
A File-based Linked Data Fragments Approach
To Prefix Search

Ruben Dedecker1(�)[0000−0002−3257−3394], Harm Delva1[0000−0001−8272−0754],

Pieter Colpaert1[0000−0001−6917−2167], and Ruben Verborgh1[0000−0002−8596−222X]

1IDLab, Department of Electronics and Information Systems,
Ghent University–imec, Technologiepark-Zwijnaarde 122, 9052 Ghent, Belgium

Ruben.Dedecker@Ugent.be

Abstract. Text-fields that need to look up specific entities in a dataset
can be equipped with autocompletion functionality. When a dataset be-
comes too large to be embedded in the page, setting up a full-text search
API is not the only alternative. Alternate API designs that balance dif-
ferent trade-offs such as archivability, cacheability and privacy, may not
require setting up a new back-end architecture. In this paper, we propose
to perform prefix search over a fragmentation of the dataset, enabling
the client to take part in the query execution by navigating through the
fragmented dataset. Our proposal consists of (i) a self-describing frag-
mentation strategy, (ii) a client search algorithm, and (iii) an evaluation
of the proposed solution, based on a small dataset of 73k entities and
a large dataset of 3.87m entities. We found that the server cache hit
ratio is three times higher compared to a server-side prefix search API,
at the cost of a higher bandwidth consumption. Nevertheless, an accept-
able user-perceived performance has been measured: assuming 150 ms as
an acceptable waiting time between keystrokes, this approach allows 15
entities per prefix to be retrieved in this interval. We conclude that an
alternate set of trade-offs has been established for specific prefix search
use cases: having added more choice to the spectrum of Web APIs for
autocompletion, a file-based approach enables more datasets to afford
prefix search.

Keywords: Prefix Search · Query Evaluation · Linked Data Fragments ·
Web APIs

1 Introduction

Prefix autocompletion is a common user interface feature in forms. Given a
certain prefix, suggestions are provided that match the prefix to an item in a
collection. This way, a user can recognize the item they are looking for, rather
than recalling the exact identifier it may have in the underlying data. To provide
such functionality, an API can be provided that filters the dataset entities on the
server-side illustrated by the URL template https://example.org/{?query}.
Such a service requires the server to process all queries for every typed character

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/443460884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://example.org/{?query}

2 R. Dedecker, et al.

of every connected client. Another solution is to ship the collection of entities to
the client for processing. While feasible for small collections, this quickly becomes
problematic when the dataset grows.

Where some data publishers manage to publicly provide such an API for
prefix autocompletion for their datasets, others leave this feature up to third
parties reusing the data. An in-between solution could add more choice to the
spectrum for cases where prefix query evaluation entirely on the server is less
desirable. For example,

– for a website builder, shipping a collection of a couple of thousand entities
would make a page too heavy, yet setting up a website with a full-text search
API requires the maintenance of dynamic server-side functionality;

– for specialized cases where additional information can be incorporated in the
autocompletion client, e.g. adding error correction using a list of common
mistakes or filtering of geographically irrelevant results.

– for users that do not want to leak their search queries via query logs.

In this paper, we present a file-based architecture with an accept-
able user-perceived performance that enables clients to take control
of the prefix query evaluation process. The contributions are as follows: (i)
a hypermedia specification that can describe fragmentation strategies for string
search, (ii) a tailored implementation of a B-tree fragmentation described with
this hypermedia, (iii) a client search algorithm able to traverse the hypermedia
search space, and (iv) an evaluation discussing query performance, cache hit
ratio, bandwidth and efficiency.

In Section 2 we provide an overview on related work that inspired our work.
Evaluating the approach introduced in Section 3, in Section 4 we used the
database of all public transport stops in Belgium, for which we also published
a real query-set based on an access log, as well as a subset of OSMNames1, for
which we generated a random query-set. We measure whether clients evaluating
prefix queries over the proposed fragmentation strategy experience an accept-
able user-perceived performance by analyzing the performance, cache hit ratio,
bandwidth consumed and efficiency.

