of the source and target sentences using
4An open-source implementation of our metrics is available at https://github.com/
BramVanroy/astred.

88

https://github.com/BramVanroy/astred
https://github.com/BramVanroy/astred


4.3 Metrics

dependency representations, we start by explaining the chosen paradigm, Uni-
versal Dependencies, in closer detail.

4.3.1 Universal Dependencies
In all the metrics that we propose, we make use of UD annotation schemes
(Nivre et al., 2016), which ensures comparable annotations across languages
(see Sec. 4.2), such as the dependency labels of an English source text and its
Dutch translation. To illustrate: the dependency trees of the source and target
sentence of Example 15 are visualised in Figure 4.45 and 4.5. In both figures,
the nodes’ labels are formatted as word_index:dependency_label:token. As
can be seen, the dependency labels of both trees use the same scheme, which
allows for straightforward comparison between the source and target trees
without the need to convert one tagset into another. That would not be fea-
sible if the source and target sentences were using different, language-specific
annotation schemes.

9:nmod:her

11:xcomp:Harold10:obj:father7:mark:to

8:xcomp:call5:nsubj:I4:advmod:why

12:punct:.6:ccomp:used3:obj:me1:nsubj:she0:advmod:Sometimes

2:root:asks

Figure 4.4. Source dependency tree of Ex. 15: “Sometimes she asks me why I
used to call her father Harold .”

5Note that dependency trees are different from phrase-based trees. For a more theoretical
deep-dive into the theory behind UD, we direct the reader to the work on Universal Depen-
dencies (Nivre, 2015; Nivre et al., 2016; Nivre & Megyesi, 2007). Readers who are familiar
with different dependency grammars may still disagree with the proposed trees, which may
be due to the differences between UD and other grammars. For a critical comparison
between UD and its alternatives, see Osborne and Gerdes (2019).
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7:xcomp:Harold

5:nmod:haar

6:obj:vader4:nsubj:ik3:advmod:waarom

9:punct:.8:ccomp:noemde2:nsubj:ze0:advmod:Soms

1:root:vraagt

Figure 4.5. Target dependency tree of Ex. 15: “Soms vraagt ze waarom ik haar
vader Harold noemde .”

To automate the parsing process, we depend on the recently introduced
state-of-the-art stanza parser by the Stanford NLP group (Qi et al., 2020).
In its annotation scheme, UD allows for language-specific extensions to the
dependency relations to capture intricate properties of specific languages that
may not generalize well to others languages. These extensions are also called
subtypes because they always extend an existing UD dependency label. To
minimize the effect of small language or model-specific differences, we take a
general approach and discard these UD subtypes, so a label such as obl:tmod
(an oblique, nominal, temporal argument) will be reduced to obl.

4.3.2 Syntactically Aware Cross
In Section 4.2, we referred to seq_cross, in which reordering is quantified
based on word sequences, i.e. consecutive words that are grouped together
when they adhere to given constraints, also called sequences. Syntactically
Aware Cross (SACr) expands on seq_cross by verifying that the words in
generated seq_cross groups are linguistically motivated. Figure 4.6 shows
an example of what we are trying to achieve. In this figure, the sequences as
defined in seq_cross are shown as dotted boxes. In SACr we verify whether
these sequences are valid, linguistically motivated groups, and if this is not the
case, we split the sequences up in smaller groups. The solid-line boxes in the
figure represent those newly created, linguistically motivated groups. These
groups (the initial seq_cross that were found to be valid SACr groups, and
the new SACr groups that were created as a consequence of invalid seq_cross
groups) are then used to calculate a syntactically aware cross value. Note that
in this example, the number of crossing sequences has increased compared to
the previous seq_cross value, as the sequence “Her father Harold” is now
split up into two groups “Her father” and “Harold”.6

6The sentence is ambiguous: “her father Harold” could be interpreted as a single phrase (“...
her father, who is named Harold”), but here we assume that the correct meaning of the
sentence is “... call her father (by the name) Harold”.
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Figure 4.6. Example of SACr with a total value of 3/9 = 0.33. Dotted boxes
indicate the initial groups of seq_cross. When required, these groups are split up
into linguistically motivated SACr groups (solid boxes)

The criterion for SACr to establish linguistically inspired word groups is
that, in addition to the criteria of seq_cross, all words in a group need to be
“connected” to each other in the dependency tree: all nodes must exhibit one
or more child-parent relationships with other nodes in the group. In practice,
this means that siblings of a linguistic sub-tree can only be part of the same
group if their parent is also in the group. More formally, we verify in a bottom-
up, breadth-first fashion for each word that its parent in the dependency tree
is also part of the same sequence group. The topmost node is excluded from
the search because it cannot have a parent in this group. If all words in the
group do not exhibit a child-parent relationship, the initial sequence group is
not a valid SACr group. In such an event, in an iterative manner, a smaller
sub-group of the initial sequence group is tested until a group is found for
which the criterion above holds. We probe the largest sub-groups first and if
no satisfying groups are obtained, smaller ones are tested (ultimately to the
smallest size of two words) until no more groups can be found. This can mean
that, for example, in an initial sequence group of four words only a valid sub-
group of two words is found. As a consequence, the other two words will both
be singletons (separate SACr groups consisting of only one word each).

Figure 4.7 and 4.8 illustrate which of the proposed sequence groups (cf.
dotted boxes in Figure 4.6) are valid SACr groups in the dependency trees:
when all items in a seq_cross group show a child-parent relation with other
nodes in the group, the group is valid, but if not, new SACr subgroups will be
created (e.g. “haar vader Harold” is an invalid group, but “haar vader” is a
valid subgroup). In the following examples, square-cornered, blue groups are
initial seq_cross groups that are also valid SACr groups. Round-cornered or-
ange groups are initial seq_cross groups that are invalid SACr groups. Round
cornered blue and dashed groups are new SACr groups that are subgroups of
invalid seq_cross groups.
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9:nmod:her

11:xcomp:Harold10:obj:father7:mark:to

8:xcomp:call5:nsubj:I4:advmod:why

12:punct:.6:ccomp:used3:obj:me1:nsubj:she0:advmod:Sometimes

2:root:asks

valid subgroup

invalid group

valid group

Figure 4.7. Source dependency tree of Ex. 15 with highlighted groups:
“Sometimes she asks me why I used to call her father Harold .”

7:xcomp:Harold

5:nmod:haar

6:obj:vader4:nsubj:ik3:advmod:waarom

9:punct:.8:ccomp:noemde2:nsubj:ze0:advmod:Soms

1:root:vraagt

valid subgroup

invalid group

valid group

Figure 4.8. Target dependency tree of Ex. 15 with highlighted groups: “Soms
vraagt ze waarom ik haar vader Harold noemde .”

Figure 4.6 above shows how the sequences from seq_cross have been ad-
justed according to the linguistic criteria derived from the dependency trees.
This process can only increase the number of groups, not decrease them. In
this particular case, the group “why I” and “waarom ik” are split into two
groups again, namely “why” (“waarom”) and “I” (“ik”) because these words
are not connected to each other in the dependency tree. In both the source
and target tree, the adverb and pronoun are siblings but their root is not in-
cluded in the group, causing them to not form a fully connected group. The
group “used to call” remains unchanged because all words are connected in
the source dependency tree. The corresponding groups “her father Harold”
and “haar vader Harold” are also split up, because in the dependency tree
“Harold” is not connected to “her father”/“haar vader”. “her father”/“haar
vader” are valid subgroups, though.
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The final SACr value is the number of crossing alignment links between
the source and target SACr groups, normalised by the number of these align-
ments. The example in Figure 4.6 counts three crossing links and nine total
alignment links, leading to a SACr value of 3/9 = 0.33. This contrasts with
the word-based word_cross value of the same example, which is 10/12 = 0.83,
and the seq_cross value of 2/7 = 0.29 (cf. Sec. 4.2.3).

The main distinction between our three proposed cross metrics (word_cross,
seq_cross and SACr), is the size of the unit they use to calculate crossing links
with. In word_cross, the reordering of single words is quantified. Alterna-
tively, reordering can be counted when using sequences of words as alignment
points by using seq_cross. Here, consecutive words are grouped together fol-
lowing given criteria so that crossing links can be counted on aligned groups
of words rather than individual words. However these groups are not linguisti-
cally motivated. To ensure that the word groups are linguistically motivated,
SACr provides a linguistic correction of the groups of seq_cross. An initial
group of seq_cross is maintained if it is linguistically valid according to our
criteria (each item in a group must express a child-parent relationship to an-
other item in the group). If it is not valid, new SACr subgroups are created
inside that invalid group. This means that a sentence can have the same num-
ber of seq_cross and SACr groups, or more SACr groups than seq_cross
but never less.

Whereas SACr provides a way to quantify the reordering of phrase-like
structures of a translation compared to its source text, counting the changes
of the dependency labels of a source sentence after translation sheds light on
linguistic differences of aligned words on the surface level.

4.3.3 Label Changes
An intuitive solution to syntactic equivalence is to assess how the dependency
labels of translated words change from their aligned source text labels. To do
so, we can simply count the alignment pairs where the source and target labels
of an aligned word pair differ.

Formally, given a collection A of pairs of aligned source and target labels
between a source sentence and its translation, the total number of label changes
L is calculated as the number of alignment pairs in which the source label src
is different from the target label tgt (Eq. 4.1)7.
7Note that if a label, on either the source or target side, is aligned with multiple labels
(one-to-many, many-to-one, many-to-many alignment), then all its alignments are counted
separately.
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L = # {(src, tgt) ∈ A : src 6= tgt} (4.1)

where:

A the collection of pairs of aligned source and target labels
src the source label of a pair
tgt the target label of a pair

For an illustrative example, consider the following active source sentence
in Ex. 16a, which has been translated into a passive construction (Ex. 16b),
and t heir word alignment (Ex. 16c).

(16) a. I
nsubj

saw
root

him
obj

b. Hij
He
nsubj

werd
was
aux

door
by
case

mij
me
obl

gezien
seen
root

c. 0-2 0-3 1-1 1-4 2-0

The word alignments can be visualised as in Figure 4.9.

0        1        2        3       4 

nsubj aux   case  obl  root

Hij     werd  door   mij   gezien

I         saw  him

nsubj root obj

0        1       2

Figure 4.9. Word alignment visualisation of Ex. 16

When counting the label changes, we look at each source word and compare
its label to the labels of the words that it is aligned to. To exemplify this,
consider the label changes of Ex. 16 in Table 4.1, leading to a total number
of four label changes. These label changes are then normalised by the total
number of alignments, leading to a value of 4/5 = 0.8.
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Source (label) Target (label) Change
“I” (nsubj) “door” (case) 1
“I” (nsubj) “mij” (obl) 1
“saw” (root) “werd” (aux) 1
“saw” (root) “gezien” (root) 0
“him” (obj) “Hij” (nsubj) 1

Total: 4 (normalised: 4/5 = 0.8)

Table 4.1. Label changes for Ex. 16

4.3.4 Aligned Syntactic Tree Edit Distance
Whereas SACr calculates a cross value on a shallow level (injected with a
tree-based grouping) to quantify word order changes, it is also possible to de-
termine deeper, structural differences between the source and target sentences.
To compare the actual source and target dependency structures, we propose
ASTrED.

As the name implies, aligned syntactic tree edit distance (ASTrED) incor-
porates a source dependency tree and a target dependency tree with the word
alignments between the source and target sentence. The goal is to modify the
labels of the source and target dependency tree so that the labels of aligned
words are identical. By doing so, we can ensure that the tree edit distance
between these modified trees takes word alignment information into account.

Consider the example sentence and its translation in Ex. 17 and its word
alignment (visualised in Figure 4.10). This example will be used to explain
ASTrED in the following subsections.

(17) a. Does
aux

he
nsubj

believe
root

in
case

love
obl

?
punct

b. Gelooft
Believes
root

hij
he
nsubj

in
in
case

de
the
det

liefde
love
obl

?
?
punct

c. 0-0 1-1 2-0 3-2 4-3 4-4 5-5
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0           1        2       3     4       5

root    nsubj case det obl   punct

Gelooft hij      in     de   liefde ?

Does  he      believe in     love  ?
aux   nsubj root   case obl  punct

0        1        2          3      4       5

Figure 4.10. Word alignment visualisation of Ex. 17

The metric can be summarised in the following steps, on which we elaborate
in the next subsections.

1. Parse the source and target sentences into dependency trees (using UD
labels).

2. Find grouped tokens between source and target trees based on word
alignment. A group is defined as the minimal group of tokens in the
source and target sentences that are exclusively connected to each other
through word alignment.

3. Modify the labels of the grouped tokens in their respective trees, so that
the labels of tokens belonging to the same group get the same label.
Nodes that were not aligned, and thus do not belong to any group,
remain unchanged.

4. Calculate tree edit distance between the modified trees, which measures
the structural difference between the aligned source and the target sen-
tences. Normalize by the average number of source and target words.

4.3.4.1 Constructing dependency trees

Identical to the previous metrics, we use dependency trees to represent the
source and target sentences in a linguistically meaningful way (see Sec. 4.3.1).
As an example, let us take the previously mentioned example Ex. 17. The
source and target sentence can each be represented as a dependency tree where
each node is internally represented as the corresponding dependency label
(Figure 4.11a, 4.11b).

2:believe:root

0:Does:aux 1:he:nsubj 4:love:obl

3:in:case

5:?:punct

(a) Source dependency tree of
Ex. 17a: “Does he believe in love ?”

0:Gelooft:root

1:hij:nsubj 4:liefde:obl

2:in:case 3:de:det

5:?:punct

(b) Target dependency tree of
Ex. 17b: “Gelooft hij in de liefde ?”
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4.3.4.2 Merge grouped tokens and update labels

In order to measure the structural difference between a source and target
sentence, we use tree edit distance. The tree edit distance between two trees is
the minimal number of operations that are needed to change one tree into the
other. The three possible operations are deleting, inserting, or substituting
(also called “renaming”) a node in the tree.8 We cannot simply take the edit
distance between the source and target dependency trees, however, because
that would disregard the word alignment information. Tree edit distance in
itself is unaware of which source nodes are supposed to align with which target
nodes. To be able to calculate alignment-aware tree edit distance (the distance
between the source and target dependency structure while also taking word
alignment information into account), we modify the source and target trees
by merging their labels with respect to the word alignments. Unaligned words
remain untouched. In practice, that means that all tokens that are connected
to each other through word alignment are grouped together. Here, they are
represented (serialised) as a mapping of source label(s) to target label(s), where
source labels are separated by a pipe (|) and their corresponding target labels
by a comma.

More specifically, if we consider the example in 17, we can distinguish
five groups (Example 18) where the corresponding words are given between
brackets:

(18) • aux:root|root:root (does:gelooft|believe:gelooft)
• nsubj:nsubj (he:hij)
• case:case (in:in)
• obl:det,obl (love:de,liefde)
• punct:punct (?:?)

4.3.4.3 Modify dependency trees

For all items involved in a group, their respective labels in their respective
trees are updated to the serialised group. This implies that the nodes in the
source and target trees that are aligned, now have the same label. This is
important, because the goal is to calculate tree edit distance on the aligned
source and target trees.

The trees with modified labels are shown in Figures 4.12 and 4.13 with a
word’s original position (index) placed before the serialised label. Note how
the labels are now modified so that aligned nodes share the same label. Also
consider that if, for instance, two source nodes are aligned with one target
node, then all three will share the same modified label, such as the label
aux:root|root:root which is the alignment of “does ... believe” to “Gelooft”.
8To automate the tree edit distance calculation, we use a Python implementation (https://
github.com/JoaoFelipe/apted) of the APTED algorithm (Pawlik & Augsten, 2015, 2016).
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2 aux:root|root:root

0 aux:root|root:root 1 nsubj:nsubj 5 obl:det,obl

3 case:case

5 punct:punct

Figure 4.12. Modified source dependency tree of Example 17a: “Does he believe
in love ?”

0 aux:root|root:root

1 nsubj:nsubj 4 obl:det,obl

2 case:case 3 obl:det,obl

5 punct:punct

Figure 4.13. Modified target dependency tree of Example 17b: “Gelooft hij in de
liefde ?”

4.3.4.4 Calculate tree edit distance

Finally, we calculate the tree edit distance between the modified trees shown
above. To change the modified source tree in Figure 4.12 to the modified target
tree in Figure 4.13, two operations are needed, as visualised in Figure 4.14:

1. the source node aux:root|root:root (orange, solid line) must be deleted;
2. the target node obl:det,obl (blue, dashed line) must be inserted.

