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ABSTRACT

The rising field of Topological Data Analysis (TDA) provides a new approach to learning from data through
persistence diagrams, which are topological signatures that quantify topological properties of data in a com-
parable manner. For point clouds, these diagrams are often derived from the Vietoris-Rips filtration—
based on the metric equipped on the data—which allows one to deduce topological patterns such as
components and cycles of the underlying space. In metric trees these diagrams often fail to capture other
crucial topological properties, such as the present leaves and multifurcations. Prior methods and results
for persistent homology attempting to overcome this issue mainly target Rips graphs, which are often
unfavorable in case of non-uniform density across our point cloud. We therefore introduce a new the-
oretical foundation for learning a wider variety of topological patterns through any given graph. Given
particular powerful functions defining persistence diagrams to summarize topological patterns, including
the normalized centrality or eccentricity, we prove a new stability result, explicitly bounding the bottleneck
distance between the true and empirical diagrams for metric trees. This bound is tight if the metric dis-
tortion obtained through the graph and its maximal edge-weight are small. Through a case study of gene
expression data, we demonstrate that our newly introduced diagrams provide novel quality measures and
insights into cell trajectory inference.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

In the case of point cloud data, the data is often sampled from
a topological structure, the knowledge of which provides tremen-
dous insight into the underlying structure or data generating pro-

For the past decade, persistent homology [16]—the most promi-
nently used and studied tool within the field of Topological Data
Analysis (TDA) [6]—has led to many new applications to super-
vised and unsupervised machine learning. Many of the data sets
to which persistent homology has been successfully applied, were
already at least partially structured, in the form of a simplicial com-
plex, i.e.,, a higher-dimensional generalization of a graph. Exam-
ples of these include brain networks [17], meshes [14], and images
[2,27]. Persistent homology then tracks topological changes over a
filtration, i.e., a nested sequence of subcomplexes of the original
complex.
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cess. However, the underlying topology is often difficult to reveal,
due to the high dimensionality of the data, or noise. Since they
lack a naturally induced simplicial structure, computing persis-
tent homology of point clouds is mostly feasible through the the
Vietoris-Rips filtration [22]. Unfortunately, this type of persistence—a
measure of prominence or relevance of a topological feature—is of-
ten insufficient, as it merely detects gaps, cycles, voids, and higher-
dimensional holes in the model. Thus, it is impossible to distin-
guish between point clouds sampled from a linear (‘I'-shaped) ver-
sus a bifurcating (‘Y’-shaped) topology through this method.

We therefore develop a new foundation for learning topological
patterns through graph approximations. These graphs will be used
as simplicial representation of the data. As will be shown in this
paper, they allow us to learn a wider variety of topological patterns
in metric trees, in theory and in practice.
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1.1. Contributions

e« We provide an intuitive introduction to, as well as a formal
theoretical foundation for studying topological patterns through
0-dimensional persistence of arbitrary graph approximations
(Section 2).

e We show under which conditions functions lead to a non-
trivial stability result—guaranteeing that our true and empir-
ical persistence diagram are close—for graph approximations
(Theorems 2.1 and 2.2). We provide two such functions quan-
tifying powerful topological features of metric trees: the eccen-
tricity and normalized centrality (Corollary 2.1).

e We introduce a novel application of our signatures that goes
beyond standard topological inference, providing novel quality
measures and insights to the field of cell trajectory inference
(Section 3.2).

e We summarize how our method leads to and opens up new
possibilities for learning topological patterns (Section 4).

1.2. Background on persistent homology

The concept of persistent homology has its roots in the field of
algebraic topology [18]. Its computation requires two things: a sim-
plicial complex K, and a filtration F defined on K. A simplicial com-
plex can be seen as a generalization of a graph, that apart from
0-simplices (nodes) and 1-simplices (edges), may also include 2-
simplices (triangles), 3-simplices (tetrahedra), and so on. A sim-
plicial complex K is furthermore closed under inclusion, i.e., if
o’ Cco €K then o’ e K. A filtration F on K is then a nested se-
quence Ky € K7 € ... € Ky = K of subcomplexes of K. Fig. 2a illus-
trates these concepts by means of a point cloud data set D sampled
from the unit circle. Here, the filtration equals the Vietoris-Rips fil-
tration VR¥(D), defined as the nested sequence
(VR’;(D) :={ScD:|S| <k+1Adiam(S) < e})e,
parameterized by the time € € R.. The Vietoris-Rips complex
VR’G‘ (D) contains all simplices in D of diameter less than or equal
to €, and of dimension less than or equal to k. If k =1, we simply
refer to the complex as the (Vietoris-) Rips graph.

