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a b s t r a c t 

The rising field of Topological Data Analysis (TDA) provides a new approach to learning from data through 

persistence diagrams , which are topological signatures that quantify topological properties of data in a com- 

parable manner. For point clouds, these diagrams are often derived from the Vietoris-Rips filtration—

based on the metric equipped on the data—which allo ws one to deduce topological patterns such as 

components and cycles of the underlying space. In metric trees these diagrams often fail to capture other 

crucial topological properties, such as the present leaves and multifurcations. Prior methods and results 

for persistent homology attempting to overcome this issue mainly target Rips graphs, which are often 

unfavorable in case of non-uniform density across our point cloud. We therefore introduce a new the- 

oretical foundation for learning a wider variety of topological patterns through any given graph . Given 

particular powerful functions defining persistence diagrams to summarize topological patterns, including 

the normalized centrality or eccentricity , we prove a new stability result, explicitly bounding the bottleneck 

distance between the true and empirical diagrams for metric trees. This bound is tight if the metric dis- 

tortion obtained through the graph and its maximal edge-weight are small. Through a case study of gene 

expression data, we demonstrate that our newly introduced diagrams provide novel quality measures and 

insights into cell trajectory inference. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

For the past decade, persistent homology [16] —the most promi- 

ently used and studied tool within the field of Topological Data 

nalysis (TDA) [6] —has led to many new applications to super- 

ised and unsupervised machine learning. Many of the data sets 

o which persistent homology has been successfully applied, were 

lready at least partially structured, in the form of a simplicial com- 

lex , i.e., a higher-dimensional generalization of a graph. Exam- 

les of these include brain networks [17] , meshes [14] , and images 

2,27] . Persistent homology then tracks topological changes over a 

ltration , i.e., a nested sequence of subcomplexes of the original 

omplex. 
� Editor: Nicolas Passat 
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In the case of point cloud data, the data is often sampled from 

 topological structure, the knowledge of which provides tremen- 

ous insight into the underlying structure or data generating pro- 

ess. However, the underlying topology is often difficult to reveal, 

ue to the high dimensionality of the data, or noise. Since they 

ack a naturally induced simplicial structure, computing persis- 

ent homology of point clouds is mostly feasible through the the 

ietoris-Rips filtration [22] . Unfortunately, this type of persistence —a 

easure of prominence or relevance of a topological feature—is of- 

en insufficient, as it merely detects gaps, cycles, voids, and higher- 

imensional holes in the model. Thus, it is impossible to distin- 

uish between point clouds sampled from a linear (‘I’-shaped) ver- 

us a bifurcating (‘Y’-shaped) topology through this method. 

We therefore develop a new foundation for learning topological 

atterns through graph approximations . These graphs will be used 

s simplicial representation of the data. As will be shown in this 

aper, they allow us to learn a wider variety of topological patterns 

n metric trees , in theory and in practice. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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.1. Contributions 

• We provide an intuitive introduction to, as well as a formal 

theoretical foundation for studying topological patterns through 

0-dimensional persistence of arbitrary graph approximations 

( Section 2 ). 
• We show under which conditions functions lead to a non- 

trivial stability result—guaranteeing that our true and empir- 

ical persistence diagram are close—for graph approximations 

( Theorems 2.1 and 2.2 ). We provide two such functions quan- 

tifying powerful topological features of metric trees: the eccen- 

tricity and normalized centrality ( Corollary 2.1 ). 
• We introduce a novel application of our signatures that goes 

beyond standard topological inference, providing novel quality 

measures and insights to the field of cell trajectory inference 

( Section 3.2 ). 
• We summarize how our method leads to and opens up new 

possibilities for learning topological patterns ( Section 4 ). 

.2. Background on persistent homology 

The concept of persistent homology has its roots in the field of 

lgebraic topology [18] . Its computation requires two things: a sim- 

licial complex K, and a filtration F defined on K. A simplicial com- 

lex can be seen as a generalization of a graph, that apart from 

-simplices (nodes) and 1-simplices (edges), may also include 2- 

implices (triangles), 3-simplices (tetrahedra), and so on. A sim- 

licial complex K is furthermore closed under inclusion, i.e., if 
′ ⊆ σ ∈ K then σ ′ ∈ K. A filtration F on K is then a nested se- 

uence K 0 ⊆ K 1 ⊆ . . . ⊆ K N = K of subcomplexes of K. Fig. 2 a illus- 

rates these concepts by means of a point cloud data set D sampled 

rom the unit circle. Here, the filtration equals the Vietoris-Rips fil- 

ration VR 

k (D ) , defined as the nested sequence 

VR 

k 
ε (D ) := { S ⊂ D : | S| ≤ k + 1 ∧ diam (S) ≤ ε} )

ε
, 

arameterized by the time ε ∈ R ≥0 . The Vietoris-Rips complex 

R 

k 
ε (D ) contains all simplices in D of diameter less than or equal 

o ε, and of dimension less than or equal to k . If k = 1 , we simply

efer to the complex as the (Vietoris-) Rips graph . 

