Nonlin. Processes Geophys., 18, 1466 2011 4 "* .
www.nonlin-processes-geophys.net/18/147/2011/ GG Nonlinear Processes

doi:10.5194/npg-18-147-2011 in Geophysics
© Author(s) 2011. CC Attribution 3.0 License. -

Post-processing through linear regression

B. Van Schaeybroeck and S. Vannitsem
Koninklijk Meteorologisch Instituut (KMI), Ringlaan 3, 1180 Brussels, Belgium

Received: 23 July 2010 — Revised: 15 December 2010 — Accepted: 8 February 2011 — Published: 7 March 2011

Abstract. Various post-processing techniques are com-(Leutbecher and Palmer, 2008) which can be partially cor-
pared for both deterministic and ensemble forecasts, altected through post-processing. Such post-processing con-
based on linear regression between forecast data and olsists of two steps. Firstly, regression is built between fore-
servations. In order to evaluate the quality of the regres-cast and measurement, available during a certain training pe-
sion methods, three criteria are proposed, related to the efdod, and secondly, the regression is applied to new forecasts.
fective correction of forecast error, the optimal variability Regression methods are also of primary importance in the
of the corrected forecast and multicollinearity. The regres-rapidly evolving research field concerning the combination
sion schemes under consideration include the ordinary leastf short-term multi-model climate forecasts (Van den Dool,
square (OLS) method, a new time-dependent Tikhonov reg20086).
ularization (TDTR) method, the total least-square method, The classical linear regression approach of ensemble re-
a new geometric-mean regression (GM), a recently intro-gression is based on ordinary least-square (OLS) fitting. This
duced error-in-variables (EVMOS) method and, finally, a approach has some weaknesses which can be detrimental in
“best member” OLS method. The advantages and drawbackghe context of ensemble forecasts. In the present work, it is
of each method are clarified. shown that other linear regression schemes exist which over-
These techniques are applied in the context of the 63ome them. One of the well-known problems with the clas-
Lorenz system, whose model version is affected by both ini-sical linear regression approach is the fact that the corrected
tial condition and model errors. For short forecast lead timesforecast converges to the climatological mean for long lead
the number and choice of predictors plays an important roletimes (Wilks, 2006). Classical linear regression, therefore,
Contrarily to the other techniques, GM degrades when thefails to reproduce the natural variability caused by a progres-
number of predictors increases. At intermediate lead timessive decrease of correlations between the true trajectory and
linear regression is unable to provide corrections to the forethe forecast data. To overcome this decrease of forecast vari-
cast and can sometimes degrade the performance (GM arahce, a few alternatives were already introduced. First of all,
the best member OLS with noise). At long lead times the re-Unger et al. (2009), in an effort to prolong the correlation
gression schemes (EVMOS, TDTR) which yield the correcttime, take a “best member” approach and average over the
variability and the largest correlation between ensemble erensemble of forecasts to obtain the OLS regression param-
ror and spread, should be preferred. eters. In addition, they compensate the lack of climatologi-
cal variability by a kernel method which consists in adding
Gaussian noise, an approach also used by Glahn et al. (2009).
In Vannitsem (2009), a new regression scheme was proposed
which accounts for the presence of both the observational er-
Meteorological ensembleprediction systems provide not 'ors and the forecast errors. This approach which gives the
only a forecast, but also an estimate of its LIncertainty_correctvarlablllty at aII_Iead tlmesyvaste_sted against the non-
The ensembles are known to display some deficienciefiomogeneous _Gausman regression using re-forecast data of
ECMWEF (Vannitsem and Hagedorn, 2011) and found to have

1 Introduction

good skill.
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introduce two new regression schemes: a time-dependerdefine the error:
generalized Tikhonov regularization method (TDTR) and a

. H P
geometric-mean regression, analogous to the one present%c)i( _ X—ZS B (2)
in Draper and Yang (1997). Other schemes under considera- e} rer

tion include the ordinary least-square method (OLS), the to-
tal least-square (TLS, Van Huffel and Vandewalle, 1991), thewhereg, is the corrected predictor associated with The
“best member”-OLS method (Unger et al., 2009) and the EV-valueg, may be looked upon as the value f after being
MOS method, recently proposed by Vannitsem (2009). Thedeprived of errors of any sort. We denote the discrepancy
latter is generalized for an arbitrary number of predictors andbetweert,, andV,, as follows:

to cope with multicollinearity. The comparison is performed

based on three criteria: a correct variability, a reduced fore<v.p = Vp —§p. 3

cast error and the ability to deal with multicollinearity. ] ]

The different regression schemes are tested in the conNOte that the val_ue_s @f_P are usually hidden and mostly in-
text of the Lorenz 1963 model, focussing on the validity of treduced for opt|m|za_t|on purposes. In order to ass;ess the
the proposed criteria. We introduce both model and initial—usemlness of regression, three criteria are proposed:
condition errors and consider the dynamics of the statistical 1. The method corrects forecast errors.
features of the corrected-forecast errors.

Sectior2 details the problems associated with OLS foren- 2. The method can cope with several highly-correlated
semble forecasting. The different regression approaches are ~ Predictors which may give rise to multicollinearity.
then introduced in SecBa—f and their quality is evaluated in
the context of the low-order Lorenz model (1963) in Sdct.
The ensemble skills are discussed in S&cEinally the con-
clusions are drawn in Sed@.

3. The corrected forecast features the variability of the ob-
servation at all lead times, or, in a weaker form, the cor-
rected forecast has the correct variability at long lead
times. This condition is necessary in the context of en-
semble forecasts in order to get a sufficient spread at
long lead times.