The number of k-dimensional holes in a complex is expressed
by the Betti number Sj. In this sense, a O-dimensional hole is
a ‘gap’, and By corresponds to the number of connected compo-
nents, B, corresponds to the number of loops, 8, to the num-
ber of voids, and so on. Persistent homology quantifies topological
changes through the birth and death of these holes across the fil-
tration. E.g., in Fig. 2a, every data point corresponds to the birth
of a connected component at the start of the filtration. By increas-
ing €, points get connected to each other, resulting in the death
of many of these components. From around € = 0.75, the complex
consists of one connected component, as well as a loop represent-
ing the underlying cyclic structure.! Increasing e further, this loop
gets ‘filled in’ through the 2-simplices, resulting in its death. The
idea behind persistent homology and persistence is that holes per-
sisting for a long range of consecutive values € represent signif-
icant features of the topology underlying the point cloud. This is
illustrated by the persistence diagrams D), (one for each considered
dimension k € {0, 1} of holes) in Fig. 2b. This is a multiset contain-
ing a point (b, d) for each hole that was born at € = b and died
at € =d. By definition, d = oo if a hole never dies. These points
are usually displayed at the top of the diagram. Furthermore, by
convention, a persistence diagram contains every point on the di-
agonal.

1 Though many such loops exist, they are all equivalent, representing the same
class in the homology group associated to this complex [18].
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To understand one of the most important concepts in TDA (and
in this paper), i.e., stability, we first need to introduce some defini-
tions [1,22].

Definition 1.1. Let D and D’ be two persistence diagrams. The bot-
tleneck distance between them is defined as

dp(D. D) = infsup [x — ¢ (%)l € R U {o0),

where ¢ ranges over all bijections from D to D', and x ranges
over all points in D. Since the diagrams include the diagonal,
|D| = |D'| = [R|. Thus, dy, (D, D’) is well-defined.

Definition 1.2. Let (X, dy) and (Y, dy) be two metric spaces. A cor-
respondence is a set C € X x Y, such that for any x € X, there exists
y €Y such that (x,y) € C, and vice versa. Given € € R*, a corre-
spondence C is an e-correspondence if (x,y), (x',y’) € C implies that
|dx (x,x') —dy (y.y")| < €. The Gromov-Hausdorff distance dy (X,Y)
is the infimum of the € for which there exists an e-correspondence
between (X, dy) and (Y, dy).

Stability ensures that if two finite metric spaces are close, their
persistence diagrams obtained through the Vietoris-Rips filtrations
are close as well. More formally, if (X,dyx) and (Y,dy) are two fi-
nite metric spaces, then [11]

dy, (Dgm, (VR(X)), Dgm, (VR(Y))) < 2d (X.Y).

Stability results formulated through the ground truth topol-
ogy also exist for the Vietoris-Rips filtration, but their formulation
tends to be more complicated [22].

1.3. Related work

Persistent homology has already been used extensively in
(un)supervised machine learning problems. In this context, it can
be regarded as a feature engineering method, where its resulting
persistence diagrams correspond to topological signatures, encoding
structural information at varying scales in the data. Our purpose is
not to outperform these methods, but rather to extend them to be-
come applicable to a wider variety of data sets for which learning
topological patterns remains an important challenge—in our case—
metric trees.

The main novelty of our introduced stability result
(Theorem 2.2) is its generality in terms of the type of graph
approximation, instead of its generality in terms of the dimension
of persistent homology. In case of metric trees, we will show that
the restriction to 0-dimensional persistence is indeed sufficient for
revealing multifurcations and leaves. However, the restriction to
particular graphs such as Rips graphs is often unfavorable in case
of non-uniform density across our point cloud.

That being said, it is worth pointing out the differences of our
work to the following.

