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Abstract

Most research concerning batch-service queueing systems has focussed on some
specific aspect of the buffer content. Further, the customer delay has only been
examined in the case of single arrivals. In this paper, we examine three facets of
a threshold-based batch-service system with batch arrivals and general service
times. First, we compute a fundamental formula from which an entire gamut
of known as well as new results regarding the buffer content of batch-service
queues can be extracted. Secondly, we produce accurate light- and heavy-traffic
approximations for the buffer content. Thirdly, we calculate various quantities
with regard to the customer delay. This paper thus provides a whole spectrum
of tools to evaluate the performance of batch-service systems.

Key words: batch arrivals, batch service, buffer content, light and heavy
traffic, customer delay

1. Introduction

Whereas traditional servers in queueing systems can only serve one customer
at a time, batch servers process batches of customers. In fact, a traditional server
is a special type of batch server, namely whereby the capacity of the server (the
maximum number of customers in a served batch) equals one. Examples of
batch servers in real life include elevators in high buildings, transport vehicles,
recreational devices in amusement parks, ovens in production processes, ....
Furthermore, in telecommunications, it is often the case that information pack-
ets are grouped in larger entities (batches) and these batches are transmitted
instead of all packets individually. This is mainly done for efficiency reasons,
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since only one header per aggregated batch has to be constructed instead of
one header per single information unit, thus leading to an increased goodput.
Optical burst switched (OBS) networks, for instance, apply this method (see
e.g. [10], [22]). At the edges of the optical burst network, IP packets with the
same destination and Quality of Service (QoS) requirements are aggregated into
optical bursts which are injected into the network.
As a last example of batch service we mention group-testing policies, which are
useful in the testing of blood samples (see e.g. [1], [6]). For example, if blood
samples have to be tested for the presence of some disease, great time savings
might be obtained if a pool of samples is tested instead of all samples individu-
ally, especially when the prevalence of the disease is small.
An inherent aspect of batch-service systems is that a newly arriving customer
cannot join the ongoing service, even if there is free capacity. Hence, capacity
might be lost. In order to restrict this loss, a service threshold can be enforced
for the minimum number of customers present before the available batch server
is allowed to start processing (see e.g. [20]). The server is said to be dormant
(see e.g. [24]) if it is waiting until enough customers have accumulated. In prac-
tice, an operator typically has to select an appropriate service threshold and
this could have a huge impact on the performance of the system. Therefore,
the operator needs tools to evaluate the influence of the service policy on the
behaviour of the system.

Bailey [5] was presumably the first to consider a batch-service queueing sys-
tem. He obtained the steady-state distribution of the buffer content at random
time epochs in an M/G(1,c)/1 queueing system - the superscript (l, c) indicates
that the server capacity is equal to c and that the service threshold equals l
(1 ≤ l ≤ c). Since then, many papers, as well in continuous as in discrete time,
have been published about batch-service. Downton [14] examined the customer
delay for the same queueing model as in [5]. Neuts [20] studied the buffer con-
tent at random time epochs and at service completion times in a M/G(l,c)/1
system. Further, the customer delay in an M/M (l,c)/1 system was calculated by
Medhi [19]. Chaudhry and Templeton [9] deduced the distributions of the buffer
content and the customer delay in the systems M/G(1,c)/1/K, M/G(1,c)/1,
M/G(c,c)/1 and the discrete Geo/G(1,c)/1. Powell and Humblet [21] calculated
the buffer content at service completion times in the discrete GeoX/GY /1 sys-
tem for several possible service policies Y and Zhao and Campbell [25] studied
the buffer content at random slots in the discrete GeoX/1(1,c)/1 system. Next,
Arumuganathan and Jeyakumar [3] examined the buffer content at various time
epochs in an MX/G(l,c)/1 model with N-policy, multiple vacations, setup and
closedown times. The buffer content at several time epochs in an M/G(l,c)/1
system with single vacations was computed by Sikdar and Gupta [24]. Kim and
Chaudhry [18] studied equivalences between batch-service and multi-service sys-
tems and Samanta et al. [23] derived the buffer content at various time instants
in a discrete GeoX/G(l,c)/1/K system with vacations.

From the above literature overview, it follows that most research concerning
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batch-service queueing models has focused on some specific aspect of the buffer
content and that the customer delay has only been studied in the case of sin-
gle arrivals. In this paper, we study three novel aspects of the discrete-time
GeoX/G(l,c)/1 system. First, we compute a fundamental formula from which
an entire gamut of known as well as new results regarding the buffer content
of such batch-service queues can be extracted. We also demonstrate that these
expressions are useful tools to select a good service threshold (section 3). As
in all batch-service systems, the resulting formulas contain unknown probabil-
ities that have to be calculated numerically. This can become an unfeasible
assignment especially for large c. Therefore, we deduce light- and heavy-traffic
approximations of the buffer content, which require only a few (and sometimes
no) numerical calculations (section 4). To the best of our knowledge, light- and
heavy-traffic approximations have not been studied before for batch-service sys-
tems. Thirdly, we examine the customer delay in this model (section 5). Papers
[14], [18] and [19] have studied the customer delay in case of single (Bernoulli)
arrivals, which restricts the number of practical applications. We include batch
arrivals, which, in our opinion, complicates the analysis considerably. We also
demonstrate that the moments of the customer delay differ considerably as com-
pared to the case of single (Bernoulli) arrivals. Hence, batch arrivals have to
be taken into account. We would finally like to stress that the analysis, albeit
for a discrete-time model, is in our opinion easily transferrable to a continuous-
time model. The exact continous-time analysis of our model is to the best of
our knowledge not studied in this much detail either (light- and heavy-traffic
approximations, customer delay).

This paper is an extension of our conference papers [11] and [12]. In [11], we
have computed the probability generating function (PGF) of the system con-
tent (the number of customers in the system, including those in service) for the
same queueing model as in this paper. In this paper, we deduce, next to the
PGF of the system content, several other significant PGF’s related to the buffer
content, among which of the queue content (i.e. the number of customers in the
queue), the server content (i.e. the number of customers in service), the queue
content when the server is dormant, et cetera. In addition, we deduce in this
paper light- and heavy-traffic approximations of system content characteristics
and we analyse the customer delay of this queueing system. In [12], we have
studied the customer delay in a batch-service queueing system with batch ar-
rivals for the first time. [12] serves as a starting point, in the sense that the
model is very basic: the service threshold l is equal to the server capacity c and
single-slot service times are considered. In our paper [13], we have focused on
obtaining accurate approximations of the tail probabilities in the same model as
in [12]. The main disadvantage of [12] and [13] is that single-slot service times
restricts the applicability of the model, as service times are most likely variable
in real-life applications. Therefore, the extension to generally distributed service
times is crucial. The model in this paper also allows a general service threshold
instead of the special case l = c in [12] and [13], which is an important gener-
alization as well. When c is large, it might take a long time to fill a complete
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batch when l = c. Therefore, a smaller l will give better performance in real-life
applications.