2 Related Work

Research on full-text search, prefix search or autocompletion on one machine has
a large history [1]. These techniques have profited from that prior work, resulting
in powerful open-source tools such as ElasticSearch. Today, for example, Elastic-
Search is the engine behind the autocompletion of Linked Open Vocabularies [7],
offering a search engine through all indexed Linked Data vocabularies2. Another

1 https://osmnames.org/download/
2 The service can be used via the URL template

https://lov.linkeddata.es/dataset/lov/api/v2/term/autocompleteLabels{?q}

https://osmnames.org/download/

A File-based LDF Approach To Prefix Search 3

example of a reconciliation tool using ElasticSearch is Pelias3. It offers world-
wide address autocompletion and geocoding by combining different datasets such
as Geonames4, OpenStreetMap5, Whos on first6 and openaddresses.io. There is
however no public instance and a user is required to self-host it, or rely on soft-
ware as a service solutions that come at a pay per use cost. Furthermore, when
using the API, there are user experience guidelines to take into account, such as
(i) throttling requests, (ii) taking into account possible out of order responses
and (iii) using a pre-written client on the front-end if possible.

Triple Pattern Fragments (TPF) [8] is a Linked Data API specification for
solving queries using Basic Graph Patterns, introduced as an alternative to host-
ing a SPARQL endpoint. Instead of answering a full SPARQL query on the
server-side, it requires the client to take part in the query execution. The client
retrieves the fragments of the dataset required to evaluate the query from the
server by requesting Triple Patterns, and evaluates the query over the retrieved
fragments. Approximate counts of the specific triple patterns in the full dataset
are provided in the retrieved fragments to optimize client query evaluation based
on selectivity of certain triple patterns.

Van Herwegen et al [6] extended the TPF interface with substring filtering
on objects using different indexes, such as ElasticSearch or an FM-index. For
this part of the query, the client thus relies on the server to fully filter the triple
pattern fragments response and does not explore in-between solutions. These
initiatives follow the idea of Linked Data Fragments (LDF)7 [5].

Finally, in a survey on Query Auto Completion (QAC) [1] the state of the
art is discussed. It sketches an elaborate overview of the research trends, among
others, heuristic and learning based approaches to raising the relevance of the
suggestions, analysis of the computational complexity – yet only on one machine
– of different algorithms, or the state of the art in QAC user experience. No
alternate Web API designs are discussed where clients could take part in the
query execution. Furthermore, in order to test the computational complexity,
only the complexity of resolving one prefix is considered, despite the fact that
a consecutive QAC query may continue querying from where a previous query
left off, and thus have a lower amortized complexity.

3 Dataset fragmentation and traversal

Client participation in query evaluation can be easily achieved by sending all data
to the client. However, as datasets grow larger, this approach leads to increased
bandwidth requirement and application response times, which is undesirable for
cases such as mobile applications where bandwidth caps are in place, and stable
network reception cannot be guaranteed.
3 https://pelias.io/
4 https://www.geonames.org/
5 https://www.openstreetmap.org/
6 https://whosonfirst.org/
7 https://linkeddatafragments.org

https://pelias.io/
https://www.geonames.org/
https://www.openstreetmap.org/
https://whosonfirst.org/
https://linkeddatafragments.org

4 R. Dedecker, et al.

In this section, we propose our strategy to publish datasets by fragmenting
the data using search tree structures. With this approach to data publishing,
clients are enabled to evaluate prefix queries over remote datasets by only re-
trieving fragments of the dataset relevant to the client query. In Section 3.1 we
introduce preliminaries, which we use in Section 3.2 to introduce a self-describing
fragmentation strategy. Finally, in Section 3.3 a generic client-side traversal al-
gorithm is introduced.

3.1 Preliminaries

Given a dataset D, an autocompletion interface provides autocompletion func-
tionality over all entities in D. These entities can have different properties over
which autocompletion can be offered, such as a person entity having a first and
last name property. To enable fast prefix search lookups in a dataset for a given
property, an index can be constructed for that property using a data structure
that enables lookups to only retrieve the parts of the dataset relevant to the
query. Clients use such an indexing structure to more efficiently find entities
in the dataset matching a given prefix value for the indexed properties. Our
approach explores generating such indexing data structures, and using them to
fragment the dataset into smaller files (fragments). By embedding this tree struc-
ture as hypermedia controls in the generated fragments, clients are enabled to
only retrieve fragments relevant to the evaluated prefix query from the dataset.