TDA through functions

The idea of TDA through functions equipped on point cloud
data, and in particular, the eccentricity function (Corollary 2.1), is
not novel. Indeed, Carlsson [7] previously discussed that (regular)
persistent homology through the Vietoris-Rips complex may miss
out on finding meaningful structure in many examples of point
cloud data. He proposed a refinement under the name of func-
tional persistence. The idea is to apply regular persistence to a sub-
set of the data, obtained through thresholding according to a user
defined function. E.g., by applying regular persistence to a subset
of points sufficiently far away from the center of the point cloud,
one may be able to deduce a flare-structured topology. However,
his introduction to functional persistence is rather brief, and this
method mainly serves as a visual inspection tool for individual
data sets.
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Fig. 1. Point cloud data sets sample from (Left) an H-structured and (Right) an
X-structured topology. The ground truth models are shown in red. As the middle
branch of the H-structured topology is short relative to the amount of noise in the
data, its underlying topology becomes difficult to distinguish from an X-structured
topology. The purpose of our current work is to theoretically and practically quan-
tify that these patterns are similar. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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(a) An example of [four simplicial complexes
VR2(D).

(b) The diagrams 9y and
Dy of VR(D).

Fig. 2. Persistent homology through the Vietoris-Rips filtration of a point cloud data
set D. The two highly elevated points in the persistence diagram identify the pres-
ence of one connected component (HO) and one cycle (H1).

Chazal et al. [10] and Oudot [22] extend persistent homology of
metric spaces to metric spaces equipped with a real-valued func-
tion f. They vary the Vietoris-Rips complex VR'S< (D¢) alongside the
sublevel sets D¢ :={x e D: f(x) < €} on which the simplicial com-
plexes are constructed. Both the simplicial complexes as well as
the data on which they are constructed are indexed through the
same parameter €. Although their provided stability result applies
to persistent homology in any dimension [22, Th. 7.11] it is re-
stricted to Rips based filtrations. Furthermore, this method might
only make sense for discovering topological features other than
components and cycles whenever the distance metric on D and the
functional values f take on a similar scale. In this case, topologi-
cal features will generally appear less prominent, as higher weight
edges will be added at later times (Fig. 3¢). Furthermore, inclusion
of all vertices would then mean the simplicial complex has to be
grown until all pairs of nodes are connected by an edge, making
this method computationally less efficient.

Finally, Carriére et al. [9] present a stability result for sub-
level filtrations constructed from the ground truth and (a pair of)
Rips graphs constructed from a point cloud approximation. In par-
ticular Lemma 3.3 by [9] is closely related to our main result
(Theorem 2.2), and our restriction to Lipschitz functions is inspired
by this result. The exact differences between both results will be
pointed out in Remark 2.2, after our main theorem.

Persistent local homology

The idea of persistent local homology [3] is to infer topological
properties of stratified spaces (including metric trees), by study-
ing persistent homology of the data after removing a neighborhood
Br(x) of a particular point x. This is very similar to the concept of
functional persistence, as discussed above. Since it is rather diffi-
cult to pinpoint a single suitable radius r, this parameter is often
varied as well, resulting in a 1-parameter family of persistence dia-
grams also known as a persistence vineyard. Unfortunately, the cur-
rent theoretical analysis of this method is again restricted to par-
ticular filtrations, such as Rips based filtrations or filtrations based
on the Delaunay triangulation, the latter of which is challenging
to compute in higher dimensional data [4]. Furthermore, existing
implementations for computing persistence vineyards are limited
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(e.g., the Dionysus 1 library in C++), and well-studied methods
for comparing persistence vineyards (similar to the bottleneck dis-
tance) are lacking.

Mapper

The Mapper algorithm mainly serves as a data visualization
method, and has been successfully applied to metric trees [21]. The
algorithm itself does not directly provide topological signatures, as
we do in this paper.

Mapper is quite sensitive to its parameters [19]. Some work
to overcome this issue has been performed by Dey et al. [13],
under the name of multiscale Mapper. The idea is to track the
changes in homology of the output of the Mapper algorithm across
a varying parameter sequence. However, similar to persistent ho-
mology through the Vietoris-Rips filtration, this method only tracks
changes in the number of connected components or cycles in the
global model.

The result of Mapper is commonly a graph. Hence our main re-
sult (Theorem 2.2) can also be applied to study how well these
graphs preserve topological information of metric trees. In line
with this approach, prior results do allow one to quantify the de-
gree of (in)stability of topological features (including leaves) ob-
tained, in case the used clustering method (one is required by
the Mapper algorithm) coincides with obtaining connected com-
ponents in Rips (sub)graphs [8].