The ASTrED score is normalised by the average number of source and tar-
get words. This is different from the way that SACr and the label changes
are normalised: SACr is normalised by the number of alignment links between
SACr groups because the crossing links originate from those alignments. Label
changes are normalised by the number of word alignment link, because the dif-
ferences in labels are calculated between aligned labels. ASTrED is calculated
between tree representations of the source and target sentence, which means
that each word’s label in the source or target text is a node in the dependency
tree. In other words: ASTrED takes unaligned words (null alignment) into
account (see Sec. 4.4.2 for an example), whereas SACr and label changes only
consider the alignments themselves. Therefore, ASTrED is normalised by the
average number of source and target words. Applying that to this example,
with source sentence of six words and a target sentence of six words, we get
an ASTrED score of 2/6 = 0.33.
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aux:root|root:root

aux:root|root:root nsubj:nsubj obl:det,obl

case:case obl:det,obl

punct:punct

Figure 4.14. A visualisation of the two needed edits to go from modified source
tree in Figure 4.12 to the modified target tree in Figure 4.13. The orange solid box
indicates the source node that needs to be deleted and the dashed blue box
highlights the target node that needs to inserted

To reiterate: we calculate tree edit distance on the modified trees where
node labels are replaced by a serialised representation of the aligned source
and target nodes. This is done to ensure that tree edit distance takes word
alignment information into account.

4.3.5 Metrics Overview

Metric Captures Normalisation by
Label changes changes in dependency labels in the surface form

based on word alignment
# alignments

SACr reordering of linguistically motivated groups by mea-
suring crossing links

# alignments

ASTrED structural difference between the source and target
dependency tree while also taking word alignment
into account

avg. # source and target
words

Table 4.2. An overview of the metrics introduced in this paper

4.4 Discussion With Examples
As discussed before, syntactic equivalence is an ill-defined concept because it
entails different linguistic aspects: from word reordering at the surface level to
deep structural differences. For that reason we proposed three linguistically
motivated metrics (that can be used and calculated independently) that all
tackle a different part of the problem. In this section we will discuss further
what the differences between the metrics are by going over two examples that
illustrate other typical linguistic differences between English and Dutch, in
addition to the previously given examples (active-passive, indirect speech, En-
glish do). In the following two examples we discuss subject-verb word order
and the future tense, and the translation of the English gerund to Dutch and
null alignments.
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4.4.1 Subject-verb Word Order and the Future Tense
English is typically classified as a language with subject-verb-object (SVO)
word order, but there is no consensus on Dutch. One approach suggests that
Dutch uses the subject-object-verb (SOV) with V2, verb-second, word order
(Koster, 1975), where in the main clause, the finite verb must be placed second
with one constituent preceding it, and where subordinate clauses adhere to the
SOV word order. Alternatively, Zwart (1994) suggested that Dutch is SVO,
by dissecting the verb phrase (VP) structure of a subordinate clause in detail.

Even though that discussion exceeds the scope of this paper, the prac-
tical implication is that in many cases (e.g. topicalisation, left dislocation,
subordinate clauses), the word order of English and Dutch differs.

Consider Ex. 19 where the word order of the main verb and the subject
differs between Dutch and English because of the dislocated adverb, which
leads to inversion in Dutch. The example also shows how the simple future
tense can be presented in the present tense in Dutch, which leads to the source
auxiliary “will” and its root “go” to be aligned with the present tense root “ga”.

(19) a. Tomorrow
advmod

I
nsubj

will
aux

go
root

home
obj

.
punct

b. Morgen
Tomorrow
advmod

ga
go
root

ik
I
nsubj

naar
to
case

huis
home
obl

.

.
punct

c. 0-0 1-2 2-1 3-1 4-3 4-4 5-5

The alignments and word crosses can be visualised as follows in Figure 4.15.
The word_cross value is 2/7 = 0.29.

0           1        2          3        4      5

advmod  root  nsubj  case  obl  punct

Morgen ga      ik         naar   huis  .

Tomorrow  I        will   go    home   .

advmod     nsubj aux  root obj    punct

0                1        2       3      4          5 

Figure 4.15. Visualisation of word alignment of Ex. 19. And a word_cross value
of 2/7 = 0.29

Vanroy, Tezcan, and Macken (2019) suggested a sequential approach to
word reordering where consecutive words are grouped together following a
given set of criteria (cf. Sec.4.2.3). In the example above, this can be visualised
as in Figure 4.16, showing a seq_cross value of 1/4 = 0.25.
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0             1        2          3        4      5

Morgen   ga      ik         naar   huis  .

Tomorrow    I        will   go    home   .

0                   1        2       3      4          5 

Figure 4.16. seq_cross representation of Ex. 19 with a value of 1/4 = 0.25

In this book chapter, we have proposed an improved version of seq_cross
named SACr. Whereas seq_cross is not aware of linguistic information and
naively groups word sequences together, SACr ensures that these groups are
linguistically motivated: all items in a SACr group must exhibit a child-parent
relationship to at least one other word in the group. The valid and invalid
groups are shown for both the source and target dependency trees in Fig-
ures 4.17 and 4.18.

5:punct:.4:obj:home2:aux:will1:nsubj:I0:advmod:Tomorrow

3:root:go

invalid group

valid group

Figure 4.17. Source dependency tree of Ex. 19, highlighting valid and invalid
groups

5:punct:.4:obl:huis

3:case:naar

2:nsubj:ik0:advmod:Morgen

1:root:ga invalid group

valid subgroup

Figure 4.18. Target dependency tree of Ex. 19, highlighting an invalid group and
a valid SACr subgroup

The initial groups of seq_cross are not linguistically motivated but by
means of the dependency trees, we can correct these groups to ensure that all
groups are indeed linguistically valid. The alignment between these groups can
be used to quantify the reordering of syntactic word groups. In this example,
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there is one crossing link which is then normalised by the total number of
alignments (five). The SACr value, then, is 1/5 = 0.2.

0             1        2          3        4      5

Morgen   ga      ik         naar   huis  .

Tomorrow    I        will   go    home   .

0                   1        2       3      4          5 

Figure 4.19. SACr representation of Ex. 19 with a value of 1/5 = 0.2. Dotted
boxes indicates the groups of seq_cross, which, when required, are split up into
linguistically motivated SACr groups (solid boxes)

In addition to word reordering, the label changes are indicative of diverging
linguistic properties. Looking at the label changes going from the source to
the target sentence in Figure 4.15, we find three alignments where the labels
of the source word have changed (Table 4.3), which when normalised gives a
value of 3/6 = 0.5.

Source (label) Target (label) Change
“Tomorrow” (advmod) “Morgen” (advmod) 0
“will” (aux) “ga” (root) 1
“go” (root) “ga” (root) 0
“home” (obj) “naar” (case) 1
“home” (obj) “huis” (obl) 1
“.” (punct) “.” (punct) 0

Total: 3 (normalised: 3/6 = 0.5)

Table 4.3. Label changes for Ex. 19

With ASTrED, we also provide a means to compare the underlying struc-
ture of aligned dependency trees. This is done by grouping aligned words
together in the source and target tree, changing their labels according to this
grouping in both trees, and calculating tree edit distance between the modified
trees. In Ex. 19, we can distinguish five groups (Ex. 20).

(20) • advmod:advmod (Tomorrow:Morgen)
• nsubj:nsubj (I:ik)
• aux:root|root:root (will:ga|go:ga)
• obj:case,obl (home:naar,huis)
• punct:punct (.:.)
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We can then modify the original dependency trees (see Figures 4.17 and 4.18)
by changing the label of each node to the serialised group that it belongs to.
The modified trees are given in:

3 aux:root|root:root

0 advmod:advmod 1 nsubj:nsubj 2 aux:root|root:root 4 obj:case,obl 5 punct:punct

Figure 4.20. Modified source dependency tree of Ex. 19: “Tomorrow I will go
home .”

1 aux:root|root:root

0 advmod:advmod 2 nsubj:nsubj 4 obj:case,obl

3 obj:case,obl

5 punct:punct

Figure 4.21. Modified target dependency tree of Ex. 19: “Morgen ga ik naar huis
.”

These modified trees can then finally be used to calculate tree edit dis-
tance. Figure 4.22 shows the two edit operations that are needed to change
the modified source tree to the modified target tree. This value is normalised
with the average number of source (six) and target words (six), which leads to
a ASTrED score of 2/6 = 0.33.

aux:root|root:root

advmod:advmod nsubj:nsubj aux:root|root:root obj:case,obl

obj:case,obl

punct:punct

Figure 4.22. A visualisation of the two needed edits to go from the modified
source tree in Figure 4.20 to the modified target tree in Figure 4.21. The orange
solid box indicates the source node that needs to be deleted and the dashed blue
box highlights the target node that needs to inserted

In this example, which involves a different subject-verb order in English and
Dutch, SACr clearly models how the word order of the verb with respect to the
subject has changed (Figure 4.19). Label changes, on the other hand, do not
catch the word group reordering aspect because they solely compares aligned
words, disregarding their position relative to each other. In this example, it
does catch how the auxiliary verb “will” has a different label than the present
tense of its Dutch translation “ga” (root). It also finds that whereas English
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allows for a “go obj” construction, Dutch requires a case marker in such case,
in the form of “ga case obl”.

The edit operations of ASTrED (e.g. Figure 4.22) highlight that tree edit
distance does not account for word reordering in some cases. That is due to the
nature of dependency trees: even though our implementation of a dependency
tree ensures that the order of sibling nodes is identical to their word order,
there is no way in the tree to know the word order position of a parent node
vis-à-vis its children. So two tree structures may be identical, but the word
order of a parent node with respect to its descendants can still differ. In this
case, the subtree structure of the subjects (“I” and “ik”) and their main verb
(“go” and “ga”) are identical (it is a child-parent relationship), so the tree
edit distance for that subtree is 0, even though the word order of the source
and target sentence are different: in the English sentence the subject precedes
the verb, whereas in the Dutch translation the verb comes first. That order
difference is not visible in the trees. As such, it is clear that the reordering
metrics capture different information than ASTrED. In this case, ASTrED
catches the same differences that the label changes find, concerning the future
tense that is translated as a present tense, and the English object following
“go” that needs to be case-marked in Dutch. As a consequence, the node of
the future auxiliary verb (aux:root|root:root) needs to be removed from the
English source, and the case marker of the Dutch translation must be added
(obj:case,obl), to arrive at the same tree structure (see Figure 4.22). The
results of all metrics for this example are summarised in Table 4.4.

Metric Value
word_cross 0.29
seq_cross 0.25
SACr 0.2
Label changes 0.5
ASTrED 0.34

Table 4.4. Summary of the results of all metrics for Ex. 19 (rounded to two
decimals)

4.4.2 English Gerund, Verb Order, and Null Alignment
In English, gerunds are verb forms that typically end with -ing and that
most often take a nominal function. In Dutch, however, this construction
is frequently translated as an infinitive, but just as often a complete rewrite
of the original constituent seems appropriate. In the following example an
English gerund (“Shouting”) is translated as an infinitive (“roepen”). Both
their dependency relations to their root are csubj, meaning that they are
clausal subjects, i.e. they are the subject of a clause and they are themselves
a clause. Similar to the previous example, the word order of the object (“for
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help” and “om hulp”) with respect to its verb (“Shouting” and “roepen”) is
a noteworthy difference in the source and target sentence. Finally, in this
example, “seemed” is translated by adding a pronoun as an object9 to the
verb “leek” seemed, namely “mij” to me. Because of this explicitation, “mij”
cannot be aligned with a source word.

(21) a. Shouting
csubj

for
case

help
obl

seemed
root

appropriate
xcomp

.
punct

b. Om
For
case

hulp
help
obl

roepen
call
csubj

leek
seemed
root

mij
me
obj

gepast
appropriate
xcomp

.

.
punct

c. 0-2 1-0 2-1 3-3 4-5 5-6

The alignments in Example 21c can be visualised in Figure 4.23, which
also shows the crossing links on the word level. In this case, there are two
crossing links that indicate the different word order of objects relative to their
verb in English compared to Dutch, as discussed before. After normalisation,
the word_cross value is 2/6 = 0.33.

0      1        2              3        4      5           6

case obl   csubj    root  obj  xcomp   punct

Om  hulp   roepen    leek    mij   gepast   .

Shouting   for     help   seemed  appropriate  .

csubj     case  obl   root    xcomp       punct

0               1        2        3           4                  5 

Figure 4.23. Visualisation of word alignment in Ex. 21. And a word_cross value
of 2/6 = 0.33

When grouping consecutive words, as discussed in Section 4.2.3, we find
that “for help” and “Om hulp” each constitute a group, as well as “appropri-
ate .” and “gepast .”. This is visualised in Figure 4.24. Grouping “for help”
and “Om hulp” leads to a reduction in crossing links: now there is only one
crossing. The seq_cross value is 1/4 = 0.25.
9Following the conventions of UD, we label “mij” as an obj. The annotation guidelines
suggest that when a verb has only one object, it should be labeled as an obj and not an
iobj, regardless of the morphological case or semantic role of that word. (See https://
universaldependencies.org/u/dep/iobj.html)
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0      1        2              3        4      5           6

Om  hulp   roepen    leek    mij   gepast   .

Shouting   for     help   seemed  appropriate  .

0               1        2        3           4                  5 

Figure 4.24. seq_cross representation of Ex. 21 with a value of 1/4 = 0.25

However, as discussed in Section 4.3.2, the groups of seq_cross are not
linguistically motivated. To create groups that take the linguistic structure
into account, we verify that all items in a group share a child-parent relation-
ship with another word in that group. For this example, we can investigate
the source and target dependency trees in Figures 4.25 and 4.26 respectively.

5:punct:.4:xcomp:appropriate0:csubj:Shouting

2:obl:help

1:case:for

3:root:seemed

invalid group

valid group

Figure 4.25. Source dependency tree of Ex. 21, highlighting an invalid group and
a valid SACr subgroup

6:punct:.5:xcomp:gepast2:csubj:roepen

1:obl:hulp

0:case:Om

4:obj:mij

3:root:leek

invalid group

valid group

Figure 4.26. Target dependency tree of Ex. 21, highlighting an invalid group and
a valid SACr subgroup
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The visualisations of the dependency trees make clear that the groups
“for help” and “Om hulp” are valid because the prepositions (“for” and “om”
respectively) are children of their root (“help” and “hulp”, resp.) and child-
parent relationships constitute a valid SACr group. The other groups “appro-
priate .” and “gepast .” are not valid because the two words in each groups
share a sibling relationship rather than a child-parent relationship, which is
not sufficient to form a valid SACr group. These linguistically corrected groups
have been visualised in Figure 4.27. The number of crossing links is still one,
but because the invalid groups are corrected (“appropriate .” and “gepast .”),
the normalised value has now changed from seq_cross 0.25 to SACr 0.2.

0      1        2              3        4      5           6

Om  hulp   roepen    leek    mij   gepast   .

Shouting   for     help   seemed  appropriate   .

0               1        2        3           4                  5 

Figure 4.27. SACr representation of Ex. 21 with a value of 1/5 = 0.2. Dotted
boxes indicates the groups of seq_cross, which, when required, are split up into
linguistically motivated SACr groups (solid boxes)

The label changes in this example are quite self-explanatory: looking at
the word alignments in Figure 4.23 it is evident that all the labels of aligned
words are identical on the source and target side. Therefore there are zero
label changes in this example. Nevertheless, that does not mean that are no
structural difference, as ASTrED will illustrate.

To calculate ASTrED, first the labels of the source and target trees need to
be grouped according to the word alignments. Each group should contain all
the labels of words that are connected to each other through word alignment.
In Example 22, we can find six groups and also one unaligned word (“mij”
me).

(22) • csubj:csubj (Shouting:roepen)
• case:case (for:Om)
• obl:obl (help:hulp)
• root:root (seemed:leek)
• xcomp:xcomp (appropriate:gepast)
• punct:punct (.:.)
• null alignment (in target): obj (mij)

As a next step, the labels of each node in a group must be updated to the
serialised group’s label. In this example, the groups always consist of only one
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source and one target item. The unaligned obj node in the target sentence is
still present after changing the labels (Figures 4.28 and 4.29).

3 root:root

0 csubj:csubj

2 obl:obl

1 case:case

4 xcomp:xcomp 5 punct:punct

Figure 4.28. Modified source dependency tree of Ex. 21: “Shouting for help
seemed appropriate .”

3 root:root

2 csubj:csubj

1 obl:obl

0 case:case

4 obj 5 xcomp:xcomp 6 punct:punct

Figure 4.29. Modified target dependency tree of Ex. 21: “Om hulp roepen leek
me gepast .” Note the unalgined obj node

Now, the tree edit distance between these modified trees can be calculated.
The structure of the source sentence is in fact exactly the same as the one
in the target sentence, with the exception of one unaligned obj node (“mij”).
The only operation that is needed to change the source structure to the target
structure is inserting the unaligned target node (Figure 4.30). This illustrates
that ASTrED is the only one of the tree metrics that is able to take into account
null alignments. The edit operations are normalised by the average number of
source (6) and target (7) tokens, so the ASTrED value is 1/6.5 = 0.15.
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3 root:root

2 csubj:csubj

1 obl:obl

0 case:case

4 obj 5 xcomp:xcomp 6 punct:punct

Figure 4.30. A visualisation of the edit (insertion, the dashed blue box) to go
from the modified source tree in Figure 4.28 to the modified target tree in
Figure 4.29

In this example, it became clear how SACr again accurately quantifies the
reordering of linguistically motivated word groups. In particular it showed how
the subject-verb order of English and Dutch can be quantified with a single
crossing link because of the syntactically aware word grouping of “for help” and
“Om hulp”. Because the examples were quite closely related in this example,
we did not observe any label changes. However, on a deeper structural level we
found that the structure of both sentence does differ slightly because of a null
alignment on the target side: “mij” me was inserted in the translation even
though there is no source word to align it with. The results are summarised
in Table 4.5.

