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Abstract: Salivarian trypanosomes are extracellular parasites affecting humans, livestock and game
animals. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense are human infective sub-
species of T. brucei causing human African trypanosomiasis (HAT—sleeping sickness). The related
T. b. brucei parasite lacks the resistance to survive in human serum, and only inflicts animal infections.
Animal trypanosomiasis (AT) is not restricted to Africa, but is present on all continents. T. congolense
and T. vivax are the most widespread pathogenic trypanosomes in sub-Saharan Africa. Through
mechanical transmission, T. vivax has also been introduced into South America. T. evansi is a unique
animal trypanosome that is found in vast territories around the world and can cause atypical human
trypanosomiasis (aHT). All salivarian trypanosomes are well adapted to survival inside the host’s
immune system. This is not a hostile environment for these parasites, but the place where they
thrive. Here we provide an overview of the latest insights into the host-parasite interaction and the
unique survival strategies that allow trypanosomes to outsmart the immune system. In addition, we
review new developments in treatment and diagnosis as well as the issues that have hampered the
development of field-applicable anti-trypanosome vaccines for the implementation of sustainable
disease control.

Keywords: trypanosomiasis; adaptive immunity; parasitemia control; infection

1. Introduction

Trypanosomiasis is a general name for diseases caused by trypanosomes, which af-
fect both humans and animals, hampering the socioeconomic development of numerous
endemic countries. Trypanosomes are protozoan parasites mostly transmitted by blood-
feeding vectors. For some trypanosomes, transmission requires that part of the life cycle is
completed inside the tsetse fly. This is the case for all T. brucei subspecies and is also the
most efficient mode of transmission for T. congolense and T. vivax. The latter can, however,
also be passed through mechanical transmission, as is the case for T. evansi. A unique
situation occurs in case of T. equiperdum, which is closely related to T. evansi, but sexually
transmitted between equines and hence does not fit the sensu stricto definition of a sali-
varian trypanosome. There is only one salivarian trypanosome that is considered to be a
true zoonotic parasite, i.e., Trypanosoma brucei rhodesiense. This East-African trypanosome
has an extended mammalian host reservoir that includes both game and domestic ani-
mals [1–3]. This makes the full eradication of HAT (human African trypanosomiasis) nearly
impossible [4]. T. b. rhodesiense causes an acute, most often deadly, form of HAT. Due to its
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high-virulence characteristics, this form of sleeping sickness only accounts for a mere 2% of
the total number of HAT cases. This means that the Trypanosoma brucei gambiense parasite,
occurring in West and Central Africa, is responsible for the remaining 98% of all HAT cases.
This parasite induces a much more chronic infection. With the human population being the
main T. b. gambiense reservoir, these infections should be considered as an anthroponosis,
rather than a zoonosis. The elimination of T. b. gambiense HAT as a neglected disease threat
to sub-Saharan Africa is set to be attained by 2030 [4]. Trypanosoma evansi is, in general, not
considered to be a human parasite, although several human infections have been reported
in recent years as ‘atypical’ human trypanosomiasis [5]. The main reservoir for this parasite
consists of domestic and game animals, making it a potential zoonotic threat to a large
group of humans that live mainly in rural Asian areas, where close contact with cattle, and
in particular water buffalo, still occurs on a daily basis [6].

Salivarian trypanosomes evolved to survive in a mammalian blood and lymph envi-
ronment. Hence, they acquired the capacity to escape various immune defense mechanisms.
At the same time, the basic principles of biological evolution result in the fact that try-
panosomes adapt to interactions with a host, avoiding collateral damage. Indeed, with the
host surviving for a prolonged period of time, the parasite ensures maximal probability of
transmission. This favorable relationship is seen in several trypanotolerant African mam-
mal species [7]. Interestingly, salivarian trypanosomes remain extracellularly throughout
their life cycle. The latter is different from most other protozoan parasites that ensure
optimal survival by hiding inside host cells. This means that trypanosomes are contin-
uously exposed to attacks by the host innate immune system, as well as the adaptive
humoral immune system. To thrive in this environment, salivarian trypanosomes have
acquired multiple evolutionary strategies to evade and even destroy the host immune
system. If infections are allowed to go on for prolonged periods of time, they will result in
the death of susceptible host animals [8]. It is, however, rare that animals will succumb to
excessive parasitemia levels in the blood or lymph fluid. Most often, AAT-associated death
is the result of uncontrolled opportunistic infections, metabolic disorders such as inflam-
matory cachexia, or even neurological complication, particularly in case of T. equiperdum.
During HAT, crossing of the blood-brain barrier will lead to the initiation of a lethal neu-
ropathogenic stage of infection, the so-called second stage of infection, and reason behind
the name ‘sleeping sickness’ [9]. To understand the immunopathology of trypanosomia-
sis, most experimental studies have focused on mouse T. b. brucei infections. While this
approach limits the operational risks for researchers, the working model has been shown
to reflect the most basic characteristics of infections with T. b. rhodesiense, T. b. gambiense
and T. evansi. One limitation in this case is that mouse infections do not naturally result
in cerebral complications. A second limitation could be that most experimental mouse
research is conducted with trypanosome stabilates that give ‘good’ infections under labora-
tory conditions. This means that work is being conducted with mouse-adapted parasites
that might have acquired characteristics that are no longer reflecting the dominant features
of non-adapted parasites. This is particularly the case for T. vivax research, where field
isolates are normally not able to infect laboratory mice. Hence, virtually all published
host-parasite interaction data in this case are derived from a single isolate that was adapted
to laboratory rodents several decades ago, i.e., the Y468 clone that originated from a field
sampling in Nigeria [10].