Metric graph reconstruction

The case studies in our paper are graph (tree)-structured topolo-
gies, previously studied by Aanjaneya et al. [1]. This work strongly
connects to ours on a theoretical level, as we also formally de-
fine the metric distortion we obtain through our graph approxi-
mation through the concept of e-correspondence. The major dif-
ference is that we do not require any assumptions on the underlying
topology to provide our theoretical guarantee, which is the bound on
the distance between our true and empirical topological signature
(Theorem 2.2). By contrast, Aanjaneya et al. [1] require that the
metric distortion is bounded by a function of the shortest branch
length of the underlying topology to guarantee its reconstruction.
For example, one cannot guarantee the correct reconstruction of an
H-structured topology if the noise in the data is too high relative
to the length of middle branch. In this case, it may become dif-
ficult to distinguish the underlying topology from an X-structured
topology, as illustrated in Fig. 1.

2. Persistent homology through graph approximations

Fig. 3 b shows that ‘regular’ (0-dimensional) persistent homol-
ogy of the point cloud data set D shown in Fig. 3a misses out
on capturing any topological information other than the under-
lying model being connected. We can however equip D with a
function f that expresses how far a point is from the data cen-
ter. To this end, we first constructed a 10NN graph G from D, and
then computed its negative eccentricity function f = —&;, where
&g = MaXyep dg (-, x). After rescaling both f and the shortest path
distance metric d; on G to [0, 1], the Rips based signature pre-

sented by Chazal et al. [10] for the metric space (D, d¢) equipped
P —£6()
gmaxfgmin

with resulting normalized centrality function ¢; := now

captures some additional structural information. The three ‘leaves’
present in the topology underlying D correspond to the three most
elevated points in the diagram (Fig. 3c). However, the components
representing these leaves merge quickly before reaching the cen-
ter of bifurcation, due to the addition of higher weight edges that
are not present G. In contrast to this, (O-dimensional) persistent
homology of the sublevel filtration (G[{v e V(G) : =E¢(V) < t}Dter
easily identifies the presence of three leaves. Here, G[U] denotes
the subgraph of G induced by the set of nodes U € V(G).
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(a) A 10NN graph G of D, and its neg-
ative eccentricity function —&g.

(b) The Rips based signature for D (us-
ing the Euclidean distance metric).
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(c) The Rips based signature for
(D, s . %) (Chazal et al., 2009).

(d) The persistence diagram obtained
through G and —-&¢ (Th. 2.2).

Fig. 3. (0O-dimensional) Rips based signatures for a point cloud data set D, and a
custom defined filtration on a 10NN graph G constructed from D. The lower and
upper limits of the diagram axes are defined through the first and last ‘time’ a sim-
plex is added to the complex, respectively.

The purpose of this section is to provide a more formal theo-
retical foundation for this last type of persistence through graph
‘approximations’. The term ‘approximations’ is to be loosely inter-
preted, in the sense that we are given some graph that is meant
to capture topological information of the data. This can be a Rips
graph, kNN graph, minimum spanning tree, or any type of neigh-
borhood graph constructed from the data. Furthermore, this may
also be the result of a (graph) model inference method such as the
Mapper algorithm.

In Section 2.1, we will illustrate the concept of stability through
graph approximations, and discuss the main obstacles for introduc-
ing an immediate stability result. In Section 2.2, we prove a new
stability result for metric trees.

2.1. Stability through graph approximations

The following theorem states that for any correspondence C be-
tween the points in a metric space (X, dy) and nodes in a graph G,
and functions f:X — R, g:V(G) — R, one may bound the bot-
tleneck distance between the diagrams for f and g by a value
m = max{a, b}, measuring how well f and g preserve the connec-
tivity in their respective sublevel filtrations under C.

Theorem 2.1. Let (X, dy) be a connected metric space, G a graph, f :
X — R a tame function, and g : V(G) — R. Let a,b > 0, and suppose
C € X x V(G) is a correspondence with the following properties:

eforall teR, if x~yin {zeX: f(z) <t} and (x,u), (y,v) €C,
then u~vin Glw e V(G) : g(w) <t +a],

e forallt eR, ifu~vinGlweV(G):g(w) <t]and (x,u), (,v) €
C thenx~yin{zeX: f(z) <t+b},

where - ~ - denotes that two points are connected by a path in
their respective space (topological or graph), and G[U] denotes the
subgraph of G induced by the nodes U € V(G). Then

dy, (Dgmy (77 (X)), Dgmy (75(G))) < max{a, b},

where by ff(X ) (resp. F¢(G)), we denote the sublevel filtration ({x e
X f(X) < threr (resp. (G[{v e V(G) : gv) < t}Drer):

Proof. As most definitions in this proof are unimportant for the
rest of our paper, they will be omitted for conciseness.
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(a) The negative eccentricity for the ground
truth (top) and graph approximation (bottom).
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(b) Persistent homology for the
sublevel filtrations of the nega-
tive eccentricity functions.
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ground truth (top) and Rips graph approxima-
tion (bottom), respectively.