Metric Value
word_cross 0.34
seq_cross 0.25
SACr 0.2
Label changes 0.0
ASTrED 0.15

Table 4.5. Summary of the results of all metrics for Ex. 21 (rounded to two
decimals)

Generally speaking, the three metrics model three different things: SACr
specifically quantifies the reordering of linguistically inspired word groups.
When the surface word order of languages differs in specific structures, SACr
catches up on that. This is particularly evident in Example 4.6 where a dif-
ferent word order is found twice in the same sentence (“Sometimes she asks
me why I used to call her father Harold .” vs. “Soms vraagt ze waarom
ik haar vader Harold noemde .”). Also based on the surface forms, label
changes compare the labels of the aligned words on the source and target side.
By doing so, it can quickly become evident when a source sentence and its
translation have been translated completely differently (think, for instance,
about the active-passive example in Example 16 where a nsubj became an
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obj). ASTrED serves a similar function but it compares the actual tree struc-
tures of the source and target sentence while at the same time also taking the
word alignments into account. Whereas SACr and label changes work on the
surface forms, ASTrED does a deeper linguistic comparison between a source
sentence and its translation, as the last example clearly shows.

4.5 Proof of Concept
To investigate how syntactic differences between a source text and its transla-
tion relate to difficulty, we can measure the effect that our syntactic measures
have on translation process features that may be indicative of cognitive effort,
which in turn points to translation difficulty (also see our previous research for
details and a literature overview concerning cognitive effort and translation;
Vanroy, De Clercq, & Macken, 2019)10. We built mixed-effect models in R (R
Core Team, 2019), using the lme4 package (Bates et al., 2015) with lmerTest
(Kuznetsova et al., 2017) to obtain p-values and perform automatic backward
elimination of effects.

We used part of the ROBOT dataset (Daems, 2016) for this analysis. The
full ROBOT dataset contains translation process data of ten student trans-
lators and twelve professional translators working from English into Dutch.
Each participant translated eight texts, four by means of post-editing (start-
ing from MT output), and four as a human translation task (starting from
scratch). Task and text order effects were reduced by using a balanced Latin
square design. The texts were newspaper articles of 150-160 words in length,
with an average sentence length between 15 and 20 words. As the goal of the
original ROBOT study was to compare the differences between post-editing
and manual translation, the texts were selected to be as comparable to one an-
other as possible, based on complexity and readability scores, word frequency,
number of proper nouns, and MT quality. For the present study, however,
only the process data for the human translation task was used. This dataset
was manually sentence and word aligned. Dependency labelling was done au-
tomatically by using the aforementioned stanza parser (Qi et al., 2020).

We followed exclusion criteria suggested by Bangalore et al. (2015) before
analysing our data: exclude cases where two ST (source text) segments were
fused into one, exclude the first segment of each text, exclude segments with
average normalised total reading time values below 200ms (total reading time;
the time (in ms) that participants have their eyes fixated on the source or
target side, measured by eye tracking) and exclude data points differing by
2.5 standard deviations or more from the mean. After filtering, the dataset
consists of 537 data points, i.e. translated segments. All plots were made
10Other chapters in this volume also discuss new advances in cognitive effort research. See
for instance the work by Huang and Carl in Chapter 2, and Chapter 3 by Cumbreño and
Aranberri regarding cognitive effort during post-editing, and Lacruz et al. on cognitive
effort in JA-EN and JA-ES translation (Chapter 11).
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using the effects package (Fox & Weisberg, 2019). In parallel with Bangalore
et al. (2015), dependent variables from the TPR-DB (Carl et al., 2016) were
chosen, specifically total reading time on the target (TrtT) and source (TrtS)
side, and duration of coherent typing behavior (total duration of coherent
keyboard activity excluding keystroke pauses of more than five seconds; Kdur),
normalised by the number of words per segment and centred around the grand
mean (hence the negative values in the graphs).11 The predictor variables
were our three proposed metrics: SACr, label changes, and ASTrED. In the
full model, all three variables were included with interaction. We performed
backward elimination of effects to build the best model for each dependent
variable. Participant codes and item codes were included as random effects.

For coherent typing behavior (Kdur), the only predictor variable that was
retained in the best performing model was the number of label changes. An
increase in label changes had a highly significant (p < 0.001) positive effect
on Kdur (estimate = 969.1, SE = 232, t = 4.18). This effect can be seen
in Figure 4.31. This indicates that translators needed more time to translate
those source segments that required more label changes when translating.

Effect of label changes on coherent typing behaviour

Label changes
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Figure 4.31. Effect plot for the main effect of label changes on coherent typing
behaviour

Source reading time (TrtS) was best predicted by SACr only, although
the model which included both participants and items as random effects gave
11Even though our experimental set-up is similar, our results cannot be compared to those
of Bangalore et al. (2015) because we use a different data set, and do not use entropy but
absolute values per-segment.
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rise to convergence warnings. The main effect of SACr on TrtS was positive
(estimate = 69.82, SE = 28.39, t = 2.46) and significant (p = 0.01). The effect
can be seen in Figure 4.32. The model without participants as random effect
did converge and showed a similar main effect (estimate = 95.11, SE = 33.85,
t = 2.81, p = 0.005). This means that those segments that were translated by
moving more word groups or move word groups further away required more
reading time on the source side.

Effect of SACr on source reading time
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Figure 4.32. Effect plot for the main effect of SACr on source text reading time

Target reading time (TrtT), on the other hand, was best predicted by a
combination of all three predictor variables with interaction. The three-way
interaction effect was significant (estimate = 3383.2, SE = 1173.6, t = 2.88, p
= 0.004). All effects included in the model are summarised in Table 4.6. The
interaction effect is visualised in Figure 4.33. The figure shows the effect of
ASTrED values on target reading time, given a certain SACr value and number
of label changes. Only the minimum and maximum values of SACr and label
changes are included as reference points (0 and 9.7 for SACr, and 0.09 and 1
for label changes, respectively). What this indicates, is that, if SACr is low,
an increase of ASTrED or an increase in the number of label changes does not
really have that much of an impact on target reading time. However, if SACr
values are high and there is a low number of label changes, target reading time
goes down for higher ASTrED values; whereas target reading time goes up for
higher ASTrED values when SACr values are high and there is a high number
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of label changes. Looking at the graph on the right (high SACr value), it would
seem that when a lot of word group reordering is required without many label
changes (blue line with negative slope), structurally similar source and target
sentences (low ASTrED) lead to a higher TrtT. Conversely, when a lot of
word group reordering is needed alongside many label changes (orange line
with positive slope), dissimilar syntactic structures (high ASTrED) positively
affect the time that translators read the target text. This conclusion should
be taken with a grain of salt, though, and additional experiments with other
data sets are required to draw more certain conclusions.
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Figure 4.33. Effect plot for the three-way interaction effect of ASTrED, label
changes, and SACr on target reading time
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Fixed effect Estimate SE t p
ASTrED 1034.4 819.1 1.26 .207
label changes 2662.5 1103 2.41 .016*
SACr 1498.3 602.3 2.49 .013*
ASTrED : label changes −1994.7 1514.1 −1.32 .188
ASTrED : SACr −1812.6 692.3 −2.62 .009**
label changes : SACr −2652.4 989.5 −2.68 .008**
ASTrED : label changes : SACr 3383.2 1173.6 2.88 .004**

∗p < .05
∗∗p < .01

Table 4.6. Effect summary of three-way interaction effect between ASTrED, label
changes, and SACr on target reading time

Unsurprisingly, the metrics are only weakly to moderately correlated, as
seen in Table 4.7. This is likely due to a single common factor of all metrics:
they are, at their core, all based on the same dependency labels. Different de-
pendency trees lead to different SACr groups, a change in the merged ASTrED
trees, as well as the label changes themselves. However, because each metric
uses the dependency labels in its own way, a change in dependency structures
affect specific metrics differently. The metrics are therefore mildly correlated
but they have a different effect on the translation process, as shown above.

ASTrED Label changes
ASTrED
Label changes .41*
SACr .40* .35*

∗p < .01

Table 4.7. Kendall correlation between normalised metrics: ASTrED, label
changes, and SACr

In this section we have calculated the effect of our proposed syntactic met-
rics on translation process features to show that our interpretation of syntactic
equivalence has an effect on the translation process. Even though our dataset
was rather small, and more elaborate experiments are needed, these findings
already confirm that, as the literature indicates (cf. Section 4.2), (syntactic)
equivalence does affect some translation process features such as reading time
and typing duration, which serve as a proxy for the translation difficulty. Gen-
erally speaking, this experiment arrives to the same conclusion as Bangalore
et al. (2015), namely that syntactically diverging source and target segments
impose difficulty on the translator. In addition, this experiment also confirms
that all three metrics seem to affect the translation process differently, which
motivates further research into this topic.
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4.6 Conclusion and Future Work
In this work, we have introduced three new metrics to measure syntactic equiv-
alence between a sentence and its translation. The three metrics serve different
purposes, which is also revealed in Section 4.5. Keeping track of dependency
label changes is an intuitive approach to see how the relation of each word
to its root has changed in the translation. Syntactically aware cross (SACr)
offers a linguistically motivated method to calculate word group reordering.
Finally, aligned syntactic tree edit distance (ASTrED) compares the deep lin-
guistic structure of the source and target sentence while taking word alignment
into account. We open-source the implementation of the metrics as a Python
package.

Broadly speaking, we are interested in ways to quantify translation diffi-
culty. Syntactic equivalence is one part of that, as we have discussed in previ-
ous research (Vanroy, De Clercq, & Macken, 2019; Vanroy, Tezcan, & Macken,
2019). In future work we want to investigate whether we can distil typical
word group reordering patterns, label changes, or structural divergence and
categorize them into Catford’s obligatory and optional shifts (Catford, 1965).
The hypothesis is that in language pair specific contexts, some word group or-
ders, labels, and structures are simply incompatible between two languages, in
which case the translator is forced to make an obligatory shift and cannot rely
on a literal translation. In addition, we want to perform more analyses using
our metrics and compare them to translation process data. As a proof-of-con-
cept, we presented one such analysis in Section 4.5, but since the used dataset
is relatively small, similar experiments should be done to confirm, and ex-
pand on, these results. Moreover, we intend to run equivalent experiments on
different language pairs to investigate (the difficulties between) syntactically
divergent languages.

Finally, rather than calculating syntactic entropy based on the features
Valency, Voice, and Clause type (Bangalore et al., 2015), we are interested
in investigating the feasibility of calculating syntactic entropy based on our
metrics. Syntactic entropy can be simplified as the agreement between the
translators of the same source text with respect to the syntax of their trans-
lations. Put differently, how similar or divergent in syntax are the different
translations of the translators? Because our proposed metrics aim to quantify
syntactic equivalence between a source sentence and its translation, they are
good candidates to be used in an entropy setting to see how well translators
agree on structural or syntactic changes when translating. This information,
in turn, can be used in modelling the translatability of specific linguistic phe-
nomena.
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Chapter 5

Comparing the Effect of Product-based Metrics on the
Translation Process1

Bram Vanroy∗ · Moritz Schaeffer+ · Lieve Macken∗
∗LT3, Language and Translation Technology Team, Ghent University

+TRA&CO, Center for Translation and Cognition, Johannes Gutenberg
University Mainz

Abstract
Characteristics of the translation product are often used in translation process re-
search as predictors for cognitive load, and by extension translation difficulty. In the
last decade, user-activity information such as eye-tracking data has been increasingly
employed as an experimental tool for that purpose. In this paper, we take a similar
approach. We look for significant effects that different predictors may have on three
different eye-tracking measures: First Fixation Duration, Eye-Key Span, and Total
Reading Time on source words. As predictors we make use of a set of established
metrics involving (lexico)semantics and word order, while also investigating the ef-
fect of more recent ones concerning syntax, semantics or both. Our results show
a, particularly late, positive effect of many of the proposed predictors, suggesting
that both fine-grained metrics of syntactic phenomena (such as word reordering) as
well as coarse-grained ones (encapsulating both syntactic and semantic information)
contribute to translation difficulties.

Keywords: translation studies · translation difficulty · eye tracking · syntax ·
entropy · translation process

Publication: Vanroy, B., Schaeffer, M., & Macken, L. (2021). Comparing the
effect of product-based metrics on the translation process. [Manuscript submitted
for publication].

1This article is currently under review and is subject to change following comments from
the reviewers.

117

https://orcid.org/0000-0002-4622-8364
https://orcid.org/0000-0001-5844-8092
https://orcid.org/0000-0001-7516-7487


Chapter 5. The Effect of Product-based Metrics

5.1 Introduction
Translation difficulty prediction, which aims to assess the difficulty of a transla-
tion task, is a topic of interest within translation studies that can benefit both
pedagogical and research settings. Advances in translatability could for in-
stance ensure that appropriate text material is used in translation classes, and
to create general-purpose machine translation (MT) systems that are trained
on a balanced mix of simple and hard texts. On the other hand, it could also
help the research fields of translation studies and psycholinguistics to select
source material of suitable translation difficulty for experiments. Even though
a well-established methodology to quantify a source text’s translatability does
not exist (yet), the problem of translation difficulty has gained some attention
over the years.

The PreDicT project2 (Predicting Difficulty in Translation) aims to con-
tribute to the field of translatability by investigating source text language
features that add to a text’s translation difficulty. As described above, the
application of advances in this field could be to predict the translation diffi-
culty of a source text, or parts of it, without having access to a translation.
That would allow users to automatically rate a text or highlight its difficulties
without the need of translating it beforehand. The PreDicT project has partic-
ularly focused on syntactic equivalence and divergence between a source text
and its translation. In previous work (Vanroy, Tezcan, & Macken, 2019), two
metrics were introduced to calculate the word and word group movement on
the sentence level. In addition, a machine learning system was built that could
predict these word and word group reordering values by only using source text
information with a moderate Pearson r correlation. Additional sentence-level
metrics were introduced in Vanroy et al. (in press). In the current paper, how-
ever, we take a more fine-grained approach and make these metrics available
on the word level so that meaningful translation process analyses can be done
to investigate their impact on the translation task.

We examine the effect of a number of predictor variables (Sec. 5.3.3) on
translation process data as a proxy for cognitive effort and, hence, difficulty, as
is usual in translation process research (Muñoz Martín, 2012). We include met-
rics that are intended to measure syntactic or (lexico)semantic (dis)similarities
between a source text (ST) and its target text (TT), or both. Some metrics
require multiple translations (and are entropy-based), and others can be cal-
culated on single translations. The unit of interest is the word, but some of
the metrics are calculated with word group information in mind. The current
research can thus serve as a peek into the effects that such different metrics
have on process data. We test their effect on three different eye-tracking mea-
sures on the source tokens (Sec. 5.3.2), both early (first fixation duration) and
late (eye-key span, total reading time).

This paper is structured as follows. First an overview of related research
2https://research.flw.ugent.be/nl/projects/predict
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regarding literal translation and the relationship between ST and TT is dis-
cussed. Then, the experimental set-up is described in Section 5.3, with specific
attention for the data and model description. The predictor variables are dis-
cussed extensively as well. Section 5.4 reports the results, which are discussed
in detail in the discussion (Sec. 5.5). Finally, we end with broad conclusions
and suggestions for future research (Sec. 5.6).

5.2 Related Research
A lot of work has been done on the relationship between ST and TT, particu-
larly on the concept of literal translation and the (formal) transfer of the source
text to the target. We will discuss one specific way how literal translation can
be operationalised (Schaeffer & Carl, 2014), which leads us to different ways
of how the relationship between a source and target text can be measured.
Finally, research concerning the unit of translation is described, as it relates
to our decision to include predictors that are calculated based on word as well
as on word group information.

5.2.1 Literal Translation
“Literal translation” is often contrasted with its “rival” free translation and yet
a single definition is not available (Shuttleworth & Cowie, 2014, p. 95-97). The
concept has been used in different ways to mean different things (see Halverson,
2015, for an extensive overview of varying interpretations). For instance, some
consider literal translation ungrammatical and outside the acceptable norm
depending on the genre. In such a view, literal translation is considered as
nothing more than what Seleskovitch (1976) calls code switching, the technical
conversion of one symbol to another. Others restrict literal translation to
mean word-for-word translation that leads to a necessarily “grammatically and
idiomatically correct TL text” (Vinay & Darbelnet, 1995, p. 33), or go even so
far that the only requirement for literal translation is that the translation is
“structurally and semanticallymodelled upon the ST fragment while respecting
TL grammatical constraints” (Englund Dimitrova, 2005, p. 53; our emphasis).