3.2 A self-describing fragmentation strategy

Instead of publishing a dataset as a query interface, or publishing it as a single
data dump, an in-between solution was chosen. To enable clients to participate
in the prefix query evaluation, clients should be able to retrieve only the data
relevant to the evaluated query from the dataset. This requires the dataset to
be fragmented, and for the fragments to be structured in a way that enables
clients to traverse and prune the search space. In the interest of improving query
performance by limiting the amount of HTTP requests necessary for a client to
autocomplete a prefix, we took our inspiration from the design of balanced tree
structures such as a B-tree [2]. The implementation of the creation algorithm
used in this paper makes use of B-tree structures to fragment the dataset. It can
be found at https://github.com/Dexagod/linked_data_tree.

To create fragmentations of a dataset, the data publisher first has to deciding
the properties over which the dataset entities should be indexed. For each chosen
property, a separate fragmentation of the dataset is created.

To create a fragmentation, first an indexing search tree data structure is gen-
erated, adding all entities in the dataset using the value of the chosen property as
key to add to the data structure (the data publisher decides the extent of a data
entity). Upon adding all dataset entities, for each node in the tree structure a
dataset fragment is generated, stored as a separate file. Such a fragment contains
the node information, its relations to other nodes in the data structure, and the

https://github.com/Dexagod/linked_data_tree

A File-based LDF Approach To Prefix Search 5

data entities present in the node. To enable the client to traverse the tree struc-
ture in the generated fragments, the node and relation data in the fragments are
defined in a semantic way as hypermedia controls, using the TREE hypermedia
descriptions8, as depicted in listing 1.1.

To enable clients to find a dataset and its available fragmentations, this
dataset information is published semantically as a collection object, as seen in
in listing 1.1. The different created fragmentations of the dataset are defined as
views on this collection object. These view properties point to the root nodes of
used tree structure and its containing fragment. An optional shape property can
be provided, defining the base shape (structure) of all entities in the collection.
On publishing this collection object on the Web, a client can discover all available
fragmentations of the dataset through the view properties present in the object.

1 {
2 " @context ": {
3 "tree ": " https :// w3id.org/tree #"
4 },
5 "@id ": "# Dataset ", ///D
6 " @type ": "tree: Collection ",
7 "tree: shape ": " shape . shacl ",
8 "tree:view ": {
9 "@id ": " node1 . jsonld ", ///n

10 "tree: relation ": [
11 {
12 " @type ": "tree: GreaterThanRelation ", /// defines χ
13 "tree:path ": "foaf:name", ///p
14 "tree: value ": " Alice ", ///v
15 "tree:node ": " node2 . jsonld ", ///c
16 },
17 ...
18]
19 },
20 "tree: member ": [...] /// array of e
21 }

Listing 1.1. An example of the metadata of a response in JSON-LD. A client
encountering this relation knows that all data found following the link to node2.jsonld
will result in a value that is greater than Alice for the foaf:name property.

For each node in the created tree structure of the dataset, the generated
fragment for that node defines a node object. This object stores the relations to
its child nodes (and their containing fragments). The dataset entities present in
the node of the tree structure are stored in the generated fragment as members
of the collection object (dataset) as seen on line 20 of listing 1.1.

The relations to the child nodes are defined as relation objects, as seen on
line 10 of listing 1.1. These semantically define the data found in the subtree of
the referenced child node, by specifying the following properties:

1. The relation type, being LessThanRelation, LessThanOrEqualToRelation,
GreaterThanRelation or GreaterThanOrEqualToRelation. This relation
type specifies a comparison operator χ, to to which all entities ec in the
subtree of child node c are evaluated in comparison to the relation value
vrelation;

8 https://treecg.github.io/specification

https://treecg.github.io/specification

6 R. Dedecker, et al.

2. a node property, being the hypermedia link to the child node c and its
containing dataset fragment.

3. an optional path p, that is the property path over which all entities ec in the
subtree of child node c are evaluated, and

4. a value vrelation.
This relation object semantically defines the entities that can be found in the
subtree of child node c. E.g. for a path p of firstName, a value vrelation of Alice,
and a relation type of GreaterThanRelation, the relation defines that all data
entities ec in the subtree of c have value greater than Alice for the value of their
firstname property. With this information, a client evaluating a query over the
dataset fragmentation can process the available relations, and prune the ones
that do not lead to relevant data entities for the evaluated query. Note that
multiple relation objects can defined in a node referencing the same child node,
further specifying the entities found in the child node and its subtree.