(d) Persistent homology for the
sublevel filtrations of the custom
defined functions.

Fig. 4. In terms of Theorem 2.1, these examples show that a (e-)correspondence
can preserve the metrics and function values of f and g arbitrarily well (in terms
of €), while simultaneously, max{a, b} can be arbitrarily high.

First, observe that Dgmg(7g(G)) = Dgmg(Fig(Gl)). where |G|
is a geometric realization of G and |g| is obtained by extending g
on |G| through linear interpolation [15,23]. Now let T and Tjy be
the merge trees of f and |g|, respectively [20]. Note that their ele-
ments (points) are equivalent classes. Let u := max{a, b}, and con-
sider the mapping

ol i Ty — Tig (X, Oz, > [0+ W],

where y is any node of G such that (x,y) € C. Also consider

B Tg — Tp [, Oy = [+ )]y

where (x,y) e C for some endpoint y of the segment in |G| includ-
ing y, for which g(y) = |g|(¥) < |g|(¥). It immediately follows that
ot and B# are p-compatible maps. Furthermore, since by assump-
tion the time increment needed for two points to become con-
nected in one space does not become larger for their correspond-
ing points (under C) after an initial increment by u, o#* and B*
are both continuous and in particular well-defined. The result now
follows from [20, Th. 3]. O

Theorem 2.1 cannot yet be interpreted as a stability result. We
must still express how the distance between the diagrams depends
on the closeness of (X,dy) and G. However, even if (X,dy) and G
are arbitrarily close in the sense of an e-correspondence C, and f :
X — R and g:V(G) — R are arbitrarily well-preserved under this
correspondence, there is generally no guarantee that the diagrams
are close as well. This is illustrated by two example models and
their graph approximations in Fig. 4.

In the first example (Fig. 4a), we constructed the fully con-
nected graph G on a translated sample D of a continuous linear-
structured metric space (X, dy). Due to the absence of curvature,
the metric space (V(G), dg) well-approximates (X, dy) in the sense
of an e-correspondence (we omit an actual value of € as we be-
lieve the concept is clear). Since G is fully connected, one con-
nected component will be born in the filtration, and it will never
die. This is illustrated by the persistence diagram in Fig. 4b, where
we defined the filtration through the negative eccentricity function
of G. Both for the ground truth model, as well as for G, the ec-
centricity function provides a smooth transition from the (underly-
ing) leaves towards the center. However, the sublevel filtration for
(X, dy) will start at two connected components, that only merge at
the center of X.
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The second example (Fig. 4c) illustrates a ‘finer’ approximation
of (X, dy) through the Rips graph Rg (D) := VREH(D) constructed
from D. We now defined a function f (resp. g) on X (resp. D) that
values 1 at every single point, apart from one point near the cen-
ter where it values 1. Again, the filtration for Ry (D) starts with
one connected component (including all but one point), that never
dies. The filtration for the ground truth model starts off with two
connected components that merge only at the center as before.

The takeaway of the examples above, is that to ensure stabil-
ity, we need two things. First, we need to formalize how well
our graph G approximates the topology of the underlying space,
both through the concept of e-correspondences, as well as through
a distance measure between nodes connected through an edge.
Given a weighting function w : E(G) — R*, we will use the maxi-
mum weight Wmax := maX,.g) w(e) for this purpose. In practice,
wmax Will be low if the data is sufficiently densely sampled and G
is a neighborhood graph. Second, the functions used to define the
filtration must be such that if € and wmax are small, so are a and b
from Theorem 2.1. Inspired by Lemma 3.3 by Carriére et al. [9], we
will consider Lipschitz functions, where a real-valued function f on
a metric space (X, d) is called c-Lipschitz if |f(x) — f(y)| < cd(x,y).