While preventive vaccination for trypanosomiasis would be the only sustainable
way to bring both HAT and AAT under control on a worldwide scale, no such approach
exists today [11]. For this reason, disease control relies on the screening and diagnosis of
patients, in combination with treatment. Vector control has been added to this strategy in
several geographic locations, but this can only be successful when the vector range and
reservoir is limited [12,13]. As failed anti-trypanosome vaccine experiments have difficulty
passing through the traditional peer-review publication pipeline, conclusions about the
reasons behind the lack of any successful strategy have to be deduced from the mere lack of
publications showing the translation of so-called promising laboratory results into real field
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applications [8]. In contrast, there are multiple data available showing that trypanosomiasis,
in particular in case of T. evansi, results in a general state of immunosuppression as well
as the abrogation of commercial veterinary vaccine efficacy, and this for vaccines that are
totally unrelated to the trypanosome infection itself [14]. All these effects are related to the
general detrimental activity of trypanosomes on the host B and T cell compartment, an
activity that is part of the parasite defense against the host antibody immune system.

2. The Life Cycle of Trypanosomes

The life cycle of salivarian trypanosomes has to be split into two categories: one
that requires a developmental stage in the definitive host, the tsetse vector, where sex-
ual reproduction occasionally does occur, and the other in which transmission occurs
through mechanical passage, through contaminated mouth parts of insects or other blood-
consuming animals such as vampire bats. As virtually all human infections are the result of
an infected tsetse bite, this transmission mode and the associated trypanosome life cycle has
traditionally received the most attention. Both T. b. rhodesiense and T. b. gambiense need the
African tsetse to complete their life cycle (genus Glossina, with ‘tsetse’ itself meaning ‘fly’ in
the Tswana language of southern Africa) [15]. Alternation between two completely distinct
host species requires that parasites undergo differentiation in the mammalian bloodstream,
resulting in the presence of both long slender parasites (i.e., proliferative form), and the
short stumpy parasites (i.e., the non-proliferative form). When taken up by the tsetse
during a blood meal, it is the short stumpy form that allows the continuation of the life
cycle. While confronting the digestive system of the fly, parasites must resist a strongly
alkaline enzyme-rich environment. This is achieved by rapid differentiation into procyclic
trypomastigotes, and subsequent multiplication by binary fission. After penetration of
the peritrophic matrix that covers the gut epithelium, parasites migrate to the ventriculus
where they transform into long and short epimastigotes through asymmetrical division.
Short epimastigotes can migrate to the tsetse salivary glands, where they differentiate into
infective metacyclic trypomastigotes that can undergo meiotic division [16]. The latter
is not an obligatory step to complete the life cycle, but it allows the parasite to increase
genetic variability [17,18]. The full tsetse cycle takes about three weeks to be completed [19]
(Figure 1). Interestingly, saliva-stage parasites are able to decrease the tsetse feeding effi-
ciency due to alterations in the salivary gland composition. Indeed, in non-infected flies,
salivary anti-coagulation and anti-platelet aggregation activity ensures that blood flows
unobstructed during feeding. These activities are suppressed in trypanosome-infected
flies, hampering the feeding efficiency and increasing the feeding frequency. This increases
parasite transmission chances [20]. Tsetse saliva also accelerates T. brucei infection by
inhibiting bite site inflammation [21,22].