2. Model Description

This section summarises the properties of the model studied in this paper.

• We consider a discrete-time queueing model, i.e. the time axis is divided
into fixed-length contiguous periods, referred to as slots.

• During each slot, several customers can arrive. The number of customers
that arrive during slot k is denoted by Ak. We assume that the sequence
{Ak}k≥1 consists of independent and identically distributed (IID) ran-
dom variables (RV’s), with common PGF A(z). The number of customer
arrivals during an arbitrary slot is denoted by A and has PGF A(z).

• The queue is infinitely large. Therefore, all arriving customers can enter
the queue and will eventually be served. The restriction of an infinite
queue capacity is not stringent, since in most practical applications the
queue is large in order to minimize the loss probability.

• There is one batch server of capacity c (c fixed), which means that the
server can process up to c customers simultaneously. The available server
only starts service if the system contains at least as many customers as
the service threshold l (1 ≤ l ≤ c). Hence, if the server finds less than
l customers upon becoming available, it waits to start service (the server
is then said to be dormant) until the beginning of the first slot that the
system contains at least l customers. We assume that the already present
customers remain in the queue when the server waits to start service.
Hence, during each slot, the system content consists of the customers
being served (the server content) and the customers waiting in the queue
(the queue content).

• A service period (also called cycle) is the period between the start and
end of the service of one batch of customers. The service periods are
synchronized to slot marks, in the sense that the server always starts
processing at the beginning of a slot and ends at the end of a slot (not
necessarily the same one). This yields that an arriving customer has to
wait for service at least until the beginning of the next slot. This part of
the waiting time is not included in what we denote by the customer delay,
since we count the customer delay as an integral number of slots. This
kind of synchronisation is also known as LAS-DA (late arrival system with
delayed access) (see e.g. [23]).

• A service time is the length of a service period, expressed in a number of
slots. The consecutive service times are IID and have a general distribu-
tion. The length of a random service time is denoted by T and its PGF
by T (z). We assume that Pr [T = 0] = 0.

4



• The queueing discipline is first-come-first-served (FCFS).

Summarized, this queueing model can thus be denoted by GeoX/G(l,c)/1.

Remark 1. Most PGF’s that occur in practice are analytical in a region that
at least includes the closed unit disc {z ∈ C : |z| ≤ 1}. Throughout this paper,
we assume that this is the case for A(z) and T (z). This implies that all order
moments of A and T are finite and can be calculated from their PGF’s, for
instance λ , E [A] = A

′

(1) (we use primes to indicate derivatives) and Var [A] =
A

′′

(1) − (A
′

(1))2 + A
′

(1).

Since in heavy-traffic situations, on average, nearly always c customers leave the
system every E [T ] slots, the stability condition for this model reads λ < c

E[T ] .

3. Buffer Content

3.1. Joint PGF

In this section, we deduce the joint PGF V (z, x, y) of the queue content,
the server content and the remaining time of the current service period, i.e. we
compute

V (z, x, y) , lim
k→∞

E
[

zQkxSkyRk

]

,

with Qk (Sk) the queue (server) content at slot mark k and Rk the remaining
number of slots of the service cycle at slot boundary k. In [11], we have obtained
the following expression for V (z, x, y):

[

1 −
A(z)

y

]

V (z, x, y) =

[

1 −
A(z)

y

] l−1
∑

n=0

q0(n)zn

+ T (y)xcz−c(A(z) − 1)

l−1
∑

n=0

q0(n)zn

+ T (y)xcz−cA(z)F (z, 1) − A(z)F (z, x)

+ T (y)

c−1
∑

n=l

e(n)
[

xn − xczn−c
]

, (1)

whereby

• q0(n) , limk→∞ Pr [Qk = n, Rk = 0] , n = 0, . . . , l − 1 ,

• F (z, x) , limk→∞ E
[

zQkxSk1Rk=1

]

, where 1X is the indicator function
of X ,

• e(n) , limk→∞ Pr [Qk + Ak = n, Rk ≤ 1] , n ≥ 0 .

We now completely characterize V (z, x, y). We did not do this in [11] as we
were only interested in the PGF of the system content U(z) = V (z, z, 1). The
current approach has the advantage however that it enables to extract, next to
the system content, various other significant performance measures.
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In order to determine F (z, x) and F (z, 1), we replace y by A(z) in (1). Since
V (z, x, y) is analytic for |x| < 1, |y| < 1 and |z| < 1, this leads to:

A(z)F (z, x) = T (A(z))xcz−c(A(z) − 1)

l−1
∑

n=0

q0(n)zn

+ T (A(z))xcz−cA(z)F (z, 1)

+ T (A(z))

c−1
∑

n=l

e(n)
[

xn − xczn−c
]

. (2)

We find an expression for F (z, 1) by letting x → 1 in (2) and rearranging terms
a bit:

A(z)F (z, 1) = T (A(z))

(A(z) − 1)

l−1
∑

n=0

q0(n)zn +

c−1
∑

n=l

e(n) [zc − zn]

zc − T (A(z))
. (3)

F (z, x) can be found by substituting (3) in (2) and these formulas for F (z, x)
and F (z, 1) result in the following expression for V (z, x, y):

[

1 −
A(z)

y

]

V (z, x, y) =
1

zc − T (A(z))

·

[

([

1 −
A(z)

y

]

[zc − T (A(z))]

+xc [A(z) − 1] [T (y) − T (A(z))]

) l−1
∑

n=0

q0(n)zn

+ [T (y) − T (A(z))]

c−1
∑

n=l

e(n)
[

xc {T (A(z)) − zn} − xn {T (A(z)) − zc}
]

]

. (4)

V (z, x, y) is now completely computed except for the c unknown constants q0(n),
0 ≤ n ≤ l − 1 and e(n), l ≤ n ≤ c− 1. To calculate these constants, we first let
x → z and y → 1 in equation (4). This yields

V (z, z, 1) =
T (A(z))

zc − T (A(z))

·

{

(zc − 1)

l−1
∑

n=0

q0(n)zn +
T ∗(A(z))

A(z)

c−1
∑

n=l

ũn(zc − zn)

}

,

where we have introduced ũn , E [T ] e(n) and where T ∗(z) ,
z[T (z)−1]
E[T ](z−1) repre-

sents the PGF of the position of an arbitrarily chosen slot in its current ser-
vice cycle given that the server is processing in this slot. We can prove by
means of Rouché’s theorem that the denominator zc − T (A(z)) has c zeroes
(z0 = 1, z1, . . . , zc−1) in the closed complex unit disk {z ∈ C : |z| ≤ 1} (see e.g.
[2]). Because V (z, z, 1) is a PGF and since PGF’s are normalised (V (1, 1, 1) = 1)
and bounded inside and on this disk, the unknowns q0(n) and ũn (and thus also
e(n)) can be determined by solving a set of c linear equations (except for some
special cases treated below in remark 2), consisting of the normalisation condi-
tion and c− 1 equations expressing that the numerator of V (z, z, 1) vanishes at
zi, 1 ≤ i ≤ c − 1:

(zc
i − 1)

l−1
∑

n=0

q0(n)zn
i +

T ∗(A(zi))

A(zi)

c−1
∑

n=l

ũn(zc
i − zn

i ) = 0 , 1 ≤ i ≤ c − 1 , (5a)
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c

l−1
∑

n=0

q0(n) +

c−1
∑

n=l

ũn(c − n) = c − E [T ]λ . (5b)

Remark 2. If l > 1, the unknowns can only be determined as explained above
if the period of zc − T (A(z)) equals 1. The period p of a series

∑∞

j=−∞ bjz
j

is defined as the largest integer for which bj = 0 whenever j is not divisible
by p. It can be proved (see e.g. [2]) that if the period is equal to p, then p
zeroes of zc − T (A(z)) are zeroes of zc − 1. So, if p > 1, not all unknowns
q0(n), 0 ≤ n ≤ l−1 and ũn, l ≤ n ≤ c−1 can be solved as above. In these cases,
one should then use intuitive arguments to reduce the problem into a solvable
model. For instance, if c = 4, l = 2, and customers arrive by 2, the period
of zc − T (A(z)) equals 2, so that an equation of the set of equations is fulfilled
regardless of the values of q0(n) and ũn. However, in this case the system
always contains an even number of customers irrespective of the initial system
content. Hence, q0(1) = ũ3 = 0. As a result, only q0(0) and e(2) still have to
be calculated, which can be done with the remaining equations.

The resulting formula (4) for V (z, x, y) turns out to be very useful in the deter-
mination of several other PGF’s, such as those of the system content, the queue
content, et cetera. This is illustrated in the next subsections.

3.2. Important quantities

3.2.1. Joint PGF of the queue and the server content
The joint PGF of the queue and the server content is extracted from (4) by

summing out the remaining service time. Hence,

Ṽ (z, x) , lim
k→∞

E
[

zQkxSk

]

= V (z, x, 1) . (6)

This leads to

Ṽ (z, x) =
1

[zc − T (A(z))]

·

{

[zc − xc + T (A(z))(xc − 1)]

l−1
∑

n=0

q0(n)zn

+
T ∗(A(z))

A(z)

c−1
∑

n=l

ũn [xnzc − xczn + T (A(z))(xc − xn)]

}

.

3.2.2. PGF of the system content
The system content at the beginning of a random slot, U , is defined as the

sum of the queue content and the server content at the beginning of that slot.
U(z) is thus equal to V (z, z, 1) (or equal to Ṽ (z, z)):

U(z) =
T (A(z))

zc − T (A(z))

·

{

(zc − 1)

l−1
∑

n=0

q0(n)zn +
T ∗(A(z))

A(z)

c−1
∑

n=l

ũn(zc − zn)

}

. (7)

This expression has previously been found in our paper [11].
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3.2.3. PGF of the queue content
The PGF of the queue content, Q(z), is found by summing out both the

server content and the remaining service time. Hence,

Q(z) = V (z, 1, 1) = Ṽ (z, 1) =
1

zc − T (A(z))

·

{

(zc − 1)

l−1
∑

n=0

q0(n)zn +
T ∗(A(z))

A(z)

c−1
∑

n=l

ũn(zc − zn)

}

. (8)

This expression has previously been found in [17] (formula (16)). We observe
that U(z) = T (A(z))Q(z), which is also in agreement with the relation found
in [17].

3.2.4. PGF of the server content
The PGF of the server content in the steady state, S(z), is equal to V (1, z, 1)

(or Ṽ (1, z)). l’Hôpital’s rule and the moment generating property of PGF’s
yields

S(z) =
1

c − E [T ]λ

·

{

[c + E [T ] λ(zc − 1)]

l−1
∑

n=0

q0(n)

+

c−1
∑

n=l

ũn [znc − zcn + E [T ]λ(zc − zn)]

}

. (9)

S(z) is a polynomial of degree c, as expected (the server content is between 0
and c). From (9), we can easily extract the corresponding probabilities:

Pr [S = n] =















∑l−1
m=0 q0(m) if n = 0 ,

ũn if l ≤ n ≤ c − 1 ,

1 −
∑l−1

m=0 q0(m) −
∑c−1

m=l ũm if n = c ,

0 else .

In the remaining paragraphs, we characterise some random variables that indi-
cate how efficiently the capacity of the server is used.

3.2.5. PGF of the queue content when the server is dormant
The number of customers waiting to be served if the server is not processing

is denoted by Q̃. The PGF Q̃(z) is given by:

Q̃(z) = lim
k→∞

E
[

zQk |Sk = 0
]

.

Hence,

Q̃(z) =
Ṽ (z, 0)

Ṽ (1, 0)
=

∑l−1
n=0 q0(n)zn

∑l−1
m=0 q0(m)

. (10)

The corresponding probabilities are thus equal to

Pr
[

Q̃ = n
]

=

{

q0(n)
∑ l−1

m=0 q0(m)
if 0 ≤ n ≤ l − 1 ,

0 else .
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3.2.6. PGF of the queue content when the server processes at suboptimal capac-
ity

We denote the queue content when the server is processing but not at full
capacity by Q∗. Its PGF is given by

Q∗(z) = lim
k→∞

E
[

zQk |l ≤ Sk < c
]

= lim
k→∞

E
[

zQk
]

− E
[

zQk1Sk<l

]

− E
[

zQk1Sk=c

]

Pr [l ≤ Sk < c]

=
Q(z) − limk→∞ E

[

zQk1Sk=0

]

− limk→∞ E
[

zQk1Sk=c

]

limk→∞ Pr [l ≤ Sk < c]

=
Q(z) − Ṽ (z, 0) − 1

c!
∂c

∂xc Ṽ (z, x)
∣

∣

∣

x=0
∑c−1

n=l ũn

. (11)

3.2.7. PGF of the number of customers in a served batch

We denote the PGF of the number of customers in a served batch by S̃(z).
Because the number of customers in service does not alter during a service cycle,
S̃(z) is equal to limk→∞ E

[

zSk |Rk = 1
]

. Hence,

S̃(z) =
F (1, z)

F (1, 1)
.

Making use of equation (2), yields

S̃(z) = zc +
1

F (1, 1)

c−1
∑

n=l

e(n) [zn − zc] , (12)

whereby F (1, 1) is found by replacing z by 1 in (3) and using l’Hôpital’s rule:

F (1, 1) =

λ

l−1
∑

n=0

q0(n) +

c−1
∑

n=l

e(n)(c − n)

c − E [T ] λ
.