In order to express the property paths, the design of property paths in the
Shapes Constraint Language (SHACL) [4] is reused. As the ordering of characters
is important for comparing string based values, unicode ordering is used as a
default, as defined by the TREE specification. Flags are available to indicate
other orderings used to generate the fragmentation, and have to be followed by
clients.

As datasets can contain entities with non-unique values for a given prop-
erty, the tree structure used to fragment the dataset needs to support duplicate
key values. In Modern B-tree techniques [3], duplicate key values are stored
once, and subsequent entities with the same value are added in a (paged) array-
structure. Since however we are not limited to predefined semantics for relations,
we adapted the B-tree splitting algorithm to allow entities with duplicate key
values to just be stored in the tree structure. In case a node overflows during the
creation of the tree structure, and is split between duplicate key values, this is
resolved by having the parent node reference the two new nodes using the rela-
tion types LessThanOrEqualToRelation and GreaterThanOrEqualToRelation.
The client is not required to be aware of this adaptation, as it just requires an
understanding of the relation semantics to prune the search space.

3.3 Client algorithm
In this section we describe the client algorithm used for the evaluation in Sec-
tion 4. A client can be asked to evaluate prefix search queries for a given prefix
value vquery and property path pquery over a dataset D (e.g. the client searches
for entities in D where the property pquery value of firstName matches the prefix
vquery of Ali). For this, the client requires a reference to the collection object of
D. Upon retrieving this collection object, the client dereferences the root nodes
of the available fragmentations of the dataset through the views defined on the
collection. This operation can be done at page load times, and should not slow
down lookups when used in Web applications.

At the start of the query evaluation process, the client decides the best frag-
mentation of the dataset to query over. For all fragmentations, the client checks if

A File-based LDF Approach To Prefix Search 7

the available relations specify a property path prelation that matches the queried
property path pquery (e.g. the relation specifies it stores relations for the first-
Name property, and the query searches entities matching a prefix value for the
firstName property). If a fragmentation is found containing such relations, the
client continues to evaluate its query over this fragmentation. If no such frag-
mentation can be discovered, the client will not be able to prune relations of
any of the fragmentations (e.g. when the relations provide information over the
stored entities firstName property, but the client is querying for entities with
a lastName property matching the prefix Bob). In this case the client can re-
trieve fragments of a random fragmentation without pruning, until the required
amount of results is retrieved for the query.

Now that the client has chosen a fragmentation to evaluate the query over,
the recursive traversal process is started. On retrieval of a new fragment
of the dataset (initially the one containing the root node), the client starts by
extracting all tree metadata from the fragment. First, the client emits all data
entities in the fragment matching the client query. In case the desired amount
of results is retrieved, the client is stopped. This design of incremental results
contrasts with evaluating the full query on the server-side, where traditionally
results are only emitted when the desired amount of results have been found.

If more results are needed, the relations available in the node of the fragment
are evaluated, as seen in listing 1.1 on line 10. As multiple relations may reference
the same child node, and provide additional constraints to the entities stored in
the subtree of that child node, the relations are grouped on the child nodes they
point to. If any of the relations pointing to a child node can be pruned, all the
relations to that child node can be pruned, as the referenced node and its subtree
cannot contain results for the client query

A relation is evaluated by matching the relation path prelation to the query
path pquery. In the case that these paths do not match (e.g. the relations stores
entities for the firstName property, where the client queries entities based on
their lastName property), the client can make no assumptions about the entities
stored in the node referenced by the relation, and the relation cannot be pruned.

In the case of matching path properties, the client tries to prune the search
space. This is done by comparing the queried prefix value vquery to the relation
value vrelation and the comparison operator χ specified by the relation type (e.g.
the GreaterThanRelation specifies the > comparison operator). In the case
of prefix search, the client now evaluates if the queried prefix value vquery is
contained in the range specified by the prefix of the same length of the relation
value vrelation and the comparison operator χ defined by the relation type. A
query for the prefix Car evaluated over a relation of type GreaterThanRelation
with a value vrelation of Alice, requires the client to check if Car > Ali. If this
comparison holds, the client may retrieve entities relevant for the evaluated query
by dereferencing the relation child node. For prefix search, the edge cases where
the queried prefix and the prefix of the relation value are equal, or where the
relation value is smaller prefix of the queried prefix value, the referenced child
node may also contain entities relevant to the evaluated query. When all relations

8 R. Dedecker, et al.

referencing a child node cannot be pruned by the algorithm, the child node may
contain useful data and the recursive traversal process is repeated for the
child node fragment.

