Introduction:

X-ray μ CT is an increasingly popular tool to determine the density distribution and morphology of granules in the pharmaceutical dosage forms.

The focus of this project is to monitor the dissolution process of a 3D printed tablet by conducting in-situ experiments using dynamic X-ray μ CT (4D- μ CT). In-situ monitoring of the dissolution process in combination with the visualization of the internal structure at microscale will help to get a better understanding of drug release mechanisms from different processing techniques.

Objectives:

- Develop a flow-through cell method to mimic the in vivo dissolution process.
- Identify a suitable contrasting agent that doesn't affect the drug release process.
- Investigate the correlation between drug release calculated from in-vitro dissolution test and the results from 4D-µCT.

CsCl as a contrast agent:

To investigate the impact of CsCl brine on the dissolution rate of API from the tablets, in-vitro dissolution test (paddle method) was performed: one using CsCl as dissolution medium and the other in a phosphate buffer.

¹ Radiation Physics Research Group, Department of Physics and Astronomy, Ghent University, 9000 Gent ² Centre for X-ray Tomography (UGCT), Ghent University, 9000 Gent, Belgium ³ Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, 9000 Gent, Belgium Contact: Niloofar.MoazamiGoudarzi@UGent.be

Development of flow through cell method for in-situ visualization of dissolution processes in solid dosage forms Niloofar Moazami Goudarzi^{1,2}, Aseel Samaro³, Chris Vervaet³, Matthieu N Boone^{1,2}

Intact Matrix

Design and validation of flow cell:

a) A custom flow-through cell was designed and developed. This system was used at the EMCT rotating μCΤ gantry scanner of UGCT [1] to obtain these results.

µCT results:

X-ray µCT scans were acquired at the dry state and different time steps of the dissolution, with a temporal resolution of 2 minutes for a full rotation, and a spatial resolution of 9.95 μ m.

Wetted Matrix

Before the dissolution process

Different flow rates were used, and the flow rate of 16 ml/min shows an analogous release profile to the dissolution in-vitro test.

Cross sectional view of sample at different time dissolution of steps process.

Black (1): Pores filled with air Light gray (2): Pores filled with CsCl brine Gray (3): Wetted Matrix Dark gray (4): Intact matrix

Every time step, 5 ml of solution was taken and analyzed by UV spectrometer to measure released API. Based on X-ray images, average gray value of tablet materials (segmented in the dry sample) was determined for different time steps and compared to the released API.

Conclusion:

The results illustrate the feasibility of the developed method. The advantage of the proposed method is that it doesn't further sample preparation need affect the internal which may structure.

Acknowledgment:

The Ghent University Special Research Fund (BOF-UGent) is acknowledged for BOF.24Y.2018.0007

References:

[1] Dierick, Manuel, et al. "Recent micro-CT scanner developments at UGCT." Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2014 Apr 1;324:35–40