After successful transmission, metacyclic parasites that enter the mammalian blood
circulation will use a surface glycoprotein called the metacyclic variant surface glycoprotein
(mVSG) as a first defense against the host antibody attack [23]. However, as trypanosomes
have a very limited repertoire of mVSG encoding genes, surface recognition by host
antibodies will quickly improve. Therefore, prolonged survival requires a new adaption
approach by the parasite and proliferating long slender bloodstream trypanosomes use a
much wider range of bloodstream form VSGs [23]. As T. brucei parasites have access to a
battery of more than 1000 VSG genes and pseudo-genes, expressed from approximately
15–20 expression sites, this strategy has been suggested to allow the trypanosome to outrun
the host antibody response for an ‘eternal’ period of time [8,11,24]. One interesting issue
here is that if the parasite would be ‘too’ successful in evading immune control, this
would lead to the unfortunate death of its host. In order to avoid this, trypanosomes
have developed quorum sensing mechanisms that have been studied best for T. brucei.
This system regulates the transition from the dividing long slender bloodstream forms
to the non-dividing short stumpy forms [25]. It involves the oligopeptidase transporter
TbGPR89 as a ‘sensor’ for peptide breakdown products, an activity attributed to the action
of proteases secreted by the parasite [26]. Besides limiting peak parasite levels, this system
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also prepares the parasite for transition to the tsetse vector [27]. Finally, quorum sensing
most likely also monitors the inflammatory state of the host, contributing to parasitemia
peak-height control in terms of host pathology development [28,29].
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Figure 1. The life cycles of salivarian trypanosomes. For most HAT- and AT-associated trypanosomes, the tsetse (fly)
serves as a central transmission vector. Most of the developmental stages of the trypanosome, as well as occasional sexual
reproduction, take place inside the fly, making it the definitive host for the trypanosome. This is the case for all T. brucei
sub-species, T. congolense and T. vivax. While T. vivax is also passed through mechanical transmission, involving mostly
non-tsetse biting flies, such transmission is much less effective in the case of T. congolense. T. evansi is mainly transmitted
by mechanical transmission through a wide host reservoir, while the closely related T. equiperdum is a sexually remitted
parasite of equines.

Compared to the available knowledge of the T. brucei life cycle, the cycle of other
salivarian trypanosomes is less well documented [30–32]. Interestingly T. congolense is
more effective in establishing tsetse infections compared to T. brucei, with the parasite
being particularly effective in reaching the proboscis of the fly. Here, trypomastigote–
epimastigote transformation occurs. Hence, while both T. brucei and T. congolense are
transmitted through the same vector, there are differences in the way the two trypanosomes
infect and occupy the body of the tsetse. It is possible that T. brucei adopted a survival
strategy in the salivary gland, as this niche would not be occupied by the much more
efficiently growing T. congolense parasites. Finally, meiotic reproduction in the tsetse vector
has also been reported to occur in T. congolense [33].

Because of its mechanical transmission, T. evansi has a much simplified life cycle. Here,
the long slender morphology is the only form seen in the bloodstream of the mammalian
host. In fact, it is accepted by many that T. evansi is a ‘variant’ of T. brucei, having lost
the kinetoplast DNA (kDNA), which is essential for development in the gut of the tsetse
fly [34,35]. One could assume that the loss of the capacity to infect the tsetse vector would
have resulted in a detrimental evolutionary step for the trypanosome, but that is obviously
not the case. Instead, T. evansi very efficiently relies on fly-free transmission. Indeed, non-
tsetse mediated spread has allowed the parasite to move and be transported to most parts
the world, aided by the fact that many infected animals hardly show any symptoms [36].
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T. evansi is now found in various northern and southern regions of Africa, South and
Central America, the Middle East, China, the Indian subcontinent, Southeast Asia, parts of
Oceania and occasionally even in Europe [6,37–39] (Figure 2).
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Figure 2. Salivarian trypanosomes have a vast near-worldwide distribution. Tsetse-transmitted T. brucei parasites occur
only in sub-Saharan Africa, with the human-infective T. b. gambiense being present in West and Central Africa, while
T. b. rhodesiense is restricted to East Africa. T. congolense has a similar sub-Saharan Africa distribution. Due to the possibility
of mechanical transmission, T. vivax has a wider distribution and occurs in sub-Saharan Africa as well as South America.
T. evansi has an even wider geographic distribution, including locations on four different continents. T. equiperdum has a
rather unique distribution pattern as it does not use insect vector transmission as a means of propagation.