From (12), we easily extract the corresponding probabilities:

Pr
[

S̃ = n
]

=















e(n)
F (1,1)

if l ≤ n ≤ c − 1 ,

1 −
∑c−1

n=l
e(n)

F (1,1)
if n = c ,

0 else .

Numerous other PGF’s of interest can be deduced from (4), such as the PGF
of the number of customers left behind at service termination, the PGF of
the system content as seen by new arrivals, et cetera. Furthermore, expression
(4) of V (z, x, y) is also used in section 5.1, where the customer delay is analysed.

PGF’s (6)-(12) now enable us to extract several performance measures:

• Since we assume that A(z) and T (z) are analytic at z = 1, it is easy to
prove that the obtained PGF’s (7)-(12) are analytic at z = 1. Hence, all
order moments of (7)-(12) can be calculated. In section 3.3, we demon-
strate that these moments provide an efficient tool to evaluate the impact
of the service threshold l.

9



• From formula (6), it is possible to calculate the covariance between the
server and the queue content.

• From formulas (7), (8) and (11), it is possible to calculate tail probabilities
from respectively the system content, the queue content and the queue
content when the server processes at suboptimal capacity, by means of
the dominant pole approximation (see e.g. [8]).

3.3. Some examples

In this section, we demonstrate that moments of the above PGF’s can be
used to evaluate the impact of the service threshold l. We compare thresholds 1,
5 and 10 via the mean and the variance of the system content and via the mean

server utilization (which is defined as E
[

S̃
]

- the mean number of customers

in a served batch - divided by the server capacity c). We initially consider a
batch-service queueing system with capacity c equal to 10, with Poisson arrivals
(i.e. A(z) = eλ(z−1)) and geometrically distributed service times with a mean
length of 10 slots.

In Fig. 1, the mean system content is depicted versus λ (0 < λ < 1(= c/E [T ])
- the stability condition is fulfilled for these values). The figure exhibits that a
small threshold should be adopted in light-traffic situations. Moreover, E [U ] →
Kl, with K1 = 0 and Kl > 0 if l > 1. In section 4.1, we examine the light-
traffic behaviour of the system content in detail and we find that K1 = 0 and
Kc = (c − 1)/2 for a broad set of distributions of A and T .
Fig. 1 further shows that larger thresholds produce the smallest mean system
content as λ increases. Finally, it seems that the distinct thresholds lead to
an equal performance when the arrival rate becomes large (λ → 1). This can
be explained intuitively: when the mean arrival rate λ tends to 1, the system
contains many customers. This implies on the one hand that the server nearly
always serves at full capacity, even for small thresholds. On the other hand,
the server is seldom in a dormant state, even for large thresholds. Hence, the
mean system content is more or less equal for every threshold. In section 4.2,
we study the heavy-traffic behaviour of the system content and we find that it
is indeed independent of the service threshold.

An interesting question is the following: what is the magnitude of the per-
formance gain (or drop) when adopting l = c instead of l = 1? In view of
this, we define the relative difference in the mean system content as 2(E [U1] −
E [Uc])/(E [U1] + E [Uc]), whereby U1 (Uc) represents the system content when
l = 1 (l = c). Analogously, the relative difference in the variance of the system
content reads 2(Var [U1]− Var [Uc])/(Var [U1] + Var [Uc]). In Fig. 2 the relative
differences in the mean (part a) and the variance (part b) are plotted versus
λ. We observe that if λ equals 0.75, the mean system content is approximately
10% smaller for l = c than for l = 1. The relative difference in the variance
reaches its peak earlier and the gain amounts to approximately 30%. Further-
more, the ‘transition point’ (i.e. where the relative difference becomes positive,
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Figure 1: Mean system content versus λ

and hence where l = c becomes better than l = 1) appears for a smaller λ. The
figure also exhibits that although l = 1 is better in terms of E [U ] if λ equals
0.4, the opposite holds in terms of Var [U ]. We further notice that the relative
differences tend to 0 for λ → 1.

In practice, the service of a batch can be expensive. In this case, it is of the ut-
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Figure 2: Relative difference versus λ

most importance that the dissipation of capacity is limited. In view of this, the
mean server utilization becomes a valuable performance measure. Fig. 3 shows
the mean server utilization versus λ. The figure exhibits that the mean server
utilization increases gradually from l/c to 1 and that the higher the threshold,
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the better the server utilization. Hence, if the best utilization is desired in some
situation, l = c should be adopted. However, this restriction is sometimes re-
laxed: one might for example restrict the set of possible thresholds so that the
mean server utilization is at least 50% and pick then from this set the threshold
that causes the smallest mean system content.

To close this section, we examine the influence of the distribution of the service
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Figure 3: Mean server utilization versus λ

times on the mean system content. Fig. 4 shows, both for l = 1 (part a) and for
l = c (part b), the mean system content versus λ for the following distributions
of the service times with a mean length of 10 slots:

• Geometric: T (z) = (1−0.9)z
1−0.9z

• Deterministic: T (z) = z10

• Negative binomial: T (z) =
(

(1−0.7)z
1−0.7z

)3

On the one hand, we observe that E [U ] is hardly influenced by the distribution
of the service times when λ is small. The light-traffic approximation of the
system content obtained in the next session will indeed point out that this is
in general the case. When, on the other hand, λ is larger, T (z) has a huge
impact on E [U ]. We observe that E [U ] is largest in the geometric case while it
is smallest in the deterministic case. These cases correspond respectively with
the largest and the smallest variance of T . From the obtained heavy-traffic
approximations of E [U ] in section 4.2, we can indeed draw the conclusion that,
in general, E [U ] increases as Var [T ] increases.

4. Approximations for the system content

4.1. Light-traffic approximation for U(z)

In order to calculate the performance measures from section 3.2, quite some
numerical work is required, namely the computation of the c zeroes of zc −
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Figure 4: E [U ] versus λ for several distributions of the service times with an equal mean value
of 10 slots

T (A(z)) inside the closed complex unit disk and the solution of a set of equations.
Especially the calculation of the zeroes can be a severe and even unfeasible
assignment when c is large. Therefore, we establish light- and heavy-traffic
approximations of the system content in respectively this section and section
4.2. These approximations require no numeric calculation of zeroes anymore.
In this first subsection, we examine the light-traffic behaviour of the system
content by expanding formula (7) for U(λ, z) in a Taylor series about λ = 0 and
only retaining the constant and the linear terms since the others are negligible
when λ → 0 (note that we substitute every function f(z) that is dependent on λ
by f(λ, z) to underline this dependency). This leads to a formula whereby it is
required to solve a set of equations but no zeroes have to be computed anymore,
which eliminates this bottleneck (section 4.1.1). When l = c and l = 1, the set
of equations can be solved explicitly, so that we obtain fully-analytic formulas
in these cases (sections 4.1.2 and 4.1.3 respectively). We close this section by
evaluating the approximation formula through an example (section 4.1.4).