The number of k -dimensional holes in a complex is expressed 

y the Betti number βk . In this sense, a 0-dimensional hole is 

 ‘gap’, and β0 corresponds to the number of connected compo- 

ents, β1 corresponds to the number of loops, β2 to the num- 

er of voids, and so on. Persistent homology quantifies topological 

hanges through the birth and death of these holes across the fil- 

ration. E.g., in Fig. 2 a, every data point corresponds to the birth 

f a connected component at the start of the filtration. By increas- 

ng ε, points get connected to each other, resulting in the death 

f many of these components. From around ε = 0 . 75 , the complex 

onsists of one connected component, as well as a loop represent- 

ng the underlying cyclic structure. 1 Increasing ε further, this loop 

ets ‘filled in’ through the 2-simplices, resulting in its death. The 

dea behind persistent homology and persistence is that holes per- 

isting for a long range of consecutive values ε represent signif- 

cant features of the topology underlying the point cloud. This is 

llustrated by the persistence diagrams D k (one for each considered 

imension k ∈ { 0 , 1 } of holes) in Fig. 2 b. This is a multiset contain-

ng a point (b, d) for each hole that was born at ε = b and died

t ε = d. By definition, d = ∞ if a hole never dies. These points

re usually displayed at the top of the diagram. Furthermore, by 

onvention, a persistence diagram contains every point on the di- 

gonal. 
1 Though many such loops exist, they are all equivalent, representing the same 

lass in the homology group associated to this complex [18] . 

o

h

m

d

86 
To understand one of the most important concepts in TDA (and 

n this paper), i.e., stability , we first need to introduce some defini- 

ions [1,22] . 

efinition 1.1. Let D and D 

′ be two persistence diagrams. The bot- 

leneck distance between them is defined as 

 b 

(
D , D 

′ ) := inf 
ϕ 

sup 

x 
‖ x − ϕ(x ) ‖ ∞ 

∈ R ≥0 ∪ {∞} , 
here ϕ ranges over all bijections from D to D 

′ , and x ranges 

ver all points in D. Since the diagrams include the diagonal, 

D| = |D 

′ | = | R | . Thus, d b 

(
D, D 

′ ) is well-defined. 

efinition 1.2. Let (X, d X ) and (Y, d Y ) be two metric spaces. A cor-

espondence is a set C ⊆ X × Y, such that for any x ∈ X, there exists

 ∈ Y such that (x, y ) ∈ C, and vice versa. Given ε ∈ R 

+ , a corre-

pondence C is an ε-correspondence if (x, y ) , (x ′ , y ′ ) ∈ C implies that

 d X (x, x ′ ) − d Y (y, y ′ ) | ≤ ε. The Gromov-Hausdorff distance d GH 

(X, Y )

s the infimum of the ε for which there exists an ε-correspondence 

etween (X, d X ) and (Y, d Y ) . 

Stability ensures that if two finite metric spaces are close, their 

ersistence diagrams obtained through the Vietoris-Rips filtrations 

re close as well. More formally, if (X, d X ) and (Y, d Y ) are two fi-

ite metric spaces, then [11] 

 b 

( Dgm k ( VR (X )) , Dgm k ( VR (Y ))) ≤ 2 d GH 

(X, Y ) . 

Stability results formulated through the ground truth topol- 

gy also exist for the Vietoris-Rips filtration, but their formulation 

ends to be more complicated [22] . 

.3. Related work 

Persistent homology has already been used extensively in 

un)supervised machine learning problems. In this context, it can 

e regarded as a feature engineering method, where its resulting 

ersistence diagrams correspond to topological signatures , encoding 

tructural information at varying scales in the data. Our purpose is 

ot to outperform these methods, but rather to extend them to be- 

ome applicable to a wider variety of data sets for which learning 

opological patterns remains an important challenge—in our case—

etric trees . 

The main novelty of our introduced stability result 

 Theorem 2.2 ) is its generality in terms of the type of graph

pproximation, instead of its generality in terms of the dimension 

f persistent homology. In case of metric trees, we will show that 

he restriction to 0-dimensional persistence is indeed sufficient for 

evealing multifurcations and leaves. However, the restriction to 

articular graphs such as Rips graphs is often unfavorable in case 

f non-uniform density across our point cloud. 

That being said, it is worth pointing out the differences of our 

ork to the following. 