The main host reservoir depends mostly on local agriculture conditions and includes
horses, camels and buffaloes. Wildlife such as capybaras and deer can also serve as the host
reservoir as well as cattle, pigs, goats and dogs [36,37]. Of note is that its global distribution
allowed T. evansi to be historically discovered as the first pathogenic trypanosome, respon-
sible for the animal disease ‘surra’ in India [37]. This ‘first’ discovery has more recently
triggered a debate on nomenclature of salivarian trypanosomes as a whole [40].

3. Trypanosomiasis and the Human Biochemical Defense System

T. b. rhodesiense HAT is a rare disease that recently has only been reported in six East
African countries [4,41]. However, there is a general impression that current local cases
are being underreported as T. b. rhodesiense HAT accounts for two-thirds of all tourist
HAT cases [42]. T. b. gambiense HAT was still reported in 15 sub-Saharan countries in
2018 [4,41] (Figure 2). HAT infections are characterized by a first hemolymphatic phase,
with parasites invading the host’s circulatory and lymphatic systems, causing immune
dysfunction. Initial infection is mainly characterized by fever, weakness, enlarged lymph
nodes and joint pains. Once the parasite passes through the blood-brain barrier, the dis-
ease enters the meningo–encephalitic ‘second stage’, causing neuropsychiatric symptoms
such as daytime sleepiness and nocturnal insomnia as a result of the fragmentation of the
circadian rhythm [43,44]. These symptoms precede the death of the victim, if left untreated.
Symptoms of both T. b. rhodesiense and T. b. gambiense HAT are very similar, with the main
difference being that it generally takes much longer for the disease to progress into the
second stage in cases of T. b. gambiense HAT. As already outlined, humans are resistant
to T. b. brucei, T. congolense and T. vivax, and in most cases even T. evansi. This is due to
an intrinsic ‘innate’ biochemical resistance that is present in human serum (as well as the
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serum of gorillas and certain old-world monkeys such as baboons). This activity is embod-
ied by two factors called trypanolytic factor 1 (TLF1) and TLF2 [45,46]. Both factors are
high-density lipoprotein complexes containing apolipoprotein A1, the primate-specific ion
channel-forming protein apolipoprotein L-1 (APOL1) and the hemoglobin binding protein
haptoglobin-related protein (HPR) [47–49]. TLF2 contains additional IgM molecules [45,50].
Although activity of TLF2 has long been known to be the major trypanolytic factor [51,52],
TLF1 is the better studied factor due to the relative ease of purification. The functional
mechanisms of both TLF1 lysis of trypanosomes in general, and the resistance of human
infective trypanosomes, has been most rigorously studied in a T. b. brucei/T. b. rhodesiense
comparison, despite T. b. gambiense HAT being obviously the most important problem for
human health. This is because the resistance mechanism of T. b. gambiense is more complex
and diverse, as outlined below. The main idea behind this innate defense interaction is
the problem the trypanosomes face during the rapid proliferation phase, i.e., the need for
uptake of host iron. This is ensured by the surface expression of a specific heterodimer sur-
face receptor consisting of the VSG-related molecules ESAG6 and ESAG7 [53,54]. However,
trypanosomes acquire additional iron through the scavenging of heme groups, abundantly
available as part of hemoglobin. This hemoglobin is often bound to other compounds,
forming complexes such as TLF1. In T. brucei, uptake of TLF1 is mediated by the specific
receptor TbHpHbR (haptoglobin–hemoglobin receptor) [55,56]. TLF2 uptake largely occurs
independent of the TbHpHbR receptor [57], but involves IgM-mediated uptake [50]. In
both cases, the central role of APOL1 is crucial for the trypanosome membrane disrup-
tions induced by normal human serum (NHS) [58,59]. Interestingly, baboon APOL1 is
much more potent than human APOL1. This results in the fact that baboon serum con-
fers resistance not only against non-human infective trypanosomes, but also the human
infective trypanosomes causing HAT [60,61]. As T. b. rhodesiense is a human pathogen,
it is resistant to the lytic action of APOL1. This property is linked to the expression of
the serum resistance-associated (SRA) protein, a molecule that can physically block the
formation of the pore-forming conformation of APLO1 inside the endocytic pathway of
the parasite [62–65]. To understand the NHS resistance of T. b. gambiense, it should first be
noted that this is not a homogenous family of parasites, but is separated into two groups.
Group 1 T. b. gambiense parasites exhibit consistent NHS resistance, show little genetic
variation within a given geographic location, and are characterized by the genetic marker
TgsGP [66]. Group 2 T. b. gambiense parasites are a much more heterogeneous group
of organisms lacking a specific marker, showing variable NHS resistance, being much
closer related to T. b. rhodesiense and T. b. brucei, and representing the zoonotic side of
T. b. gambiense HAT [5]. NHS resistance of T. b. gambiense has so far mainly been studied
in terms of TLF1 activity, with the Group 1 parasites exhibiting a reduced uptake of the
complex [67], linked to reduced expression and mutation of the HpHb-receptor [56,68–70].
While the TgsGP molecule further improves APOL1 resistance by reducing trypanosomal
membrane fluidity [71,72], a cysteine protease has been identified as a third factor con-
tributing to Group 1 T. b. gambiense NHS resistance [72]. Group 2 T. b. gambiense parasites
show a variable degree of resistance that is independent of TLF1 uptake [73]. In addition,
with TgsGP not being universally present in Group 2 parasites, and no information being
available with respect to the exact nature of the cysteine protease activity involvement
in APOL1 resistance, it is not clear if this mechanism is active in Group 2 T. b. gambiense
either. Given the dearth of data that could universally explain the TLF1 resistance of
T. b. gambiense parasites, combined with the lack of any functional data on TLF2 resistance,
it is clear that the explanation of the true nature of T. b. gambiense resistance is still awaiting
full elucidation [74].