Abstracting away from the discussion above, and without defining literal
translation itself, Chesterman (2011, p. 26) refers to the literal translation
hypothesis that states that “during the translation process, translators tend
to proceed from more literal versions to less literal ones”. He does not make
any claims about what the starting point is nor about what a “most” and
“least” literal translation would look like. The literal translation hypothesis
simply states that initially formal features of the source text have a large
effect on the (perhaps mental or “interim”) translation that is being produced
and that this effect decreases over the duration of the translation process. The
literal translation hypothesis has received supporting evidence from translation
process studies that measure the effects of literality metrics (see below) on
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process data (e.g. Bangalore et al., 2015, 2016; Schaeffer, Dragsted, et al.,
2016). Such experiments show that the translation procedure starts from a
more literal translation, but when this is not possible due to the constraints of
TL or other contextual or extralinguistic factors, non-literality must inevitably
increase, which - the experiments show - goes hand in hand with a higher
requirement of cognitive effort. These findings also (implicitly) support the
(revised) Monitor Model (Tirkkonen-Condit, 2005) that suggests that literal
translation is the “default rendering procedure” (p. 407-408). The translation
process is monitored by an internal monitor function and when it encounters an
issue in the rendered translation (e.g. contextual or grammatical), it intervenes
and other, less literal, approaches are considered.

Schaeffer and Carl (2013) introduce a revised, recursive, version of the
Monitor Model. It suggests that default (literal) translations are produced
based on the shared representations of source language (SL) and target lan-
guage (TL) items that are active in the mind of the translator. If the monitor
recognises that the influence of the source text leads to unacceptable (literal)
target text, then the automatic process is interrupted. Similarly, Carl and
Dragsted (2012) propose that understanding the source text and producing a
translation occur in parallel. The production process is monitored and when
issues arise, alternative translation options are considered. Such parallel pro-
cessing is especially straightforward in a copy task but also in literal translation
empirical evidence is found to support this view.

In an effort to define literal translation in terms of the equivalence between
the source and target text, Schaeffer and Carl (2014, p. 29-30) propose that
three criteria need to be met:

1. the word order is identical in the ST and TT;
2. ST and TT items are one-to-one translation equivalents;
3. each ST word has only one possible translated form in a given context.

These criteria for literality have served as the starting incentive for the cre-
ation of equivalence metrics that compare the syntactic and (lexico)semantic
properties of a source sentence with its translation (cf. Sec. 5.3.3). As such,
these metrics operationalise literality and can be used to measure the impact of
literality, but also of divergent structures in general, on the translation process.

5.2.2 Measuring the Relationship Between ST and TT
The literal translation hypothesis and the way that is has been operationalised,
is often used in translation process research as predictors for cognitive load dur-
ing translation (Muñoz Martín, 2012). A high cognitive load is indicative of
difficulties that a participant is experiencing. Reichle et al. (2009) show that
during reading, a participant processes previous information while absorb-
ing new text and during this stage of postlexical processing lexical, semantic
or syntactic difficulties may arise that involve previously encountered words.
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These difficulties require pauses on the word that triggered the problem or
regressions to previous information. Hence, measures involving eye tracking,
keyboard logging, and duration data can provide hints towards the cause of
translation difficulties. Some of the metrics discussed here will be elaborately
repeated in Section 5.3.3 because we use them as predictors in our experiments.

The first point of the definition of literal translation of Schaeffer and Carl
(2014) is important in terms of syntactic similarity between ST and TT: “the
word order is identical in the ST and TT”. Word order can be modelled in dif-
ferent ways but the metrics that are discussed here all rely on word alignment
information. Word alignment is the linking of a source word with its translated
word(s). This alignment information can then serve as the building block for a
variety of metrics. Carl and Schaeffer (2017); Carl et al. (2016); Schaeffer and
Carl (2014) propose a metric, Cross, that for each translated word measures
the distance from the previously translated word. For each source word, the
Cross value is therefore relative to the previous word. Schaeffer, Dragsted, et
al. (2016) showed a positive effect of Cross on the translation process, indicat-
ing that word reordering needs problem solving effort. Vanroy, Tezcan, and
Macken (2019), on the other hand, suggest an absolute, bidirectional metric
based on crossing word alignment links. The authors additionally put for-
ward a measure to quantify word group reordering. The idea of word group
reordering is further elaborated on in Vanroy et al. (in press).

In addition to word (group) order, other syntactic properties have also been
suggested. Vanroy et al. (in press) propose a range of syntactic equivalence
measures. One measure compares the dependency labels (e.g. subject, object)
of source words with their aligned target word, another calculates word group
movement in the same fashion as Vanroy, Tezcan, and Macken (2019), but
uses syntactically motivated word groups where each group contains words
from the same subtree. And a final measure compares the abstract linguis-
tic representations of the source text with that of the target text while also
taking word alignment information into account. In Vanroy et al. (in press),
these measures were only available on the sentence level. Positive effects of the
changes in average dependency label changes on production duration and of
syntactic word group reordering on the total reading time on the source sen-
tence were reported. Since then, all those metrics have been re-implemented
so that they can be calculated on the word level. It allows us to measure the
effect of such word-level, linguistic metrics on the translation process. Similar
to the dependency label changes mentioned above, Nikolaev et al. (2020) com-
pares part-of-speech tags (such as noun and adjective) between source words
and target words. They also quantify diverging syntactic structures based on
different dependency paths of aligned content words. Their research is compu-
tational in nature and applied to corpus linguistics, but theoretically it could
apply just as well to the comparison of ST and TT in TPR studies.

In the work by Bangalore et al. (2015, 2016) sentences were manually an-
notated with three syntactic values (valency of the verb, voice type, clause
type) and the variation between different participants’ translations concerning
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these features (entropy, as will be discussed in Section 5.3.3) was then used as
a predictor for total reading time. A significant positive effect was observed,
meaning that sentence-level measure of variance in specific syntactic properties
lead to a higher cognitive load.

Using multiple translations to model variance amongst translators can also
be applied to semantics. Word translation entropy (Carl & Schaeffer, 2014),
for example, focuses on the third point mentioned above: “each ST word has
only one possible translated form in a given context”. In a similar, entropy-
based, fashion as Bangalore et al. (2015) above, Carl and Schaeffer (2014)
uses multiple translations to quantify the agreement among translators con-
cerning lexicosemantic decisions, i.e. it models the certainty of lexical choice.
This metric has been shown to have a positive effect on different translation
process measures (Carl & Schaeffer, 2017; Schaeffer & Carl, 2017; Schaeffer,
Dragsted, et al., 2016), indicating that having many appropriate word forms
to choose from leads to a slower or more difficult translation process. Finally,
a recent metric was introduced (HSTC) that aims to incorporate a measure
of variance among translators in both word group reordering and semantic
alignment (Carl, in press). It therefore includes syntactic and semantic infor-
mation. Similar to word translation entropy, HSTC shows a positive effect on
production duration (Carl, in press).

5.2.3 Unit of Translation
In translation studies, (the size of) the unit of translation remains a much
discussed topic. On the one hand, the distinction can be made based on the
focus of the research, i.e. the translation process or its product. In product-
emphasised studies, it is generally accepted that the translation unit (TU) is
a pair of (a) source item(s) and its corresponding target item(s). In process-
based studies, the focus lies on the source text. The translation unit here is
considered to be the source item(s) that a translator processes one at a time
(Malmkjær, 2006). An overview of this dichotomy is given in Alves and Vale
(2009).

In this paper we are particularly interested in the translation unit in the
first interpretation because we compare the source text with its translation
(the product). However, a lot of work has been done on the unit of transla-
tion during the translation process. For instance, Dragsted (2005) found that
the size of translation units (or “segments”) differs depending on the difficulty
level of a text (smaller units for difficult text) and between novice and pro-
fessional translators. Professionals tend to work on larger chunks of text at a
time. Translation units, in the work of Dragsted but also in related research,
are frequently defined as the productive part of the process in between two
pauses of a specified length where keyboard activity can be observed. In the
experiment of Dragsted, this pause length was chosen by using a formula that
takes idiosyncrasies of translators into account.

Rather than investigating a single type of translation unit in process data,
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Carl and Kay (2011) proposes the usage of different kinds of units as proxies
for the TU itself. Source and target pairs of items can be segmented into
alignment units (AU; aligned source and target words), the eye-tracking data
in fixation units (FUs; consecutive fixations segmented by a pause of a given
threshold), and the keystroke data in text production units (PUs; coherent
typing behaviour segmented by a pause). By separating the concept of a
unit across different parts of the translation process, the authors intend to
approximate the “properties and shapes of Translation Units” (p. 972). When
the boundaries that constitute these units are chosen correctly, PUs are shown
to be a rough approximation of the translation unit, i.e. a unit of cognitive
activity. The size of these units in terms of time, as segmented by pauses,
differs between novices and professional translators. The PUs of professionals
are larger, which indicates the processing of larger chunks at a time, which
lends to support to the findings by Dragsted (2005). By extension, Carl et
al. (2016) suggest activity units (CUs). Activity units can be categorised
according to the activity type at hand such as “translation typing while reading
the source text” or “target text reading”. There are eight types in total (Carl
et al., 2016, p. 38-39).

Alves and Vale (2009), and continued in later work (Alves et al., 2010),
make the distinction between micro and macro translation units. A macro
TU encapsulates a series of micro TUs. A micro TU is therefore more similar
to the TU as it was discussed up to now (a unit of activity segmented by a
pause of a given length). Macro TUs, on the other hand, are collections of
micro units that are all related to the same source segment. In other words,
when different micro TUs all contribute to the production of the translation
of a specific word (by inserting or deleting characters or by revising previously
produced text), then all of those together are considered the macro TU.

Immonen and Mäkisalo (2010) aim to find overlaps and correlations be-
tween syntactic units and the pause boundaries that are typically used to
segment translation units. Among other things, their results show that in
translation the processing of small units require more processing time com-
pared to a monolingual task, and larger linguistic units are relatively speaking
less time demanding. Their explanation for this is that during translation a
translator spends a lot of time on getting the translation of small units right in
terms of its equivalence to the source text. But for larger linguistic structure
this integration requires less time because they are easier to copy from the
source text (e.g. the internal structure of a text or paragraph). These findings
are confirmed in a later study as well (Immonen, 2011).

It is clear that research is actively involved in the translation unit, but
clear-cut definitions do not exist. A translation unit is a variable concept:
it differs between participants and tasks, and may or may not necessarily
correspond to syntactic units. In this paper, however, we rely on the minimal
product-based view that a translation unit is a pair of (aligned) source and
target items. We investigate both small, word-based units and larger (word
group) units. Section 5.3.3 describes how we define what a word group is.
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5.3 Materials and Methods
In this section we describe our dataset and the processing that was applied to
it, followed by a description of the regression models that were built and the
involved dependent variables. Finally, the predictors are introduced.

5.3.1 Data and Processing
For our experiments, we use a subset of ROBOT (Daems, 2016), an English-to-
Dutch translation process data set. In terms of complexity and readability, all
texts were chosen to be comparable. Each participant was asked to post-edit
machine translations of four texts and translate the other four from-scratch.
The translation process was recorded using an EyeLink 1000 eye tracker in
combination with Inputlog (Leijten & Van Waes, 2013) and CASMACAT (Al-
abau et al., 2013). After the translation process was completed, the final
translations were manually sentence and word aligned with the source texts
with YAWAT (Germann, 2008).

The full dataset consists of post-edited and from-scratch translations of
eight news articles by ten student translators (P1-P10) and twelve professionals
(P21-P32;P343). Because the translations of P10 were not aligned and because
our metrics require word alignments, we could not include that participant’s
data. P32’s eye-tracking data was not included because it was of poor quality,
probably due to lenses. The product information of P32 was taken into account
for the calculation of entropy values, however (Sec. 5.3.3). In total, that leaves
us with 21 translators who each translated three or four texts. That means
that the eight texts each have between nine and eleven translations. Segments
that were not translated as exactly one target sentence were not included
because one of our metrics requires a linguistic parse tree, which is generated
on a per-sentence basis.

The translation process research database (Carl et al., 2016, TPR-DB)4

was used to ingest the aligned source and target texts on the one hand (prod-
uct data) and the process data on the other to create useful overview tables of
the source segments as well as the source and target tokens. Relevant process
features were automatically calculated by the TPR-DB, including fixation du-
rations and keystroke information. Product features, such as the (H)Cross fea-
ture (Schaeffer & Carl, 2014, 2017), are derived from the final translation and
its relation to the source text and are added automatically as well (Sec. 5.3.3).
All this information can then be exported into so-called TPR-DB tables where
each word is supplied with all of the aforementioned measures and more.

The metrics proposed by Vanroy and colleagues (Vanroy et al., in press;
Vanroy, Tezcan, & Macken, 2019) were added at a later stage. A Python script
3P33 was not included in the original ROBOT dataset. The reason for this is not known to
us

4https://sites.google.com/site/centretranslationinnovation/tpr-db
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that we provide in our library5 can calculate and add the metrics automatically
to the TPR-DB tables. To create the linguistic structures that are needed
for one of our metrics, we rely on stanza (version 1.2) (Qi et al., 2020) to
parse both source and target sentences into the Universal Dependency schema
(Nivre et al., 2016) (version 2.7). Both the predictors and the use of Universal
Dependencies are discussed in more detail in Section 5.3.3.

5.3.2 Regression Models
We built regression models with dependent variables First Fixation Duration
(FFDur), eye-key span (EKS), and total reading time on source tokens (TrtS).
FFDur, a very early measure, is the time in milliseconds of the first fixation
when a source word is first encountered. Eye-key span is the time between the
first fixation on a source word and the first keystroke that contributes to the
translation of that word (EKS; Dragsted, 2010; Dragsted & Hansen, 2008). It
is therefore a relatively late measure because when a translator starts typing
the target word, it is assumed that they have at least processed the source word
and perhaps some of its context sufficiently to start producing a translation
for it. TrtS, finally, is the total time (sum of fixations) that a translator has
spent looking at a source word. It is therefore a very late measure. Initial
models for First Pass Duration (FPD) and Regression Path Duration (RPD)
were created but those did not yield promising results and were not included
in the final paper. FPD is the sum of the first consecutive fixations on a word
before moving to any other word (before or after the current word). RPD is
a late measure that is the sum of all fixations on a word including regressions
to previous words.

For our analyses, we used R (R Core Team, 2020) and the package lme4
(Bates et al., 2015) for linear mixed regressions. To test for statistical signifi-
cance of the effects, we used the R package lmerTest (Kuznetsova et al., 2017).
Kurtosis and skewness were calculated with the package moments (Komsta &
Novomestky, 2015) and we used the MuMIn package (Bartoń, 2009) for calcu-
lating R2 for fitted models. Model comparison was carried out with the anova
function from the base stats package. Multicollinearity was assessed by using
the vif.mer() function (Frank, 2011). In order to assess whether the nor-
mality assumption of model residuals was met we used the package moments
(Komsta & Novomestky, 2015) to compute kurtosis and skewness of model
residuals. A skewness of > |2| and kurtosis of > |7| are considered as severe
deviations from the normality assumption regarding model residuals (Kim,
2013). We use the effects package (Fox, 2003) to visualise model results.

Prior to model building, for each dependent variable, we excluded data
points from the raw data which differed by more than 2.5 standard deviations
from the mean for each participant. This resulted in no case in a loss of more
than 3%. All models had, as random variables, participant and item (this
5https://github.com/BramVanroy/astred/blob/master/examples/add_features_tprdb
.py
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was the source word for all models). The first model we built always included
HCross – whether it was significant or not. We then included word form fre-
quency (from the English Lexicon Project (Balota et al., 2007) for the reading
times on the source text. We also included the sequential numbering of to-
kens in the source texts (STid) and in the sentence (word_id) as predictors.
However, if inclusion of both these variables meant that the model did not
converge, only one of these – whichever was more significant – was included.
In subsequent models, we substituted HCross for the new metrics (Sec. 5.3.3)
one by one, allowing for a comparison between the models with HCross as
a predictor and otherwise identical models via the anova function (we report
results from the χ2 test). We use HCross as the base model because it is a syn-
tactic, entropy-based measure. The metrics by Vanroy and colleagues are also
syntactic, but not entropy-based, which can lead to an interesting comparison.
More on that in Section 5.3.3. If convergence was not possible in subsequent
models with the new predictors, we excluded predictors one by one until con-
vergence was possible and compared these to a base model with the same
predictors – apart from HCross. After comparing models with the new predic-
tors to the base model with HCross, we excluded residual outliers (> 2.5 SD
from the mean) and report model results with and without removal of residual
outliers. Finally, we compared models in which the critical predictors were
significant with each other, again via the anova function. We report results
from the χ2 test, and Akaike’s Information Criteria (AIC; Akaike, 1973) and
Bayesian Information Criteria (BIC; Schwarz, 1978) are used as indicators of
goodness-of-it of individual models without outliers. We also report marginal
R2 for both versions of each model (with and without residual outliers), which
reports the variance of the fixed effects only. In all models, skewness was below
|1| and kurtosis below |3| after exclusion of residual outliers. Variance inflation
factors in all models were below 2.

5.3.3 Predictors
In this study, we measure the effect of different predictors on process data.
These predictors each focus on different relations between the source text and
its translation(s). A couple of distinctions can be made, such as the one
between (lexico)semantic measures and syntactic ones, metrics that are cal-
culated on the word versus the word group level, and predictors that rely on
the availability of multiple candidate translations to calculate probability val-
ues in contrast to those that are calculated between a source sentence and
a single translation. We will start the description of predictors with Cross,
and continue to discuss other metrics that are also available in the TPR-DB.
After that, the recently introduced metrics by Vanroy and colleagues will be
discussed alongside some improvements that were made to their initial imple-
mentation.