TDA through functions 

The idea of TDA through functions equipped on point cloud 

ata, and in particular, the eccentricity function ( Corollary 2.1 ), is 

ot novel. Indeed, Carlsson [7] previously discussed that (regular) 

ersistent homology through the Vietoris-Rips complex may miss 

ut on finding meaningful structure in many examples of point 

loud data. He proposed a refinement under the name of func- 

ional persistence . The idea is to apply regular persistence to a sub- 

et of the data, obtained through thresholding according to a user 

efined function. E.g., by applying regular persistence to a subset 

f points sufficiently far away from the center of the point cloud, 

ne may be able to deduce a flare-structured topology. However, 

is introduction to functional persistence is rather brief, and this 

ethod mainly serves as a visual inspection tool for individual 

ata sets. 
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Fig. 1. Point cloud data sets sample from (Left) an H-structured and (Right) an 

X-structured topology. The ground truth models are shown in red. As the middle 

branch of the H-structured topology is short relative to the amount of noise in the 

data, its underlying topology becomes difficult to distinguish from an X-structured 

topology. The purpose of our current work is to theoretically and practically quan- 

tify that these patterns are similar. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Persistent homology through the Vietoris-Rips filtration of a point cloud data 

set D . The two highly elevated points in the persistence diagram identify the pres- 

ence of one connected component (H0) and one cycle (H1). 
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Chazal et al. [10] and Oudot [22] extend persistent homology of 

etric spaces to metric spaces equipped with a real-valued func- 

ion f . They vary the Vietoris-Rips complex VR 

k 
ε (D ε ) alongside the 

ublevel sets D ε := { x ∈ D : f (x ) ≤ ε} on which the simplicial com-

lexes are constructed. Both the simplicial complexes as well as 

he data on which they are constructed are indexed through the 

ame parameter ε. Although their provided stability result applies 

o persistent homology in any dimension [22, Th. 7.11] it is re- 

tricted to Rips based filtrations. Furthermore, this method might 

nly make sense for discovering topological features other than 

omponents and cycles whenever the distance metric on D and the 

unctional values f take on a similar scale. In this case, topologi- 

al features will generally appear less prominent, as higher weight 

dges will be added at later times ( Fig. 3 c). Furthermore, inclusion 

f all vertices would then mean the simplicial complex has to be 

rown until all pairs of nodes are connected by an edge, making 

his method computationally less efficient. 

Finally, Carrière et al. [9] present a stability result for sub- 

evel filtrations constructed from the ground truth and (a pair of) 

ips graphs constructed from a point cloud approximation. In par- 

icular Lemma 3.3 by [9] is closely related to our main result 

 Theorem 2.2 ), and our restriction to Lipschitz functions is inspired 

y this result. The exact differences between both results will be 

ointed out in Remark 2.2 , after our main theorem. 

Persistent local homology 

The idea of persistent local homology [3] is to infer topological 

roperties of stratified spaces (including metric trees), by study- 

ng persistent homology of the data after removing a neighborhood 

 r (x ) of a particular point x . This is very similar to the concept of

unctional persistence, as discussed above. Since it is rather diffi- 

ult to pinpoint a single suitable radius r, this parameter is often 

aried as well, resulting in a 1-parameter family of persistence dia- 

rams also known as a persistence vineyard . Unfortunately, the cur- 

ent theoretical analysis of this method is again restricted to par- 

icular filtrations, such as Rips based filtrations or filtrations based 

n the Delaunay triangulation , the latter of which is challenging 

o compute in higher dimensional data [4] . Furthermore, existing 

mplementations for computing persistence vineyards are limited 
87 
e.g., the Dionysus 1 library in C ++ ), and well-studied methods 

or comparing persistence vineyards (similar to the bottleneck dis- 

ance) are lacking. 

Mapper 

The Mapper algorithm mainly serves as a data visualization 

ethod, and has been successfully applied to metric trees [21] . The 

lgorithm itself does not directly provide topological signatures, as 

e do in this paper. 

Mapper is quite sensitive to its parameters [19] . Some work 

o overcome this issue has been performed by Dey et al. [13] , 

nder the name of multiscale Mapper . The idea is to track the 

hanges in homology of the output of the Mapper algorithm across 

 varying parameter sequence. However, similar to persistent ho- 

ology through the Vietoris-Rips filtration, this method only tracks 

hanges in the number of connected components or cycles in the 

lobal model. 

The result of Mapper is commonly a graph. Hence our main re- 

ult ( Theorem 2.2 ) can also be applied to study how well these 

raphs preserve topological information of metric trees. In line 

ith this approach, prior results do allow one to quantify the de- 

ree of (in)stability of topological features (including leaves) ob- 

ained, in case the used clustering method (one is required by 

he Mapper algorithm) coincides with obtaining connected com- 

onents in Rips (sub)graphs [8] . 