As the client is in control of the query evaluation process, subsequent eval-
uated queries for incremental prefix values (e.g. A Al Ali) can continue the
previous query evaluation, for an updated prefix value, as the results of the up-
dated query are a subset of the results of the previous query. Additional rules
can be implemented, such as deciding to not prune relations that provide results
within a certain Levenshtein distance of the queried prefix if only few results are
found. Different traversal strategies such as breadth-first or depth-first can be
implemented and changed during query evaluation depending on the situation.
Multithreading can be implemented using a queue system, where a set number
of relations can be processed in parallel.
The client implementation used for evaluating the approach can be found at
https://github.com/Dexagod/ldtreeBrowser.

4 Experiments and results

We define a prefix query as the set of the requests that are performed to retrieve
25 results (if available) that start with that prefix. The query server approach
consists of a client using a query server that returns a page with 25 results from
the dataset (if available) for the queried prefix value and path. The search tree
is the approach introduced in this paper, where a client traverses a published
search tree for entities matching the queried prefix value and path. For this
evaluation, we assume that a fragmentation is available for the property over
which the prefix query is evaluated. In order to understand the effectiveness
of the tree approach, we will measure the cacheability of these requests, and
how this impacts efficiency and bandwidth, based on the size of a dataset in
a real-world environment. Based on this cacheability and the scalability of the
depth of the tree, we can deduct what this means for the overall user-perceived
performance.

For the experiments, we republished 2 datasets using our approach, and setup
a query server interface for these datasets: A dataset of Belgian public transport
stops (6 triples per entity, and a total of 72,967 entities), and a subset (BE,
FR, NE, LU, DE) of the OSMNames dataset9 (32 triples per entity, and a to-
tal of 3.87m entities), both published using a fragment size (m) of 25 members
(a fragment contains 25 data entities, and relations to the 26 child nodes and
their containing fragments). For the Belgian public transport stops dataset, a
real-world query log was extracted from a server autocompleting Belgian rail-
way stops. For the OSMnames subset, we did not have access to a real-world
query set, so a randomized query set was generated. This randomized query set
was generated for 1000 target values distributed over 50 simulated user clients,
where for each target a series of prefix queries was created, starting at random
9 https://osmnames.org/download/

https://github.com/Dexagod/ldtreeBrowser
https://osmnames.org/download/

A File-based LDF Approach To Prefix Search 9

length prefix, for a randomized amount of subsequent prefixes (e.g. Lou Louv
Louvai). In the case of the query server, the client sends a separate request

for every prefix in the query log. The used datasets and query logs are made
available on Github10.

The evaluation consists of a server providing the search tree fragmentation, a
server providing the server-sided prefix search query interface and a proxy cache
in front of these servers on the same network, and a laptop using Wi-Fi with an
average ping of ±20 ms. All servers are dedicated machines with a 2x Dual Core
AMD Opteron 270 (2GHz) CPU, 4GB Ram and a 80Gb Hdd. All queries are
evaluated on a laptop with a Intel M4800MQ CPU and 16GB Ram.

4.1 Cache efficiency

In Fig. 1, we show the server cache hit ratio for a client evaluating the randomized
prefix query set over the OSMNames dataset, using an nginx cache at 10% the
size of the original dataset. This evaluation was done for the larger dataset, to
provide a better overview of the caching behavior. We tested this for both a
query server (baseline) as the search tree approach and notice the search tree
approach achieves a three times bigger cache hit rate on the server.

As the baseline query server returns results for a specific prefix value, it can
only return a cached request in the case of an exact match in requested prefix.
In contrast, our approach uses a tree structure to fragment the dataset. A client
evaluating a prefix query over a tree structure requires multiple requests for
nodes in the tree in contrast to the single request when using the baseline query
server. As the client evaluates queries by traversing the tree structure starting
from the root node, nodes closer to the root of the tree structure are fewer
and therefore have a higher probability of being retrieved for a random prefix
query. Because of this, they have a higher probability of being present in the
server cache. This explains the higher server cache hit ratio for our approach of
evaluating prefix queries compared to the baseline query server.