As already outlined above, T. evansi is a mechanically transmitted animal parasite
that has the widest geographic distribution range of all salivarian trypanosomes (Figure 2).
Whether or not the infection can be considered as a zoonosis threat is a matter of debate.
There have been several case reports of atypical T. evansi human trypanosomiasis. In
none of these cases is it clear how transmission occurred, although all infections occurred
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in the vicinity of infected livestock [75]. When the first aHT case was reported in India,
susceptibility of the patient coincided with a mutation at the level of the APOL1 gene,
possibly explaining the lack of NHS trypanolytic activity [76]. A second case in Vietnam,
however, occurred in a patient with functional copies of the APOL1 gene, and normal
serum APOL1 levels [77]. This indicates that the true mechanism by which T. evansi
parasites have acquired a serum resistance mechanism still needs to be elucidated, or that
different parasites have acquired different mechanisms, similarly to the situation outlined
above with Group 2 T. b. gambiense. The latter notion could be supported by the fact
that that T. evansi parasites are actually a group of heterogeneous parasites with multiple
independent origins. They are often closely related to T. brucei parasites found in the same
geographic regions, and only distantly related to other T. evansi parasites found in more
remote locations [78,79]. Hence, more effort is required to fully understand the nature of
the trypanosome–host interplay during aHT.

