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Abstract. Various post-processing techniques are com-
pared for both deterministic and ensemble forecasts, all
based on linear regression between forecast data and ob-
servations. In order to evaluate the quality of the regres-
sion methods, three criteria are proposed, related to the ef-
fective correction of forecast error, the optimal variability
of the corrected forecast and multicollinearity. The regres-
sion schemes under consideration include the ordinary least-
square (OLS) method, a new time-dependent Tikhonov reg-
ularization (TDTR) method, the total least-square method,
a new geometric-mean regression (GM), a recently intro-
duced error-in-variables (EVMOS) method and, finally, a
“best member” OLS method. The advantages and drawbacks
of each method are clarified.

These techniques are applied in the context of the 63
Lorenz system, whose model version is affected by both ini-
tial condition and model errors. For short forecast lead times,
the number and choice of predictors plays an important role.
Contrarily to the other techniques, GM degrades when the
number of predictors increases. At intermediate lead times,
linear regression is unable to provide corrections to the fore-
cast and can sometimes degrade the performance (GM and
the best member OLS with noise). At long lead times the re-
gression schemes (EVMOS, TDTR) which yield the correct
variability and the largest correlation between ensemble er-
ror and spread, should be preferred.

1 Introduction

Meteorological ensembleprediction systems provide not
only a forecast, but also an estimate of its uncertainty.
The ensembles are known to display some deficiencies
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(Leutbecher and Palmer, 2008) which can be partially cor-
rected through post-processing. Such post-processing con-
sists of two steps. Firstly, regression is built between fore-
cast and measurement, available during a certain training pe-
riod, and secondly, the regression is applied to new forecasts.
Regression methods are also of primary importance in the
rapidly evolving research field concerning the combination
of short-term multi-model climate forecasts (Van den Dool,
2006).

The classical linear regression approach of ensemble re-
gression is based on ordinary least-square (OLS) fitting. This
approach has some weaknesses which can be detrimental in
the context of ensemble forecasts. In the present work, it is
shown that other linear regression schemes exist which over-
come them. One of the well-known problems with the clas-
sical linear regression approach is the fact that the corrected
forecast converges to the climatological mean for long lead
times (Wilks, 2006). Classical linear regression, therefore,
fails to reproduce the natural variability caused by a progres-
sive decrease of correlations between the true trajectory and
the forecast data. To overcome this decrease of forecast vari-
ance, a few alternatives were already introduced. First of all,
Unger et al. (2009), in an effort to prolong the correlation
time, take a “best member” approach and average over the
ensemble of forecasts to obtain the OLS regression param-
eters. In addition, they compensate the lack of climatologi-
cal variability by a kernel method which consists in adding
Gaussian noise, an approach also used by Glahn et al. (2009).
In Vannitsem (2009), a new regression scheme was proposed
which accounts for the presence of both the observational er-
rors and the forecast errors. This approach which gives the
correct variability at all lead times was tested against the non-
homogeneous Gaussian regression using re-forecast data of
ECMWF (Vannitsem and Hagedorn, 2011) and found to have
good skill.

Here, we present a comparison of several linear regression
methods to post-process ensemble forecasts. In addition, we
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introduce two new regression schemes: a time-dependent
generalized Tikhonov regularization method (TDTR) and a
geometric-mean regression, analogous to the one presented
in Draper and Yang (1997). Other schemes under considera-
tion include the ordinary least-square method (OLS), the to-
tal least-square (TLS, Van Huffel and Vandewalle, 1991), the
“best member”-OLS method (Unger et al., 2009) and the EV-
MOS method, recently proposed by Vannitsem (2009). The
latter is generalized for an arbitrary number of predictors and
to cope with multicollinearity. The comparison is performed
based on three criteria: a correct variability, a reduced fore-
cast error and the ability to deal with multicollinearity.

The different regression schemes are tested in the con-
text of the Lorenz 1963 model, focussing on the validity of
the proposed criteria. We introduce both model and initial-
condition errors and consider the dynamics of the statistical
features of the corrected-forecast errors.

Section2 details the problems associated with OLS for en-
semble forecasting. The different regression approaches are
then introduced in Sect.3a–f and their quality is evaluated in
the context of the low-order Lorenz model (1963) in Sect.4.
The ensemble skills are discussed in Sect.5. Finally the con-
clusions are drawn in Sect.6.

2 Linear regression and criteria

Consider a system for which a series of measurement data
are available for a variableX, as well as one or more fore-
cast models. When running model(s) multiple times using
slightly perturbed initial conditions and starting at different
dates, a set of forecasts is produced. The problem is how to
optimally combine both past forecast and measurement data
such as to extract as much information as possible and to cor-
rect future forecasts. We outline here different approaches to
achieve this goal using linear regression.

Assume that the forecast data forP variablesVp (p =

1,...,P ) is assembled in theN ×P matrix V; hereN is the
number of ensemble forecasts multiplied by the number of
ensemble members. Also consider theN measurement data
for the variableX that are contained in the vectorX. Regres-
sion consists now of finding a solution for theP regression
coefficients contained in the vectorβ such that:

X ≈ XC with XC = V β. (1)

Here we callXC the predictand or the corrected forecast
while the variablesVp are the predictors. We take for the
first predictor,V1, the corresponding model observable as-
sociated withX andV1 is, therefore, also referred to as the
uncorrected forecast. The near equality in Eq. (1) is achieved
by minimizing some cost function, yet to be defined (see
Sect.3). Note that without loss of generality, we assume
the mean value of all variables to be shifted to zero. Let us

define the error:

εX = X−

P∑
p=1

ξpβp, (2)

whereξp is the corrected predictor associated withVp. The
valueξp may be looked upon as the value ofVp after being
deprived of errors of any sort. We denote the discrepancy
betweenξp andVp as follows:

εV,p = Vp −ξp. (3)

Note that the values ofξp are usually hidden and mostly in-
troduced for optimization purposes. In order to assess the
usefulness of regression, three criteria are proposed:

1. The method corrects forecast errors.

2. The method can cope with several highly-correlated
predictors which may give rise to multicollinearity.

3. The corrected forecast features the variability of the ob-
servation at all lead times, or, in a weaker form, the cor-
rected forecast has the correct variability at long lead
times. This condition is necessary in the context of en-
semble forecasts in order to get a sufficient spread at
long lead times.

2.1 Criterion (i): forecast errors

The corrected forecast should be better than the uncorrected
forecastV1 in the sense that the mean square error between
the observation and the corrected forecast (using infinitely
large sample sizes) is lower than or equal to the one of the
uncorrected forecast.