Metric graph reconstruction 

The case studies in our paper are graph (tree)-structured topolo- 

ies , previously studied by Aanjaneya et al. [1] . This work strongly 

onnects to ours on a theoretical level, as we also formally de- 

ne the metric distortion we obtain through our graph approxi- 

ation through the concept of ε-correspondence. The major dif- 

erence is that we do not require any assumptions on the underlying 

opology to provide our theoretical guarantee , which is the bound on 

he distance between our true and empirical topological signature 

 Theorem 2.2 ). By contrast, Aanjaneya et al. [1] require that the 

etric distortion is bounded by a function of the shortest branch 

ength of the underlying topology to guarantee its reconstruction. 

or example, one cannot guarantee the correct reconstruction of an 

-structured topology if the noise in the data is too high relative 

o the length of middle branch. In this case, it may become dif- 

cult to distinguish the underlying topology from an X-structured 

opology, as illustrated in Fig. 1 . 

. Persistent homology through graph approximations 

Fig. 3 b shows that ‘regular’ (0-dimensional) persistent homol- 

gy of the point cloud data set D shown in Fig. 3 a misses out

n capturing any topological information other than the under- 

ying model being connected. We can however equip D with a 

unction f that expresses how far a point is from the data cen- 

er. To this end, we first constructed a 10NN graph G from D, and 

hen computed its negative eccentricity function f = −E G , where 

 G := max x ∈ D d G (·, x ) . After rescaling both f and the shortest path

istance metric d G on G to [0, 1], the Rips based signature pre- 

ented by Chazal et al. [10] for the metric space (D, d G ) equipped

ith resulting normalized centrality function C G := 

E max 
G 

−E G (·) 
E max 

G 
−E min 

G 

now 

aptures some additional structural information. The three ‘leaves’ 

resent in the topology underlying D correspond to the three most 

levated points in the diagram ( Fig. 3 c). However, the components 

epresenting these leaves merge quickly before reaching the cen- 

er of bifurcation, due to the addition of higher weight edges that 

re not present G . In contrast to this, (0-dimensional) persistent 

omology of the sublevel filtration (G [ { v ∈ V (G ) : −E G (v ) ≤ t} ]) t∈ R 
asily identifies the presence of three leaves. Here, G [ U] denotes 

he subgraph of G induced by the set of nodes U ⊆ V (G ) . 
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Fig. 3. (0-dimensional) Rips based signatures for a point cloud data set D, and a 

custom defined filtration on a 10NN graph G constructed from D . The lower and 

upper limits of the diagram axes are defined through the first and last ‘time’ a sim- 

plex is added to the complex, respectively. 
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Fig. 4. In terms of Theorem 2.1 , these examples show that a ( ε-)correspondence 
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of ε), while simultaneously, max { a, b} can be arbitrarily high. 
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The purpose of this section is to provide a more formal theo- 

etical foundation for this last type of persistence through graph 

approximations’. The term ‘approximations’ is to be loosely inter- 

reted, in the sense that we are given some graph that is meant 

o capture topological information of the data. This can be a Rips 

raph, k NN graph, minimum spanning tree, or any type of neigh- 

orhood graph constructed from the data. Furthermore, this may 

lso be the result of a (graph) model inference method such as the 

apper algorithm. 

In Section 2.1 , we will illustrate the concept of stability through 

raph approximations, and discuss the main obstacles for introduc- 

ng an immediate stability result. In Section 2.2 , we prove a new 

tability result for metric trees. 

.1. Stability through graph approximations 

The following theorem states that for any correspondence C be- 

ween the points in a metric space (X, d X ) and nodes in a graph G,

nd functions f : X → R , g : V (G ) → R , one may bound the bot-

leneck distance between the diagrams for f and g by a value 

 = max { a, b} , measuring how well f and g preserve the connec- 

ivity in their respective sublevel filtrations under C. 

heorem 2.1. Let (X, d X ) be a connected metric space, G a graph, f :

 → R a tame function, and g : V (G ) → R . Let a, b > 0 , and suppose

 ⊆ X × V (G ) is a correspondence with the following properties: 

• for all t ∈ R , if x ∼ y in { z ∈ X : f (z) ≤ t} and (x, u ) , (y, v ) ∈ C,

then u ∼ v in G [ w ∈ V (G ) : g(w ) ≤ t + a ] , 
• for all t ∈ R , if u ∼ v in G [ w ∈ V (G ) : g(w ) ≤ t ] and (x, u ) , (y, v ) ∈

C, then x ∼ y in { z ∈ X : f (z) ≤ t + b} , 
where · ∼ · denotes that two points are connected by a path in 

heir respective space (topological or graph), and G [ U] denotes the 

ubgraph of G induced by the nodes U ⊆ V (G ) . Then 

 b 

(
Dgm 0 

(
F f (X ) 