4.1.1. General l

Let us denote the Taylor series expansion of q0(n) about λ = 0 by
∑∞

k=0 αk(n)λk.
Along the same lines,

∑∞

k=0 βk(n)λk represents the analogous expansion for ũn.
Taking into account that

A(λ, z) = 1 + λA(1)(0, z) +
λ2

2
A(1,1)(0, z) + O(λ3) ,

T (A(λ, z)) = 1 + λE [T ]A(1)(0, z) +
λ2

2

[

T
′′

(1)A(1)(0, z)2 + E [T ]A(1,1)(0, z)
]

+ O(λ3) ,

T ∗(A(λ, z))

A(λ, z)
= 1 + λ

T
′′

(1)A(1)(0, z)

2E [T ]
+ O(λ2) ,

with

A(1n,2m)(x, y) ,
∂n

∂λn

∂m

∂zm
A(λ, z)

∣

∣

∣

∣

λ=x,z=y

,
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whereby kn represents a series consisting of n consecutive k’s, the series expan-
sion of U(λ, z) about λ = 0 reads:

U(λ, z) =
(zc − 1)

∑l−1
n=0 α0(n)zn +

∑c−1
n=l β0(n)(zc − zn)

zc − 1
+ λ

1

(zc − 1)2

·

[

E [T ]A(1)(0, z)zc

{

(zc − 1)

l−1
∑

n=0

α0(n)zn +

c−1
∑

n=l

β0(n)(zc − zn)

}

+ (zc − 1)

{

(zc − 1)

l−1
∑

n=0

α1(n)zn +

c−1
∑

n=l

β1(n)(zc − zn)

}

+ (zc − 1)
T

′′

(1)A(1)(0, z)

2E [T ]

c−1
∑

n=l

β0(n)(zc − zn)

]

+ O(λ2) . (13)

Hence, in order to characterize the constant and linear term of U(λ, z) fully,
αk(n) and βk(n), k = 0, 1, the constant and linear terms of the unknowns q0(n)
and ũn, have to be calculated. Remember that q0(n) and ũn can be found by
solving a set of equations expressing that U(λ, 1) = 1 and that the numerator of
U(λ, z) must vanish for the zeroes zi(λ) of the denominator inside the complex
unit disk (equations (5a) and (5b)). Therefore, we first deduce the constant
(fi,0), linear (fi,1) and quadratic (fi,2) terms of the Taylor series expansion of

zi(λ) ,
∑∞

k=0 fi,kλk (it will become clear later why we also need the quadratic
term of the zeroes). In view of this, we expand T (A(λ, z)) and zi(λ) in a Taylor
series about λ = 0, we apply Newton’s binomium and we take into account that
A(2)(0, fi,0) = 0 (since A(0, z) = 1), to transform zi(λ)c = T (A(λ, zi(λ))) into

fc
i,0 + λcfc−1

i,0 fi,1 + λ2

[

c(c − 1)

2
fc−2

i,0 f2
i,1 + cfc−1

i,0 fi,2

]

+ O(λ3)

=1 + λE [T ] A(1) (0, fi,0)

+
λ2

2

[

T
′′

(1)A(1)(0, fi,0)
2 + E [T ] {A(1,1)(0, fi,0) + 2A(1,2)(0, fi,0)fi,1}

]

+ O(λ3) .

We now equate the constant term at the left-hand-side with the constant term
at the right-hand-side and repeat this for the linear and quadratic terms. The
following set of equations is produced:























fc
i,0 = 1 ,

cfc−1
i,0 fi,1 = E [T ] A(1) (0, fi,0) ,

c(c−1)
2

fc−2
i,0 f2

i,1 + cfc−1
i,0 fi,2

= 1
2

[

T
′′

(1)A(1)(0, fi,0)2 + E [T ] {A(1,1)(0, fi,0) + 2A(1,2)(0, fi,0)fi,1}
]

.

It is directly clear that the first equation has c solutions: the c complex c-th
roots of one, εi , e(ı2πi)/c, with ı the imaginary unit and i = 0, . . . , c−1. Hence,

fi,0 = εi , 0 ≤ i ≤ c − 1 . (14)

The corresponding fi,1’s can be found by replacing fi,0 by εi in the second
equation, leading to

fi,1 =
εiE [T ]

c
A(1) (0, εi) , 0 ≤ i ≤ c − 1 . (15)
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Finally, the use of (14) and (15) in the third equation produces

fi,2 =
εi

2c

[

{

T
′′

(1) −
c − 1

c
E [T ]2

}

A(1)(0, εi)
2

+E [T ]A(1,1)(0, εi) + 2
εiE [T ]2

c
A(1)(0, εi)A

(1,2)(0, εi)

]

. (16)

This concludes the calculation of fi,0, fi,1 and fi,2 (0 ≤ i ≤ c−1). As a next step,
we expand equations (5a) and (5b) in a series expansion and we thereby make
use of formulas (14)-(16) for fi,0, fi,1 and fi,2. Owing to Newton’s binomium
and taking (14) into account (and thus that f c

i,0 = 1), we get


































λcε−1
i fi,1

∑l−1
n=0[α0(n) + λα1(n)][εn

i + λnεn−1
i fi,1]

+

[

1 + λ
T

′′

(1)
2E[T ]

A(1)(0, εi)

]

∑c−1
n=l [β0(n) + λβ1(n)] [1 − εn

i + λfi,1{cε
−1
i − nεn−1

i }]

+O(λ2) = 0 , 1 ≤ i ≤ c − 1 ,

c
∑l−1

n=0[α0(n) + λα1(n)] +
∑c−1

n=l [β0(n) + λβ1(n)](c − n) + O(λ2) = c − E [T ] λ .