2.2 Criterion (ii): multicollinearity

Multicollinearity is often encountered when trying to regress
a certain variable using highly correlated predictors. In that
case, the regression relation may perform well on the train-
ing data, but applied to independent data it will give rise to
wild and unrealistic results. In that sense, multicollinearity
is a form of overfitting, which here is not a consequence of
the abundance of regression parameters. Heuristically, mul-
ticollinearity can be understood as follows: if two predictors
V1 andV2 are the same up to a small noise term, ordinary
linear regression may yield a predictand which is very close
to the training data. However, sinceV1 andV2 are nearly
identical, several linear combinations ofV1 andV2 may exist
that are close to the measurement data, the closest of which
may involve large and, therefore, unrealistic regression co-
efficients. Generally, the variances of such estimated coeffi-
cients are large and the regression is, thus, very sensitive and
unstable with respect to independent data.

Several approaches exist which overcome the multi-
collinearity problem. One method is to perform a selection
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Table 1. Assessment of linear regression methods (rows) based on
the criteria (columns) introduced in Sect.2. A plus sign in brackets
means that there exist methods to fulfil this criterion but they are not
presented here.

crit. (i) crit. (ii) weak crit. strong crit.
(iii) (iii)

OLS + − − −

TDTR + + + −

TLS − − (+) − −

EVMOS + + + +
GM − − (+) + +
EREG I + − (+) − −

EREG II − − (+) + +

and leave out some variables. Another method consists of
eliminating the lowest singular value of the matrix which is
to be inverted (as used in principal component regression).
A third method is called Tikhonov regularization or ridge re-
gression and, from a Bayesian point of view, uses prior in-
formation to constrain the regression coefficients.

2.3 Criterion (iii): climatological features at long
lead time

It is well known that applying ordinary least-square regres-
sion to forecast data amounts to a corrected forecast which
converges to the climatological mean for long lead times
(Wilks, 2006). This stems from the fact that, due to the
chaotic nature of the atmosphere, the correlations between
forecast and measurement data irrevocably vanish at long
lead time (Vannitsem and Nicolis, 2008). This convergence
feature is unrealistic and we can instead try to produce a cor-
rected forecast which has a meaningful climatological vari-
ability. Such climatological variability is for most systems
well known and usually measured as the variance of the
available measurement data,σ 2

X. Therefore, criterion (iii)
states that, in addition to the correct mean, the variability of a
good corrected forecastσXC

should equal the climatological
variability of the measurement data:

σXC
(t) = σX(t), (4)

or at least convergence towards the climatological variability
(weaker constraint):

σXC
(t) → σX(t), (5)

for long lead times.
Several approaches were already proposed to overcome

the lack of variability, including the introduction of an ar-
tificial noise term (Unger et al., 2009; Glahn et al., 2009).
Let us now introduce the different regression methods com-
pared in the present work. We assess their validity using the
aforementioned criteria in Table 1.
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Fig. 1. Illustration of the cost functions J associated with four different regression methods (OLS, TLS,

EVMOS and GM) in case of one predictor. The dots are data points which associate each forecast point Vn to

a corresponding measured value Xn. The black line is the regression line XC =βV .
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Fig. 1. Illustration of the cost functionsJ associated with four
different regression methods (OLS, TLS, EVMOS and GM) in the
case of one predictor. The dots are data points which associate each
forecast pointVn to a corresponding measured valueXn. The black
line is the regression lineXC = βV .

3 Regression methods

3.1 Ordinary least-square (OLS)

Ordinary least-square (OLS) is the most well-known method
of linear fitting. It is implicit in OLS regression that there are
no forecast uncertainties, but only measurement errors or, in
other words, one assumes thatξp = Vp. The OLS cost func-
tion JOLS is the mean square error of the corrected forecast
(see also Fig.1):

JOLS(β) =

〈
ε2
X

〉
=

〈
(X−XC)2

〉
. (6)

Here 〈·〉 is the statistical average over all forecasts. Mini-
mization of Eq. (6) with respect toβ yields the well-known
solution (Casella and Berger, 1990):

βOLS= (VT V)−1VT X. (7)

From Eq. (7) it readily follows that the variance of the cor-
rected forecast variable is:

σ 2
XC

= 〈X2
C〉 = 〈XXC〉. (8)

Therefore, after long lead times, when the correlations
〈XVp〉 between the observation and the forecast variable van-
ishes, the variance of the predictandXC also vanishes and,
therefore, criterion (iii) is not fulfiled. For the MSE this im-
plies:

MSE(OLS)= 〈(X−XC)2
〉 = σ 2

X −〈XXC〉. (9)
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At long lead times, the MSE is, therefore,σ 2
X.

By construction OLS fulfils the requirement of criterion
(i). However, apart from criteria (iii), OLS also fails to sat-
isfy (ii) since it cannot cope with multicollinearity, hence,
according to our criteria, OLS is not the best method for en-
semble regression.

3.2 Time-Dependent Tikhonov Regularization (TDTR)

A well-known problem of the OLS regression is that the
variance of the regression parameters are very large in case
of multicollinearity (Golub and Van Loan, 1996). To over-
come this problem, it is the custom to bias the estimates
of the regression coefficients using Tikhonov regularization,
also called ridge regression. We present here a new time-
dependent Tikhonov regularization (TDTR) method for post-
processing ensemble forecasts. The generalized TR ap-
proach works as follows: instead of minimizingJOLS, a con-
straint is added for the values of the regression coefficientsβ

in order to fall within a certain range of a constant valueβ0.
More specifically, we demand that

∑
p(βp −β0

p)2 is small.
The way to implement such a restriction is by introducing
the positive Lagrange multiplierγ (t) (with t being time) and
minimizing the cost function:

JTDTR(β) =

〈
(X−XC)2

〉
+γ (t)

∑
p

(βp −β0
p)2. (10)

The solution is (Bj̈orck, 1996):

βTDTR =

(
VT V +γ (t)I

)−1(
VT X +γ (t)β0

)
. (11)

HereI is the unit matrix. Using this solution, the variability
of the corrected forecast is found to be:

σ 2
XC

= 〈XXC〉+γ (t)
∑
p

βp(β0
p −βp). (12)

For the mean square error, on the other hand, one gets:

MSE(TDTR)= σ 2
X −〈XXC〉−γ (t)

∑
p

βp(β0
p −βp), (13)