2.2. A new stability result for metric trees

In this section, we provide two closely-related functions to en-
sure stability for tree-structured topologies through graph approx-
imations. These will be the (negative) eccentricity and the normal-
ized centrality, the latter of which is scale-independent. The true
persistence diagrams for these functions are extremely informa-
tive for metric trees. The birth of a component will always occur
through a leaf, and its death through either a multifurcation or the
center of the tree (Fig. 3d).

Definition 2.1. A metric tree is a path metric space (X, dy) that is
homeomorphic to a 1-dimensional stratified space, for which there
is a unique path between every two points. The radius of X is
rad(X) := miny.x maxyex dx (X, y).

Theorem 2.2. et (X,dyx) be a metric tree, and G a positively
weighted graph such that there exists an ex-correspondence C be-
tween (X,dy) and (G,dg). Let f:X — R, g:V(G) — R, and €; €
R.o be such that for all (x,u) eC, |f(x)—g(u)| <€, and f is c-
Lipschitz. Then

dp,(Dgmg(F; (X)), Dgmy(F5(G))) < cmax {%X Winax } +Cex+é€r.

Proof. Since the functional distortion €; and Lipschitz constant ¢
remain the same after negating both functions, it suffices to show
that the inequality holds for —f and —g.

Take any (x,u), (y.v) €C, let Pyy € X denote the unique path
from x to y in X, and let (u = pg, p1,..., p; = V) be a shortest path
from u to v in G. For any 0 <i <, take g; such that (g;, p;) €C,
with qg = X, q; = y. Now arbitrarily take t € R.

Suppose first that x ~y in {ze X : t < f(z)}. Let m; be the clos-
est point from g; on Py . If for any i, dx(q;, m;) > 3% then
dx(x,y) = dx (x, q;) + dx (q;, ¥) — 2dx (q;, m;)

<dx(x,q;) +dx(q;,y) —3€x <dg(u,v) — €x < dx(x,y),
a contradiction. Now since necessarily m; e {ze X : t < f(2)},

3ce,
g(pi) = f(qi) — €5 = f(m;) —cdx(m;, q;) — €5 >t — TX — €y
This shows that u ~ v in G[{W eV(G):t- “% — €5 §g(w)}].

Now suppose we have xxy in {ZeX:t<f(Z)}.
If x=y then max{gu),gW)}<t+¢€;, and u~xv in

Pattern Recognition Letters 147 (2021) 85-92

G[{w e V(G) : t + c(Wmax + €x) + € <g(w)}] (they are not in-
cluded). If x #y, take any z € Py that minimizes f(z) over Py.
Observe that necessarily f(z) <t. Now let

ii= max{O <i< l:Pqi.px_yszvy=(2Jv2=q,-},

where Py p , € X denotes the unique path from g; to (its closest
point on) Py in X. It follows that

g(pi) < f(qi) + €5 < f(2) +cdx(qi, 2) + €
< f@) +cdx (qi. gis1) + €5
< f(@) + c(Wmax + €x) + €f < t 4+ ¢c(Wmax + €x) + €5.

Again u v in G[{w e V(G) : t + c(Wmax + €x) + €5 < gw)}]. The
result now follows from Theorem 2.1. O

Remark 2.1. The proof of Theorem 2.1 suggests that we can obtain
even stronger comparisons by looking at the interleaving distance
between the resulting merge trees, instead of the 0-dimensional
persistence diagrams. Indeed, Morozov et al. [20] provide an ex-
ample of two distinct merge trees for which the corresponding
functions have the exact same persistence diagram. Unfortunately,
computing interleaving distances between merge trees is currently
computationally more challenging than computing bottleneck dis-
tances between persistence diagrams [26].

Remark 2.2. For Rips graphs G=R35(D), the bound in
Theorem 2.2 reduces to the bound in Lemma 3.3 by Car-
riére et al. [9] for zeroth-order persistent homology, whenever
%X < Wnax < 38. However, our result applies to any graph, and
does not require that wpax dominates %‘ Intuitive examples for
which this is important include minimum spanning trees.

The convexity radius p(X) states that for any open metric ball
in X of radius less than p(X), any two points x,y in this ball are
connected by a unique shortest path on X. Similar to Lemma 3.3
by Carriére et al. [9], we expect that our result can be generalized
to arbitrary length spaces by bounding €y through a function of
the convexity radius p(X) of X.