Cross (Carl & Schaeffer, 2017; Carl et al., 2016; Schaeffer & Carl, 2014)
quantifies the reordering of a word’s translation relative to the position of the
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previous word’s translation. That means that Cross values can be positive
(when the translation is placed after the previous one) or negative (when it is
placed before the previous translation). In an absolute literal translation where
a one-to-one relation exists between every source word and a corresponding
target word (Schaeffer & Carl, 2014), and where the word order is maintained,
every word has a Cross value of 1 (because each translation is one step further
than the previously translated word). In this study we focus on the source
side so we are only interested in CrossS; Cross calculated on source tokens as
opposed to CrossT (calculated on target tokens). An example showing the
difference between Cross and other reordering metrics is given in Figure 5.1.
Similar to previous studies, we use the absolute value of Cross in our exper-
iments (Carl & Schaeffer, 2017; Schaeffer & Carl, 2017; Schaeffer, Dragsted,
et al., 2016). In previous research, (absolute) Cross values were found to have
a significant positive effect on first fixation duration and total reading time
(Schaeffer, Dragsted, et al., 2016).

As an extension to the relative word reordering of a single translation, Scha-
effer and Carl (2017) introduce the concept of HCross, which is an entropy-
based variant of Cross. Entropy (Formula 5.1) is a measure from information
theory to quantify the added value of new information (Shannon, 1948). Ap-
plied to our use cases, entropy can be interpreted as the amount of agreement
between translators or the amount of uncertainty with respect to a given phe-
nomenon. Low entropy values mean high agreement (or low uncertainty), and
high entropy would indicate low agreement (high uncertainty). As such, mul-
tiple translations of the same text need to be available to have meaningful
entropy results. By taking as many shadow translations into account as possi-
ble (“possible alternative translations defined by the systemic potential of the
target language”; Matthiessen, 2001, p. 83), the hope is to approximate all
translation possibilities and by extension model the entropy; the uncertainty
for choosing between all those options.

H(X) = −
∑

event∈X

P (event)log2P (event) (5.1)

where:

X a set of possible unique events
P (event) the probability of a given event

The general entropy formula is applied to Cross by the authors as in For-
mula 5.2. Instead of only considering a single translation, entropy is calculated
on all available translations of the same source text. In other words, by taking
into account the translations of the same source text by different translators,
HCross can quantify how pre-determined the reordering of a source word must
be. If there is little variation in the Cross values for a source word among dif-
ferent translators, then the entropy will be low. For high statistical variance,
the entropy value will be high. Put differently, if translators reorder a source
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word in the same way (and agree about the repositioning of the translation),
then HCross will be low, and otherwise it will be high.

HCross(w,C) = −
∑
c∈C

P (c|w)log2P (c|w) (5.2)

where:

C a set of unique Cross values associated with w in this context
P (c|w) the probability that w has a Cross value of c in this context

HCross has been shown to correlate with word translation entropy (see
below), a measure for lexical entropy, both within and across languages (Carl,
in press; Carl et al., 2019). That is unsurprising: different words in the target
language may require different word orders, which in turn may be an indicator
of different syntactic structures. Schaeffer and Carl (2017) further present that
HCross has an effect on the duration of the eye-key span.

Where HCross is a way to quantify the uncertainty of word reordering,
word translation entropy (HTra; Carl & Schaeffer, 2014; Carl et al., 2016)
does the same for the lexical choice for a translation. For a given source word,
HTra takes all translations of that word in the specific context into account.
Depending on how much agreement or disagreement there is between transla-
tors to choose the same target word, HTra will be low or high, respectively.
Applying Formula 5.1 to word translation entropy, HTra can be defined as
Formula 5.3.

HTra(w, T ) = −
∑
t∈T

P (t|w)log2P (t|w) (5.3)

where:

T a set of unique translations of w in this context
P (t|w) the probability that w is translated as t in this context

This measure is thus a way to see how many translations (lexical entries) are
suitable translations. It gives us a (limited) insight in the different options that
translators can choose from (contextual lexicon). A high HTra value means
that many options are available and that a single, straightforward choice is not
necessarily available. As a consequence, a high word translation entropy is ex-
pected to have an impact on process data as well: more choices to choose from
for a given word in a specific context, is likely to require more time to make a
decision. This has been confirmed in a number of studies. Effects of HTra were
reported on production duration (Dur) (Carl & Schaeffer, 2017), first fixation
duration (FFDur) and total reading time (TrtS) (Schaeffer, Dragsted, et al.,
2016), and eye-key span (Schaeffer & Carl, 2017). This would mean that the
effect of word translation entropy is present in both early and late processing
stages during translation.
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Recently, a new entropy-based metric has been introduced that incorpo-
rates different types of information into a single metric (Carl, in press). It
is called “joint source-target alignment / translation distortion entropy”, or
HSTC for short, and takes into account translation and reordering probabili-
ties. Specifically, a given source word w is part of a group of source words s,
which is aligned to a group of target words t. An alignment group is defined as
a number of source and target words that are aligned with each other. These
groups represent meaning-equivalent expressions in the context of the sentence.
All words in a source group s have the same Cross value c. As such, the proba-
bility of a specific translation can be calculated in terms of its self-information
of the source group, the target group and its relative re-ordering. Worded
differently, the joint alignment/distortion probability for a given source word
w is based on its associated source group s, the alignment with target group t,
and the corresponding Cross value c. These probabilities can then be used to
calculate the entropy (Formula 5.4). In a way, HSTC encompasses both HTra
and HCross discussed above. It is intended as a single metric to measure the
(non-)literality of a translation, both (lexico)semantically and syntactically.

HSTC(w,A) = −
∑

(s,t,c)∈A

P (s, t, c|w)log2P (s, t, c|w) (5.4)

where:

w a given source word
A a set of unique triplets of associated values of w in this context
s the source word group that w belongs to in this set, aligned

with its respective t
t the target word group that w belongs to in this set, aligned

with its respective s
c the Cross value of all words in group s
P (s, t, c|w) the probability that w is associated with this source group s,

target group t, and Cross value c in this context

Carl (in press) shows that, perhaps unsurprisingly, HSTC correlates strongly
with both HTra and HCross, which implies that uncertainty in choice of lexical
translation goes hand in hand with similar uncertainty about the reordering.
Similar to the aforementioned measures, Carl shows significant effects of HSTC
on production duration during translation.

With the exception of Cross, the above measures are all meant to be cal-
culated involving a (relatively high; Carl, in press) number of translations.
The main idea is that a sufficient number of translations approximate all the
possible choices that translators are faced with, and that more choices (or less-
straightforward ones) lead to a more difficult translation process. Vanroy and
colleagues introduced different syntactic metrics that are not reliant on mul-
tiple translations and each focus on different aspects of syntactic differences
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between a source text and its translation (Vanroy et al., in press; Vanroy, Tez-
can, & Macken, 2019). Instead of trying to comprise “one metric to rule them
all” such as HSTC, where a lot of information is included in a single measure,
they split up syntactic (dis)similarities between a source and target text into
individual measures. In the current section we will discuss three that are used
as predictors for our experiments.

Cross, as discussed, above is a metric to measure the reordering of a word’s
translation relative to the translation of the previous word. It is directional, in
the sense that a word and its translation can have different values. In Vanroy,
Tezcan, and Macken (2019), we suggest a different approach to word reordering
that is bidirectional and absolute. We will call this metric word_cross in the
current paper to distinguish it from the aforementioned Cross value (Carl &
Schaeffer, 2017; Carl et al., 2016). First, word_cross is calculated as the
number of times an alignment link of a specific word crosses the alignment
link of any other word in the sentence. Formally, two alignment links cross
each other if the order of the source words is inversed on the target side. An
example is given in Figure 5.1.

In other words, whereas a word’s Cross value is determined by the reorder-
ing of its translation relative to the previous word’s translation, its word_cross
value is impacted by the reordering of all words in the sentence, including its
own. The implication of this is that the cross value of a target word is the same
as the cross value of its aligned source, at least in one-to-one alignments. If a
word is aligned with multiple target words, we can choose to take the average
cross value of its alignments, or sum them up (in this paper we sum them),
which means that for some aligned structures the cross value of a source word
could differ from its aligned target word, because that target word is aligned
with other source words as well. In Vanroy, Tezcan, and Macken (2019) and
later in Vanroy et al. (in press), this metric was only available as an aggregated
value on the sentence level and could therefore not be used for word-level pre-
dictions or correlations. The reason for this is that we initially wanted to make
word (group) order distortion predictions for a given sentence, i.e. we were
answering the question whether we can predict the difference in word (group)
order between a source sentence and its translation. In the current paper, we
use the word-level values as predictors.

Similar to Gile (1995, pp. 101-102), we consider that the translation unit
can vary and is not necessarily restricted to only words nor to only word groups.
The unit of translation may differ between translators, between tasks and even
specific texts and difficulties (Sec. 5.2). Therefore, we also investigate the effect
of word group (or sequence) reordering on process data. Similar to word_cross
above, seq_cross was introduced in Vanroy, Tezcan, and Macken (2019) and
further discussed in Vanroy et al. (in press), but in both cases the metric was
calculated on the sentence level. Here, we make two improvements: first and
foremost, each word is now assigned a seq_cross value, which is the cross
value of its word group. Word groups can be created based on the alignments
of the involved words and restrictions apply as per the requirements in 23,
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taken from Vanroy, Tezcan, and Macken (2019). If a word does not belong
to a group that follows these requirements, then that word’s original word
alignment will be used as a “singleton” sequence alignment as well.

(23) a. Each word in the source sequence is aligned to at least one word
in the target sequence and vice versa

b. Each word in the source word sequence is only aligned to word(s)
in the target word sequence and vice versa

c. None of the alignments between the source and target word se-
quences cross each other

So looking at this from a technical perspective, aligned word groups are
created as described above, and for these word groups and their alignment a
cross value is calculated in the same fashion as for word_cross. It is ensured
that these groups are as large as possible according to the requirements. The
sequence cross value of a group is passed on to all the words belonging to that
group. Each word thus has a word_cross value, based on word alignment
and its own reordering, and a seq_cross value that is based on the alignment
of the word group that it belongs to. These sequence alignments (alignment
between two word groups) can greatly reduce the number of alignments and,
consequently, the cross values calculated on these groups (seq_cross) can be
much smaller than their word_cross equivalent because there are less (group)
alignments present in the sentence to cross compared to word alignments.

A second improvement compared to when we first introduced this metric,
is that we consider m-to-n alignments of consecutive items as valid aligned
word groups, too. In other words, requirement 23c does not apply to these
so-called multi-word groups (MWGs), but as an alternative requirement all
source words need to be aligned with all target words of the construction.
The assumption here is that m-to-n alignments are used for groups of words
or phrases that cannot be easily compositionally aligned, such as idioms or
free translations of specific concepts. Semantically, however, the source and
target side should constitute the same concept or phrase. Note that this does
not necessarily mean that from a monolingual perspective these constructions
are multi-word expressions or idiomatic expressions: MWGs are purely based
on the alignments between the source and target words belonging to the con-
struction. As an example of a MWG, consider the following translation, where
“marine sentinels” - “wachters van de zee” constitutes a MWG according to
our specification and as such only one alignment link will be needed between
the two groups rather than the m-to-n word alignments (which would lead to
a lot of crosses because all word alignments in m-to-n alignment cross each
other).

(24) a. Whales are often called marine sentinels
b. Vinvissen

Whales
worden
are

ook
also

wel wachters
guardians

van
of

de
the

zee
sea

genoemd
called
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c. Word alignments: 0-0 1-1 2-2 2-3 3-8 4-4 4-5 4-6 4-7 5-4 5-5 5-6 5-7

Note that allowing m-to-n alignments to be groups, also greatly reduces
the sequence cross value of other words: because “called” is aligned with “ge-
noemd” it crosses the m-to-n alignment, leading to a large word_cross value of
8. However, its sequence alignment (which is the same as its word alignment),
has a seq_cross value of 1 because the m-to-n construction that it crosses
is considered a valid sequence and only has one alignment link connecting
“marine sentinels” to “wachters van de zee” instead of eight. Example 24
can be visualised as in Figure 5.1. It shows the differences between Cross,
word_cross, and sequence cross. The groups of words that adhere to the re-
quirements above are boxed in and aligned (solid black lines). Their original
word alignments are given in grey dotted lines. If a word does not belong to a
multi-word group, it is its own singleton group (like “called” in the example).
Cross and word_cross are calculated on the alignments of the single words,
whereas sequence cross uses the alignments between word groups. On the
word-level (based on word alignments), “called” crosses eight alignment links.
On the word-group level, however, this is reduced to only one.

CrossS
word_cross

ST

TT 

Whales are often called marine sentinels

Vinvissen worden wel wachters devanook

    1             1            1             6            -4            -4 
    0             0            0             8            10          10

zee genoemd

seq_cross     0             0            0             1             1            1              

Figure 5.1. A visualisation of Cross, word_cross and sequence cross in
Example 24

Finally, in this paper we will also investigate the effect of a linguistic mea-
sure that is a word-based by-product of the metric that we called Aligned
Syntactic Tree Edit Distance (ASTrED; see Vanroy et al., in press, for an in-
depth explanation and examples). The syntactic structure of a sentence can
be represented as a hierarchical tree where each child presents a lower item
in the tree to its parent. Specifically, we make use of dependency trees where
each word has a to-relationship with its parent in the tree. That means that
each node in a tree is the dependency role label of that word (for instance,
a word can have the role of subject to the root verb; see Fig. 5.2 for an ex-
ample). The structure of the source tree can then be compared with a target
tree representation to find structural differences between the two. To do so,
however, the label set and way of structuring a sentence needs to be com-
parable between languages in the first place. Therefore, we make use of the
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Universal Dependencies annotation scheme 6 (UD), which is an initiative to
facilitate and accelerate multilingual, comparable research (Nivre et al., 2016).
It is specifically designed to do away with the prior difficulty of comparing two
languages syntactically. As an example, Figure 5.2 shows dependency tree
of the sentence “This morning I saw the baker preparing cookies” where the
nodes are represented as word:dependency-label. In reality, however, only
the dependency label is used in comparing the structures.

saw:root

morning:obl

This:det

I:nsubj baker:obj

the:det preparing:acl

cookies:obj

Figure 5.2. Example dependency tree of the sentence “This morning I saw the
baker preparing cookies”

Because we are certain that the structures of a source text and its transla-
tion use the same annotation scheme, we can compare the tree representation
of a source sentence and its translation. One could naively measure the tree
edit distance (TED) between the two, a common metric to measure differences
between trees. TED looks for the most optimal way to transform the source
tree into the target tree by making use of different operations: match (when
a source node has the same label as a node on the target side in the same
position), insertion (when a node is not present in the source tree but needs to
be inserted in the target tree), deletion (when a source label is not present in
the target tree and needs to be deleted) and substitution (also called rename;
when a source label is structurally correct but its label needs to be changed
to be identical to a target node). Every operation has a cost attached to it,
and the TED algorithm needs to look for the sequence of operations that has
the lowest total cost. In our case, match has no cost to it (and is thus the
preferred operation if possible), and the others have a cost of 1. TED as-is is a
naive approach, however, as it will not take word alignments into account. It
will simply find the most optimal solution to change the source sentence struc-
ture into the target structure, irrespective of word alignments and effectively
ignoring any semantic or structural correspondence between the source and
target sentences. ASTrED, on the other hand, can be seen as a preprocessing
procedure for syntactic trees that ensures that only aligned words can match
in the source and target tree by merging the node labels in both the source and
target tree to include information about the aligned words. This procedure is
described in much detail in Vanroy et al. (in press) and will not be duplicated
6See http://universaldependencies.org/ for label descriptions
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here for brevity’s sake. Important to know is that ASTrED changes the node
labels in such a manner that the nodes of aligned source and target words will
end up having the same label in their respective trees so that only words that
are semantically aligned can match each other. Because match is a preferred
operation (cost 0), this ensures that TED will try to match aligned words
(rather than words that coincidentally have the same label) in the tree and fill
out the rest of the tree with substitution, insertion, and deletion operations.

In this paper, we do not use the calculated ASTrED value directly, but
instead for each source word we see if it was matched (and not changed) or
whether an edit operation was necessary to transform this specific node to
create the target tree (changed). These operations can be deletion or substi-
tution, as insertion can only happen for target words. Each word, then, has an
astred_change value of “FALSE” (match) or “TRUE” (no match), indicating
whether a specific operation needs to occur on this word.

To summarise, the predictors that we use can be divided in a number
of ways. Some of them are semantic in nature (HTra), others are syntactic
(Cross, word_cross, sequence cross, HCross, astred_change) and HSTC is
both. Most measures consider the word as unit, but some use word groups
in their calculation as well (sequence cross, HSTC). Finally, HSTC and HTra
require multiple translations, whereas the other are calculated between a given
source text and its (one) translation.