)
, Dgm 0 

(
F g (G ) 

))
≤ max { a, b} , 

here by F f (X ) (resp. F g (G ) ), we denote the sublevel filtration ({ x ∈
 : f (x ) ≤ t} ) t∈ R (resp. (G [ { v ∈ V (G ) : g(v ) ≤ t} ]) t∈ R ). 

roof. As most definitions in this proof are unimportant for the 

est of our paper, they will be omitted for conciseness. 
88 
First, observe that Dgm 0 

(
F g (G ) 

)
= Dgm 0 

(
F | g| (| G | ) ), where | G | 

s a geometric realization of G and | g| is obtained by extending g

n | G | through linear interpolation [15,23] . Now let T f and T | g| be

he merge trees of f and | g| , respectively [20] . Note that their ele-

ents (points) are equivalent classes. Let μ := max { a, b} , and con- 

ider the mapping 

μ : T f → T | g| : [(x, t)] T f �→ [(y, t + μ)] T | g| , 

here y is any node of G such that (x, y ) ∈ C. Also consider 

μ : T | g| → T f : [( ̃  y , t)] T | g| �→ [(x, t + μ)] T f , 

here (x, y ) ∈ C for some endpoint y of the segment in | G | includ-

ng ˜ y , for which g(y ) = | g| (y ) ≤ | g| ( ̃  y ) . It immediately follows that
μ and βμ are μ-compatible maps. Furthermore, since by assump- 

ion the time increment needed for two points to become con- 

ected in one space does not become larger for their correspond- 

ng points (under C) after an initial increment by μ, αμ and βμ

re both continuous and in particular well-defined. The result now 

ollows from [20, Th. 3] . �

Theorem 2.1 cannot yet be interpreted as a stability result. We 

ust still express how the distance between the diagrams depends 

n the closeness of (X, d X ) and G . However, even if (X, d X ) and G

re arbitrarily close in the sense of an ε-correspondence C, and f : 

 → R and g : V (G ) → R are arbitrarily well-preserved under this

orrespondence, there is generally no guarantee that the diagrams 

re close as well. This is illustrated by two example models and 

heir graph approximations in Fig. 4 . 

In the first example ( Fig. 4 a), we constructed the fully con- 

ected graph G on a translated sample D of a continuous linear- 

tructured metric space (X, d X ) . Due to the absence of curvature, 

he metric space (V (G ) , d G ) well-approximates (X, d X ) in the sense

f an ε-correspondence (we omit an actual value of ε as we be- 

ieve the concept is clear). Since G is fully connected, one con- 

ected component will be born in the filtration, and it will never 

ie. This is illustrated by the persistence diagram in Fig. 4 b, where 

e defined the filtration through the negative eccentricity function 

f G . Both for the ground truth model, as well as for G, the ec-

entricity function provides a smooth transition from the (underly- 

ng) leaves towards the center. However, the sublevel filtration for 

X, d X ) will start at two connected components, that only merge at 

he center of X . 
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The second example ( Fig. 4 c) illustrates a ‘finer’ approximation 

f (X, d X ) through the Rips graph R 0 . 1 (D ) := VR 

1 
0 . 1 (D ) constructed

rom D . We now defined a function f (resp. g) on X (resp. D ) that

alues 1 at every single point, apart from one point near the cen- 

er where it values 1. Again, the filtration for R 0 . 1 (D ) starts with

ne connected component (including all but one point), that never 

ies. The filtration for the ground truth model starts off with two 

onnected components that merge only at the center as before. 

The takeaway of the examples above, is that to ensure stabil- 

ty, we need two things. First, we need to formalize how well 

ur graph G approximates the topology of the underlying space, 

oth through the concept of ε-correspondences, as well as through 

 distance measure between nodes connected through an edge. 

iven a weighting function w : E(G ) → R 

+ , we will use the maxi-

um weight w max := max e ∈ E(G ) w (e ) for this purpose. In practice, 

 max will be low if the data is sufficiently densely sampled and G 

s a neighborhood graph. Second, the functions used to define the 

ltration must be such that if ε and w max are small, so are a and b

rom Theorem 2.1 . Inspired by Lemma 3.3 by Carrière et al. [9] , we

ill consider Lipschitz functions, where a real-valued function f on 

 metric space (X, d) is called c-Lipschitz if | f (x ) − f (y ) | ≤ cd(x, y ) .