The following can now be straightforwardly derived.

Corollary 2.1. Let (X,dyx) be a metric tree, and G a positively
weighted graph such that there exists an e-correspondence C be-

tween (X, dy) and (G, dg). Let £ := maxycx dx (-, X) be the eccentric-
ity function, and % := 55O bo the normalized centrality func-

gmax_gmin

tion on X (define &; and 6 analogously). Then

dp, (Dgmg(F_g (X)), Dgmy (F_¢,(G))) < max {% Wmax} +2€,

and

max{g,wmax} + 5¢
rad(X) ’

where the last inequality holds if 6x and 6; are well-defined.

dp (Dgmy (e, (X)), Dgmy (Fs (6))) <

3. Experiments

In this section, we show how Theorem 2.2 can be applied in
practice. We first illustrate this through synthetic data sampled
from metric trees in Section 3.1. In Section 3.2, we provide novel
insights and quality measures to the field of cell trajectory infer-
ence.

3.1. Synthetic data of metric trees

We considered four tree-structured topologies embedded in R2,
and sampled 600 observations from each of them, by sampling
uniformly from each branch a number of points proportional the
length of this branch. For each of these data sets, we applied a
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Fig. 5. Synthetic data sampled from the metric trees in the first column. The sam-
ples and their (MST) normalized centralities are shown in columns 2-4.

small amount of random 2-dimensional Gaussian noise, as well as
a random rotation, three times. From each of these twelve result-
ing data sets, we constructed a Euclidean minimum spanning tree
(MST), and computed the normalized centrality function. The re-
sulting functions, MSTs, as well as the ground truth models, are
shown in Fig. 5.

The persistence diagrams obtained for the sublevel filtrations
of the normalized centrality functions are shown in Fig. 6. Note
that there may be overlapping points. As can be expected, there
are many points in the persistence diagrams for the MSTs near the
diagonal. This is a result from the MST not including any triangles
(in the graph theoretical sense). Nevertheless, we observe that the
highly elevated points in all our diagrams identify important struc-
tural information of the ground truth models.

Fig. 7 a visualizes the pairwise bottleneck distances between all
diagrams. Fig. 7b shows a Multi-Dimensional Scaling (MDS) plot of
this distance matrix. We see that similar shapes are clustered well
together. We also note that the H-structured topologies are some-
what in the middle of the other topologies. This is as expected.
E.g., the longer the middle branch of the corresponding model is,
the closer this pattern is to a I-pattern. The shorter this branch is,
the closer it is to an X-pattern.

3.2. Cell trajectory data

Cell trajectory inference considers the task of inferring a graph-
structured model from gene expression data, to identify the dif-
ferentiation process of the cells. Cells can be regarded as points
in a (high-dimensional gene expression) space R?, and approxi-
mate (the embedding of) their underlying graph-structured model
in this space. Some examples of cell trajectory data sets and their
underlying models are illustrated in Fig. 9.

Cell trajectory inference is overall a very difficult task. Even the
top ranked methods have a low performance on many data sets
[25]. The purpose of this section is not to propose the use of our
signatures (Corollary 2.1) as a new topological inference method
for this type of data, but rather to use these to study why this
problem is essentially so difficult. In particular, Vandaele et al.
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Fig. 6. The ground truth and empirical persistence diagrams are computed using
the normalized centrality to define the filtration.
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(a) Pairwise bottleneck distances be-
tween all our true and experimental di-
agrams. The ground truths are marked
by their corresponding shape.

(b) MDS plot of the pairwise bot-
tleneck distances. The points corre-
sponding to the ground truth models
are marked by a black contour.

Fig. 7. Visualizing the bottleneck distances between the diagrams.

[28] recently showed that state-of-the-art cell trajectory inference
methods struggle to approximate the geometry of the underlying
model well, or commonly underestimate the number of leaves. To
explain these difficulties, we proceed with an analysis similar to
the one in Section 3.1.

We consider 131 synthetic and 57 real cell trajectory data sets
with an underlying tree-structured model [5]. The number of cells
ranged from 59 to 5018, and the number of genes from 373 to
23,658. A two-dimensional diffusion map embedding was com-
puted for each data set, both for visualization purposes, as well as
to reduce the effects of the curse of dimensionality on our neighbor-
hood graph approximation [24]. A 10NN graph and its normalized
centralities were computed from each embedding.