2 Linear regression and criteria

2.1 Criterion (i): forecast errors

Consider a system for which a series of measurement data
are available for a variabl& . as well as one or more fore- 1 Ne corrected forecast should be better than the uncorrected

cast models. When running model(s) multiple times usingforecastvl m_the sense that the mean square e_rror_be_tvyeen
slightly perturbed initial conditions and starting at different (e observation and the corrected forecast (using infinitely

dates, a set of forecasts is produced. The problem is how t{f9¢ sample sizes) is lower than or equal to the one of the

optimally combine both past forecast and measurement datdncorrected forecast.
such as to extract as much information as possible and to cor;
rect future forecasts. We outline here different approaches to

achieve this goal using linear regression. Multicollinearity is often encountered when trying to regress
Assume that the forecast data fBrvariablesV, (p = a certain variable using highly correlated predictors. In that
1,...,P)is assembled in th&/ x P matrixV; hereN isthe  case, the regression relation may perform well on the train-
number of ensemble forecasts multiplied by the number ofing data, but applied to independent data it will give rise to
ensemble members. Also consider fiieneasurement data wild and unrealistic results. In that sense, multicollinearity
for the variableX that are contained in the vectd. Regres-  is a form of overfitting, which here is not a consequence of
sion consists now of finding a solution for tiferegression  the abundance of regression parameters. Heuristically, mul-

.2 Criterion (ii): multicollinearity

coefficients contained in the vectgrsuch that: ticollinearity can be understood as follows: if two predictors
V1 and V, are the same up to a small noise term, ordinary
X~Xc with Xc=V8g. (1)  linear regression may yield a predictand which is very close

to the training data. However, sindg and V» are nearly
Here we callX¢ the predictand or the corrected forecast identical, several linear combinationsf andV, may exist
while the variables/,, are the predictors. We take for the that are close to the measurement data, the closest of which
first predictor, V1, the corresponding model observable as- may involve large and, therefore, unrealistic regression co-
sociated withX and V; is, therefore, also referred to as the efficients. Generally, the variances of such estimated coeffi-
uncorrected forecast. The near equality in Bgjig achieved  cients are large and the regression is, thus, very sensitive and
by minimizing some cost function, yet to be defined (seeunstable with respect to independent data.
Sect.3). Note that without loss of generality, we assume Several approaches exist which overcome the multi-
the mean value of all variables to be shifted to zero. Let uscollinearity problem. One method is to perform a selection
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Table 1. Assessment of linear regression methods (rows) based on OLS TLS
the criteria (columns) introduced in Se2t.A plus sign in brackets X
means that there exist methods to fulfil this criterion but they are not X|- - - X|- - -
presented here. g, [ B |- _S_Xn{
crit. (i)  crit. (i) weak crit.  strong crit. | Jom:;ein 1 v,
(iii) (iif) | | WrLs=2eey
oLS + - - - Va Vv Vo & Vv
TDTR  + + + —
LS - —® - _ X EVMOS X GM
EVMOS + + + + ol P (e
GM - o + + T &0 / T e, |
EREGI + -+ - _ B, BE, | . n !
EREGIl — -(#) o+ + A il : 0 BVyf= = = |
° o : | 2"‘,%+%3 :JGA\IZZ?\ansvn\/Z
. . V& Y 3
and leave out some variables. Another method consists of noen Vv " "oV

eliminating the lowest singular value of the matrix which is
to be inverted (as used in principal component regression)Fig. 1. lllustration of the cost functions/ associated with four
A third method is called Tikhonov regularization or ridge re- different regression methods (OLS, TLS, EVMOS and GM) in the
gression and, from a Bayesian point of view, uses prior in-case of one predictor. The dots are data points which associate each
formation to constrain the regression coefficients. forecast poin?¥/, to a corresponding measured valig. The black
line is the regression lin& - =gV.
2.3 Criterion (iii): climatological features at long
lead time .
3 Regression methods
It is well known that applying ordinary least-square regres- )
sion to forecast data amounts to a corrected forecast which-+ Ordinary least-square (OLS)

C\?V?I\I/(ergggog th?_h(i:“m?t?rl]og;farln Tﬁ ar]l fotr tlr? ntg (;eadt tIrFhGSOrdinary least-square (OLS) is the most well-known method
( S ): S stems 1ro € tact that, due 10 tN€ ¢ ihear fitting. It is implicit in OLS regression that there are
chaotic nature of the atmosphere, the correlations between

forecast and measurement data irrevocably vanish at Ionno forecast uncertainties, but only measurement errors or, in
lead time (Vannitsem and Nicolis, 2008) Tk?is conver ence%ther words, one assumes thgt="V,. The OLS cost func-

. _ N : 9 tion JoLs is the mean square error of the corrected forecast
feature is unrealistic and we can instead try to produce a cor;

. ; 4 . . Iso Figl):
rected forecast which has a meaningful climatological van-(See also Figl)
ability. Such climatological variability is for most systems ]2\ 5
well known and usually measured as the variance of the‘YOLS(ﬁ)_<€X>_<(X_XC) > (©)
available measurement data%. Therefore, criterion (iii) 4 is the statistical It ts. Mini
states that, in addition to the correct mean, the variability of a ere () Is the statistical average over all forecasts. Mini-

good corrected forecask. should equal the climatological mllza;_tlon gf qu'l(s) WghBrespec;;%BOy.lelds the well-known
variability of the measurement data: solution (Casella and Berger, ):

_ T —-1yT
oxe (1) =0ox(1), @) Bos=(V'V)TVIX. (7)
or at least convergence towards the climatological variabilityF"om EQ. ¢) it readily follows that the variance of the cor-
(weaker constraint): rected forecast variable is:
oxc (1) = ox (1), (5) 0% = (X&) =(XXc). 8)
for long lead times. Therefore, after long lead times, when the correlations

Several approaches were already proposed to Qvercom_@(Vp) betwee_n the observation_and the fOfBC&S’F variable van-
the lack of variability, including the introduction of an ar- ishes, the variance of the predictad also vanishes and,
tificial noise term (Unger et al., 2009; Glahn et al., 2009). therefore, criterion (iii) is not fulfiled. For the MSE this im-
Let us now introduce the different regression methods comJlies:

pared in the present work. We assess their validity using the 2 5
aforementioned criteria in Table 1. MSE(OLS)= (X — X¢)*) =0k —(XXc). 9)

www.nonlin-processes-geophys.net/18/147/2011/ Nonlin. Processes Geophys., 18012011
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At long lead times, the MSE is, therefom},. wherexg = Zpﬂg V,. Note that Egs.X4) are independent
By construction OLS fulfils the requirement of criterion of y(¢). Now, if the variability of the predictors is known

(). However, apart from criteria (iii), OLS also fails to sat- at long lead time (one predictor would suffice in fagf

isfy (ii) since it cannot cope with multicollinearity, hence, can be chosen in such a way as to satisfy weak criterion (iii):

according to our criteria, OLS is not the best method for en-ox.(t - 00) =ox.

semble regression. If we also want a scheme able to cope with multicollinear-
ity, or equivalently to fulfil criterion (ii), care must be taken