.2. A new stability result for metric trees 

In this section, we provide two closely-related functions to en- 

ure stability for tree-structured topologies through graph approx- 

mations. These will be the (negative) eccentricity and the normal- 

zed centrality , the latter of which is scale-independent. The true 

ersistence diagrams for these functions are extremely informa- 

ive for metric trees. The birth of a component will always occur 

hrough a leaf, and its death through either a multifurcation or the 

enter of the tree ( Fig. 3 d). 

efinition 2.1. A metric tree is a path metric space (X, d X ) that is

omeomorphic to a 1-dimensional stratified space, for which there 

s a unique path between every two points. The radius of X is 

ad (X ) := min x ∈ X max y ∈ X d X (x, y ) . 

heorem 2.2. Let (X, d X ) be a metric tree, and G a positively 

eighted graph such that there exists an εX -correspondence C be- 

ween (X, d X ) and (G, d G ) . Let f : X → R , g : V (G ) → R , and ε f ∈
 ≥0 be such that for all (x, u ) ∈ C, | f (x ) − g(u ) | ≤ ε f , and f is c-

ipschitz. Then 

 b 

(
Dgm 0 

(
F f (X ) 

)
, Dgm 0 

(
F g (G ) 

))
≤ c max 

{ 

εX 

2 

,w max 

} 

+ cεX + ε f . 

roof. Since the functional distortion ε f and Lipschitz constant c

emain the same after negating both functions, it suffices to show 

hat the inequality holds for − f and −g. 

Take any (x, u ) , (y, v ) ∈ C, let P x,y ⊆ X denote the unique path

rom x to y in X, and let (u = p 0 , p 1 , . . . , p l = v ) be a shortest path

rom u to v in G . For any 0 ≤ i ≤ l, take q i such that (q i , p i ) ∈ C,

ith q 0 = x, q l = y . Now arbitrarily take t ∈ R . 

Suppose first that x ∼ y in { z ∈ X : t ≤ f (z) } . Let m i be the clos-

st point from q i on P x,y . If for any i, d X (q i , m i ) > 

3 εX 
2 , then 

 X (x, y ) = d X (x, q i ) + d X (q i , y ) − 2 d X (q i , m i ) 

< d X (x, q i ) + d X (q i , y ) − 3 εX ≤ d G (u, v ) − εX ≤ d X (x, y ) , 

 contradiction. Now since necessarily m i ∈ { z ∈ X : t ≤ f (z) } , 

(p i ) ≥ f (q i ) − ε f ≥ f (m i ) − cd X (m i , q i ) − ε f ≥ t − 3 cεX 

2 

− ε f . 

his shows that u ∼ v in G 

[ { 

w ∈ V (G ) : t − 3 cεX 
2 − ε f ≤ g(w ) 

} ] 
. 

Now suppose we have x � y in { z ′ ∈ X : t ≤ f (z ′ ) } .
f x = y, then max { g(u ) , g(v ) } < t + ε f , and u � v in
89 
 

[{
w ∈ V (G ) : t + c(w max + εX ) + ε f ≤ g(w ) 

}]
(they are not in- 

luded). If x � = y, take any z ∈ P x,y that minimizes f (z) over P x,y .

bserve that necessarily f (z) < t . Now let 

 := max 
{

0 ≤ i < l : P q i ,P x,y 
∩ P z,y = ∅ ∨ z = q i 

}
, 

here P q i ,P x,y 
⊆ X denotes the unique path from q i to (its closest 

oint on) P x,y in X . It follows that 

(p i ) ≤ f (q i ) + ε f ≤ f (z) + cd X (q i , z) + ε f 

≤ f (z) + cd X (q i , q i +1 ) + ε f 

≤ f (z) + c(w max + εX ) + ε f < t + c(w max + εX ) + ε f . 

gain u � v in G 

[{
w ∈ V (G ) : t + c(w max + εX ) + ε f ≤ g(w ) 

}]
. The 

esult now follows from Theorem 2.1 . �

emark 2.1. The proof of Theorem 2.1 suggests that we can obtain 

ven stronger comparisons by looking at the interleaving distance 

etween the resulting merge trees, instead of the 0-dimensional 

ersistence diagrams. Indeed, Morozov et al. [20] provide an ex- 

mple of two distinct merge trees for which the corresponding 

unctions have the exact same persistence diagram. Unfortunately, 

omputing interleaving distances between merge trees is currently 

omputationally more challenging than computing bottleneck dis- 

ances between persistence diagrams [26] . 

emark 2.2. For Rips graphs G = R 3 δ(D ) , the bound in

heorem 2.2 reduces to the bound in Lemma 3.3 by Car- 

ière et al. [9] for zeroth-order persistent homology, whenever 
εX 
2 ≤ w max ≤ 3 δ. However, our result applies to any graph, and 

oes not require that w max dominates 
εX 
2 . Intuitive examples for 

hich this is important include minimum spanning trees. 