(17)

Equating the constant term at the left-hand-side with the constant term at the
right-hand-side yields:

c−1
∑

n=l

β0(n)[1 − εn
i ] = 0 , 1 ≤ i ≤ c − 1 , (18a)

c

l−1
∑

n=0

α0(n) +

c−1
∑

n=l

β0(n)(c − n) = c , (18b)

(18a) thus consists of c−1 equations for c−l unknowns β0(n) (l ≤ n ≤ c−1). The
only solution is the obvious solution β0(n) = 0 (we give an intuitive explanation
of this fact in appendix B). Next, we equate the linear terms of (17) and on
account of β0(n) = 0, we obtain:

cε−1
i fi,1

l−1
∑

n=0

α0(n)εn
i +

c−1
∑

n=l

β1(n)(1 − εn
i ) = 0 , 1 ≤ i ≤ c − 1 , (19a)

c

l−1
∑

n=0

α1(n) +

c−1
∑

n=l

β1(n)(c − n) = −E [T ] . (19b)

Hence, (19a) produces c − 1 equations for c unknowns α0(n) (0 ≤ n ≤ l − 1)
and β1(n) (l ≤ n ≤ c − 1). Together with equation (18b) and β0(n) = 0, these
unknowns can thus be calculated. The α1(n) however cannot be calculated from
(18a)-(19b). Therefore, we finally also establish the quadratic term in the series
expansion of the set of equations (5a) and (5b). Taking expression (14) for fi,0

into account, we find the following c − 1 extra equations:

cε−1
i fi,1

l−1
∑

n=0

α1(n)εn
i + cε−1

i f2
i,1

l−1
∑

n=0

α0(n)nεn−1
i

+

[

c(c − 1)

2
ε−2
i f2

i,1 + cε−1
i fi,2

] l−1
∑

n=0

α0(n)εn
i + fi,1

c−1
∑

n=l

β1(n)[cε−1
i − nεn−1

i ]

+

c−1
∑

n=l

β2(n)(1 − εn
i ) +

T
′′

(1)

2E [T ]
A(1)(0, εi)

c−1
∑

n=l

β1(n)(1 − εn
i ) = 0 , 1 ≤ i ≤ c − 1 . (20)
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The appearance of fi,2 in these equations is the reason why we above deduced
an expression for it. Formula (20) produces c − 1 equations in the l unknowns
α1(n) together with c − l extra unknowns β2(n). Hence, together with (19b),
this makes it possible to obtain α1(n). Summarized, the light-traffic formula for
U(λ, z) is found by replacing β0(n) by 0 in (13), leading to:

U(λ, z) =

l−1
∑

n=0

α0(n)zn + λ
1

zc − 1

·

[

E [T ]A(1)(0, z)zc
l−1
∑

n=0

α0(n)zn + (zc − 1)

l−1
∑

n=0

α1(n)zn +

c−1
∑

n=l

β1(n)(zc − zn)

]

+ O(λ2) . (21)

Solving (18b)-(19a) produces α0(n) (0 ≤ n ≤ l − 1) and β1(n) (l ≤ n ≤ c − 1)
completely. Using these results in the equations (19b) and (20) finally yields
α1(n) (0 ≤ n ≤ l − 1) completely. Note that β2(n) (l ≤ n ≤ c − 1) are also
determined, but we do not need these.

Remark 3. Note that U(z), q0(n), ũn and zi can only be expanded in a Taylor
series if they are analytic at λ = 0. In appendix A, we prove that if A(z) is
analytic at λ = 0 for all z in the closed complex unit disk (this assumption is not
stringent, since this is usually the case), then these functions are also analytic
at λ = 0.

Remark 4. The light-traffic formulas are valid under the assumption that zc−
T (A(z)) is aperiodic. Indeed, the approximation is based on the series expansion
of equations (5), which only make sense in case of aperiodicity of zc − T (A(z))
(see Remark 2).

4.1.2. Special case: l = c
In this case, formula (21) for U(λ, z) transforms into

U(λ, z) =

c−1
∑

n=0

α0(n)zn + λ
1

zc − 1

·

[

E [T ]A(1)(0, z)zc
c−1
∑

n=0

α0(n)zn + (zc − 1)

c−1
∑

n=0

α1(n)zn

]

+ O(λ2) , (22)

and equations (19a) and (18b) into
{

∑c−1
n=0 α0(n)εn

i = 0 , 1 ≤ i ≤ c − 1 ,
∑c−1

n=0 α0(n) = 1 .
(23)

These c equations in c unknowns have a unique solution

α0(n) =
1

c
, 0 ≤ n ≤ c − 1 , (24)

because
c−1
∑

n=0

εn
i =

εc
i − 1

εi − 1
= 0 , 1 ≤ i ≤ c − 1 .
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Next, we calculate
∑c−1

n=0 α1(n)zn. Note that this is in fact a polynomial, say

p(z), of degree c − 1. On account of
∑c−1

n=0 α0(n)εn
i = 0 (see equation (23)),

expression (15) for fi,1, and

c−1
∑

n=0

nεn−1
i =

c

εi(εi − 1)
, 1 ≤ i ≤ c − 1 ,

equations (20) and (19b) become

p(εi) =
E [T ]

c(1 − εi)
A(1)(0, εi) , 1 ≤ i ≤ c − 1 ,

p(1) = −
E [T ]

c
,

We thus obtain a set of c data points of a polynomial of degree c− 1. By virtue
of Lagrange’s interpolation formula (see e.g. [4]), we find

p(z) = −
E [T ]

c

c−1
∏

k=1

z − εk

1 − εk
+

c−1
∑

i=1

E [T ]

c(1 − εi)
A(1)(0, εi)

z − 1

εi − 1

c−1
∏

j=1,j 6=i

z − εj

εi − εj

= −
E [T ] (zc − 1)

c2(z − 1)
+ (zc − 1)

E [T ]

c2

c−1
∑

i=1

A(1)(0, εi)εi

(z − εi)(1 − εi)
. (25)

The combination of (22), (24) and (25) yields the final expression for U(λ, z):

U(λ, z) =
zc − 1

c(z − 1)

+λ
E [T ]

c2

{

1

z − 1

[

1 − zc + czc ∂

∂x
A(x, z)

∣

∣

∣

∣

x=0

]

+ (zc − 1)

c−1
∑

i=1

∂

∂x
A(x, y)

∣

∣

∣

∣

x=0,y=εi

εi

(1 − εi)(z − εi)

}

+ O(λ2) . (26)

4.1.3. Special case: l = 1
In this case, formula (21) for U(λ, z) transforms into

U(λ, z) =α0(0) + λ
1

zc − 1

·

[

E [T ]A(1)(0, z)zcα0(0) + (zc − 1)α1(0) + (z − 1)

c−1
∑

n=1

β1(n)
zc − zn

z − 1

]

+ O(λ2) . (27)

Below, we subsequently establish expressions for α0(0), α1(0) and
∑c−1

n=1 β1(n)(zc−
zn)/(z − 1) and then substitute them in (27) to obtain the light-traffic formula
for U(λ, z). First, equation (18b) implies that

α0(0) = 1 . (28)

Secondly,
∑c−1

n=1 β1(n)(zc−zn)/(z−1) is a polynomial, say p̃(z), of degree c−1,
of which a set of c − 1 data points is extracted from (19a):

p̃(εi) =
E [T ] A(1)(0, εi)

1 − εi
, 1 ≤ i ≤ c − 1 . (29)
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Application of Lagrange’s interpolation formula on (29) and p̃(0) = 0 produces:

p̃(z) =

c−1
∑

i=1

E [T ]A(1)(0, εi)

1 − εi

z

εi

c−1
∏

j=1,j 6=i

z − εj

εi − εj
. (30)

Since ε0 = 1, ε1, . . . , εc−1 are the c complex c-th roots of one, we have that

(zc − 1) = (z − 1)
∏c−1

j=1(z − εj) and thus that

c−1
∏

j=1,j 6=i

(z − εj) =
zc − 1

(z − εi)(z − 1)
,

and consequently

c−1
∏

j=1,j 6=i

(εi − εj) =
cεc−1

i

εi − 1
=

c

εi(εi − 1)
.