Using these results, a Tikhonov regularization method can
be developed in such a way as to fulfil criteria (ii) and the
weak criterion (iii) as specified in Sect.2. From the in-
spection of the cost functionJTDTR, it is clear that for large
γ the regression coefficientβ is forced to converge toβ0.
The latter can be chosen in such a way that the corrected
forecast has the variability of the measurement data and,
thus, satisfies the weak version of criterion (iii). The way
to do that is first by Taylor-expanding Eq. (11) up to the
first order in 1/γ (t) (with largeγ (t)) which gives a value
of β ≈ β0

−VT Vβ0/γ (t), which in turn leads to

σXC
(t → ∞) = σX0

C
and MSE(t → ∞) = σ 2

X +σ 2
X0

C

, (14)

whereX0
C =

∑
pβ0

pVp. Note that Eqs. (14) are independent
of γ (t). Now, if the variability of the predictors is known
at long lead time (one predictor would suffice in fact),β0

can be chosen in such a way as to satisfy weak criterion (iii):
σXC

(t → ∞) = σX.
If we also want a scheme able to cope with multicollinear-

ity, or equivalently to fulfil criterion (ii), care must be taken
that γ is positive and nonzero but still small at short lead
times.

The choice of the time-dependent functionγ (t) is arbitrary
but the cross-over time whenγ goes over from being small to
being large should preferentially be chosen as a function of
the correlations between forecast variables and measurement
data. The function used here is:

γ (t) = γ0exp

{
1

1

(
|AC(0)|

|AC(t)|
−1

)}
. (15)

Hereγ0 is a small positive scalar and AC is an anomaly cor-
relation AC(t) =

∑
p〈XVp〉/(σXσVp ) (Van den Dool, 2006).

The constant1 is a tolerance percentage of correlation loss
in the sense that, if the anomaly correlation AC(t) decreases
by an amount1 from its value at time zero, the corrected
forecast will become strongly biased towards the solution
X0

C . Note that, at time zero,γ (0) = γ0. We choose in our
simulationsγ = 10−4 and1 = 0.5% andβ = βEV (as will
be defined later in Eq. (24) for the EVMOS technique).

One may come up with choices forγ different from
Eq. (15). For example, we can chooseγ (t) = γ0e

t/τ where
γ0 is again a small positive constant andτ is a constant
which characterises the time when the correlations between
the forecast and the measurement start to vanish strongly. In
the same line, another candidate could be the threshold func-
tion γ (t) = γ0+2(t −τ)/γ0 with 2 the Heaviside function.

Finally, the new TDTR method fulfils criteria (i), (ii) and
weak criterion (iii). Note that it is possible to tune the
Tikhonov regularization scheme in such way (by means of
γ andβ0) as to fulfil also criterion (iii). However, in that
case, one must bias the regression coefficients towards other
coefficients on which no information is available, so these
must be chosen with some arbitrariness.

3.3 Total least-square (TLS)

The total least-square (TLS) method was introduced as a
method to correct OLS to take into account the errors in the
forecast model (Golub and Van Loan, 1996). Therefore, the
cost function to be minimized is a function of bothεX and
εV of Eqs. (2) and (3) (Van Huffel and Vandewalle, 1991):

JTLS(β,ξ) =

〈
P∑

p=1

w2
p

(
Vp −ξp

)2
+

(
X−

P∑
p=1

ξpβp

)2〉
.

(16)

Here the weight factorswp are constants which do not de-
pend on the coefficientsξp or βp. After minimizing Eq. (16)
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with respect to the variablesξp, one gets a cost function
which only depends on the valuesβp:

JTLS(β) =

〈
(X−XC)2〉

1+
∑

p(βp/wp)2
. (17)

After minimization with respect toβp, one gets an exact so-
lution for the regression problem (Van Huffel and Vande-
walle, 1991):

β =

(
VT V −µ2W−2

)−1
VT X, (18)

whereµ is the lowest singular value of the composite ma-
trix [V;X] andW = diag(w1,...,wP ). The variability of the
corrected forecast is then given by:

σ 2
XC

= 〈XXC〉+(σ 2
X −〈XXC〉)

(∑
p1

(βp1/wp1)
2

)
, (19)

and:

MSE(TLS)=

(
1+

∑
p1

(βp1/wp1)
2

)
(σ 2

X −〈XXC〉). (20)

Two weaknesses of TLS may be pointed out. First, from
Eq. (16), it is clear that, since the different predictors may
have different physical units, appropriate estimates of the
weight factorswp prior to regression are indispensable. A
second weakness of TLS lies in the fact that the regression
estimates become meaningless once a predictorVp is uncor-
related with the observationX. For instance, in the case of re-
gression with one predictor one finds thatβ ∝ 1/〈V X〉 which
diverges as the correlation vanishes. It follows also that TLS
can sometimes fail in satisfying criterion (i). Note that meth-
ods exist for TLS to deal with multicollinearity (Van Huffel
and Vandewalle, 1991). However, we will not address them
here. For the numerical analysis in Sect.4 we takewp = 1
for all predictor indicesp. TLS then minimizes the sum of
distances between the data points and the regression line (see
Fig. 1).

3.4 Error-in-Variable method (EVMOS)

Recently a new regression method, called EVMOS was in-
troduced for post-processing ensemble forecasts (Vannitsem,
2009). The cost functionJEV takes into account the sum of
errors in the forecast variables

∑
pβpεV,p and the errors in

the measurement variableεX (see Fig. 1 for a visual interpre-
tation):

JEV(β,ξ) =

〈(
XC −

∑
p ξpβp

σXC

)2

+

(
X−

∑
p ξpβp

σX

)2〉
.

(21)

Minimization of Eq. (21) with respect toξp amounts to a cost
function which is a function ofβ only:

JEV(β) =

〈
(X−XC)2

〉
σ 2

X +σ 2
XC

. (22)

Further minimization yields for each predictor indexp:∑
p1,p2

βp1βp2cXp1cXp2

(
ρp1p2 −2ρpp2

)
= −σ 2

X. (23)

Hereρp1p2 = 〈Vp1Vp2〉/(cXp1cXp2) andcXp = 〈VpX〉. This
nonlinear problem has a solution:

βp,EV =
σX

cXp

 ∑
p1

(
ρ−1

)
pp1√∑

p1,p2

(
ρ−1

)
p2p1

. (24)

The solution forβp for up to two predictors was already
given in Vannitsem (2009). Note that we provide the details
of the derivation in Appendix A.