The convexity radius ρ(X ) states that for any open metric ball 

n X of radius less than ρ(X ) , any two points x, y in this ball are

onnected by a unique shortest path on X . Similar to Lemma 3.3 

y Carrière et al. [9] , we expect that our result can be generalized

o arbitrary length spaces by bounding εX through a function of 

he convexity radius ρ(X ) of X . 

The following can now be straightforwardly derived. 

orollary 2.1. Let (X, d X ) be a metric tree, and G a positively 

eighted graph such that there exists an ε-correspondence C be- 

ween (X, d X ) and (G, d G ) . Let E X := max x ∈ X d X (·, x ) be the eccentric-

ty function, and C x := 

E max 
X 

−E X (·) 
E max 

X 
−E min 

X 

be the normalized centrality func- 

ion on X (define E G and C G analogously). Then 

 b 

(
Dgm 0 

(
F −E X (X ) 

)
, Dgm 0 

(
F −E G (G ) 

))
≤ max 

{ 

ε

2 

, w max 

} 

+ 2 ε, 

nd 

 b 

(
Dgm 0 

(
F C X 

(X ) 
)
, Dgm 0 

(
F C G 

(G ) 
))

≤
max 

{
ε
2 
, w max 

}
+ 5 ε

rad (X ) 
, 

here the last inequality holds if C X and C G are well-defined. 

. Experiments 

In this section, we show how Theorem 2.2 can be applied in 

ractice. We first illustrate this through synthetic data sampled 

rom metric trees in Section 3.1 . In Section 3.2 , we provide novel

nsights and quality measures to the field of cell trajectory infer- 

nce. 

.1. Synthetic data of metric trees 

We considered four tree-structured topologies embedded in R 

2 , 

nd sampled 600 observations from each of them, by sampling 

niformly from each branch a number of points proportional the 

ength of this branch. For each of these data sets, we applied a 
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Fig. 5. Synthetic data sampled from the metric trees in the first column. The sam- 

ples and their (MST) normalized centralities are shown in columns 2–4. 
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Fig. 6. The ground truth and empirical persistence diagrams are computed using 

the normalized centrality to define the filtration. 

Fig. 7. Visualizing the bottleneck distances between the diagrams. 
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mall amount of random 2-dimensional Gaussian noise, as well as 

 random rotation, three times. From each of these twelve result- 

ng data sets, we constructed a Euclidean minimum spanning tree 

MST), and computed the normalized centrality function. The re- 

ulting functions, MSTs, as well as the ground truth models, are 

hown in Fig. 5 . 

The persistence diagrams obtained for the sublevel filtrations 

f the normalized centrality functions are shown in Fig. 6 . Note 

hat there may be overlapping points. As can be expected, there 

re many points in the persistence diagrams for the MSTs near the 

iagonal. This is a result from the MST not including any triangles 

in the graph theoretical sense). Nevertheless, we observe that the 

ighly elevated points in all our diagrams identify important struc- 

ural information of the ground truth models. 

Fig. 7 a visualizes the pairwise bottleneck distances between all 

iagrams. Fig. 7 b shows a Multi-Dimensional Scaling (MDS) plot of 

his distance matrix. We see that similar shapes are clustered well 

ogether. We also note that the H-structured topologies are some- 

hat in the middle of the other topologies. This is as expected. 

.g., the longer the middle branch of the corresponding model is, 

he closer this pattern is to a I-pattern. The shorter this branch is, 

he closer it is to an X-pattern. 

.2. Cell trajectory data 

Cell trajectory inference considers the task of inferring a graph- 

tructured model from gene expression data , to identify the dif- 

erentiation process of the cells. Cells can be regarded as points 

n a (high-dimensional gene expression) space R 

d , and approxi- 

ate (the embedding of) their underlying graph-structured model 

n this space. Some examples of cell trajectory data sets and their 

nderlying models are illustrated in Fig. 9 . 

Cell trajectory inference is overall a very difficult task. Even the 

op ranked methods have a low performance on many data sets 

25] . The purpose of this section is not to propose the use of our

ignatures ( Corollary 2.1 ) as a new topological inference method 

or this type of data, but rather to use these to study why this 

roblem is essentially so difficult. In particular, Vandaele et al. 
90 
28] recently showed that state-of-the-art cell trajectory inference 

ethods struggle to approximate the geometry of the underlying 

odel well, or commonly underestimate the number of leaves. To 

xplain these difficulties, we proceed with an analysis similar to 

he one in Section 3.1 . 

We consider 131 synthetic and 57 real cell trajectory data sets 

ith an underlying tree-structured model [5] . The number of cells 

anged from 59 to 5018, and the number of genes from 373 to 

3,658. A two-dimensional diffusion map embedding was com- 

uted for each data set, both for visualization purposes, as well as 

o reduce the effects of the curse of dimensionality on our neighbor- 

ood graph approximation [24] . A 10NN graph and its normalized 

entralities were computed from each embedding. 