5.4 Results
In this section we present the effects of the predictors word_cross, sequence
cross, astred_change, absolute Cross, HCross, HTra, HSTC on three eye-
tracking measures: First Fixation Duration, Eye-Key Span, and Total Reading
Time. In the overview tables, the “ANOVA (HCross)” column compares each
model individually with HCross (χ2). “ANOVA” compares for each model
whether it significantly improved over the previous model (models are or-
dered based on BIC/AIC values with the best fitting model at the bottom).
“base” indicates when a model has been used as the first reference model in
an ANOVA. When the models are compared, all residual outliers are included.
The variance that they account for is given in “R2 (outliers)”. Separate mod-
els are also built that exclude for each model its respective residual outliers.
These results are reported in “R2 (no outliers)”. In each table only those pre-
dictors are included that had a significant effect (with or without outliers) on
the dependent variable. Significance of the specific predictor under scrutiny
are given in the p columns. The individual significance levels of secondary
fixed effects (ID in source text, ID in source sentence, frequency) were not
reported but in all cases they were significant (p < 0.05). The BIC and AIC
columns are given for transparency to indicate the absolute goodness-of-fit of
the models (lower is better), as discussed in Section 5.3.2.
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5.4.1 First Fixation Duration
Table 5.1 shows the summary of significant effects on First Fixation Duration
(the earliest measure) of which there are few. HCross, word_cross and HSTC
have a significant effect. HCross performs best in terms of BIC/AIC as well
as R2 when outliers are included. Neither word_cross nor HSTC perform
better according to the ANOVA. However, when outliers are removed, only
word_cross has still a significant effect suggesting that outliers were driving
the effects in HCross and HSTC in the first place. Only very little variance is
explained in these settings.

w. residual outliers w.o. residual outliers

ANOVA
(HCross) ANOVA BIC AIC p R2 p R2

HCross base base 9154.9 9106.1 0.018* 0.0023 0.077 0.0023
word_cross ns ns 9156.1 9107.2 0.034* 0.0021 0.023* 0.0025
HSTC ns ns 9156.6 9107.7 0.046* 0.0021 0.153 0.0022

∗p < .05; ns = not significant
See the introductory paragraph in Section 5.4 for an explanation of the column names

Table 5.1. Summary of effects on First Fixation Duration (FFDur)

The effect plots for the base model HCross, word_cross and HSTC are
given in Figures 5.3a, 5.3b, and 5.3c respectively. Important to note is the
difference in scale of the y-axis.
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HCross

lo
g(

F
F

D
ur

)

170

175

180

185

190

195

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(a) The effect of HCross on the logarithm of
FFDur

word_cross

lo
g(

F
F

D
ur

)

180

200

220

240

  0  50 100 150 200

(b) The effect of word_cross on the
logarithm of FFDur

HSTC

lo
g(

F
F

D
ur

)

170

175

180

185

190

0 1 2 3 4

(c) The effect of HSTC on the logarithm of
FFDur

Figure 5.3. Effects on First Fixation Duration

5.4.2 Eye-key Span
Eye-Key Span is considered a late measure, assuming that the translator has
fixated a word long enough to at least start producing a translation for it. It
does imply, however, that initial problems have been resolved when the pro-
duction of a word starts (but revision may still happen at a later stage). Many
predictors show a significant effect. However, sequence cross only converged
when the word ID (the index of the word in the sentence) was excluded as a
predictor (the corresponding model is called seq_cross+). Therefore, a sep-
arate HCross model was built (HCross+) that similarly contains the source
text ID (the index of the word in the text) and word frequency, but not the
word ID. With these fixed effects, seq_cross performs significantly better than
HCross according to the ANOVA but it is also evident from their respective
BIC/AIC values. On top of that, HCross does not have a significant effect
in this context. For that reason, the HCross+ model was not included in the
second ANOVA.

136



5.4 Results

w. residual outliers w.o. residual outliers

ANOVA
(HCross) ANOVA BIC AIC p R2 p R2

HCross+ base 0.146 0.0088 0.515 0.0073
seq_cross+ *** base 20 259.6 20 213.3 0.047* 0.0090 0.019* 0.0079
HCross base *** 20 200.4 20 147.5 0.037* 0.0192 0.129 0.0231
abs(Cross) *** *** 20 200.3 20 147.4 0.034* 0.0190 0.069 0.0230
astred_change *** *** 20 200.2 20 147.3 0.032* 0.0192 0.040* 0.0229
HTra *** *** 20 196.0 20 143.1 0.003** 0.0204 0.008** 0.0240
HSTC *** *** 20 192.4 20 139.5 *** 0.0207 0.002** 0.0243

+ without word_id as a predictor
∗p < .05; ∗∗p < .01; ∗∗∗p < .001
seq_cross only converged without word_id (ID in the sentence)
See the introductory paragraph in Section 5.4 for an explanation of the column names

Table 5.2. Summary of effects on Eye-Key Span (EKS)

The models that did converge with all secondary predictors and that are
significant, are HCross, absolute Cross, astred_change, HTra and HSTC. The
base model HCross (Fig. 5.4a) is significantly outperformed by other predictors
and its variant without residual outliers is not significant. The same is true for
absolute Cross. astred_change has a significant effect both with and without
outliers (Fig. 5.4b). Word translation entropy (HTra) and especially HSTC
(Fig. 5.4c) provide the best fitting models to the data.

137



Chapter 5. The Effect of Product-based Metrics

HCross

lo
g(

E
K

S
)

4e+04

5e+04

6e+04

7e+04

8e+04

9e+04

1e+05

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(a) The effect of HCross on the logarithm of
EKS

astred_change

lo
g(

E
K

S
)

4e+04

5e+04

6e+04

7e+04

8e+04

9e+04

1e+05

FALSE TRUE

(b) The effect of astred_change on the
logarithm of EKS

HSTC

lo
g(

E
K

S
)

4e+04

5e+04

6e+04

7e+04

8e+04

9e+04

1e+05

0 1 2 3 4

(c) The effect of HSTC on the logarithm of
EKS

Figure 5.4. Effects on Eye-Key Span

5.4.3 Total Reading Time
Similar to Eye-Key Span, Total Reading Time (the latest measure which in-
cludes all fixations on a word), is affected by many predictors. The base model,
HCross, does not have a significant effect so it is no surprise that all other pre-
dictors that have a significant effect also perform significantly better than
HCross (“ANOVA (HCross)”). Most predictors have a significant effect with
and without residual outliers with the exception of word_cross, which is not
significant without. With outliers included in the model it is only marginally
significant (p = 0.058; in all others cases ∗p < 0.05). Sequence cross and
HSTC, word group based metrics, are the best performing models according
to their BIC/AIC, with HSTC coming out on top. Their effect is highly sig-
nificant (p < 0.01). Absolute Cross is the third best fitting model followed by
HTra and finally word_cross. The fixed effects in the HTra model explains
the most variance in Total Reading Time, however. Note that HCross did not
have a significant effect. Therefore, it was not part of the second ANOVA
comparison. In that case, the word_cross model was the reference model (be-
cause it has the highest BIC/AIC), although it was just marginally significant
in the first place.
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w. residual outliers w.o. residual outliers

ANOVA
(HCross) ANOVA BIC AIC p R2 p R2

HCross base 0.235 0.0345 0.362 0.0395
word_cross *** base 22 593.4 22 537.6 0.058* 0.0346 0.062 0.0346
HTra *** *** 22 592.5 22 536.6 0.033* 0.0358 0.016* 0.0417
abs(Cross) *** *** 22 591.1 22 535.3 0.015* 0.0348 0.004** 0.0400
seq_cross *** *** 22 590.1 22 534.3 0.009** 0.0349 0.005** 0.0401
HSTC *** *** 22 589.7 22 533.9 0.007** 0.0359 0.004** 0.0411

∗p < .06; ∗∗p < .01; ∗∗∗p < .001
See the introductory paragraph in Section 5.4 for an explanation of the column names
BIC/AIC columns have been rounded for conciseness sake but they are in descending order

Table 5.3. Summary of effects on Total Reading Time of source tokens (TrtS)

The effects of word_cross (the base model for the ANOVA comparison),
sequence cross and HSTC are visualised in Figures 5.5a, 5.5b, and 5.5c respec-
tively.

word_cross

lo
g(

Tr
tS

)

1500

2000

2500

3000

  0  50 100 150 200

(a) The effect of word_cross (base model)
on the logarithm of TrtS

seq_cross

lo
g(

Tr
tS

)

1500

2000

2500

3000

3500

4000

 0 20 40 60 80

(b) The effect of seq_cross on the
logarithm of TrtS

HSTC

lo
g(

Tr
tS

)

1200

1400

1600

1800

0 1 2 3 4

(c) The effect of HSTC on the logarithm of
TrtS

Figure 5.5. Effects on Total Reading Time on source tokens
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5.5 Discussion
In our experiments, we see very little effect of our predictors on the early
measure of First Fixation Duration (FFDur) and those that are significant only
explain variance by a minimal amount. Furthermore, both HCross and HSTC
(both entropy measures) lose their significance when their residual outliers are
removed. The effect of HTra and absolute Cross on FFDur as reported in
Schaeffer, Dragsted, et al. (2016) could not be reproduced (but this can likely
be attributed to the smaller size of our dataset), although HSTC was significant
without outliers, which is interesting because it contains both reordering and
translation entropy (of the word group). word_cross was significant both with
and without outliers but again, the variance explained was very small.

The effects in later measures are much more prominent. In EKS, a positive
effect of sequence cross can be observed but the explained variance is low as
is the significance of the predictor. This effect is only present when the word
ID predictor is dropped. Because of that, a fair comparison cannot be made
with the other predictors by themselves for this dependent variable. Except for
word_cross, which is not significant, all other predictors show a positive signif-
icant effect. Especially the measures involving semantic information perform
well (HSTC, HTra), closely followed by structural changes between ST and TT
(astred_change). Absolute Cross is further behind, with a considerable gap
in BIC/AIC between astred_change. It is also not significant without the
outliers. The same is true for HCross. Therefore, we can cautiously confirm
the results reported in Schaeffer and Carl (2017) where HCross was shown to
affect EKS positively, although the effect disappears when the residual outliers
are removed. With more certainty, we report results in line with Schaeffer and
Carl (2017) concerning the significant positive effect of HTra on EKS.

In Total Reading Time, similar effects can be observed with respect to the
semantic measures (HTra, HSTC). Interesting, however, is that both abso-
lute Cross and sequence cross perform slightly better than HTra in terms of
BIC/AIC although HTra still explains more variance. We can therefore also
confirm similar findings by Schaeffer, Dragsted, et al. (2016) concerning the
effect of HTra on TrtS. word_cross is only marginally significant and only
with its residual outliers included, but sequence cross, on the other hand, is
highly significant (p < 0.001) and performs significantly better than absolute
Cross, although the difference in R2 is minimal. All predictors explain more
variance in TrtS than any predictor could in EKS. The reason for this may
lie in late, conscious processes. Even after a translation is being generated
(EKS is the time from the first fixation on a word until the first keystroke that
contributes to its translation), additional fixations on a word may indicate
control and revision processes that are active. The implication could be that
more divergent source and target structure (in terms of the significant predic-
tors) require longer control and/or revision processes but this needs further
investigation. Surprisingly, the significant positive effect of astred_change
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did not continue in TrtS. This could be related to the aforementioned control
processes: syntactic divergent structures may have a significant impact on the
problem-solving process right before a translation can be produced (right be-
fore the first keystroke of the translation of a word; EKS), but as soon as that
problem is resolved, such structural issues are not likely to cause issues during
later fixations on the word (i.e. during production or revision).

Because both sequence cross and HSTC involve word groups, it is tempt-
ing to attribute their significant effects on late processes, especially TrtS, to
a gradual increase of the cognitive unit of translation (from individual words
to larger groups in later stages of the translation process). However, because
absolute Cross is word-based, the suggestion would be that the unit of trans-
lation increases in a compounding manner. In other words: in later stages of
the translation process, both individual words and (surrounding or involved)
word groups are important to the translator. During later processes, a trans-
lator may be trying to incorporate or resolve larger units while still taking
into account the properties associated with the single word. As mentioned
before, a lot of research exists on translation units (e.g. Alves et al., 2010;
Carl & Kay, 2011; Immonen & Mäkisalo, 2010; Schaeffer, Carl, et al., 2016),
and we do not make any conclusive interpretations that confirm or refute any
of the suggestions, but we observe that the (possibly changing) unit of trans-
lation and its corresponding features may play distinct roles during the time
course of the translation process. This is similar in thought to Alves et al.
(2010, p. 121): “translators navigate between different linguistic units and
levels during translation”. Further research in this direction would be use-
ful. Particularly, interaction effects of word-based and group-based metrics
on process data can shed a light on the importance of the properties of the
involved translation units during different stages of the translation process. In
addition, interaction effects between (lexico)semantic and syntactic properties
should also prove interesting, and has already been investigated in some detail
by Ruiz and colleagues (Ruiz et al., 2008; Ruíz & Macizo, 2019).

Why we found more effects in late measures (EKS, TrtS) compared to
early eye-tracking measures is not easy to explain. One possibility is that
our metrics especially model language properties that need conscious deci-
sions. Whereas early measures are often indicative of automatic processes,
later measures hint towards conscious decision-making and problem solving,
which cannot be resolved automatically (Bell, 1998; Kiraly, 1995). This expla-
nation works for the syntactic measures, where it is conceivable that reordering
(Cross, word_cross, sequence cross, HCross, partly HSTC) and insertions and
deletions (partly what ASTrED models) need more specific attention from the
translator. But it does not explain why semantic measures such as HTra and
HSTC only have a late effect; the variance in FFDur that is explained by the
fixed effects (with HSTC) is very small and HSTC does not have significant
effect when residual outliers are excluded. It may be the case that TL features
are activated during first contact but that they simply do not pose a problem
yet. Another likely explanation is that more data (in terms of the number of

141



Chapter 5. The Effect of Product-based Metrics

data points) is needed to show consistent, early effects.
Conclusions concerning entropy are hard to make because a variety of fac-

tors are involved. HTra and HSTC both have a semantic component, whereas
HCross and HSTC contain syntactic information. HSTC involves word groups,
whereas HTra and HCross are metrics on the word level. A single statement
on the effect of entropy cannot be made. What we can indefinitely say, though,
is that more translations could change the picture. Carl (in press) shows that
HTra scores only approximate a real population with a Pearson correlation
of more than r = 0.8 when approximately ten translations are available for a
given text (we have between nine and eleven). It is hard to tell then whether
entropy-based metrics based on more translations would have a greater effect
on the process data. The goal of entropy-based metrics is to approximate the
real population, i.e. all shadow translations (Matthiessen, 2001) that a trans-
lator needs to choose from. Entropy, then, serves as a way to quantify how
straight-forward the choice out of all those options is. It should be clear that
this intention needs many translations in order to approximate “all” transla-
tion options.

Although hard conclusions are hard to draw because of the size of our
dataset, our results indicate that particularly late process measures are affected
by the predictors. The reason for this may lie in the conscious processes that
occur in such late stages, like problem-solving and revision. In addition, we
find that HSTC, an entropy-based metric that incorporates both word group
translation and reordering probabilities, is the best-fit predictor across the
board. This is perhaps unsurprising, exactly because it entails both syntax and
lexicosemantic information while also being based on all available translations.
In terms of metrics that are not based on probabilities, absolute Cross has
a consistent significant effect in the late measures. Sequence cross, which is
based on word-group reordering, has a particularly strong significant late effect
which poses interesting questions about the cognitive unit of translation and
how that unit might change during the translation process.

5.6 Conclusion
In this paper we investigated the effect of a number of predictors that each
model different parts of the relationship between a source text and its transla-
tion(s). Although our results are promising, “it is dangerous to make sweeping
generalizations about translation processes” (Tirkkonen-Condit, 2005, p. 406),
particularly because our dataset is limited in size. We encourage other re-
search to confirm or refute our findings with experiments involving different
tasks (e.g. sight translation) and datasets (different language pairs, more data
points). Furthermore, we wish to emphasise that controlled experiments are
necessary if fine-grained linguistic concepts are involved whose effects may not
be as clear-cut in empirical corpus-based translation studies. In future re-
search we want to particularly focus on more language pairs and see how well
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the effect of syntactic and semantic divergence generalises to other languages.
In addition, we would like investigate additional measures, such as those of
Nikolaev et al. (2020) discussed above.

Specifically for the PreDicT project, it is very promising to see that metrics
that do not rely on multiple translations also show an effect. Ultimately we
wish to predict the difficulty of a given source text, and these results indicate
that such singular metrics have predictive power as well. Technically speaking,
that is very important: it is much easier to find parallel corpora with one
translation than with multiple translation. Such large parallel corpora can
be used to train a machine learning model to predict these relevant features
(e.g. astred_change) for a given source word, which in turn can be used in a
translatability measuring system which predicts difficulties for a given source
text without access to a translation.