As a result, (30) transforms into

p̃(z) =
zc − 1

c(z − 1)
zE [T ]

c−1
∑

i=1

A(1)(0, εi)

εi − z
. (31)

Finally, α1(0) is obtained through the normalisation condition U(λ, 1) = 1.
The linear term in (27) has to be equal to zero at z = 1. This condition, after
application of l’Hôpital’s rule (A(1)(0, 1) = 0, since A(λ, 1) = 1), yields

α1(0) = −
E [T ]

c
−

E [T ]

c

c−1
∑

i=1

A(1)(0, εi)

εi − 1
, (32)

where we have used that A(1,2)(0, 1) = 1 (because owing to the moment gener-

ating property of PGFs A(2)(λ, 1) = E [A] = λ) and
∑c−1

n=0 β1(n)(c − n) = p̃(1).
Finally, making use of (28), (31) and (32) in (27) results in the following light-
traffic formula for U(λ, z):

U(λ, z) = 1 + λE [T ]

{

zc

zc − 1
A(1)(0, z) −

1

c
+

1 − z

c

c−1
∑

i=1

A(1)(0, εi)
εi

(εi − z)(1 − εi)

}

. (33)

Remark 5. Formulas (26) and (33) are closed-form expressions: no numerical
work is required.

Remark 6. Formula (26) expresses that in the case l = c, the system content
tends to a uniform distribution for λ → 0, while (33) shows that when l = 1,
Pr [U = 0] tends to 1 (for an intuitive explanation of these facts, we refer to
appendix B). This is in agreement with the findings in section 3.3 that the
constant term of the mean system content in case of light-traffic equals 0 when
l = 1, while it equals (c − 1)/2 if l = c.

Remark 7. Equations (18b) and (19a) together with formula (15) for fi,1 reveal
that the constant term in the light-traffic approximation is only influenced by the
service times through their mean value. When l = 1 or l = c, this also holds
for the linear term (see formulas (26) and (33)). The variance of the service
times thus only has a small influence on E [U ] in case of light traffic. This is in
agreement with the findings in section 3.3.
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Remark 8. Light-traffic approximations of the moments of the system content
can be obtained by taking derivatives of (21) at z = 1. Indeed, since U(λ, z) is
analytic at (λ = 0, z = 1), the order of taking derivatives can be changed (first
to λ and then to z or vice versa).

4.1.4. Evaluation of the approximation
In this section, we demonstrate the accurateness of light-traffic approxima-

tion formula (21) through a small example. Fig. 5 shows the mean system
content and its approximation for l = 1 (part a) as well as for l = 10 (part b),
in case of Poisson arrivals, geometric service times and a server capacity c equal
to 10. We perceive that the approximation is indeed accurate for small values
of λ. Fig. 5 also leads one to suspect that the larger l, the longer the range
of values of λ where the approximation is accurate. In order to verify this, we
define the relative error of the approximation as

2
(

E [U ] − E [U ]a
)

E [U ] + E [U ]a
,

with E [U ]a the approximated value of E [U ], found by taking the first derivative
at z = 1 of (21). In Fig. 6, this relative error is depicted versus λ for each value
of l. Fig. 6 indeed leads to the conclusion that the larger the value of l, the
more accurate the light-traffic formula (21).
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10, c = 10
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4.2. Heavy-traffic approximation
We here deduce heavy-traffic approximations for the most important perfor-

mance measures (E [U ], Var [U ] and Pr [U = n]). The approach essentialy boils
down to demonstrate that q0(n) and ũn tend to zero as λ goes to c/E [T ] and
then exploiting these findings to deduce heavy-traffic formulas. So, let us start
by proving that q0(n) and ũn tend to zero. The rate-in-rate-out principle leads
to the following relation:

Pr [R = 0] = 1 −
λE [T ]

L(λ)
, (34)

whereby L(λ) represents the mean number of customers in a served batch. In-
deed, the mean number of customers leaving the system at the end of an arbi-
trary slot equals the product of the fraction of slots where a service is completed -
this equals the probability that the server is not dormant (1−Pr [R = 0]) divided
by the mean service length E [T ] - and the mean number of customers in a served
batch (L(λ)). Relation (34) together with l ≤ L(λ) ≤ c and Pr [R = 0] ≥ 0,
yields

lim
λ↑ c

E[T ]

L(λ) = c , (35)

and

lim
λ↑ c

E[T ]

Pr [R = 0] = 0 , (36)

which is in accordance with Fig. 3, where the mean server utilization (which
equals L(λ)/c) tends to one. Combining (36) with the definitions of q0(n) and
ũn implies that

lim
λ↑ c

E[T ]

q0(n) = 0 , (37)

and that

lim
λ↑ c

E[T ]

ũn = E [T ] lim
λ↑ c

E[T ]

lim
k→∞

Pr [Qk + Ak = n, Rk = 1] .

Further, if Qk + Ak = n, Rk = 1, the server starts the service of n customers
at the beginning of slot k + 1. However, (35) states that the mean number of
served customers tends to c, so that

lim
λ↑ c

E[T ]

ũn = 0 , n < c . (38)

Next, we take advantage of (37) and (38) to formulate an approximation for
E [U ], Var [U ] and Pr [U = n]. To this end, we introduce N(z) and D(z) as
respectively the numerator and denominator of U(z) (formula (7)). Observe

that N(1) = D(1) = 0 and that, owing to the normalisation condition, N
′

(1) =

D
′

(1). As a result, we have

E [U ] = U
′

(1) =
N

′′

(1) − D
′′

(1)

2D
′

(1)
,

and

U
′′

(1) =
2N

′′′

(1)D
′

(1) − 2D
′

(1)D
′′′

(1) − 3D
′′

(1)N
′′

(1) + 3D
′′

(1)2

6D
′

(1)2
.