Fig. 8 visualizes all cell trajectory data sets by means of an
MDS plot of the pairwise bottleneck distances we obtained through
topological persistence of our 10NN graphs. We illustrate twelve
‘landmark’ embeddings of cell trajectory data sets, as well as their
ground truth models on these embeddings, and their obtained em-
pirical persistence diagrams in Fig. 9.

First, observe that all linear cell trajectories are located near a
linear curve on top of the MDS plot. This means that our chosen
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Fig. 8. MDS plot of pairwise bottleneck distances of the persistence diagrams ob-
tained through the 10NN graphs and normalized centralities. Each point corre-
sponds to one cell trajectory data set. A loess curve (red) is fitted using the MDS1
coordinate as independent variable, and the average performance over all consid-
ered cell trajectory inference methods as dependent variable. The points with a
black contour correspond to the data sets visualized in Fig. 9. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 9. Twelve example data sets and their corresponding empirical persistence di-
agram. The coloring corresponds to the ground truth grouping of cells.

data representation does not artificially create more leaves than
truthfully present. E.g., this is more often the case when we apply
a PCA projection instead of a diffusion map embedding. However,
many nonlinear trajectories are located near this curve as well.
Near the right side of this curve, this is mainly due to branches be-
ing relatively short compared to a main linear trajectory (e.g., MDS
(0, 0.6) in Fig. 9). These trajectories are indeed theoretically close
to linear according to our chosen metric. On the left side of this
curve, we find the more noisy data sets, where we fail to provide
a good representation. Their persistence diagrams represent more
‘blob’-like patterns (Fig. 9). Below this curve, we find the trajecto-
ries where we truthfully manage to identify additional branches.
However, we note that it appears to be difficult to identify more
than three leaves. This explains why cell trajectory inference meth-
ods commonly underestimate the true number of leaves [28]. Note
that the ‘boomerang’ shape made up by all data sets in Fig. 8, also
coincides with what we theoretically expect for our chosen metric.
We note a continuous transmission of blob-like patterns, towards
linear patterns, towards patterns with leaves. The fact that this
shape takes a turn near the right, can be theoretically explained
through the definition of the bottleneck distance. As we only look
at the maximal distances of a matching, the number of ‘high’ dis-
tances in such matching does not matter. Blob-like patterns are as
distant from linear patterns as they are from patterns with more
leaves, according to this metric.

Finally, we fitted a loess curve (standard settings in R) using the
MDS1 coordinate as the independent and the average performance
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over 45 different cell trajectory inference methods as the depen-
dent variable. This performance is measured through the geodesic
distance preservation (correlation) metric introduced by Saelens
et al. [25]. Fig. 8 shows a positive correlation (0.58) between these
variables. Note that the choice of using the MDS1 coordinate is ar-
bitrary in general. However, this choice supports our findings that
on the left side of our MDS plot, we mainly find noisy data sets.
Since every cell trajectory inference method uses a different algo-
rithm or data representation (such as the type of dimensionality
reduction or neighborhood graph), this can be seen as a quality
measure of the data itself, independent of our chosen data repre-
sentation.

4. Discussion and conclusion

We provided a novel foundation for quantifying topological pat-
terns in metric trees through graph approximations, which led to
new and direct stability results. Though these result currently only
holds for metric trees, we opened up new possibilities to study
which functions ensure stability by means of Theorems 2.1, 2.2,
and Remark 2.2. This may lead to further theoretical justification
of recognizing a wider variety of patterns through graph approxi-
mations.

Rather than using our signatures for topological inference, we
introduced a novel use for them in an exploratory data analysis
setting. We developed insights into cell trajectory inference, and
provided the first charting of such data sets that explains some
of the difficulties this field is confronted with. We also provided
a new way of quality measurement, that does not require ground
truth knowledge. It will be interesting to investigate whether other
types of signatures, such as those discussed in Section 1.3, may
find additional applications within this setting.

Since we consider sublevel filtrations on any given graph, we
can choose to approximate our data through a small or sparse
graph. For 0-dimensional persistence, this is computationally more
efficient than Rips based signatures for metric spaces equipped
with functions, which may require the construction of the com-
plete graph on the data to include all nodes. Nevertheless, for
larger data sets it may be interesting to explore approximation
methods similar to the witness complexes for Rips based filtrations
[12].
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