3.2 Time-Dependent Tikhonov Regularization (TDTR)  that y is positive and nonzero but still small at short lead
times.

A well-known problem of the OLS regression is that the  Tpg choice of the time-dependent functief) is arbitrary

variance of the regression parameters are very large in casg;t the cross-over time whengoes over from being small to

of multicollinearity (Golub and Van Loan, 1996). To Over- phaing |arge should preferentially be chosen as a function of

come this problem, it is the custom to bias the estimateshe correlations between forecast variables and measurement
of the regression coefficients using Tikhonov regularization,yat5 The function used here is:

also called ridge regression. We present here a new time-
dependent Tikhonov regularization (TDTR) method for post- y(t) = yoexp{ i ( IACO)| _ 1) } ) (15)
processing ensemble forecasts. The generalized TR ap- A\ |AC(1)]

D s S0 Horero s asmall posive selar and ACs an anomaly cor
in order to fall within a certain range of a constant vafe relation AQr) Z-ZP<XV”)/(UXGV") (vVan den Dool, 2906)'

M ificall q dth 02 | I The constan\ is a tolerance percentage of correlation loss
ore speciiically, we deman t EP_(’BP __ﬂp) IS Small. —in the sense that, if the anomaly correlation@®Qlecreases
The way to implement su_ch_a restrl_ctlon IS by _mtroducmg by an amountA from its value at time zero, the corrected
the positive Lagrange multipligr(r) (with ¢ being time) and forecast will become strongly biased towards the solution

minimizing the cost function: X2. Note that, at time zeroy (0) = yo. We choose in our

_ 2 0.2 simulationsy = 10~% and A = 0.5% andg = B¢y (as will
JoTR(B) = <(X —Xc) >+ v (Bp—Bp)° (10)  pe defined later in Eq26) for the EVMOS technique).

r One may come up with choices for different from

The solution is (Bjrck, 1996): Eq. (15). For example, we can chooger) = yoe'/* where

yo is again a small positive constant amdis a constant
(11) which characterises the time when the correlations between
the forecast and the measurement start to vanish strongly. In
the same line, another candidate could be the threshold func-
tiony (t) = yo+O(t — 1)/ yo With ® the Heaviside function.
Finally, the new TDTR method fulfils criteria (i), (ii) and
2 _ 0 weak criterion (iii). Note that it is possible to tune the
TXc = “XC)JFV(D;/SP(/?” Pr) (12) Tikhonov regularization scheme in such way (by means of
y and g°) as to fulfil also criterion (iii). However, in that
For the mean square error, on the other hand, one gets:  case, one must bias the regression coefficients towards other

) 0 coefficients on which no information is available, so these
MSE(TDTR)=0% —(XXc) =y (1)) _Bp(BI—Bp).  (13)  must be chosen with some arbitrariness.
14

BrpTR= (VTV +y (@)l )_1(VTX + )/(t)ﬁo)~

Herel is the unit matrix. Using this solution, the variability
of the corrected forecast is found to be:

. ) o .3 Totall - re (TL
Using these results, a Tikhonov regularization method can3 3 Totwl least-square (TLS)

be developed in such a way as to fulfil criteria (ii) and the The total least-square (TLS) method was introduced as a
weak criterion (iii) as specified in Sec2. From the in-  method to correct OLS to take into account the errors in the
spection of the cost functiodfrpTr, it is clear that for Ia%ge forecast model (Golub and Van Loan, 1996). Therefore, the
y the regression coefficiertt is forced to converge t8°.  cqst function to be minimized is a function of batk and

The latter can be chosen in such a way that the correctegv of Egs. @) and @) (Van Huffel and Vandewalle, 1991):
forecast has the variability of the measurement data and,

thus, satisfies the weak version of criterion (iii). The way P ) P 2

to do that is first by Taylor-expanding Eql1) up to the  Jtis(B.§) =<Zw§(Vp—§p) + <X—Z€pﬁp> >
first order in ¥y (¢) (with large y (¢+)) which gives a value p=1 p=1

of B~ B°—VTVBO/y(r), which in turn leads to (16)

2 (14) Here the weight factors), are constants which do not de-

t = and MSE? =02+02,, <
oxc (1= 00) X Hi = 00) = ok GX% pend on the coefficients, or g,,. After minimizing Eq. (L6)
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with respect to the variabless,, one gets a cost function Minimization of Eq. 1) with respect t&, amounts to a cost
which only depends on the valugs: function which is a function of only:

(X =Xc)?)

(X=Xc)?)
02 +02 ’
X Xc

SN\l SO 17 Jev(B) = (22)
Jris(B) 143, By fwp 2 17)

After minimization with respect t,,, one gets an exact so- Further minimization yields for each predictor index

lution for the regression problem (Van Huffel and Vande- 2

walle, 1991): ° P ( plzl;zﬁplﬁpzcxzlesz (Pp1p2—20ppy) = —0%- (23)

ﬂ — (VTV _ /,LZW_Z)_lVTX (18) Here Ppips = <Vp1 sz)/(CXp;LCsz) and Cxp = <VPX> This
’ nonlinear problem has a solution:

whereu is the lowest singular value of the composite ma- 3 ( _1)

trix [V X] andW = diag(ws, .., wp). The variability of the g . _ X n\® o | (24)

corrected forecast is then given by: ’ CXp Zpl - (pil)pzpl

The solution forg, for up to two predictors was already

">2(c = (XXc)+ (0% —(XXc) <Z('Bpl/wi’1)2>’ (19) given in Vannitserrq (2009). Note that we provide the details

n of the derivation in Appendix A.

and: Using now the solution Eq.26), it is straightforward to
derive that the variance of the corrected forecast is exactly
the same as the one of the measured data:

MSE(TLS)= <1+ > B /w,,l)z) (02 —(XXc)). (20)

p1

U)%C =02, (25)

Two weaknesses of TLS may be pointed out. First, fromThis equation is valid at all times and, therefore, satisfies cri-
Eqg. (16), it is clear that, since the different predictors may terion (iii) (see Eq. 4)). The MSE becomes:
have different physical units, appropriate estimates of the
weight factorsw,, prior to regression are indispensable. A

second weakness of TLS lies in the fact that the regressioMSE(EV)=2[ 0% —ox [}~ (p71),,, |- (26)
estimates become meaningless once a prediGtas uncor- p1.p2

related with the observatioXi. For instance, in the case of re- One can also make the EVMOS approach robust against
gression with one predictor one finds tifadk 1/(V X) which multicollinearity by replacing/, — V,+e, in Eq. 1) with

diverges as the correlation vanishes. It follows also that TLS 2 noise term with zero mean and standard deviation
can sometimes fail in satisfying criterion (i). Note that meth- €p ; - apo

ods exist for TLS to deal with multicollinearity (Van Huffel the latter being a small positive constant. After averaging out
and Vandewalle, 1991). However, we will not address themthe noise terms, one arrives at a new cost function which is
here. For the numerical analysis in Settwe takew, =1 minimized by the solution:

for all predictor indicesp. TLS then minimizes the sum of _
g 7 Zpl[(p+yl) 1]pp1

distances between the data points and the regression line (S%?v _ox (27)
Fig. 1). X0 \ X [0+,
3.4 Error-in-Variable method (EVMOS) In practicey is very small, but still sufficiently large for

) ~ the variance of the regression coefficients to be sufficiently
Recently a new regression method, called EVMOS was ingmg|. In conclusion, EVMOS is a method which satisfies all
troduced for post-processing ensemble forecasts (Va”n'tse”ﬂ)roposed criteria.