4.2 Query performance

As the proposed search tree querying approach enables the autocompletion client
to emit results during the traversal process of the tree structure, this experiment
was setup to see how many results can be achieved within 150 ms, a time span
which feels instantaneous to end-users. As query server interfaces are capable of
this, and do not provide incremental results (all results are transmitted at once),
we focus on the query performance of the proposed search tree approach.

Prefix requests are not isolated events, where often the value of the previous
request is a prefix of the current request. Because of this, the performance eval-
uation is done separately for the first three queries (if available) in each series
of prefix queries in the used query sets.
10 https://github.com/Dexagod/Paper_metadata/tree/master/ISWC2021

https://github.com/Dexagod/Paper_metadata/tree/master/ISWC2021

10 R. Dedecker, et al.

Fig. 1. Average server cache hit ratio evaluating the randomized query set over the
OSMNames dataset. The query server stagnates at around 20%, where our proposed
approach provides cached result for more than half the requests to the server after an
initial warmup period.

The performance is measured as the amount of results the query emits for
the evaluation of a prefix query within a 150 ms interval of the client receiving a
new prefix value. The results are averaged for all first, second and third requests
in all series of subsequent prefix queries in the query logs. For the experiment,
the server cache size is set to 10% of the dataset size, and a client cache is set
per user that stores all previously retrieved fragments.

In Fig. 2 we can see that for the public transport stops dataset (73k entities),
the first evaluated prefix query in a series returns on average just below 15 results
in within the 150 ms period. For the subsequent second and third prefix queries,
the results can be retrieved faster, producing on average 15 results within a
150 ms interval. For an average query, the first 5 results are shown in a 25 ms
interval as a result of server caching, and cached results from previous queries.
Subsequent queries in a series returning less results can be explained by the
dataset containing less than 15 entities matching the queried prefix.

In Fig. 3, we see that for the subset of the OSMNames11 dataset (3.87 m
entities), the proposed approach results in a slower start for the evaluation of
the first prefix queries in a series. This is caused by the randomized nature of
the query set used for this dataset. As the first prefix query has a randomized
length, it may have results stored deeper in the tree structure of the published
dataset fragmentation, requiring a more expensive initial lookup. For subsequent
queries in the series, the performance normalizes because of previously cached
data, with the second evaluated prefix query returning on average 15 results in
the 150 ms interval. A slower average results in the first 25 ms of the query
compared to the smaller dataset is caused by the deeper tree structure of the
fragmentation.

11 https://osmnames.org

https://osmnames.org

A File-based LDF Approach To Prefix Search 11

Fig. 2. Increased performance in a series of subsequent prefix queries (e.g. query1:
"Lou", query2: "Louv", query3: "Louva") over the transport stops dataset (73k entries)
for the proposed approach. First 5 results are shown in a 25 ms as a result of caching
and results available from previous queries. Later queries may not have 15 results in
the dataset, leading to a lower amount of retrieved results.

query 1

query 2
query 3

Fig. 3. Slower retrieval of results for the first evaluated prefix query in a series because
of randomized length of the first query in the generated query set for the OSMNames
dataset (3.87m entities). Subsequent queries provide 15 results in the 150 ms interval,
with a slower start because of the deeper tree structure of the dataset fragmentation.

4.3 Efficiency and bandwidth

We define the efficiency as the fraction of data retrieved from the server during
the execution of a task over the amount of data required to execute that task [8].
In a query server approach, developers will aim towards a 100% efficiency. At the
cost of efficiency, the search tree approach raises the cacheability. In Fig. 4, we
discuss the results for how much efficiency we sacrifice. In Fig. 5 we discuss the
bandwidth consumption and the number of HTTP requests that this adheres to.

In the implementation for our approach, we made the decision to allow the
data publisher to decide how many data entities can be stored per dataset frag-
ment (identical to the amount of values that can be stored in a node of a generic
B-tree implementation). The consequence of this is that the size of a single frag-
ment scales both with the amount of data entities stored in the fragment, as
well as with the individual sizes of each of these entities. Because of this, at
publication time the average entity size has to be taken into consideration when
creating a fragmentation, as this will influence the bandwidth requirement of the
interface.