Using now the solution Eq. (24), it is straightforward to
derive that the variance of the corrected forecast is exactly
the same as the one of the measured data:

σ 2
XC

= σ 2
X. (25)

This equation is valid at all times and, therefore, satisfies cri-
terion (iii) (see Eq. (4)). The MSE becomes:

MSE(EV)= 2

σ 2
X −σX

√∑
p1,p2

(
ρ−1

)
p2p1

. (26)

One can also make the EVMOS approach robust against
multicollinearity by replacingVp → Vp +εp in Eq. (21) with
εp a noise term with zero mean and standard deviationγ ,
the latter being a small positive constant. After averaging out
the noise terms, one arrives at a new cost function which is
minimized by the solution:

βp =
σX

cXp

 ∑
p1

[
(ρ +γ I)−1

]
pp1√∑

p1,p2

[
(ρ +γ I)−1

]
p2p1

. (27)

In practiceγ is very small, but still sufficiently large for
the variance of the regression coefficients to be sufficiently
small. In conclusion, EVMOS is a method which satisfies all
proposed criteria.

3.5 Geometric Mean (GM)

The geometric-mean (GM) method with one predictor was
introduced by Teisser (1948) and minimizes a cost function
which is a sum of triangular areas|εXεV |/2 whereεX andεV

are the distances from the observation point to the regression
line parallel to theX-axis and theV -axis, respectively (see
Fig. 1). Draper and Yang (1997) generalized this method to
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incorporate multiple predictors. Here we introduce a differ-
ent approach for such generalization which is still reducible
to a weight-free least square problem and satisfies criterion
(iii).

The GM approach is introduced in order to overcome one
of the main disadvantages of the methods discussed so far
which account for both forecast and observation error: for
each observation, the associated penalty in the cost function
consists of asumof squared errorsεX andεV , normalized
using appropriate weight factors. For TLS these are the con-
stantswp and for EVMOS,σ−1

X andσ−1
XC

. Therefore, those
approaches strongly depend on the weight factors. The GM
method with one predictor assists in minimizing the sum of
triangular areas where the triangles are formed by connect-
ing the fitted line with the measurement point. We extend this
approach to more than one predictor by taking the geometric
mean of the triangular areas|εXεV,p|/2 for each predictor
indexp. The GM cost function then becomes:

JGM(β) =

〈
P∏

p=1

∣∣∣∣∣(Vp −ξp

)(
X−

P∑
p1=1

ξp1βp1

)∣∣∣∣∣
1/P〉

. (28)

In order to obtain the value ofξp, a projection into the plane
formed by theX-axis and theVp axis should be performed
such thatξp = (X−

∑
p1 6=pVp1βp1)/βp. Substitution leads

us to the least-square expression:

JGM(β) =

〈
(X−XC)2〉∣∣∣∏pβp

∣∣∣1/P
. (29)

Minimization of Eq. (29) with respect toβp gives:

−2PβpcXp

(
1−

∑
p1

ρpp1cXp1βp1

)
=

〈
(X−XC)2

〉
. (30)

The minimization problem can also be solved by an itera-
tive numerical method such as the one explained in the Ap-
pendix B.

From Eq. (30), one can derive that the variance of the pre-
dictand is the same as the one of the measurement variable:

σ 2
XC

= σ 2
X. (31)

As was true for the EVMOS approach, this equation is valid
at all times and GM, thus, satisfies criterion (iii). Also, the
MSE after optimization satisfies:

MSE= 2(σ 2
X −〈XXC〉). (32)

In case of one predictor, the solution to Eq. (30) yields
β = σX/σV which makes it fully equivalent to the EVMOS
approach. Thus, EVMOS with one predictor can be consid-
ered the minimization solution to a triangle problem. Note
also that, in case of one predictor, the GM problem reduces
to the one of Draper and Yang (1997).
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Fig. 2. The short-time mean square error (MSE) evolution for the
Lorenz model with a small model error (δr = 2.5×10−3) and with
5× 105 ensembles of 500 members. The lines indicated with “1
predictor” and “4 predictors” apply to all regression methods except
for GM and EREG II. The numbers indicated after GM and EREG
II are the predictor numbers.

3.6 Best-member regression (EREG I and EREG II)

Recently a new approach of ensemble regression was pro-
posed by Unger et al. (2009). The authors show that, if all
ensemble members are equally apt at being the best, that is,
the closest to reality, and, if a linear relationship exists be-
tween the best member and the real data, then the regression
coefficient of the OLS can be found using the ensemble mean
instead of each ensemble member separately.

Consider a measured path of variableX for which mod-
elling has resulted in an ensemble ofK uncorrected fore-
castsV k

1 (t) (k = 1,...,K). The ensemble consists of model
runs with the same or different models, starting with slightly
different initial conditions. We defineF now as the aver-
age over the ensemble members of the uncorrected forecast,
or, F =

∑
kV k

1 /K. In order to calculate the regression co-
efficient, we apply OLS usingF instead ofV1 as the model
predictor. Minimization of the OLS cost function yields:

βEREG=
〈FX〉

〈F 2〉
, (33)

These regression coefficients are then applied to each ensem-
ble member to yield the best member or EREG I predictand:

XC,I = βEREGV1. (34)

From Eq. (33) it is clear that, as is valid for OLS, the vari-
ance of the corrected forecast vanishes for long lead times
and EREG I will, therefore, not satisfy criterion (iii). How-
ever, as was proven in Unger et al. (2009), the damping to-
wards zero of this variance is slower than in the case of OLS.
In addition, the authors define an EREG II forecastXC,II

which accounts for the lack of spread around the regressed
valueXC,I by adding artificially a Gaussian noise term with
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Fig. 3. The long lead time mean square error (MSE) evolution for
Lorenz model withsmall model error (δr = 2.5×10−3) and with
5×105 ensembles of 500 members. The number after the regression
method denotes the predictor number.

varianceσ 2
X −σ 2

XC,I
, satisfying criterion (iii). However, such

random noise may destroy physically-relevant statistical in-
formation of the error statistics. As will be shown in the
next section, at intermediate time-scales EREG II may have
a MSE which is larger than the one of the uncorrected fore-
cast. Note that the use of more than one predictor can be
straightforwardly implemented in the EREG methods as for
OLS.