2009). The cost functiogey takes into account the sum of

errors in the forecast variablgs ,B,ev,, and the errorsin -~ 3.5  Geometric Mean (GM)

the measurement variablg (see Fig. 1 for a visual interpre-

tation): The geometric-mean (GM) method with one predictor was
introduced by Teisser (1948) and minimizes a cost function

<(Xc ~Y 0By ) 2 (X ~ Y, By ) 2> which is a sum of triangular areésyey | /2 wheres x andsy
JevB.)=(|——— ) +|— . are the distances from the observation point to the regression
“ line parallel to theX-axis and theV -axis, respectively (see
(21) Fig. 1). Draper and Yang (1997) generalized this method to

Xc ox
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incorporate multiple predictors. Here we introduce a differ-
ent approach for such generalization which is still reducible

to a weight-free least square problem and satisfies criterion 10 | — Y1 dict
(iii). pre !C or
The GM approach is introduced in order to overcome one MSE © e 4predictors
of the main disadvantages of the methods discussed so far< 2(t)> EREG II(1)
which account for both forecast and observation error: for * " === GM(4)

each observation, the associated penalty in the cost function
consists of asumof squared errorsy andey, normalized
using appropriate weight factors. For TLS these are the con-
stantsw,, and for EVMOS o5 * andagcl. Therefore, those 3 ) 1
approaches strongly depend on the weight factors. The GM 10 10 10
method with one predictor assists in minimizing the sum of t
triangular areas where the triangles are formed by connect- _ .
ing the fitted line with the measurement point. We extend this™9- 2- The short-time mean square error (MSE) f‘é()'”t'o” for the
approach to more than one predictor by taking the geometri orenz model with a small model errafi{=2.5x 10~%) and with

mean of the trianaular are 2 for each predictor x 10° ensembles of 500 members. The lines indicated with “1
9 asxev.pl/ P predictor” and “4 predictors” apply to all regression methods except

index p. The GM cost function then becomes: for GM and EREG II. The numbers indicated after GM and EREG
yp Il are the predictor numbers.
P
(Vp—&») (X— > splﬁm) > (28)
p1=1

In order to obtain the value &f,, a projection into the plane
formed by theX-axis and theV,, axis should be performed
such that, = (X —>_, .., Vp.Bp,)/Bp. Substitution leads
us to the least-square expression:

P

JGM(ﬂ)=<H

p=1

3.6 Best-member regression (EREG | and EREG II)

Recently a new approach of ensemble regression was pro-
posed by Unger et al. (2009). The authors show that, if all
ensemble members are equally apt at being the best, that is,
the closest to reality, and, if a linear relationship exists be-

((X _ XC)Z) tween the best member and the real data, then the regression
Jem(B) = T ir (29)  coefficient of the OLS can be found using the ensemble mean
’]_[,,ﬂp‘ instead of each ensemble member separately.

Consider a measured path of variallefor which mod-
Minimization of Eq. @9) with respect tg8, gives: elling has resulted in an ensemble &f uncorrected fore-
castsVl"(z) (k=1,...,K). The ensemble consists of model
2 runs with the same or different models, starting with slightly
—2PBpexy (1_2'0””ch”1/3”1> :<(X_XC) ) (30) " Gifferent initial conditions. We defing now as the aver-
P age over the ensemble members of the uncorrected forecast,
The minimization problem can also be solved by an itera-or, F=)", Vl"/K. In order to calculate the regression co-
tive numerical method such as the one explained in the Ap-efficient, we apply OLS using’ instead ofV; as the model
pendix B. predictor. Minimization of the OLS cost function yields:
From Eq. 80), one can derive that the variance of the pre-
dictand is the same as the one of the measurement variable; _{FX)
BEREG=

(F2)

(33)

of. =0%. (31) . . .
These regression coefficients are then applied to each ensem-

As was true for the EVMOS approach, this equation is valid ble member to yield the best member or EREG | predictand:

at all times and GM, thus, satisfies criterion (iii). Also, the

MSE after optimization satisfies: Xc.1=PereGV1. (34)

MSE=2(c2 — (XX()). (32) From Eq. 83) it is clear that, as is valid for OLS, the vari-
ance of the corrected forecast vanishes for long lead times
In case of one predictor, the solution to EGQY yields and EREG | will, therefore, not satisfy criterion (iii). How-
B =ox /oy which makes it fully equivalent to the EVMOS ever, as was proven in Unger et al. (2009), the damping to-
approach. Thus, EVMOS with one predictor can be consid-wards zero of this variance is slower than in the case of OLS.
ered the minimization solution to a triangle problem. Note In addition, the authors define an EREG Il forec&st ;;
also that, in case of one predictor, the GM problem reducesvhich accounts for the lack of spread around the regressed
to the one of Draper and Yang (1997). value X ¢ ; by adding artificially a Gaussian noise term with
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500 : 10'1
I o 1@ == GM(4)
.--_‘.,-99;1 — V1
- | 1 predictor
EREG I(1)
MZSE ] {' EREG II(1)] MSE Y 4 predictors
(U(t)) 250} f > 10°F EREG 11(1)
| '2® 000008 000000 04 <ur(t)> - GM(4)
eee OLS@4)
Iy v
o EVMOS(4) &
ol 1 -
B _ “}V L TDTR(4) 10 5 Peccccaccoae __:.1.’".
0 5 10 15 3 ) 1
10 10 10
t t

Fig. 3. The long lead time mean square error (MSE) evolution for
Lorenz model withsmall model error §r = 2.5 x 10—3) and with

5x 10° ensembles of 500 members. The number after the regressioh
method denotes the predictor number. €