12 R. Dedecker, et al.

Fig. 4. The efficiency shows a large quantity of 0% queries. This is due to targets
that do not result in an answer (not in the collection). For other requests we see the
efficiency averages over 50%.

Fig. 5. A max bandwidth of 25kB is consumed for an autocompletion query for this
particular dataset and query log. The number of requests for a full query autocomple-
tion range from 0 to 20 requests in worst-case. The y-axis is the % of queries.

4.4 Fragment sizes

In the prior experiments, we always used a fragment size of 25 entities per page.
We selected this page size when comparing the query performance of 25, 50, 75 to
100 entities per page. The results are provided in Fig. 6. We notice longer startup
times for the initial queries over larger dataset, and that larger fragment sizes
perform better for small datasets, but in turn perform worse for larger datasets.
This can be attributed to the trade-off between traversal speed and data locality,
where for larger datasets traversal speed becomes increasingly important.

A File-based LDF Approach To Prefix Search 13

Stops dataset (73 thousand entities)

OSMNames dataset (3.87 million entities)

Fig. 6. This figure compares the performance for clients evaluating prefix queries over
(Top) the public transport stops dataset (73k entities, 6 triples per entity) and (Bot-
tom) the OSMNames dataset (3.87m entities, 32 triples per entity).

5 Discussion

In contrast to a query server, where the number of HTTP requests stays con-
stant when a dataset grows in size, the amount of HTTP requests needed with
the tree approach is proportional to the amount of entities in the dataset. In
case of a fragmentation based on a theoretical B-tree, the number of requests
necessary to find entities matching a prefix value is decided based on the height
of the tree, which can be calculated theoretically for a dataset of n entities as:
rmax = blogdm/2e(

n+1
2)c, with rmax the maximum number of requests necessary,

without counting the root node which can be prefetched, and with m the max-
imum number of children a node can have. The depth thus defines the number
of HTTP requests needed when only the root node of a tree is found, and this is
the first time the auto-completion is being ran, so the client cache is cold. With
every depth that is added, it takes an exponential (power of m/2) number of
entities more to result in an increase in worst-case number of requests necessary.
Applied to our dataset: with 25 entities per fragment for a total of 105 entities, a
depth of 4 would be needed (hmax), and thus 4 HTTP requests would be needed
in worst-case to show results. When a new query shortly thereafter is done, the
probability of being able to cache one of the higher-level nodes should become

14 R. Dedecker, et al.

higher, which is illustrated by Fig. 2. Our implementation and experiment con-
firms this theoretical analysis: for a full series of queries, the experimental results
are depicted in Fig. 5.

This is illustrated by the OSMNames dataset, with a maximum depth of 6
for 3.87 million entities, vs. the public transport stops dataset with a maximum
depth of 4 for 73k entities. Fig. 3 thus also shows that even for larger datasets,
the approach returns timely results.

6 Conclusion

Given that a sufficient number (±15) of results will be retrieved in a timely
fashion (±150 ms), we can conclude that our approach of fragmenting a dataset
as static files can be a viable alternative to a query service, given a dataset
fragmentation is published for the queried data property. At the expense of the
client having to take part in the query evaluation and consume more bandwidth,
the server may work even fully from cache, archive or CDN. The results show
using a cache that is 10% the size of the dataset, the search tree approach
implemented in this paper reaches a server cache hit ratio that is ±3 times better.
Thanks to the TREE hypermedia specification, any search space design that
uses the specified hypermedia controls can be used by a generic autocompletion
client. The downside however is a larger bandwidth consumption, meaning query
response times will be easier impacted by a bad internet connectivity. While we
designed this approach for datasets for which setting up a tool like ElasticSearch
or a SPARQL endpoint is not worth the effort, the approach can return results
in a timely fashion even for large datasets with millions of entities.