Fig. 8 visualizes all cell trajectory data sets by means of an 

DS plot of the pairwise bottleneck distances we obtained through 

opological persistence of our 10NN graphs. We illustrate twelve 

landmark’ embeddings of cell trajectory data sets, as well as their 

round truth models on these embeddings, and their obtained em- 

irical persistence diagrams in Fig. 9 . 

First, observe that all linear cell trajectories are located near a 

inear curve on top of the MDS plot. This means that our chosen 
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Fig. 8. MDS plot of pairwise bottleneck distances of the persistence diagrams ob- 

tained through the 10NN graphs and normalized centralities. Each point corre- 

sponds to one cell trajectory data set. A loess curve (red) is fitted using the MDS1 

coordinate as independent variable, and the average performance over all consid- 

ered cell trajectory inference methods as dependent variable. The points with a 

black contour correspond to the data sets visualized in Fig. 9 . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 9. Twelve example data sets and their corresponding empirical persistence di- 

agram. The coloring corresponds to the ground truth grouping of cells. 
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ata representation does not artificially create more leaves than 

ruthfully present. E.g., this is more often the case when we apply 

 PCA projection instead of a diffusion map embedding. However, 

any nonlinear trajectories are located near this curve as well. 

ear the right side of this curve, this is mainly due to branches be-

ng relatively short compared to a main linear trajectory (e.g., MDS 

0, 0.6) in Fig. 9 ). These trajectories are indeed theoretically close 

o linear according to our chosen metric. On the left side of this 

urve, we find the more noisy data sets, where we fail to provide 

 good representation. Their persistence diagrams represent more 

blob’-like patterns ( Fig. 9 ). Below this curve, we find the trajecto- 

ies where we truthfully manage to identify additional branches. 

owever, we note that it appears to be difficult to identify more 

han three leaves. This explains why cell trajectory inference meth- 

ds commonly underestimate the true number of leaves [28] . Note 

hat the ‘boomerang’ shape made up by all data sets in Fig. 8 , also

oincides with what we theoretically expect for our chosen metric. 

e note a continuous transmission of blob-like patterns, towards 

inear patterns, towards patterns with leaves. The fact that this 

hape takes a turn near the right, can be theoretically explained 

hrough the definition of the bottleneck distance. As we only look 

t the maximal distances of a matching, the number of ‘high’ dis- 

ances in such matching does not matter. Blob-like patterns are as 

istant from linear patterns as they are from patterns with more 

eaves, according to this metric. 

Finally, we fitted a loess curve (standard settings in R ) using the 

DS1 coordinate as the independent and the average performance 
91 
ver 45 different cell trajectory inference methods as the depen- 

ent variable. This performance is measured through the geodesic 

istance preservation (correlation) metric introduced by Saelens 

t al. [25] . Fig. 8 shows a positive correlation (0.58) between these 

ariables. Note that the choice of using the MDS1 coordinate is ar- 

itrary in general. However, this choice supports our findings that 

n the left side of our MDS plot, we mainly find noisy data sets. 

ince every cell trajectory inference method uses a different algo- 

ithm or data representation (such as the type of dimensionality 

eduction or neighborhood graph), this can be seen as a quality 

easure of the data itself, independent of our chosen data repre- 

entation. 

. Discussion and conclusion 

We provided a novel foundation for quantifying topological pat- 

erns in metric trees through graph approximations, which led to 

ew and direct stability results. Though these result currently only 

olds for metric trees, we opened up new possibilities to study 

hich functions ensure stability by means of Theorems 2.1 , 2.2 , 

nd Remark 2.2 . This may lead to further theoretical justification 

f recognizing a wider variety of patterns through graph approxi- 

ations. 

Rather than using our signatures for topological inference, we 

ntroduced a novel use for them in an exploratory data analysis 

etting. We developed insights into cell trajectory inference, and 

rovided the first charting of such data sets that explains some 

f the difficulties this field is confronted with. We also provided 

 new way of quality measurement, that does not require ground 

ruth knowledge. It will be interesting to investigate whether other 

ypes of signatures, such as those discussed in Section 1.3 , may 

nd additional applications within this setting. 

Since we consider sublevel filtrations on any given graph, we 

an choose to approximate our data through a small or sparse 

raph. For 0-dimensional persistence, this is computationally more 

fficient than Rips based signatures for metric spaces equipped 

ith functions, which may require the construction of the com- 

lete graph on the data to include all nodes. Nevertheless, for 

arger data sets it may be interesting to explore approximation 

ethods similar to the witness complexes for Rips based filtrations 

12] . 
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