Fig. 4. The short-time mean square error (MSE) evolution for the
orenz model witHarge model error §r = 10~2) and with 5x 10°
nsembles of 500 members. The lines indicated with “1 predictor”
and “4 predictors” apply to all regression methods except for GM
and EREG Il

variances% — o ., satisfying criterion (iii). However, such

random noise may destroy physically-relevant statistical in-we typically use ensembles of 500 members and averaging is
formation of the error statistics. As will be shown in the typically done over 50 000 points on the attractor. The train-
next section, at intermediate time-scales EREG Il may havéng and verification of the regression method is performed
a MSE which is larger than the one of the uncorrected fore-using two independent datasets, both of the same size.

cast. Note that the use of more than one predictor can be Originally ensemble forecasts were mainly designed for
straightforwardly implemented in the EREG methods as formedium and long range lead times. Nowadays there is a
OLS. growing interest in using this technique at shorter time scales
to provide uncertainty information for short-range forecast-
ing (few hours up to one or two days, Iversen et al., 2010). In
the following, we, therefore, present results for the different
We gddress the usefulness of the different regres;ion metrﬂ:;:?;gs(l;ssThgrgg;:?pfég\éfgnzgclgzﬂ Elg\lljir;e?f the different
ods in the context of a low-order system by focussing onthe e 54,4y the errors by probing the statistical properties of
statistical features of the associated error d|st_r|t_)ut|ons. W%ne of the following error variables:

use the well-known Lorenz 1963 model describing thermal

4 Numerical results

convection: Uy =X —XC,Uy=y—YC,U;=Z7—2Zc,and

i=0(—x+y), (35a)  uy = Juf+uf+u’.

y.:rx BRGNS (350) Here the indexC refers to the corrected variable. The pre-
1=xy—bz. (35¢) dictors forx¢ are the variablegVy, Vo, V3, Vy) = (x,y,2,y2),

he dot d he derivati ith . generated by different forecasts with model and initial-
I-r|]eret € fOt enotes the erlvat|vcehw(|jt respect tﬁ tv;ne, condition errors and the ones far are obtained by perform-
the rate of convective tumover, apcandz quantify the hor- e chift 2 — x: applying again this shift gives

izontal and ver_ticgl temperature variation, respectively. Thethe predictors fokc. In the plots the number of predictors
parameter setis f'xed,(@_” r.b)= (_10’ 28, 8/3) such that the _.are indicated in brackets next to the regression method.
reference system exhibits chaotic behaviour. The model dif-

fers from reality by introducing a model error which we take 4.1  Small model error

to be the positive bia&- to the (reduced) Rayleigh number

For thesmallmodel-error experiment a bids =2.5x 103 Let us consider first a small model erdr=2.5x 102 (in

is introduced while for théarge model error experiment a the sense that it is comparable to the initial-condition error).

biassr = 102 is used. Figure 2 shows the time evolution of the MSE of different
The numerical scheme is integrated using a second-ordaegression variables at short lead times. Except for a small

Runge-Kutta method. An ensemble is constructed by addindgime window, the MSE of GM(4) is larger than the one of the

at time zero an unbiased Gaussian noise with standard deviincorrected forecadt;. This is also the case for the MSE

ation 1073 to all variablesx, y andz. In the experiments, of the EREG Il method, but only visible at the intermediate

www.nonlin-processes-geophys.net/18/147/2011/ Nonlin. Processes Geophys., 18012011



154 B. Van Schaeybroeck and S. Vannitsem: Post-processing through linear regression

500 ‘ ‘ | P(u,)

0.01

t=0.12 — . 0.03
—— 1 predictor
® e e 4predictors

EREG II(1

MSE |
(U(t)) 250

EREG I(1) | 0.005

)
.
s
M 0015
o

.o.cco’o.o0.00, . h <Y
eee QOLS(4) ol a . Lol B 0 .
E -0.004 0 0.004 -0.008 0 0.008

Vv, ]

EVMOS(4) P(u,) P(u,)

TDTR(4) | EREG II(1) . -

0.01 =03 o = Y1 di 0001 =1. : — 1 predictor
- — predictor ® o0 .

0 10 15 5";.. « « 4 predictors EREG II(1) 4 predictors

t O
Fig. 5. The mean square error (MSE) evolution for the Lorenz 0 . o

model withlarge model error §- = 10~2) for long lead times and oot 0 oo -0.04 0 004
with 5 x 10° ensembles of 500 members. x

Fig. 6. The distributions of the error variable, of the Lorenz

. 2 . e e
I imes. For all other meth LS. TDTR. TLS. EV- model with large model erro¢ = 10~<) andwithout initial con-
ead times. For all other methods (OLS,  TLS, dition error, att =0.12,0.2,0.3, 1. The lines indicated with “1 pre-

MOS a_nd EREG I) the results depend only on the nymbejrdictor” and “4 predictors” apply to all regression methods except

of pr_edlctors used an(_j are, theref_ore, bundled by J_[he lines ]for GM and EREG |I. The results are generated using1®® en-

predictor” and “4 predictors”. Their resulting MSE is always gomples.

smaller than the one of the uncorrected forecast and pro-

vides a substantial forecast improvement only at the smallest

timescales where the number and the choice of predictors are

important. and the EREG Il yield a MSE which is larger. Therefore,
GM with one predictor is exactly the same as EVMOS GM(4) and EREG Il are not well-suited for use at intermedi-

with one predictor. Hence, if instead of GM(4) we would ate lead times.

have used GM(1), the results would be indicated by the “1 Figure 3 shows the evolution of the MSE for long lead

predictor-line in Fig.2 and, thus, have a lower MSE than times when the errors become large. Large differences be-

GM(4). This suggests that GM is progressively degradingtween the regression methods are visible. As mentioned

when the number of predictors increases. This behaviour cabefore, the MSE of TLS gives unrealistic results once the

be explained as follows: assume that we apply GM regres<correlations between the observati®nand the predictors

sion with P — 1 predictors and continue by adding a new vanish. According to weak criterion (iii), the MSE of the

predictor Vp which is totally uncorrelated to all other pre- EVMOS, TDTR, EREG Il and GM(4) forecasts converges

dictors and to the observation. Then one expects that théo the correct valueo’z,z( at long lead times, but before the

regression coefficiemdp associated with this new predictor asymptotic saturation, the MSE of GM(4) and EREG Il is

equals zero. However, from Eq3Q) it can be shown that still larger than the one of the uncorrected forecast. The MSE