The fragment size itself however is a difficult decision to make, and we do
not have a silver bullet approach to decide what the best number per dataset
fragment would be. In this paper we tested the approach for one specific use
case of prefix autocompletion and came to the conclusion that a size of 25 en-
tities per fragment gave the best response times. However, depending on the
dataset, the query set used for the benchmark, the level of privacy you want to
guarantee and type of text search query, we believe other fragment sizes may
be more interesting. Furthermore, the ideal fragment size will also depend on
the type of hypermedia search space one implements. In this paper we chose a
B-tree approach to prove that file-based fragmentation strategies can produce
and acceptable user-perceived performance, yet we certainly do not rule out
other search space designs. Future work will be to come up with specific search
space designs such as faster querying by adding important entities higher up in
the tree, for substring search with automata, for fuzzy matches by clustering by
string distance, with a geospatial bias by first adding a geospatial fragmentation
to your dataset, etc.

The new client-server relation for prefix search has an effect on the user ex-
perience guidelines of Pelias (cfr. Section 2)). (i) Throttling requests can happen
differently, as a large amount of requests can be handled from server cache. In a
similar way, there is also no danger of out of order responses (ii). As the client

A File-based LDF Approach To Prefix Search 15

controls the the query evaluation process, subsequent request can filter the pre-
viously retrieved results, and continue the on-going query processing to the next
prefix. Finally, (iii) using a pre-written client was a guideline when working with
the query server design, and remains our guideline here as well. This pre-written
client is given more responsibility for the query evaluation process, giving it more
flexibility to implement the autocompletion or any text search feature in the way
a developer wants. In the same spirit of the Pelias user experience guidelines,
we formulate two additional guidelines for publishing a fragmented interface. A
caching is the driver behind the scalability of this approach, probably the most
important of these guidelines will be (iv) to set caching headers. Both conditional
caching with etag header, as setting a cache-control header are possibilities
in different designs. Next, for public datasets, also (v) Cross Origin Resource
Sharing (CORS) headers need to be enabled. This will enable application devel-
opers to reuse the dataset from a different domain than where the dataset itself
is hosted.

References

1. Cai, F., De Rijke, M., et al.: A survey of query auto completion
in information retrieval. Foundations and Trends in Information Retrieval
10(4), 273–363 (2016), https://staff.fnwi.uva.nl/m.derijke/wp-content/
papercite-data/pdf/cai-survey-2016.pdf

2. Comer, D.: Ubiquitous b-tree. ACM Computing Surveys (CSUR) 11(2), 121–137
(1979), https://dl.acm.org/doi/10.1145/356770.356776

3. Graefe, G., Kuno, H.: Modern b-tree techniques. In: 2011 IEEE 27th In-
ternational Conference on Data Engineering. pp. 1370–1373. IEEE (2011).
https://doi.org/10.1561/1900000028, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.219.7269&rep=rep1&type=pdf

4. Knublauch, H., Kontokostas, D.: Shapes constraint language (shacl).(2017). W3C
recommendation (2017), https://www.w3.org/TR/shacl/#property-paths

5. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular sparql query engine for the web. In: ISWC. pp. 239–255. Springer (2018),
http://comunica.linkeddatafragments.org/

6. Van Herwegen, J., De Vocht, L., Verborgh, R., Mannens, E., Van de Walle, R.:
Substring filtering for low-cost Linked Data interfaces. In: Arenas, M., Corcho, O.,
Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M.,
Heflin, J., Thirunarayan, K., Staab, S. (eds.) Proceedings of the 14th ISWC. Lecture
Notes in Computer Science, vol. 9366, pp. 128–143. Springer (Oct 2015), https:
//linkeddatafragments.org/publications/iswc2015-substring.pdf

7. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web.
Semantic Web 8(3), 437–452 (2017)

8. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a low-
cost knowledge graph interface for the Web. Journal of Web Semantics 37–38,
184–206 (Mar 2016). https://doi.org/doi:10.1016/j.websem.2016.03.003, http://
linkeddatafragments.org/publications/jws2016.pdf

https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/cai-survey-2016.pdf
https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/cai-survey-2016.pdf
https://dl.acm.org/doi/10.1145/356770.356776
https://doi.org/10.1561/1900000028
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.7269&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.7269&rep=rep1&type=pdf
https://www.w3.org/TR/shacl/#property-paths
http://comunica.linkeddatafragments.org/
https://linkeddatafragments.org/publications/iswc2015-substring.pdf
https://linkeddatafragments.org/publications/iswc2015-substring.pdf
https://doi.org/doi:10.1016/j.websem.2016.03.003
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf

	A File-based Linked Data Fragments Approach To Prefix Search