Our main contributions lie in introducing new metrics to the existing ar-
senal of product-based features that can be calculated on a source word and
its translation. We also confirmed pre-existing findings by fellow researchers
in the field and made our own observations by measuring the effect of a set
of predictors on translation process data. And finally, with our results we
believe to have added interest to a number of existing research questions that
are keen to be investigated, especially involving the (size of) the translation
unit, the distinction between (lexico)semantic and syntactic predictors (and
their relevance in the time course of the translation process), and whether or
not entropy-based measures are a necessity in predicting cognitive effort.
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Discussion

The previous chapters show the road that I took with the much appreciated
help of my coauthors and supervisors. At every step, I gained new insights
and expertise. Both in terms of methodological approaches and knowledge of
existing literature, I had the chance to improve along the way. Even though
the initial few months inspired me with tantalising ideas of how to continue
my research – translation difficulty and its related linguistic problems are an
incredibly broad topic after all – it quickly became clear that I could not let
go of my linguistic interest rooted in syntax, and from Chapter 3 onwards, the
course of research was set to translation difficulty that is caused by syntacti-
cally diverging source and target structures. That is not to say that syntax
is more important than other properties of language but it indicates on the
one hand my own interests and on the other the many different aspects of
translatability that can be investigated.

Because my experience with the topic of translatability, and with research
in general, evolved over time, I have had many opportunities to look back on
previous work. Things that could have been done differently or for which an
alternative approach would have been interesting as well. In what follows,
I will provide a critical reflection on each chapter as well as a return to the
questions posed in the introduction. Such a discussion is not intended to
discredit the publications themselves. I stand by the work that I and my
colleagues published, and I take the thorough peer-review process that they
were subject to as an indicator of their quality (Chapter 5 is submitted but
not reviewed yet, however). This consideration serves only as an expansion on
what my thoughts were at the time, how the research process proceeded, and
which choices, methodological or otherwise, were made and why. As an aid to
the reader, an additional section is provided that summarises the experimental
findings that resulted from the publications. After that I will discuss how this
PhD project, and its conceived metrics, can be linked to related fields and
previously discussed research. I will end this thesis with some final remarks.

6.1 Chapter Overview
Chapter 2: Correlating Process and Product Data. As a first step
onto the aforementioned road, a literature study was most required to under-
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stand the topic of translation difficulty. This paper was highly influenced by
previous work. In fact, it was a pilot study to see if we could replicate cor-
relations that were found in other studies, and answer the question How does
translation process data correlate with the translation product?. There are
two main differences with those previous studies, though. First, my interest
at the time was the sentence level rather than the word level, even though
most research involves the word as the unit of interest. I was likely biased by
the Natural Language Processing (NLP) task of Sequence Classification: it is
generally speaking easier to predict a value for a given sentence than for each
individual word. In my mind, I figured that I would rather work towards a
good sentence-level difficulty prediction system than a worse word-level one.
In retrospect, it may have been worthwhile to start my investigation on the
word level rather than working towards it in a top-down fashion. A second
difference with the literature that I read, was that we decided to use corre-
lations even though most related work relies on experimental methodology
involving mixed-effects models. My experience with statistics was limited and
I did not have the background to confidently use such models. In fact, I have
been fortunate enough to have had coauthors that specifically contributed by
means of building mixed models, for which I am incredibly grateful (dr. Joke
Daems in Ch. 4 and dr. Moritz Schaeffer in Ch. 5). Using correlations between
two variables rather than a feature-complete mixed model is a simplification,
which disregards a number of factors such as inter-participant variability and
the impact of individual fixed effects on the dependent variable. Still, a sim-
plification or not, a correlation between two variables does tell us something
about the relation between the two, and our question was answered: Significant
correlations between process and product data exist (though small), particu-
larly between syntactic equivalence and translation process features, which I
took as a point of focus for the subsequent work.

Chapter 3: Predicting Syntactic Equivalence. The goal of this pa-
per was to build a machine learning system that given a source sentence could
predict the average word (group) reordering that needs to occur without hav-
ing access to its translation. In theory that means that you infuse a machine
learning system with abstract target language information. In a sense, the
model learns which target word order corresponds with a given source word
order to ultimately quantify the difference. Methodologically, this paper was of
much interest to me as it increased my existing knowledge of machine learning.
The neural systems were built by coauthor dr. Arda Tezcan, and were mostly
based on his own previous work. At a later stage, after the experiments had
already been concluded, I spent a lot of time delving into deep learning and
I re-implemented the whole system from-scratch in a different deep learning
library (PyTorch; Paszke et al., 2019). Around the same time, transfer learn-
ing with BERT (Devlin et al., 2019) and other Sesame-street characters (large
Transformer-based neural models), became a popular choice in NLP research,
and I integrated that in our system as well (BERT performed slightly better
than our previously best system). Those results were never published as a
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paper, but they were presented on the MEMENTO workshop of 2019, collo-
cated with the MT Summit conference. The research question How well can a
machine learning system predict word (group) reordering by only making use
of source text information? was optimistically answered: Word reordering and
word group reordering can be modelled by a machine learning system with
a Pearson r correlation of at least 0.54 and 0.58 respectively. At the end of
this work, we started to think about different ways of capturing other syntac-
tic differences between a source and target text in addition to word (group)
reordering.

Chapter 4: Metrics of Syntactic Equivalence. In terms of the cog-
nitive effort required by my coauthors and myself, this book chapter and the
development that led up to it was probably the most (in)tense of all the pub-
lications. The first step was choosing Which fine-grained metrics can quantify
syntactic divergences between a source and target text on the sentence level?
We decided on changes in dependency labels to capture phenomena such as
passivisation (a subject turns into an object), linguistically motivated word
group reordering, and – most intricate of all – aligned syntactic tree edit
distance, which compares the abstract, syntactic source and target structures
while also taking word alignment information into account. From a develop-
ment perspective, I made the decision to stick with only a sentence-level aggre-
gation of the metrics, as a continuation of Chapter 3. The experimental results
of this book chapter answer the question What is the effect of sentence-level,
syntactic metrics on process data? We found that changes in dependency label
have a significant, positive effect on coherent typing behaviour and that the
amount of linguistic word group reordering positively and significantly affects
the total reading time on the source sentence.

Chapter 5: The Effect of Product-based Metrics. The most recent
and final work, which has been submitted to a journal and awaits review,
is a logical follow-up study to the previous one: instead of only looking for
sentence-level effects, smaller linguistic units, i.e. words, are investigated.
Compared to Chapter 4, the balance of focus has shifted from a focus on a
detailed explanation of the metrics to the experimental design and results, and
rightly so. But although that may seem logical – they are the same metrics by
name as in the previous study, so why bother explaining them again? – a lot
of work needed to happen behind the scenes. As I wrote before, the metrics
were initially implemented in such a way that only aggregated sentence-level
values could be retrieved. For this paper, the measures needed to be available
for each word in the sentence. The underlying idea is that a machine learn-
ing system would benefit from word-level features to automatically annotate
sub-sentential translation difficulties. Because of that, the whole library was
built again from the ground up. It is now easily extensible by advanced users
while at the same time straightforward to use by non-technical researchers.
In this paper we also answer the experimental question What is the effect of
word-level, syntactic product-based metrics on process data? Among other
things, we found that word (group) reordering plays a significant part in the
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difficulty of the translation process, and so do abstract structural differences
between the source and target text. See the summary of experimental results
in Section 6.2 for more. Ideally, these findings are confirmed by follow-up re-
search with larger, more diverse data sets. What we intended to show, starting
from Chapter 4, is that syntax cannot be constrained to a single metric and
that different measures can be developed to measure separate aspects of syn-
tax. Rather than having a single all-encompassing metric that can explain
as much statistical variance as possible, we strove to investigate the effect of
individual syntactic properties.

6.2 Summary of Experimental Results
This section synthesises the research results involving the proposed metrics.
These metrics were elaborately discussed in the initial chapter (Sec. 1.4) and
will not be repeated here in full. If the reader desires a refresher, the glossary
describes the metrics succinctly as well, and also provides page references to
important discussions concerning the specific concepts.

6.2.1 Label Changes
We suggested “label changes” as a straight-forward way to quantify whether or
not a linguistic label (in our case a dependency label) differs between a source
word and its translation (Vanroy et al., in press). We showed that, on the av-
eraged sentence level, label changes had a highly significant effect on coherent
typing behaviour (Kdur), indicating that many changes in dependency labels
have a positive effect on how long translators type their translation (note that
Kdur includes deletions, revisions, and any other keyboard activity). The ef-
fect of label changes on the word level was not further looked into in the last
paper because it was economically infeasible to investigate different models
(including contrastive ANOVAs) for all proposed metrics. The clear effect on
the sentence level does invite further analysis, however.

6.2.2 word_cross

word_cross was initially suggested in Vanroy, Tezcan, and Macken (2019),
where the aim was to predict the average amount of word reordering of a
given translation solely based on source text information. The best-performing
machine learning model used both semantic and morphosyntactic features as
input for a recurrent neural network and achieved a Pearson r correlation of
0.54 (see Sec. 3.4). As discussed in the previous section, I later improved this
model (and the model for seq_cross) further by using transfer learning and
Transformer-based models. The conclusion is that average word reordering
can be predicted reasonably well without access to the translation.
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In Vanroy et al. (2021) word-level word_cross was used as a predictor
for mixed-effect models. It showed a significant and positive effect on first
fixation duration but the explained variance was very low. No significant
effect was found for eye-key span, the time between the first fixation on a
word and the first keystroke that contributes to the translation of that word.
But for total reading time on the source text, word_cross showed a marginally
significant, positive effect when including residual outliers. In short, the word
reordering metric does seem to affect the required cognitive effort, i.e. if the
word order in a text is distorted/reordered more, then this would have an effect
on the translation process. Especially because of the marginal significance,
more research is needed.

6.2.3 seq_cross

In conjunction with word_cross, seq_cross was introduced in Vanroy, Tez-
can, and Macken (2019) with the goal of predicting the average word group
reordering based on source text information only. The machine learning model
could predict the reordering values with a Pearson r correlation of 0.58 (Sec. 3.4).
That means that it was slightly better at predicting sequence reordering than
word reordering.

In later work we showed that word group reordering also affects the trans-
lation process on the word level (Vanroy et al., 2021). The metric was slightly
adapted to allow for multi-word groups (m-to-n alignments) to form single
groups (Sec. 5.3.3). Particularly in late processes an effect was observed. Eye-
key span was positively affected but only if the word_id predictor (a word’s
position in the sentence) was not included. More prominent, both in terms
of significance and R2 value, was the effect on the total number of fixations
on a source word (total reading time). This effect is more clearly significant
than the effect of word_cross – although indubitably there is a correlation
or overlap. As I suggest in Section 5.5, this late effect may imply that trans-
lators work on units of increasing size and resolve issues per unit size. At
first word-related issues are scrutinised and increasingly larger units, such as
sequences/phrases, are resolved at a later stage. That would explain why the
effect of seq_cross only becomes apparent in the later stages of the transla-
tion process. Similarly, Gile (1995) suggests that translators do not necessarily
always work on the same type of unit.

6.2.4 SACr
SACr (syntactically aware cross) is a continuation of seq_cross. SACr refines
the sequence groups so that the source and target groups of aligned groups
are valid subtrees in their respective sentences rather than solely based on the
happenstance of the word alignments (Vanroy et al., in press). On the sentence
level (the number of SACr group reorderings averaged by the number of SACr
alignments), SACr has a clear positive, significant effect on the total reading
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time on the source text (Sec. 4.5). This means that the more word group re-
ordering (of linguistically motivated groups) are done, the more cognitive effort
is required. Similar to seq_cross above, this is an effect on a late processing
measure (total reading time), further lending support to the suggestion that
larger units are processed at a later stage. SACr on the word level was not
further investigated in the last paper but a comparison between seq_cross
and SACr would be interesting to examine how important the linguistic aspect
of word group movement is.

6.2.5 ASTrED
In an effort to quantify the linguistic structure of a source text and its transla-
tion, ASTrED compares their dependency trees and also considers word align-
ment information. We found an effect on the eye-key span that was positive
and significant, and in fact was the most significant syntactic metric – only
outperformed by entropy-based metrics with a semantic component (HTra and
HSTC). In this case, ASTrED was used as a boolean value where it indicated
whether a source word was matched in the target tree structure or whether
structural changes needed to happen. If such changes were needed, and a
tree transformation was required, the time between first encountering a word
and producing its translation was significantly longer. This, again, suggests
that structural changes do require more processing effort during translation,
assuming that longer processing serves as a proxy for cognitive effort.

6.3 Relation to Related Fields
Near the end of Section 1.2.3 I explained that the metrics suggested in this
thesis are intended to contribute to the field of translatability. Similar to
how other metrics are used to look into specific text or translation-specific
properties and problems, my proposed measures serve the same purpose. They
allow researchers to investigate and control for fine-grained syntactic features.
The impact of these translation-specific properties on the translation process
(and so translation difficulty) has been discussed at length before. In this
section the metrics are placed in a broader context, and similarities with related
fields are discussed.

6.3.1 Machine Translation and Formal Language Theory
Section 2.2.3.1 refers to translation difficulty research in MT, but in this sec-
tion I want to draw parallels between the introduced metrics themselves and
specific parts of MT. I will solely focus on statistical machine translation. Not
because neural machine translation (NMT) does not have plenty of research
on the topic of syntax – which it does – but because it was already discussed
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in Section 3.2, particularly with a focus on word order and syntactically aug-
mented neural networks. Here it should suffice to say that NMT is better at
learning reordering procedures than SMT (Toral & Sánchez-Cartagena, 2017).

In phrase-based statistical MT (PBSMT; e.g. Koehn et al., 2003; Och &
Ney, 2003), the goal of the system can be very broadly summarised as follows:
find the most probable translation using a log-linear model consisting of phrase
translation probabilities, phrase reordering probabilities or costs, and n-gram
probabilities of the target language model. Using phrases (groups of words
that are not necessarily linguistically consistent) rather than single words has
some advantages, particularly related to context, word order and compound
nouns (Och et al., 1999). Of particular interest to seq_cross is that phrases
in PBSMT are not linguistically motivated and based on word alignment.
PBSMT phrases can only exist if “the words within the source phrase are only
aligned to words within the target phrase” (Och et al., 1999, p. 24). This is in
fact identical to the Definition of Consecutiveness (Def. 1) to create sequence
groups for seq_cross.

Because three of the proposed metrics deal with changes in word (group)
order, a reference to lexical and phrasal reordering in MT is also fitting. Ini-
tially, PBSMT models were not great at displacing source text items in the
target text because they did not consider the likelihood of the reordering of
items and instead use an added “cost” (or penalty) for reordering, which is the
same for all phrases and linear to the reordering distance. This is unnatural,
of course, as some constructions or lexical items are more likely to need re-
ordering depending on the context and language pair. The translation toolkit
Moses (Koehn et al., 2007), for instance, by default has a relatively weak re-
ordering model where the cost of reordering a phrase is calculated in a similar
way as the aforementioned Cross metric in TPR research (Schaeffer & Carl,
2014), but on the phrase level.1 For each phrase, the cost of reordering is cal-
culated relative to the position of the translation of the previous phrase. This
approach is therefore different than our cross-based metrics which rely on ab-
solute reordering in relation to all surrounding items rather than only relative
to the previous one. A number of suggestions have been proposed to increase
the capabilities for long range displacement of phrases, which are often called
conditional or lexicalized reordering models (Galley & Manning, 2008; Koehn
et al., 2005) that incorporate more phrase-specific reordering probabilities in
the log-linear model so that a more natural order can be achieved.

Hierarchical models (such as Chiang, 2007) make use of grammar rules
(typically Synchronous Context Free Grammars; SCFG) rather than a direct
mapping of source to target phrase. This allows for the “hierarchical” as-
pect where phrases contain other phrases, i.e. recursion. Such SCFGs are of
the type “make use of X1 → X1 gebruiken [X1 TO-use]”, where the phrase
structure of the source language can be transposed into a target structure by
1See http://www.statmt.org/moses/?n=Moses.Tutorial#ntoc9 and http://www.statmt
.org/moses/?n=FactoredTraining.BuildReorderingModel for more information about re-
ordering in Moses
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means of a transfer rule.2 In syntax-based SMT models, a type of hierarchical
models, the non-terminals (like X1 above), correspond to linguistic categories
(e.g. NP). Some variants of syntactic models have been proposed depending
on where the linguistic information is available. In tree-to-string models, the
input is a parse tree, which can be manipulated (e.g. reordering, insertions)
but the output is regular text, namely the translation of the leaf nodes of the
final source tree (Collins et al., 2005; Yamada & Knight, 2001). Conversely,
string-to-tree models start from an input source string and produce a CFG tree
derivation and the translated text (Yamada & Knight, 2002). The observant
reader may notice that this is related to ASTrED, which also tries to find ways
to convert the source syntactic structure into the target structure and quantify
the difference. Below follow a few research topics within SMT/FLT that are
conceptually similar to ASTrED, and that are viable, alternative approaches
to modelling syntactic divergences between two sentences, although perhaps
not as easy to implement or to quantify.