4. Innate and Adaptive Immunity to Trypanosomiasis

The impact of trypanosomiasis on the host innate and adaptive immune response has
recently been reviewed in great detail at the level of both B and T cell biology and with a
link to inflammatory macrophage biology [8]. As already outlined above, trypanosomes
have adopted a system of antigenic coat variation to escape from the antibody immune
system [24]. The surface expression of a dense layer of VSGs is crucial here, as (i) it
allows regular escape from antibody attacks through epitope variation, (ii) it provides for
antibody surface clearance through lateral movement of VSG-antibody complexes towards
the flagellar pocket, where endocytosis results in surface ‘cleaning’ [80], (iii) it constitutes
a physical defense barrier, making complement-mediated attacks nearly irrelevant for
parasitemia control [81] as well as a scavenger system to prevent complement surface
fixation by VSG shedding [82], and (iv) it serves as a highly immunogenic decoy and
immunomodulatory interaction surface with the immune system that ultimately seems
to deregulate the immune system in favor of the parasite. The latter starts with the
inflammatory properties of the VSG–GPI anchor itself [83], driving early infection in the
host towards the production of IFNγ and TNF [84–86], coinciding with both macrophage
and neutrophil activation in vital organs such as the spleen and the liver [87–89]. While this
might help the host to control parasitemia through multiple immune mechanisms such as
parasite phagocytosis and parasite growth control [90,91], it also drives deregulation and
destruction of the host B cell compartment [92]. Finally, these infection-induced immune
complications result in a failure of anti-VSG recall responses as well as a failure of other
memory B cell responses [29,93]. The latter could be considered as collateral damage,
but the loss of anti-VSG memory by the host means that ‘old’ or ‘previously used’ VSG
molecules can be reused later on in infection. In addition, newly arising mosaic VSG
variants that can carry cross-reactive epitopes can also be expressed on the surface as
fully functional VSG coats [94] (Figure 3). Deregulation of the B cell compartment by
the trypanosome also requires a parasite intervention at the T cell level, as these cells
play a crucial role in the resistance to trypanosomiasis [95]. Indeed, even if antigenic
variation were to be fully efficient at the level of the surface-exposed VSG B cell epitopes,
it would only partially evade the efficiency of the hosts’ B cell immunity. That is because
more structurally conserved cryptic epitopes of the VSG will trigger the build-up of T cell
memory. Hence, persistent T cell help would readily be available for any newly arising B
cells against any newly arising VSG variant, making use of T cell receptor recognition of
conserved VSG T cell epitopes presented by the B cell MHCs [96,97]. To avoid this from
happening, trypanosomes have adopted mechanisms of T cell suppression [98,99].
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Figure 3. (A) Salivarian trypanosomes use antigenic variation of their surface coat as a first line of defense against host
antibody attack. During early infection, quorum sensing ensures that peak parasitemia does not reach lethal levels (1). After
clearance of the first variant, parasitemia is characterized by the presence of parasites expressing a novel VSG coat, usually
giving rise to several low-peak infections (2). Improved peak control results from a combination of antibody activity, innate
inflammatory responses and intrinsic quorum sensing. Subsequent parasitemia waves start to be comprised of multiple
VSG variants that occur at the same time, indicating a loss of proper antibody-mediated parasite population control. In
experimental models, infection will most often result in late-stage uncontrolled parasitemia and death (†). (B) As early
parasitemia progresses in mice, infection-associated splenomegaly results in an initial increase in organ size and cellularity
(7 dpi). By 14 dpi, spleen cell numbers usually drop and important populations such as Marginal Zone B cells start to
disappear. Organ structure is also completely destroyed. As infection progresses, most adaptive immune cell populations
collapse, while the spleen is being filled with non-immune cells such as pre-erythrocytes. This stage of spleen dysfunction
coincides with the loss of parasitemia control. The diameter of the pie-charts is representative of the total spleen numbers
during infection. Percentages of all major immune cell populations are indicated in the color-coded pie charts.
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5. Recent Advances in the Diagnosis of HAT and AT

As the clinical signs of trypanosomiasis are unspecific, the ‘only’ accepted way of
confirmed diagnosis before treatment, especially in case of human infections, is by micro-
scopic identification of the parasite. Based on general symptoms such as fever, anemia, and
hemodilution, HAT patients are often misdiagnosed as having malaria. However, correct
early diagnosis is essential for successful treatment. To improve microscopy detection,
blood analysis can be performed on the buffy coat [100]. Mini anion exchange chromatog-
raphy (mAECT) can be used to eluate parasites from blood samples, prior to microscopy
analysis [101,102]. Fluorescent dyes that intercalate nucleic acids have been shown to
improve the microscopy detection limit, but are not often used under field conditions [103].
When parasites cannot be detected in the blood, microscopy analysis of aspirate fluid from
swollen cervical lymph nodes can be used as an alternative method, while cerebrospinal
fluid can be analyzed to confirm the neurological state of the infection [42,104]. One main
issue with all the techniques mentioned here is that they are all extremely labor-intensive
when disease prevalence is low. For this reason, a number of pre-screening methods have
been developed, aiming at excluding true negative individuals. Implementation of the
card agglutination test (CATT) for the detection of T. b. gambiense more than 40 years
ago was a major breakthrough [105]. A similar test exists for T. evansi [106]. Unfortu-
nately, no equivalent test exists for the detection of T. b. rhodesiense. CATT is based on
the detection of antibodies that cross-react with particular VSG molecules, and has a high
negative predictive value (NPV) as well as high sensitivity and specificity. However, the
test has a relatively low positive predictive value (PPV), meaning that all CATT-positive
individuals require a parasitological screening, a technique that is time consuming and
requires a skilled analyst [107]. When a CATT-positive score is confirmed by microscopy,
patients undergo a ‘staging’ screening through a cerebrospinal fluid analysis. This invasive
technique is absolutely required for the correct choice of treatment [104].