4 Numerical results

We address the usefulness of the different regression meth-
ods in the context of a low-order system by focussing on the
statistical features of the associated error distributions. We
use the well-known Lorenz 1963 model describing thermal
convection:

ẋ =σ(−x +y), (35a)

ẏ =rx −y −xz, (35b)

ż =xy −bz. (35c)

Here the dot denotes the derivative with respect to time,x is
the rate of convective turnover, andy andz quantify the hor-
izontal and vertical temperature variation, respectively. The
parameter set is fixed to(σ,r,b) = (10,28,8/3) such that the
reference system exhibits chaotic behaviour. The model dif-
fers from reality by introducing a model error which we take
to be the positive biasδr to the (reduced) Rayleigh numberr.
For thesmallmodel-error experiment a biasδr = 2.5×10−3

is introduced while for thelarge model error experiment a
biasδr = 10−2 is used.

The numerical scheme is integrated using a second-order
Runge-Kutta method. An ensemble is constructed by adding
at time zero an unbiased Gaussian noise with standard devi-
ation 10−3 to all variablesx, y andz. In the experiments,
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Fig. 4. The short-time mean square error (MSE) evolution for the
Lorenz model withlargemodel error (δr = 10−2) and with 5×105

ensembles of 500 members. The lines indicated with “1 predictor”
and “4 predictors” apply to all regression methods except for GM
and EREG II.

we typically use ensembles of 500 members and averaging is
typically done over 50 000 points on the attractor. The train-
ing and verification of the regression method is performed
using two independent datasets, both of the same size.

Originally ensemble forecasts were mainly designed for
medium and long range lead times. Nowadays there is a
growing interest in using this technique at shorter time scales
to provide uncertainty information for short-range forecast-
ing (few hours up to one or two days, Iversen et al., 2010). In
the following, we, therefore, present results for the different
timescales in order to provide a global picture of the different
corrections the post-processing could provide.

We study the errors by probing the statistical properties of
one of the following error variables:

ux = x −xC,uy = y −yC,uz = z−zC,and

ur =

√
u2

x +u2
y +u2

z .

Here the indexC refers to the corrected variable. The pre-
dictors forxC are the variables(V1,V2,V3,V4) = (x,y,z,yz),
generated by different forecasts with model and initial-
condition errors and the ones foryC are obtained by perform-
ing the shiftx → y → z → x; applying again this shift gives
the predictors forzC . In the plots the number of predictors
are indicated in brackets next to the regression method.

4.1 Small model error

Let us consider first a small model errorδr = 2.5×10−3 (in
the sense that it is comparable to the initial-condition error).
Figure2 shows the time evolution of the MSE of different
regression variables at short lead times. Except for a small
time window, the MSE of GM(4) is larger than the one of the
uncorrected forecastV1. This is also the case for the MSE
of the EREG II method, but only visible at the intermediate
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Fig. 5. The mean square error (MSE) evolution for the Lorenz
model with large model error (δr = 10−2) for long lead times and
with 5×105 ensembles of 500 members.

lead times. For all other methods (OLS, TDTR, TLS, EV-
MOS and EREG I) the results depend only on the number
of predictors used and are, therefore, bundled by the lines “1
predictor” and “4 predictors”. Their resulting MSE is always
smaller than the one of the uncorrected forecast and pro-
vides a substantial forecast improvement only at the smallest
timescales where the number and the choice of predictors are
important.

GM with one predictor is exactly the same as EVMOS
with one predictor. Hence, if instead of GM(4) we would
have used GM(1), the results would be indicated by the “1
predictor”-line in Fig.2 and, thus, have a lower MSE than
GM(4). This suggests that GM is progressively degrading
when the number of predictors increases. This behaviour can
be explained as follows: assume that we apply GM regres-
sion with P − 1 predictors and continue by adding a new
predictorVP which is totally uncorrelated to all other pre-
dictors and to the observation. Then one expects that the
regression coefficientβP associated with this new predictor
equals zero. However, from Eq. (30) it can be shown that
βP ∝ (2P 〈V 2

P 〉)−1/2. The fact thatβP is generally nonzero
could also be suspected from the cost function (29) which di-
verges if a regression coefficient vanishes. Therefore, adding
an uncorrelated predictor introduces an instability. Note that
higher-order moments of the error distribution are not well
corrected at short lead times, whatever the regression tech-
nique used.

At the intermediate lead times there is a fast increase of
the MSE as a direct consequence of the chaotic nature of
the system (Lorenz, 1963). The timescale involved is deter-
mined by the inverse of the dominant Lyapunov exponent. At
these lead times no improvements with respect to the original
forecast variableV1, are achieved by any regression method
and the same is true for higher moments of the error distribu-
tion. Whereas OLS, TDTR, TLS, EVMOS and EREG I give
a MSE equal to the one of the uncorrected forecast, GM(4)
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Fig. 6. The distributions of the error variableux of the Lorenz
model with large model error (δr = 10−2) andwithout initial con-
dition error, att = 0.12,0.2,0.3,1. The lines indicated with “1 pre-
dictor” and “4 predictors” apply to all regression methods except
for GM and EREG II. The results are generated using 2×106 en-
sembles.

and the EREG II yield a MSE which is larger. Therefore,
GM(4) and EREG II are not well-suited for use at intermedi-
ate lead times.

Figure 3 shows the evolution of the MSE for long lead
times when the errors become large. Large differences be-
tween the regression methods are visible. As mentioned
before, the MSE of TLS gives unrealistic results once the
correlations between the observationX and the predictors
vanish. According to weak criterion (iii), the MSE of the
EVMOS, TDTR, EREG II and GM(4) forecasts converges
to the correct value 2σ 2

X at long lead times, but before the
asymptotic saturation, the MSE of GM(4) and EREG II is
still larger than the one of the uncorrected forecast. The MSE
of OLS and EREG I, on the other hand, is too low by a factor
of two as the variance of the corrected forecast vanishes.

At the intermediate times, a fast increase is present for all
moments of the error distribution, giving rise to a power-law
error distributionP(uX) for large values of the error such that
P(ux) ∝ u−ν

x with some positive scalarν. Note that a similar
behaviour is also present forP(ur). These power tails are
not affected by the different regression methods.

4.2 Large Model Error

The MSE forδr = 10−2 is plotted in Fig.4 as a function of
time for short and intermediate lead times. It is seen that all
regression methods, except GM(4), provide substantial cor-
rections to the model error at short lead times.
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Fig. 7. The distributions of the error variableuz of the Lorenz model
with large model error (δr = 10−2) and without initial condition
error, att = 0.12,0.2,0.3,1. The lines indicated with “1 predictor”
and “4 predictors” apply to all regression methods except for GM
and EREG II. The results are generated using 2×106 ensembles.