Bp o (2P(V3))~Y2. The fact thaigp is generally nonzero of OLS and EREG |, on the other hand, is too low by a factor

could also be suspected from the cost funct28) (vhich di- of two as the variance of the corrected forecast vanishes.

verges if a regression coefficient vanishes. Therefore, adding At the intermediate times, a fast increase is present for all

an uncorrelated predictor introduces an |nStab|l|ty Note thatn]oments of the error distribution, g|V|ng rise to a power-|aw

higher-order moments of the error distribution are not well error distributionP (1 x ) for large values of the error such that

corrected at short lead times, whatever the regression techp () u7" with some positive scalar. Note that a similar

nigue used. behaviour is also present fat(u,). These power tails are
At the intermediate lead times there is a fast increase ohot affected by the different regression methods.

the MSE as a direct consequence of the chaotic nature of

the system (Lorenz, 1963). The timescale involved is deter-

mined by the inverse of the dominant Lyapunov exponent. At4-2 Large Model Error

these lead times no improvements with respect to the original

forecast variablé/;, are achieved by any regression method The MSE forsr = 102 is plotted in Fig.4 as a function of

and the same is true for higher moments of the error distributime for short and intermediate lead times. It is seen that all

tion. Whereas OLS, TDTR, TLS, EVMOS and EREG | give regression methods, except GM(4), provide substantial cor-

a MSE equal to the one of the uncorrected forecast, GM(4ections to the model error at short lead times.
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Fig. 7. The distributions of the error variahlg of the Lorenz model  Fig. 8. The distributions of the error variable, of the Lorenz

with large model errordr = 10*2) and without initial condition model with small model errors¢ = 2.5 x 1(F3) and with initial

error, atr =0.12,0.2,0.3, 1. The lines indicated with “1 predictor” condition errors, at =0.12,0.2,0.3. The lines indicated with “1

and “4 predictors” apply to all regression methods except for GM predictor” and “4 predictors” apply to all regression methods ex-

and EREG II. The results are generated usim@ﬂ)6 ensembles. cept for GM and EREG Il. The results are generated using.65
ensembles of 500 members.

As for small model errors the amplitude of the corrections
obtained by the post-processing progressively decrease
Moreover, both EREG Il and GM(4) yield an even higher
MSE than the one of the uncorrected forecast. Note that th

tends to be Gaussian-like at all lead times. Such broadening
'T;éads to a loss of the statistical information contained in the
error distribution. At short times EREG Il features a smaller
SE than the one of the uncorrected forecast. However, at
nger lead timest(> 0.2) the broadening of the distribution

GM(4) effectively corrects the forecast. In Fig. we dis- ‘ :
X roduces errors with magnitudes larger than the one present
play the MSE for long lead times. As compared to the cas ) _

in the uncorrected forecast. At time=1 the error distribu-

of small model errors, the error saturation now sets in earlier,

and the result for the EREG | forecast is now closer to '[hetlon of EREG Il is almost flat with much "'_”ger values than
one of OLS. the uncorrected forecast. Note that similar results are ob-

tained for other magnitudes of the model error and for the

distributions ofu,.
4.3 Evolution of error distribution The probability distributions of, in Fig. 7 obtained with

one predictor removes, to a great extent, the systematic bias
Having looked so far at its second moment, we consider nowof u,. The “4 predictor” case, on the other hand, also reduces
the evolution of the full error distributions of the original and the variance of the error distribution.
corrected forecast. In Fig$. and7, the error distribution Figure8 displays the results using the same model config-
evolution ofu, andu_ in the absence of initial condition er- uration butwith initial-condition errors. It is clear that the
rors are plotted. As mentioned earlier, for all methods excepsharp peaks present in the uncorrected forecast ofoFige
for EREG Il and GM(4) the quality of regression depends now strongly smoothed out, but their positions are well pre-
almost solely on the number of predictors. served. The double-peak structure of the distributions after

At time ¢ = 0.12 the regression distribution far, (Fig. 6) regression, however, seems to have disappeared. As a result

with one predictor is peaked close to the centre. The doubleef the chaotic nature of the system, the error distributions at
peak feature of the corrected forecast seems to disappear tine r = 1 with and without initial condition errors are very
t = 0.2, but appears back again for longer lead time. Withmuch alike.
four predictors multiple peaks are still present, but the distri- In case of nonzero initial-condition errors the qualitative
bution is well centred around zero. At a later time=(1.), all difference between the EREG | and EREG Il error distribu-
regressed distributions except for EREG Il are close to eactions are small at the shortest three lead times. This is due to
other, all featuring a multiple-peak structure. The EREG the fact that, by definition, the error distribution of the EREG
Il distribution is by construction a smoother version of the 1l method is a smoothed version of the EREG | distribution,
EREG | distribution (here indicated by “1 predictor”) and which here is a Gaussian-like distribution. However, at long
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1073 1072 107 100 1073 1072 107 10° against time for short time scales. The spread is the square root

t t of the ensemble variance and the error is the ensemble average of
ur. The results are generated using the Lorenz model with large

Fig. 9. Ensemble variance (spread) and mean square error of thenodel error §r = 10~2) and averaged over210° ensembles of

ensemble mean of the uncorrected foredagtagainst corrected 500 members each. The perfect-model result is obtained without

forecasts produced by different regression methods as a functiomodel error.

of time, generated using the Lorenz model with large model error

(8r =1072) and averaged over610° ensembles of 500 members

each. Note that the EREG Il ensemble variance and mean squa

A 'Sembles which remain underdispersive except for the EREG
error of the ensemble mean are identical.