In recent years, multiple efforts have been undertaken to transform CATT into a
more user-friendly lateral flow format that can be used as a point-of-care (POC) diagnostic
tool [108–112]. Important to note is that all these tests are based on antibody detection,
which is a measurement of exposure, and not infection. As such, it is unlikely that any
of these approaches will have a drastically improved PPV. Hence, today there is still
a need for the implementation of diagnostic tools that can detect the parasite, or com-
ponents released/secreted by the parasite. While PCR is obviously suitable for direct
pathogen detection, this technique has limitations in resource-poor field POC settings.
Here, loop-mediated isothermal amplification (LAMP) technology appears to be easier
to implement [113–115]. The development of easy-to-use high-PPV diagnostic tools for
trypanosomiasis is crucial, especially now that disease prevalence is in decline. A second
factor that has to be taken into account is that when the human reservoir is being con-
trolled, the relative importance of zoonotic transmission increases. Hence, it is clear that
large herd screenings of asymptomatic animals that serve as an everlasting reservoir for
human infective parasites will become more important [116]. This means that in order to
implement a sustainable control of worldwide trypanosomiasis, the development of tools
for the detection of animal trypanosomiasis needs to receive more attention. In this context,
the targeting of T. evansi is of utmost importance. So far, diagnosis of this parasite has
heavily relied on the detection of one specific VSG, i.e., the very common RoTat1.2 VSG,
by either antibody detection or by molecular biology methods [106,117]. Unfortunately,
this makes the test unsuitable for T. evansi detection in regions where RoTat1.2-negative
T. evansi Type A or B parasites occur [78,118]. For the detection of T. evansi Type B, a highly
sensitive LAMP assay has been developed [119]. One of the most recent developments
for the detection of T. evansi is the implementation of recombinase polymerase amplifi-
cation (RPA) combined with lateral flow detection [120]. Here, the detection of T. evansi
is achieved through isothermal DNA amplification at 39 ◦C, resulting in an easy-format
readout within 20 min. Finally, also for the detection of T. congolense, a rapid diagnostic
POC tool has been developed, this time based on nanobody technology [121]. This assay
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detects pyruvate kinase that is secreted by metabolically active trypanosomes and hence
can be used as a high PPV test for the detection of active parasitemia, and as a test-of-
cure after anti-trypanosome drug therapy [121]. Active trypanosome case detection using
nanobody-based technology has also been proposed by targeting the secreted T. congolense
glycolytic enzyme aldolase [122–124], as well as the T. evansi-secreted enzyme enolase [125].
In all these settings, nanobodies derived from single-chain camelid antibodies have proven
to be successful in binding target epitopes that remain accessible even in the presence of an
anti-parasite immune response. Due to the unique configuration of nanobodies, combined
with their small size, they can avoid epitope binding competition with infection-induced
host antibodies (Figure 4).
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Figure 4. Lateral flow assays (LFAs) are ideal as point-of-care (POC) tools. In the case of nanobody-based LFAs, the test
line consists of a printed line of highly specific nanobodies (Nbs) that can capture their target even in the presence of host
antibodies that bind the same antigen (Ag). This can be achieved due to the unique nature of heavy-chain camelid antibodies
(HcIgG) that bind their target in the absence of the light chain that is present in conventional antibodies (IgG). Detection of a
parasite Ag can be done using a gold-conjugated second sandwich Nb that is pre-incubated on the conjugation pad. At
the point of sample application, the detection Nb will bind the target, and together they will migrate towards the printed
capturing line. Sandwich formation and Ag accumulation will result in the development of a red line. A second control line
is used to ensure the correct interpretation of the test results. Ag-detecting LFAs can be used as proof of infection, as well as
a test of cure. This makes the format unique compared to antibody detecting LFAs, which measure ‘exposure’ rather than
active infection.

6. Recent Advances in Treatment of HAT

For nearly a century, treatment of HAT has relied on a very limited set of drugs that all
have a string of severe negative side effects. These include pentamidine for the treatment of
first-stage T. b. gambiense HAT, and nifurtimox or eflornithine for the treatment of second-
stage T. b. gambiense HAT. Suramin as well as melarsoprol have been used for treatment
of first-stage T. b. rhodesiense HAT. Melarsoprol, however, being an arsenical compound,
shows extreme high toxicity and severe side effects, including reactive encephalopathy
as a major fatal outcome in up to 10% of patients. Hence, in optimal circumstances, this
drug should be restricted in its use for treatment of second-stage T. b. rhodesiense infection
only [126]. In 2009, a new drug regimen for the treatment of second-stage T. b. gambiense
HAT was proposed, using a combination of nifurtimox and eflornithine (NECT) [127]. This
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mixed therapy reduces the complexity of the previously used eflornithine therapy. Both
drugs are provided free of charge by the WHO to endemic countries, with a kit containing
all the material needed for administration. Most recently, in 2018, fexinidazole has been
made available as an oral therapy for T. b. gambiense HAT and has been incorporated in the
WHO interim guidelines as one of the first-line treatments for HAT [128]. The drug can
also be used to cure non-severe second-stage patients [129].