As for small model errors the amplitude of the corrections
obtained by the post-processing progressively decreases.
Moreover, both EREG II and GM(4) yield an even higher
MSE than the one of the uncorrected forecast. Note that the
increase of model errors expands the interval during which
GM(4) effectively corrects the forecast. In Fig.5, we dis-
play the MSE for long lead times. As compared to the case
of small model errors, the error saturation now sets in earlier
and the result for the EREG I forecast is now closer to the
one of OLS.

4.3 Evolution of error distribution

Having looked so far at its second moment, we consider now
the evolution of the full error distributions of the original and
corrected forecast. In Figs.6 and 7, the error distribution
evolution ofux anduz in the absence of initial condition er-
rors are plotted. As mentioned earlier, for all methods except
for EREG II and GM(4) the quality of regression depends
almost solely on the number of predictors.

At time t = 0.12 the regression distribution forux (Fig. 6)
with one predictor is peaked close to the centre. The double-
peak feature of the corrected forecast seems to disappear at
t = 0.2, but appears back again for longer lead time. With
four predictors multiple peaks are still present, but the distri-
bution is well centred around zero. At a later time (t = 1.), all
regressed distributions except for EREG II are close to each
other, all featuring a multiple-peak structure. The EREG
II distribution is by construction a smoother version of the
EREG I distribution (here indicated by “1 predictor”) and
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Fig. 8. The distributions of the error variableux of the Lorenz
model with small model error (δr = 2.5× 10−3) and with initial
condition errors, att = 0.12,0.2,0.3. The lines indicated with “1
predictor” and “4 predictors” apply to all regression methods ex-
cept for GM and EREG II. The results are generated using 5×105

ensembles of 500 members.

tends to be Gaussian-like at all lead times. Such broadening
leads to a loss of the statistical information contained in the
error distribution. At short times EREG II features a smaller
MSE than the one of the uncorrected forecast. However, at
longer lead times (t > 0.2) the broadening of the distribution
produces errors with magnitudes larger than the one present
in the uncorrected forecast. At timet = 1 the error distribu-
tion of EREG II is almost flat with much larger values than
the uncorrected forecast. Note that similar results are ob-
tained for other magnitudes of the model error and for the
distributions ofuy .

The probability distributions ofuz in Fig. 7 obtained with
one predictor removes, to a great extent, the systematic bias
of uz. The “4 predictor” case, on the other hand, also reduces
the variance of the error distribution.

Figure8 displays the results using the same model config-
uration butwith initial-condition errors. It is clear that the
sharp peaks present in the uncorrected forecast of Fig.6 are
now strongly smoothed out, but their positions are well pre-
served. The double-peak structure of the distributions after
regression, however, seems to have disappeared. As a result
of the chaotic nature of the system, the error distributions at
time t = 1 with and without initial condition errors are very
much alike.

In case of nonzero initial-condition errors the qualitative
difference between the EREG I and EREG II error distribu-
tions are small at the shortest three lead times. This is due to
the fact that, by definition, the error distribution of the EREG
II method is a smoothed version of the EREG I distribution,
which here is a Gaussian-like distribution. However, at long
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Fig. 9. Ensemble variance (spread) and mean square error of the
ensemble mean of the uncorrected forecastV1 against corrected
forecasts produced by different regression methods as a function
of time, generated using the Lorenz model with large model error
(δr = 10−2) and averaged over 5×105 ensembles of 500 members
each. Note that the EREG II ensemble variance and mean square
error of the ensemble mean are identical.

lead times, due to the large noise variance used to generate
the EREG II forecast, the MSE of EREG II is well beyond
the uncorrected forecast, leading to an almost flat unrealistic
distribution.

5 Ensemble features

As pointed out in the Introduction, the main reason for look-
ing at alternative linear post-processing is to investigate the
possibility of post-processingensembleforecasts. One im-
portant reason for the use of ensemble forecasts is that it pro-
vides one with an estimate of the forecast uncertainty. In this
section we explore, using numerical experiments, how the
relationship between the ensemble spread and forecast ac-
curacy is affected by post-processing. We compare first the
average ensemble error with the average ensemble spreads,
and we proceed by considering the relation between error
and spread of each ensemble separately.

One requirement for a good ensemble forecast is to have a
mean square error of the ensemble mean equal to the ensem-
ble variance (e.g. Leutbecher and Palmer, 2008). In Fig.9 the
error of the ensemble mean is compared with the ensemble
variance. The corresponding quantities for the uncorrected
forecast are also displayed using green symbols. Except for
EREG II, regression does not affect the ensemble variance
of the uncorrected forecast at short lead times. The error dy-
namics of the ensemble mean, on the other hand, is similar to
the mean square error evolution of all ensemble members as
shown in Fig.4. Note that such regressions give rise to en-
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Fig. 10. Log-log plot of the ensemble spread-error correlation
against time for short time scales. The spread is the square root
of the ensemble variance and the error is the ensemble average of
ur . The results are generated using the Lorenz model with large
model error (δr = 10−2) and averaged over 2×105 ensembles of
500 members each. The perfect-model result is obtained without
model error.

sembles which remain underdispersive except for the EREG
II ensemble. Due to the unbiased noise used to construct the
EREG II ensemble, the MSE of the ensemble mean of EREG
I and EREG II are identical. The gain of ensemble variance
without loss of accuracy of the ensemble mean constitutes
the most interesting feature of EREG II but it is obtained at
the expense of an increase of the overall ensemble member
error as shown in Fig.4 and a broadening of the error distri-
bution (e.g. Figs.6 and8). In agreement with our previous
results, at long lead times when the errors are saturated, the
average ensemble variance converges to the error of the en-
semble mean for EREG II, EVMOS, TDTR and GM ensem-
bles.