Il ensemble. Due to the unbiased noise used to construct the
EREG Il ensemble, the MSE of the ensemble mean of EREG
| and EREG Il are identical. The gain of ensemble variance

lead times, due to the large noise variance used to generafgii ot joss of accuracy of the ensemble mean constitutes
the EREG |l forecast, the MSE of EREG Il is well beyond ¢ most interesting feature of EREG 11 but it is obtained at

the uncorrected forecast, leading to an almost flat unrealistig;,o expense of an increase of the overall ensemble member
distribution. error as shown in Figt and a broadening of the error distri-
bution (e.g. Figs6 and8). In agreement with our previous
results, at long lead times when the errors are saturated, the
average ensemble variance converges to the error of the en-
As pointed out in the Introduction, the main reason for look- S€mble mean for EREG I, EVMOS, TDTR and GM ensem-

ing at alternative linear post-processing is to investigate thebles.
possibility of post-processingnsembldorecasts. One im- We study now in what sense the ensemble spread can be
portant reason for the use of ensemble forecasts is that it proconsidered a measure of the actual error and how it is affected
vides one with an estimate of the forecast uncertainty. In thishy post-processing. Figudd shows the Pearson correlation
section we explore, using numerical experiments, how thebetween ensemble spread and ensemble error. The ensem-
relationship between the ensemble spread and forecast able spread refers to the square root of the ensemble variance
curacy is affected by post-processing. We compare first thend the error is the root-mean-square ewuprover all en-
average ensemble error with the average ensemble spreadsemble members. In Grimit and Mass (2007) these were
and we proceed by considering the relation between errofound adequate variables for a correlation study where it was
and spread of each ensemble separately. also pointed out that the correlations are intimately related to
One requirement for a good ensemble forecast is to have the variance of the ensemble spread. Figl@docuses on
mean square error of the ensemble mean equal to the enseltine shortest timescale for the perfect-model ensemble (us-
ble variance (e.g. Leutbecher and Palmer, 2008). IndRige ~ ing no model error and the correct initial-condition distribu-
error of the ensemble mean is compared with the ensembléon), the model ensemble with large model err®i)(and
variance. The corresponding quantities for the uncorrectedhe corrected ensemble using OLS, EVMOS and EREG II.
forecast are also displayed using green symbols. Except fomitially the correlation is low (around.@) due to a small
EREG Il regression does not affect the ensemble variancstandard deviation of ensemble spread, which is about ten
of the uncorrected forecast at short lead times. The error dytimes smaller than the average ensemble spread. One can
namics of the ensemble mean, on the other hand, is similar teven observe that the perfect model error-spread correlation
the mean square error evolution of all ensemble members ais initially smaller than all others. At atimescale of abouit,0
shown in Fig.4. Note that such regressions give rise to en- however, post-processing is found to substantially increase

5 Ensemble features
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Fig. 12. The spread-error correlation against time for intermedi-
ate and long times. The spread is the square root of the ensem-
0 0 H i
Qo oot Q002 ool ble variance and the error is the ensemble average .ofThe re-
sults are generated using the Lorenz model with large model error

Fig. 11. Scatterplot of spread against error of 10000 ensembles af®” = 10-2) and averaged over:210° ensembles of 500 members
¢ =0.2. The spread is the square root of the ensemble variance an8ach-

the error is the ensemble averageupf The results are generated
using the Lorenz model with large model errér & 10‘2) using
ensembles of 500 members each. The perfect-model result is ob-
tained without model error.

PERFECT MODEL V;: UNCORRECTED FC

o8wa>&o°

the correlation. We illustrate this in Figl with scatterplots

of spread against error for 10 000 ensembles=a0.2. The
strong spread-error correlation for the perfect model is obvi-
ous from a clustering of dots along the diagonal. On the con-
trary, the imperfect-model ensembles are strongly dispersed.
The post-processing procedures are capable of strongly re-
ducing the errors such that a great deal of spread-error cor-
relation is recovered. Note that the addition of random noise
of the EREG Il method amounts to a shift of the ensemble
cloud along the diagonal.

The correlations at intermediate and long timescales are
plotted in Fig.12. At intermediate timescales the spread- 0 . oo <PReAD
error correlation is large as the standard deviation of ensem-
ble spread is now on average ten times larger than the averaggq. 13. Scatterplot of spread against error of 10000 ensembles at
ensemble spread. Even though the spread-error correlation= 2. The spread is the square root of the ensemble variance and the
of the uncorrected and the EVMOS ensembles are approxerror is the ensemble averaget The results are generated using
imately equal to the one of EREG I, the associated errorghe Lorenz model with large model erréw(= 10~2) using ensem-
and spreads strongly differ. This is illustrated in Fig.by bles of 500 members each. The perfect-model result is obtained
scatterplots at = 2. The uncorrected and EVMOS ensem- without model error. Note the scale of the EREG Il plot which has
ble clouds are much alike but the EREG Il cloud is shifted @ Scale which is twice as large.
along the diagonal, a transformation which preserves the lin-
ear correlation. Note also the enlarged scale of the EREG Il
plot. Finally, due to the error saturation, a progressive cor- Figure 15 displays the smoothing effect of EREG Il by
relation decrease sets in for all ensembles at lead tim&s ~ showing the time evolution of the-variable of ten ensem-
(see Fig.12). Remarkably, the OLS and EREG Il correla- ble members (full lines), along with the measured trajectory
tions are distinctly smaller than the ones of the uncorrecteddashed line). All members are initialized around the ini-
and EVMOS ensembles. At=15, the variance of ensemble tial position(x, y,z) = (—11.84, —4.484, 38) on the attractor,
spread for all except the EREG Il ensembles is still signifi- very close to two bifurcating trajectories and using an ini-
cant as suggested in Fig4. tial condition spread of 10!. The ensuing separation of the

0.5

SPREAD

) EREG Il (1)
&

ERROR

0.5
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Fig. 14. Scatterplot of spread against error of 10 000 ensembles at
t =15. The spread is the square root of the ensemble variance and
the error is the ensemble averageupf The results are generated
using the Lorenz model with large model errér & 10~2) using
ensembles of 500 members each. The perfect-model result is ob-
tained without model error.

ensemble members into two separate regions is well repro-

duced by EVMOS (as well as TDTR), but due to the random Fig. 1_5.T|me _evolutlon of the variable for ten ensemble members
(full lines) using the Lorenz model generated by the uncorrected

noise this feature is no longer present for Iea}d t'me$ n forecastVy, EREG Il and EVMOS(4). The blue dashed line indi-
the EREG Il forecast. The absence of the bimodality of thec,teq the evolution of the observation. All ensemble members are

EREG Il distribution for the variable at lead timer =5.29  jnjtialized using an initial condition spread 1®around the starting
is clearly seen in Figl6. point (x,y,z) = (—11.84,—4.484,38).

6 Conclusions P(X)

Several linear regression methods have been tested in the 0.05
context of post-processing of (ensemble) forecasts: classi-
cal linear regression, total least-square regression, Tikhonov
regularization, error-in-variable regression, geometric mean
regression and best-member regression. These approaches 0.025
were evaluated based on three criteria (see Table 1): a cor-
rection of the forecast error, the ability to cope with multi-
collinearity and the reproduction of the observed variability.