Treatment of T. congolense and T. vivax animal trypanosomiasis relies in large on the
use of diminazene diaceturate, isometamidium and, unfortunately, homidium (ethidium
bromide) [130]. While diminazene diaceturate can also be used effectively for the treatment
of T. evansi infections, it has not been registered for use in humans, not even for aHT, due to
the severe side effects in the treatment in animals, including dogs [131]. Diminazene cannot
cross the blood-brain barrier, and therefore it is not effective in the case of central nervous
system infections [130]. In the absence of systematic data on aHT caused by T. evansi, there
has been no registered treatment strategy for this disease to date. However, in the cases of
aHT outlined above, a successful cure was obtained after treating with suramin [75].

7. The Lack of Anti-Trypanosome Vaccination Still Hampers Sustainable
Disease Control

There is no vaccine strategy available for the prevention of either human or animal
trypanosomiasis. Early on in trypanosome immunology research, it was discovered that the
dense surface presence of the VSG, together with the inexhaustible gene repertoire of VSG-
encoding genes, allows the parasite to escape from any major antibody attack [24]. However,
in between the VSGs, there are a number of invariant surface glycoproteins present that
have been the target of several alternative vaccination approaches, although none of these
have yet resulted in any field application [11]. A major hurdle in the development of
anti-trypanosome vaccines is that salivarian trypanosomes have acquired the ability to
cause significant and permanent damage to the mammalian humoral immune system.
In experimental T. brucei models, this has been shown to result in the non-specific loss
of vaccine-induced B cell memory responses as well as T cell memory [93,132]. It is not
clear whether or not this pathology affects human infections, as this has not been properly
addressed by any field study. The only data available to date relates to the fact that
T. b. gambiense HAT results in the significant reduction of anti-measles host antibodies in
individuals vaccinated against this non-related infectious disease. Upon recovery after
HAT treatment, these anti-measles antibody titers remained low, but above the theoretical
threshold considered ‘protective’ in the test used [133]. Whether or not this assessment
is correct has not been verified, but given the previously published warning that HAT
results in false-positive scores in HIV antibody diagnostic tests [134], it could well be that
the detrimental effect of HAT on human vaccine memory is greater than so far reported.
However, based on experimental mouse studies, it can be anticipated that the damage done
to the human immune system would be far greater in infections with high parasitemia
levels, i.e., T. b. rhodesiense infection. Unfortunately, no human data is available from
which to confer the validity of the observations obtained in virulent mouse trypanosome
infection models. As for the negative impact of T. evansi on the mammalian immune
memory compartment, all data available is derived from animal infection models. Here it
has been shown that the parasite undermines memory responses of several non-related
vaccines [14,135,136]. Hence, it could be expected that also in atypical T. evansi human
trypanosomiasis, the destruction of the host B cell compartment could be one of the
detrimental outcomes of infection. With respect to T. congolense and T. vivax infections,
field data on the detrimental effect of infection on vaccine-induced memory is lacking, but
experimental models for both infections showed the same severe detrimental impact on
the host B cell compartment [94,95].

8. Conclusions

In the past 10–15 years, a tremendous effort has been made to bring T. b. gambiense HAT
under control and eliminate the public health threat of the disease in sub-Saharan Africa.
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This achievement is the result of an international collaboration not just between affected
countries, but also with research communities within universities, partner organizations
such as DNDi (Drugs for Neglected Diseases initiative), FIND (Foundation for Innovative
New Diagnostics), BMGF (Bill & Melinda Gates Foundation) and numerous national
research and grant-providing organizations from European countries and the USA. If
efforts are sustained, it appears that transmission of Group 1 T. b. gambiense HAT can be
brought to a minimum by 2030. However, it would be a serious mistake to assume that this
is the end of HAT as a disease. Indeed, neither T. b. rhodesiense nor Group 2 T. b. gambiense
HAT have received the same level of attention, and the zoonotic nature of these infections
makes them much harder to control. Control of T. congolense AAT and T. vivax AT is even
further from being realized. Finally, while T. evansi AT is the most widespread form of
animal trypanosomiasis, spanning five continents, the aHT disease variant is rare and
as such has not been receiving any serious attention. However, with the ever-increasing
geographic presence of T. evansi, this form of trypanosomiasis could increase in the future,
unless its animal reservoir is being tackled in a systematic manner. Without the availability
of a field-applicable anti-trypanosome vaccine, this will be a very arduous task that will
require continued dedication and international partnerships between countries where
the disease is endemic and countries at risk of importing the disease through traffic of
seemingly healthy, but infected, animals.
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