We study now in what sense the ensemble spread can be
considered a measure of the actual error and how it is affected
by post-processing. Figure10 shows the Pearson correlation
between ensemble spread and ensemble error. The ensem-
ble spread refers to the square root of the ensemble variance
and the error is the root-mean-square errorur over all en-
semble members. In Grimit and Mass (2007) these were
found adequate variables for a correlation study where it was
also pointed out that the correlations are intimately related to
the variance of the ensemble spread. Figure10 focuses on
the shortest timescale for the perfect-model ensemble (us-
ing no model error and the correct initial-condition distribu-
tion), the model ensemble with large model error (V1) and
the corrected ensemble using OLS, EVMOS and EREG II.
Initially the correlation is low (around 0.1) due to a small
standard deviation of ensemble spread, which is about ten
times smaller than the average ensemble spread. One can
even observe that the perfect model error-spread correlation
is initially smaller than all others. At a timescale of about 0.1,
however, post-processing is found to substantially increase
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Fig. 11. Scatterplot of spread against error of 10 000 ensembles at
t = 0.2. The spread is the square root of the ensemble variance and
the error is the ensemble average ofur . The results are generated
using the Lorenz model with large model error (δr = 10−2) using
ensembles of 500 members each. The perfect-model result is ob-
tained without model error.

the correlation. We illustrate this in Fig.11 with scatterplots
of spread against error for 10 000 ensembles att = 0.2. The
strong spread-error correlation for the perfect model is obvi-
ous from a clustering of dots along the diagonal. On the con-
trary, the imperfect-model ensembles are strongly dispersed.
The post-processing procedures are capable of strongly re-
ducing the errors such that a great deal of spread-error cor-
relation is recovered. Note that the addition of random noise
of the EREG II method amounts to a shift of the ensemble
cloud along the diagonal.

The correlations at intermediate and long timescales are
plotted in Fig.12. At intermediate timescales the spread-
error correlation is large as the standard deviation of ensem-
ble spread is now on average ten times larger than the average
ensemble spread. Even though the spread-error correlation
of the uncorrected and the EVMOS ensembles are approx-
imately equal to the one of EREG II, the associated errors
and spreads strongly differ. This is illustrated in Fig.13 by
scatterplots att = 2. The uncorrected and EVMOS ensem-
ble clouds are much alike but the EREG II cloud is shifted
along the diagonal, a transformation which preserves the lin-
ear correlation. Note also the enlarged scale of the EREG II
plot. Finally, due to the error saturation, a progressive cor-
relation decrease sets in for all ensembles at lead timest = 5
(see Fig.12). Remarkably, the OLS and EREG II correla-
tions are distinctly smaller than the ones of the uncorrected
and EVMOS ensembles. Att = 15, the variance of ensemble
spread for all except the EREG II ensembles is still signifi-
cant as suggested in Fig.14.
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Fig. 12. The spread-error correlation against time for intermedi-
ate and long times. The spread is the square root of the ensem-
ble variance and the error is the ensemble average ofur . The re-
sults are generated using the Lorenz model with large model error
(δr = 10−2) and averaged over 2×105 ensembles of 500 members
each.

PERFECT MODEL V : UNCORRECTED FC

EVMOS (4) EREG II (1)

SPREAD

SPREAD SPREAD

SPREAD

ERROR ERROR

ERROR ERROR

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 1 2

1

2

1

Fig. 13. Scatterplot of spread against error of 10.000 ensembles at t=2. The spread is the square root of the

ensemble variance and the error is the ensemble average of ur . The results are generated using the Lorenz

model with large model error (δr=10−2) using ensembles of 500 members each. The perfect-model result is

obtained without model error. Note the scale of the EREG II plot which has a scale which is twice as large.

32

Fig. 13. Scatterplot of spread against error of 10 000 ensembles at
t = 2. The spread is the square root of the ensemble variance and the
error is the ensemble average ofur . The results are generated using
the Lorenz model with large model error (δr = 10−2) using ensem-
bles of 500 members each. The perfect-model result is obtained
without model error. Note the scale of the EREG II plot which has
a scale which is twice as large.

Figure 15 displays the smoothing effect of EREG II by
showing the time evolution of thex-variable of ten ensem-
ble members (full lines), along with the measured trajectory
(dashed line). All members are initialized around the ini-
tial position(x,y,z) = (−11.84,−4.484,38) on the attractor,
very close to two bifurcating trajectories and using an ini-
tial condition spread of 10−1. The ensuing separation of the

www.nonlin-processes-geophys.net/18/147/2011/ Nonlin. Processes Geophys., 18, 147–160, 2011



158 B. Van Schaeybroeck and S. Vannitsem: Post-processing through linear regression

PERFECT MODEL V : UNCORRECTED FC

EVMOS (4) EREG II (1)

10

0 6 12

20

30
1

10

0 6 12

20

30

10

0 6 12

20

30

10

0 6 12

20

30

SPREAD

SPREAD SPREAD

SPREAD

ERROR ERROR

ERROR ERROR

Fig. 14. Scatterplot of spread against error of 10.000 ensembles at t= 15. The spread is the square root of

the ensemble variance and the error is the ensemble average of ur . The results are generated using the Lorenz

model with large model error (δr=10−2) using ensembles of 500 members each. The perfect-model result is

obtained without model error.

33

Fig. 14. Scatterplot of spread against error of 10 000 ensembles at
t = 15. The spread is the square root of the ensemble variance and
the error is the ensemble average ofur . The results are generated
using the Lorenz model with large model error (δr = 10−2) using
ensembles of 500 members each. The perfect-model result is ob-
tained without model error.

ensemble members into two separate regions is well repro-
duced by EVMOS (as well as TDTR), but due to the random
noise this feature is no longer present for lead timest > 5 in
the EREG II forecast. The absence of the bimodality of the
EREG II distribution for the variablex at lead timet = 5.29
is clearly seen in Fig.16.

6 Conclusions

Several linear regression methods have been tested in the
context of post-processing of (ensemble) forecasts: classi-
cal linear regression, total least-square regression, Tikhonov
regularization, error-in-variable regression, geometric mean
regression and best-member regression. These approaches
were evaluated based on three criteria (see Table 1): a cor-
rection of the forecast error, the ability to cope with multi-
collinearity and the reproduction of the observed variability.

The regression schemes have been tested in the context of
the low-order Lorenz 1963 system by introducing both model
and initial-condition errors. Three timescales may be distin-
guished. First, for short lead times, strong error improve-
ments and an increase of ensemble spread-error correlations
may be obtained in case of large model errors. Except for
GM, skill at these timescales does not so much depend on
which regression method is applied, but rather on how many
and which predictors are selected. Second, at intermediate
times, when the error (and all the moments of its distribu-
tion) undergoes fast growth, all regression methods, except
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Fig. 15.Time evolution of the variablex for ten ensemble members
(full lines) using the Lorenz model generated by the uncorrected
forecastV1, EREG II and EVMOS(4). The blue dashed line indi-
cated the evolution of the observation. All ensemble members are
initialized using an initial condition spread 10−1 around the starting
point (x,y,z) = (−11.84,−4.484,38).
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Fig. 16. Probability distributions of the variablex at timet = 5.29
for the ensembles generated as specified in Fig.15. We used 107

ensemble members. It is clear that the EREG II distribution is not
bimodal as are the others.
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for EREG II and GM, yield the same result. EREG II and
GM provide less favorable results. Third, for long times,
when the correlation between the measurement variable and
the predictors is almost zero, strong differences between the
regression methods are visible. TLS yields a wild and un-
physical forecast; the OLS and EREG I corrected forecasts
converge towards climatology.