Similar to Och et al. (2004), one could use the probability of a tree-to-tree
alignment model, where both the input and the output contain structural,
linguistic information, as a measure of how syntactically likely a translation
is given its source text, which may shed a light on its difficulty – following
the same thought process for the elaborately discussed entropy-based metrics
of Carl and colleagues (Sec. 5.3.3). Alternatively, rather than sticking with
SCFGs, one could use fully tree-based grammars such as (synchronous) tree-
adjoining grammars (TAG; Joshi et al., 1975) or in the least tree substitution
grammars. Instead of having grammar rules that only consist of symbols
(on the left side), tree grammars allow the rewriting of (nodes of) a tree as
another tree. TAG allows two notable tree operations, namely substitution and
adjunction. These concepts are hard to illustrate without providing elaborate
examples, so instead I refer the curious reader to the aforementioned article on
TAG.3 In brief, substitution allows the replacement of a node in a given tree by
another tree, provided that the non-terminal node that is being substituted is
the same as the root node of the substituting tree. Adjunction is, theoretically,
more complex. It can insert a full tree in another tree, irrespective of its place
in the tree. (Synchronous) tree substitution grammar (STSG), then, is similar
but does not have the adjoining operation. Of particular relevance is the work
of Hajič et al. (2004) who incorporate (an extension to) TSGs in MT to try to
improve the syntax of the target text. This brief overview should make clear
that the work in FLT is relevant to syntactic translatability, particularly the
work on synchronous grammars, because it exactly involves comparing two
structures with each other.

The paragraph above is quite dense as it is and yet only touches on the
surface of research in this direction. For the reader it is most important to
2See the Moses documentation for more examples http://www.statmt.org/moses/?n=Moses
.SyntaxTutorial

3http://www.let.rug.nl/~vannoord/papers/diss/diss/node59.html provides an ap-
proachable overview as well
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understand that in the field of MT and Formal Language Theory, a lot of
work has been done to compare structures. Some of that work served as an
inspiration for my research, and others may be useful in their own right when
applied to translation studies. ASTrED makes use of a preprocessing step
before calculating tree edit distance to make sure that word-aligned tokens
match in the calculated optimal path. It therefore does not rely on grammar
rules to derive the target tree from the source tree.

6.3.2 Equivalence and (Shared) Syntax in the Mind
Although this thesis relies on underlying computational approaches, “[u]sing
computational methods to explore translational phenomena does not commit
one to a computational theory of mind” (Alves & Jakobsen, 2020, p. 8). It
is therefore worthwhile to briefly reconnect to Section 1.2.2. Most of those
models discuss bilingual models in term of the lexicon, though, which makes
it difficult to relate my results and syntactic metrics to them. Still, one theory
to reflect back on here would be the shared-syntax account of Hartsuiker et al.
(2004) and cross-linguistic priming. First, a short detour needs to be made to
equivalence and specifically the shifts of Catford (1965) should be reiterated.

The work accompanying this thesis provides new ways to quantify the
syntactic equivalence between a source sentence and its translation. The op-
erationalisation of equivalence in that manner can be linked to the categorical
shifts of Catford (1965), discussed before in Section 1.2.1. Structure-shifts
can occur on different linguistic levels and include shifts in surface and deep
structure. Therefore, they can be measured with the word (group) reordering
metrics word_cross, seq_cross and SACr and with the structural compari-
son metric ASTrED. Class-shifts are those shifts where the function of a word
has changed in a phrase, clause or sentence. Those can be measured with the
metric called “label changes”.

The shared-syntax account posits that “[language] rules that are the same
in the two languages are represented once” (Hartsuiker et al., 2004, p. 409),
and supports earlier findings by Loebell and Bock (2003). Such rules are for
instance the creation of grammatical constructions. In this research in bilin-
gualism, syntax was understood as sentence type (passive, active, intransitive,
or object-verb-subject order) and the experiment involved Spanish-to-English
transfer. In follow-up research Hartsuiker et al. (2016) confirmed these results
with more languages (English, Dutch, French, German) and different syntactic
structures (relative clause attachment with Dutch, French and English target,
dative constructions with English target).

Interestingly, Bernolet et al. (2007) found that such cross-linguistic priming
effects were reliant on characteristics of the languages themselves. Specifically,
they investigated priming constructions in Dutch, English and German of the
type “the red shark” (AN; which is grammatical in all languages involved),
and similar constructions with a relative clause (RC). In the latter case, there
is no one-on-one correspondence between the languages: Dutch and German
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require that the adjective is placed before the verb in the relative clause, and
in English it must be placed after (“the shark that is red”). Priming effects
were observed for those cases where the word order of the construction was
the same (i.e. AN for all languages and RC for Dutch and German). So, as an
example, a Dutch RC construction does not prime an English RC construction
(which has the adjective after the verb) but it does prime the German RC.
The conclusion here is that syntactic structures that do not share the same
word order do not share a representation in the mind.

Our suggested metrics can be used in a similar fashion as word order was
used in Bernolet et al. (2007), namely as a means to verify conditions in which
priming may or may not hold. A natural question in light of this thesis would
be whether the size of the difference in word order plays a role rather than
only a binary distinction “different or identical word order”. Formally: are
constructions less likely to prime in correspondence to a scale of word order
differences (as measured, for instance by word_cross)? In addition, it would
be interesting to investigate whether the same is true for deeper syntactic
differences, but where the word order is maintained. Specifically, syntactic
trees may be the same even if their word order differs (due to unordered
parent-child relations), and similarly sentences with a different word order can
still have identical underlying structures. An interesting topic to investigate
in this respect would be verb clusters, whose order is relatively free in Dutch
(and yet the underlying syntactic structures are the same) but not so much in
English. Formally: do sentences with identical trees (those with an ASTrED
value of 0) but different word orders impact priming (and vice versa)? It
is relevant here to again refer to the priming study by Jacob et al. (2017)
who suggest that (differences in) hierarchical syntactic trees can be used to
explain priming effects, although in their study they use phrase trees rather
than dependency trees and do not quantify the differences in trees.

In addition to priming studies in bilinguals, work linked to the translation
process finds that ambiguity in target realisations may disrupt the translation
process (Tokowicz & Kroll, 2007). Ambiguity, here, is restricted to semantics.
Alterations to existing lexical models of the bilingual mind (cf. Sec. 1.2.2)
have been suggested to account for such ambiguity, particularly the Revised
Hierarchical Model of Translation Ambiguity (Eddington & Tokowicz, 2013),
which predicts that translators work more slowly when having access to multi-
ple translations of a source word. Such ambiguities could be important to take
into account when setting up experiments and may impact results when left
unchecked. As Prior et al. (2007) write “ambiguity must be carefully consid-
ered and controlled in the construction of experimental materials” (p. 1035).
This ties in with the effects of word translation entropy that have been dis-
cussed frequently before (HTra) where a source word is translated differently
by translators. On a syntactic level, variance in word reordering (HCross) has
already been shown to affect eye-key span (Schaeffer & Carl, 2017). Another
operationalisation of syntactic entropy (HSyn; Bangalore et al., 2015) uses
manually annotated properties of the target text (clause type, verb valency,
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voice) as the subject of entropy and report a positive effect on translation
process measures, also indicating that statistical variance in different syntac-
tic options causes difficulties. It would be worthwhile to inspect whether the
same is true for our fine-grained metrics as well. Does a multitude of struc-
tural target realisations for instance slow down the translator? Do multiple
possibilities in terms of label changes affect the translation process? This was
not done in this thesis because our intent was to create translation-specific
features that can be used in a machine learning system by leveraging large
parallel corpora. Because entropy-based approaches require many transla-
tion alternatives and such large parallel corpora rarely contain more than one
translation per sentence, such methods were not our priority. Nevertheless,
entropy-wrapped versions of our metrics can be used to investigate the effect
of translation-specific syntactic variation in more detail.

Of course the research questions above require more thought and an ex-
perimental approach would need careful curation and further literature study.
The important take-away is that many models of the mind have focused on the
lexicon, and that those that consider syntax often restrict themselves to lan-
guage (group) specific constructions (e.g. relative clauses, dative realisations).
Complementary to that, the metrics introduced here can allow for a more
general approach to involve syntax, both in psycholinguistics and translation
studies, and both on shallow and deep linguistic levels.

6.4 Concluding Remarks
In this research project, I have contributed to the topic of translation dif-
ficulty prediction together with my coauthors in four ways. First, we have
delivered experimental studies that investigate difficulties in English-to-Dutch
from-scratch translation and showed that syntactic properties of a source text
compared to its translation have an effect on translation process features that
can be used as proxies for cognitive effort, both on the word and sentence level.
Thereby confirming that diverging syntactic properties between a source and
target unit cause increased translation difficulty. In addition, we have also
created a high quality parallel corpus that supplements the existing multiLing
study with English-to-Dutch translations. These translations were manually
tokenised and aligned. Unfortunately, due to the global pandemic, we were not
able to record eye-tracking information for the study but keylogging data has
been included. Even though we did not use the data ourselves, it is publicly
available and can be used by other researchers, too. We also built a machine
learning system to model the word (group) reordering that is required to trans-
form the source order to the target order. It is capable of predicting syntactic
properties of a source text with respect to its translation without having access
to the translation itself. These syntactic measures of word (group) reordering
have an effect on the translation process (as we have shown), so being able to
predict them is a step in the right direction to create a full-blown translatabil-
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ity prediction system. Lastly, we have developed a new set of syntactic metrics
and made them available to the public. These metrics make use of Universal
Dependencies, which means that at least 66 languages can easily be used with
the tool by using stanza (Qi et al., 2020) behind the scenes for automatic
parsing. My hope is that this open-source implementation will have a positive
impact on the field, and encourages fellow researchers to use a more divergent
set of syntactic metrics in their experiments – and perhaps even develop new
ones.

As discussed in the conclusion of Chapter 5, our findings and developments
have paved the way for a cross-roads of prospective research questions. We
raised the question whether individual syntactic metrics have different effects
on the translation process and showed that they do. These results should be
confirmed and extended by additional research, however. Controlled experi-
ments involving manually curated stimuli should be presented to translators
to investigate our preliminary findings. After all, our approach was, what
you may call, corpus-based: we made use of a set of translations of given
texts, but without any controls or specific syntactic phenomena to investigate.
Although such an approach yields relevant results from approximately “real-
world” translation, it is likely to contain more noise than in a controlled setting
due to competing syntactic phenomena and difficulties. In addition, and con-
versely perhaps, more corpus-based studies are recommended to confirm our
results with larger, more varied data sets in different languages. Another direc-
tion can be taken as well, into the realm of computational translation studies
to continue working on a translatability prediction system. It is clear that a
variety of syntactic phenomena contribute to translation difficulty, so a sys-
tem can be built that makes use of those features. Finally, one could create a
multitude of different linguistic metrics that model other aspects of language
than we suggested. We by no means intend to claim that our metrics are
exhaustive in terms of modelling syntactic differences between a source text
and its translation, and in syntax but also semantics, a lot more work can
be done. What is more, instead of limiting ourselves to the word or sentence
level, investigating discourse-focused properties of the whole text would be a
challenging but fascinating endeavour, too.

Even though we are arriving at the end of this thesis, and its related PhD
project, it is by no means the conclusion of our efforts in translatability. The
fruitful collaboration that bloomed between my own research group LT3 and
TRA&CO in our last paper in Chapter 5 will be maintained and hopefully
expanded in the future. In addition, many related research ideas, such as the
ones above, have been discussed between me and my colleagues that could lead
to exciting, future projects. The field of translatability prediction is relatively
young and still quite small, but that only means that it has many secrets left
for us to uncover.
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Appendix A

Proof for cross value of MWGs

The equation for cross calculated on multi-word groups was given in Equa-
tion 1.3 and reproduced below.

crossMW G = 1
4 ·mn(m− 1)(n− 1)

where:

m number of words on the source side of the MWG
n number of words on the target side of the MWG

This can be proven as follows. There are only two scenarios in which an
alignment link (k, l) crosses any another alignment link (i, j), as was given in
Equation 1.2.

cross((k, l), (i, j)) =


1, if i < k & j > l

or k < i & l > j

0, otherwise

where:

k source index of the first alignment link
l target index of the first alignment link
i source index of the second alignment link
j target index of the second alignment link

Given m source and n target tokens, these conditions can be generalised
for an alignment link (k, l).

i < k & j > l : (k − 1)(n− l)
k < i & l > j : (m− k)(l − 1)

I.e., in a multi-word group, the (k, l) alignment link crosses any other (i, j)
link if the conditions are met. The crosses of (k, l) with alignments (i, j) where
i < k & j > l can be written in function of n target words: (k − 1)(n − l).
The crosses of (k, l) with alignments (i, j) where k < i & l > j can be written
in function of m source words: (m− k)(l − 1).
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The total number of crosses in the MWG is then a sum of these conditions
for all possible alignment links (all combinations of l and k). However, as
should be evident, this will count each cross twice (once for each alignment
link involved), which has to be taken into account.

1
2 ·

n∑
l=1

m∑
k=1

(
(k − 1)(n− l) + (m− k)(l − 1)

)
=1

2 ·
n∑

l=1

m∑
k=1

(
k(n− l)− k(l − 1) +m(l − 1)− (n− l)

)
=1

2 ·
n∑

l=1

(
m∑

k=1

(
k(n− 2l + 1)

)
+

m∑
k=1

(
ml −m− n+ l

))
The internal sums can be expanded separately. Assume the first part is B

and the second A.

A =
m∑

k=1

(
ml −m− n+ l

)
=m(ml −m− n+ l)
=m

(
l(m+ 1)− (m+ n)

)
=ml(m+ 1)−m(m+ n)

B =
m∑

k=1

(
k(n− 2l + 1)

)
=m

2 ·
(

(n− 2l + 1) +m(n− 2l + 1)
)

=m

2 · (n− 2l + 1 +mn− 2lm+m)

=m

2 ·
(
− 2l(m+ 1) +m(n+ 1) + (n+ 1)

)
=m

2 ·
(
− 2l(m+ 1) + (m+ 1)(n+ 1)

)
=−ml(m+ 1) + m

2 · (m+ 1)(n+ 1)

A and B can then be reintegrated in the original formula.

1
2 ·

n∑
l=1

(
B +A

)
=1

2 ·
n∑

l=1

(
−ml(m+ 1) + m

2 (m+ 1)(n+ 1) +ml(m+ 1)−m(m+ n)
)
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Proof for cross value of MWGs

At this point l can be discarded (−ml(m+1) is nullified byml(m+1)). Be-
cause there is no l in the equation, the summation happens on n. The equation
can then be further simplified to ultimately be formulated as Equation 1.3.

1
2 ·

n∑
l=1

(
m
( (m+ 1)(n+ 1)

2 − (m+ n)
))

=1
2 · nm

(mn+m+ n+ 1− 2m− 2n
2

)
=1

4 · nm(mn−m− n+ 1)

=1
4 · nm

(
m(n− 1)− (n− 1)

)
= crossMW G =1

4 · nm(m− 1)(n− 1)
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Glossary

seq_cross An extension to word_cross that creates phrases (non-linguistic
word groups) based on the initial word alignments. The alignments
between the generated phrases are then used to calculate word group
reordering. Suggested in Vanroy, Tezcan, and Macken (2019) and further
extended in Vanroy et al. (2021) where m-to-n alignments are considered
as valid group alignments. 68, 84, 130, 149, 151, 153

word_cross An alternative version to Cross to calculate word reordering. It
is absolute, that is, the reordering of a word is calculated with respect
to its own reordering as well as the reordering of all the other words in
the sentence. Suggested in Vanroy, Tezcan, and Macken (2019). 24, 67,
84, 130, 148, 153

ASTrED Aligned syntactic tree edit distance. A means to calculate tree
edit distance between two aligned structures. The goal is to make sure
that only aligned items can match each other in the tree and that other
structural differences are then quantified. Proposed in Vanroy et al. (in
press). 35, 95, 132, 150, 152, 153

Cross A word reordering metric as defined by Schaeffer and Carl (2014). For
each word, the reordering of its translation relative to the translation of
the previous word is calculated. 17, 24, 54, 67, 82, 121

eye-key span The time between the first fixation on a source word and the
first keystroke that contributes to the translation of that word as sug-
gested by Dragsted (2010); Dragsted and Hansen (2008). 17, 125, 149,
154

HSTC “joint source-target alignment / translation distortion entropy”, an
entropy-based metric that incorporates both lexicosemantic and syntac-
tic information using word-group information. Proposed by Carl (in
press). 17, 129, 150

HTra Word translation entropy (HTra) is a metric to quantify the agreement
or uncertainty of lexical choice. Given a set of translations for a specific
word, one can calculate the probabilities of each translation option and
hence the entropy for that word. The lower the entropy, the more cer-
tain the choice or the higher the agreement between translators. First
suggested by Carl and Schaeffer (2014). 16, 54, 82, 128, 150, 154
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Kdur Duration of coherent typing behaviour, i.e. the total duration of co-
herent keyboard activity excluding keystroke pauses of more than five
seconds. 111, 148

label changes An intuitive metric to see whether a linguistic label of a word
(e.g. dependency label or POS tag) is different from the word that it
is aligned with. Proposed in Vanroy et al. (in press) where it involves
dependency labels. 22, 93, 148, 153

SACr Syntactically aware cross. An extension to seq_cross that refines the
word groups of seq_cross to ensure that they are linguistically moti-
vated, i.e. that each group constitutes a valid subtree in its respective
sentence. Proposed in Vanroy et al. (in press). 29, 90, 149, 153

total reading time Total reading time on the source or target, i.e. the sum
of all fixations. This can be calculated on the segment level as well as
on the word level, on the source side and the target side. 110, 125, 149
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