The regression schemes have been tested in the context of
the low-order Lorenz 1963 system by introducing both model -6 measured) 0 6
and initial-condition errors. Three timescales may be distin-
guished. First, for short lead times, strong error improve-
ments and an increase of ensemble spread-error correlatiofdd- 16. Probability distributions of the variable at times = 5.29
may be obtained in case of large model errors. Except fof©" the ensembles generated as specified in Fsg.We used 1Z_)
GM, skill at these timescales does not so much depend OIq_nsemble members. It is clear that the EREG Il distribution is not

. . - - bimodal as are the others.
which regression method is applied, but rather on how many
and which predictors are selected. Second, at intermediate
times, when the error (and all the moments of its distribu-
tion) undergoes fast growth, all regression methods, except

_ EREG II(1)
t=5.29 —-

— EVMOS(4)
TDTR(4)
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for EREG Il and GM, yield the same result. EREG Il and sum over all forecasts:

GM provide less favorable results. Third, for long times, S Vor— B \2 [ Xn 3 6 \2

when the correlation between the measurement variable angEv(ﬁ,g):Z[( AN ”) +< A A ”) } (A1)
. . . OXce ox

the predictors is almost zero, strong differences between the "

regression methods are visible. TLS yields a wild and un-girst, we minimize with respect tg,,. This yields:
physical forecast; the OLS and EREG | corrected forecasts
converge towards climatology.

The EREG Il method has the benefit to account for thezﬂl’gnl’ =
lack of variability which is featured in the EREG | method 7
and, thus, satisfies criterion (iii). Also it provides a mean en-and substitution in EqAL) gives:
semble spread which is very close to the MSE of the ensem-

0)2( Zppr Vap —}—a)z(an

, (A2)
0)2( +U§C

ble mean, a property often required in an operational con- 3, (Xn - ﬂanp)z
text. However, all this is done by construction: random noise Jgy (8) = 5 [72
is addeda posteriorito the EREG | forecast. This implies ox+0x.

that some essential statistical information of the underlying h . ¢ th . 2 .
physics is lost, such as the specific multiple-peak structurel '€ variance of the predictandy . can be written as

of the error distribution and the non-Gaussian nature of theX-ps,p, 81 (Vo1 Vp2) Bpo- - Minimization with respect top;
probability distribution of the variables themselves. A simi- then gives:

lar behaviour is encountered in an operational context when

EVMOS_ was compared with the non-hpmogeneous Gz_aussia(Z(Vt Vi)Bp— (VtX)) (0;2( + Z Bpi(Vp, sz),Bp2>
regression method, the latter smoothing out the multimodal\ » p1.p2

structure of the forecast (Vannitsem and Hagedorn, 2011). 5
Also, at long lead times EREG I, as well as OLS and EREG= Z(Vz Vp)Bp || ox + Z Bp1{Vp1 V) Bps
I, has a reduced spread-error correlation as compared to the \ 7 p1.p2

uncorrected and the EVMOS forecast.
. (A3)

Another technique exists in the literature based on the po-—ZZ<XVp>:3p
tential relation between the different observables effectively 7

measured (Perfect Prog, Klein et al., 1959, W||k$, 2006)We introduce now the Vectoﬁ with Componentsgp —

This approach does not suffer from the convergence towardgchp wherecy, = (XV,), and the matrixo with compo-
climatology like OLS. However, the correction obtained with NEeNtSPp, pp = (Vp, Vi) / (€xpiCxpy)- After some calculation,

this technique is useless for sufficiently small forecast error.gq. (A3) reduces to:

We have performed a preliminary exploration of this aspect

by applying Perfect Prog for the Lorenz system. For eachﬁTpE_2<1T .E)ETP =—021, (A4)

variable X, Y, Z, we have built a Perfect Prog relationship

based on the two other variables of our reference system. Imvith 1 a vector with all itsP components equal to one. One

this case, Perfect Prog becomes useful when errors reach vatan check that the following solution satisfies E&4):

ues of the order of 5 of the saturation error variance shown 1

in Fig. 5. 79X (01 (A5)
The techniques as presented here can be extended to com- /17 . p~1. 1

bine multimodel forecasts (e.g. #& and Van den Dool,

2008). A straightforward way would be to use the different which is identical to the solution given in Ep4). Note that

forecasts as predictors. Regression corresponds to a methgae expression undgr the sguare—root sign is alwayg positive
sincep is a correlation matrix and is, therefore, positive def-

for “weighting” the different models. However, since many : . S

such models may contain the same information, one must bémte’ as well asits inverse.
sure that the regression method is able to cope with multi-
collinearity. TDTR and EVMOS can fulfil this requirement.  Appendix B

B1 Numerical method for nonlinear GM regression
Appendix A
The GM cost function Eq.29) can be minimized using the
Al Derivation of EVMOS solution iterative Gauss-Newton methods for least-square problems
(see for example Bjrck, 1996). First of all, the cost function
In this Appendix, we provide additional calculations con- can be written as a function of the matrix
cerning the EVMOS method as introduced in S8ct. The -
EVMOS cost functionZey of Eq. 1) can be rewritten asa JeMB) =r"-r, (B1)

www.nonlin-processes-geophys.net/18/147/2011/ Nonlin. Processes Geophys., 186012011



160

1/2P
wherer () = (X —=VB)/N andN (B) = ’]_[pﬁp’ . Then
given at stepk the values* and the regression coefficients
B¥, the coefficients at stefp+ 1 by assuming small changes
are searched g = gX+1 — g*. Thereforer, (B) at stepk+1
becomes:

r (ﬁk+l) %r(ﬂk>+JkAﬁ’

where the matriX,,, = dr, /3, evaluated at step. Substi-
tuting Eq. B2) into the cost function Eq.R1) at time step
k+1 and expanding to second order yields:

(B2)

TR B ~rT r 4+ ABTITIAB+2T I, (B3)

where again, all is evaluated at time step Minimization
with respect toA B gives:

AB=—-3TH~ 1. (B4)

So far, the derivation was general. Substituting now the cost

function of the GM approach, one gets:
ABy=Bp(A7'B),, (B5)

where:

(3—6-1)p1+(ﬁ—61)

p2

Apipr =Cpip, +

2P
024+17.C.1-2(17 . B)
(2P)? ’
8_3—6-1 024+17.C.1-2(1" - B)
2P (2P)2 ’

where we introduced the NotatioSy, y, = 0p1 B py By
B, =Bpcxp and1lis a vector containing® times the scalar

one. We may now calculag*™* = Ag + g* and continue
this procedure to time stépt 1 until convergence is reached.
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