The EREG II method has the benefit to account for the
lack of variability which is featured in the EREG I method
and, thus, satisfies criterion (iii). Also it provides a mean en-
semble spread which is very close to the MSE of the ensem-
ble mean, a property often required in an operational con-
text. However, all this is done by construction: random noise
is addeda posteriori to the EREG I forecast. This implies
that some essential statistical information of the underlying
physics is lost, such as the specific multiple-peak structure
of the error distribution and the non-Gaussian nature of the
probability distribution of the variables themselves. A simi-
lar behaviour is encountered in an operational context when
EVMOS was compared with the non-homogeneous Gaussian
regression method, the latter smoothing out the multimodal
structure of the forecast (Vannitsem and Hagedorn, 2011).
Also, at long lead times EREG II, as well as OLS and EREG
I, has a reduced spread-error correlation as compared to the
uncorrected and the EVMOS forecast.

Another technique exists in the literature based on the po-
tential relation between the different observables effectively
measured (Perfect Prog, Klein et al., 1959; Wilks, 2006).
This approach does not suffer from the convergence towards
climatology like OLS. However, the correction obtained with
this technique is useless for sufficiently small forecast error.
We have performed a preliminary exploration of this aspect
by applying Perfect Prog for the Lorenz system. For each
variable X, Y, Z, we have built a Perfect Prog relationship
based on the two other variables of our reference system. In
this case, Perfect Prog becomes useful when errors reach val-
ues of the order of 1/5 of the saturation error variance shown
in Fig. 5.

The techniques as presented here can be extended to com-
bine multimodel forecasts (e.g. Peña and Van den Dool,
2008). A straightforward way would be to use the different
forecasts as predictors. Regression corresponds to a method
for “weighting” the different models. However, since many
such models may contain the same information, one must be
sure that the regression method is able to cope with multi-
collinearity. TDTR and EVMOS can fulfil this requirement.

Appendix A

A1 Derivation of EVMOS solution

In this Appendix, we provide additional calculations con-
cerning the EVMOS method as introduced in Sect.3.4. The
EVMOS cost functionJEV of Eq. (21) can be rewritten as a

sum over all forecasts:

JEV(β,ξ) =

∑
n

(∑p(Vnp −ξnp)βp

σXC

)2

+

(
Xn −

∑
p ξnpβp

σX

)2
. (A1)

First, we minimize with respect toξnp. This yields:

∑
p

βpξnp =
σ 2

X

∑
pβpVnp +σ 2

XC
Xn

σ 2
X +σ 2

XC

, (A2)

and substitution in Eq. (A1) gives:

JEV(β) =

∑
n

(
Xn −

∑
pβpVnp

)2

σ 2
X +σ 2

XC

.

The variance of the predictandσ 2
XC

can be written as∑
p1,p2

βp1〈Vp1Vp2〉βp2. Minimization with respect toβt

then gives:(∑
p

〈VtVp〉βp −〈VtX〉

)(
σ 2

X +

∑
p1,p2

βp1〈Vp1Vp2〉βp2

)

=

(∑
p

〈VtVp〉βp

)(
σ 2

X +

∑
p1,p2

βp1〈Vp1Vp2〉βp2

−2
∑
p

〈XVp〉βp

)
. (A3)

We introduce now the vectorβ with componentsβp =

βpcXp wherecXp = 〈XVp〉, and the matrixρ with compo-
nentsρp1p2 = 〈Vp1Vp2〉/(cXp1cXp2). After some calculation,
Eq. (A3) reduces to:

β
T
ρβ −2

(
1T

·β
)
β

T
ρ = −σ 2

X1, (A4)

with 1 a vector with all itsP components equal to one. One
can check that the following solution satisfies Eq. (A4):

β =
σX

(
ρ−1

·1
)√

1T ·ρ−1 ·1
, (A5)

which is identical to the solution given in Eq. (24). Note that
the expression under the square-root sign is always positive
sinceρ is a correlation matrix and is, therefore, positive def-
inite, as well as its inverse.

Appendix B

B1 Numerical method for nonlinear GM regression

The GM cost function Eq. (29) can be minimized using the
iterative Gauss-Newton methods for least-square problems
(see for example Björck, 1996). First of all, the cost function
can be written as a function of the matrixr :

JGM(β) = rT
· r , (B1)
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wherer(β) = (X −Vβ)/N andN (β) =

∣∣∣∏pβp

∣∣∣1/2P

. Then

given at stepk the valuesr k and the regression coefficients
βk, the coefficients at stepk+1 by assuming small changes
are searched1β = βk+1

−βk. Therefore,rn(β) at stepk+1
becomes:

r
(
βk+1

)
≈ r

(
βk
)
+Jk1β, (B2)

where the matrixJnp = ∂rn/∂βp, evaluated at stepk. Substi-
tuting Eq. (B2) into the cost function Eq. (B1) at time step
k+1 and expanding to second order yields:

J k+1
GM (β) ≈ rT

· r +1βT JT J1β +2rT J1β, (B3)

where again, all is evaluated at time stepk. Minimization
with respect to1β gives:

1β = −(JT J)−1JT r . (B4)

So far, the derivation was general. Substituting now the cost
function of the GM approach, one gets:

1βp = βp(A−1B)p, (B5)

where:

Ap1p2 =Ĉp1p2 +

(
β − Ĉ ·1

)
p1

+

(
β − Ĉ ·1

)
p2

2P

+
σ 2

X +1T
· Ĉ ·1−2(1T

·β)

(2P)2
,

B =
β − Ĉ ·1

2P
+

σ 2
X +1T

· Ĉ ·1−2(1T
·β)

(2P)2
,

where we introduced the notationŝCp1p2 = ρp1p2βp1
βp2

,
βp = βpcXp and1 is a vector containingP times the scalar

one. We may now calculateβk+1
= 1β +βk and continue

this procedure to time stepk+1 until convergence is reached.
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