In addition, when λ goes to c/E [T ], D
′

(1) = c−E [T ]λ tends to zero, as well as
the numerator and all its derivatives become zero at z = 1 (since q0(n) → 0 and
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ũn → 0). On account of these findings, U
′

(1) and U
′′

(1) go to infinity according
to the following expressions:

U
′

(1) ∼
−D

′′

(1)

2D
′ (1)

, (39)

U
′′

(1) ∼
1

2

(

D
′′

(1)

D
′

(1)

)2

. (40)

Taking the appropriate derivatives of D(z) and relying on (39) and (40) yields
the intended heavy-traffic approximations for E [U ] and Var [U ]:

E [U ] ∼
T

′′

(1)λ2 + E [T ]A
′′

(1) − c(c − 1)

2(c − E [T ] λ)
, (41)

Var [U ] ∼
1

2

(

T
′′

(1)λ2 + E [T ]A
′′

(1) − c(c − 1)

c − E [T ]λ

)2

. (42)

Finally, on account of (37) and (38), it follows that U(z) → 0 for |z| < 1, which,
in turn, implies that Pr [U = n] → 0 for finite n.

Before finishing this section, we evaluate formula (41) through a small example
with Poisson arrivals, geometrically distributed service times with mean value
10 and a server capacity equal to 10. Fig. 7 shows the relative differences be-
tween the exact values and the approximations, for l = 1, l = 5 and l = c. We
observe that the approximation is accurate for a large arrival intensity and that
it fits better when l is larger. This is logical, since the approximation exploits
the fact that the server nearly always processes at full capacity in case of heavy
traffic.

Remark 9. Note that (41) and (42) are independent of l. The heavy-traffic
behaviour is thus independent of the threshold l.

Remark 10. The appearance of T
′′

(1) in the numerator of (41) and (42) shows
that the system content increases if the variance of the service times increases,
which is a typical result in queueing theory.

Remark 11. We could in fact have adhered to the notations from section 3.2.7,

so that E
[

S̃
]

would denote the mean number of customers in a served batch.

However, we have introduced L(λ) to emphasize the dependency of the mean
number of customers in a served batch on λ.

5. Customer delay

The time (counted in number of slots) that a randomly tagged customer
remains in the queue (W ) consists of two components; the first (W1) is the time
required to serve batches of ‘older’ customers. The second part (W2) is the
time needed, starting from the end of the first waiting time, to fill the batch
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Figure 7: Relative difference between E [U ] and heavy-traffic approximation formula (41), for
l = 1, l = 5 and l = c

containing the tagged customer with at least l customers. Dependence exists
between W1 and W2. Indeed, the first waiting time influences the number of
customers left at the end of this waiting time (denoted by P ), while the second
waiting time depends on P . In Fig. 8, W1, W2 and P are indicated together
with several other notations that are introduced further. We first compute the

Figure 8: Illustration of the notations

joint PGF of W1 and W2 (section 5.1), from which several characteristics related
to the customer delay will be derived (section 5.2).

5.1. Joint PGF of W1 and W2

We denote the joint PGF of W1 and W2 by W̃ (z, x), i.e.

W̃ (z, x) , E
[

zW1xW2

]

,

23



and we condition on P :

W̃ (z, x) =
∞
∑

p=1

Pr [P = p] E
[

zW1xW2 |P = p
]

=
∞
∑

p=1

Pr [P = p] E
[

zW1 |P = p
]

E
[

xW2 |P = p
]

. (43)

In the last step of (43) we exploit that W1 and W2 are independent if P is
given (W1 only influences W2 through the value of P ). Next, we compute
E
[

xW2 |P = p
]

. Therefore, we make use of the following relation between W2

and P :

Pr[W2 > m|P = p] = Pr[p + Â1 + · · · + Âm < l] , m ≥ 0, (44)

with Âj the number of arrivals during the jth slot after the end of the first
waiting time. Multiplication of both sides of (44) by xm and summing over all
m yields

E
[

xW2 |P = p
]

− 1

x − 1
=

∞
∑

m=0

xmPr
[

p + Â1 + · · · + Âm < l
]

=
∞
∑

m=0

xm
l−1
∑

n=0

Pr
[

p + Â1 + · · · + Âm = n
]

=
∞
∑

m=0

xm
l−1
∑

n=0

1

n!

∂n

∂yn
ypA(y)m

∣

∣

∣

∣

y=0

=

l−1
∑

n=0

1

n!

∂n

∂yn

yp

1 − xA(y)

∣

∣

∣

∣

y=0

,

whereby step 3 makes use of the probability generating property of PGF’s
and the IID character of the arrival process. The last equation requires that
|xA(y)| < 1 in the neighbourhood of y = 0. We thus have that:

E
[

xW2 |P = p
]

= 1 + (x − 1)

l−1
∑

n=0

1

n!

∂n

∂yn

yp

1 − xA(y)

∣

∣

∣

∣

y=0

. (45)

Note that the second term of (45) vanishes if p ≥ l. Indeed, when p ≥ l, the
second waiting time is equal to zero. Substituting (45) into (43) yields:

W̃ (z, x) = P (z, 1) + (x − 1)

l−1
∑

n=0

1

n!

∂n

∂yn

P (z, y)

1 − xA(y)

∣

∣

∣

∣

y=0

, (46)

with

P (z, y) , E
[

zW1yP
]

.

In order to compute P (z, y), we first calculate the joint PGF W (z, x, y) of W1,
the number of customers ahead (G) and the number of customers behind (H)
the tagged customer at the end of the first waiting time (see Fig. 8 for an
illustration of these variables), i.e.

W (z, x, y) , E
[

zW1xGyH
]

.

Since P is equal to G + H + 1, P (z, y) is then equal to yW (z, y, y). Call the
slot wherein the tagged customer arrives slot J and denote the queue content

24



at the beginning of this slot by QJ . Furthermore, B (X resp.) is the number
of customer arrivals during slot J and before (after resp.) the tagged customer.
We consider two situations depending on whether the remaining service time at
the beginning of slot J , denoted by RJ , equals 0 or not:

• RJ = 0. In this case the server is not processing during slot J . As a
consequence, the server can start a new service at slot J + 1 if there are
enough customers. Also, the number of ‘older’ customers equals QJ + B.

The first waiting time W1 is thus equal to
⌊

QJ+B
c

⌋

service periods, with

b.c the floor function, i.e. bxc = max{n ∈ Z|n ≤ x}. (QJ + B) mod c
‘older’ customers are served in the same batch as the tagged customer,
with ‘mod’ the modulo operator. Hence, G = (QJ + B) mod c. The
number of customers behind the tagged customer at the end of the first
waiting time is the sum of the number of customers that arrive during slot
J but after the tagged one and those that arrive during the first waiting
time. Hence, H = X +

∑W1

i=1 AJ+i.

• RJ ≥ 1. In this case, the server first continues RJ − 1 slots with the
current service period. After that, QJ + B customers are ahead of the

tagged one and another
⌊

QJ+B
c

⌋

service periods are part of W1. Hence,

W1 =
⌊

QJ+B
c

⌋

service periods +RJ − 1. Analogously as in the first case,

G = (QJ + B)mod c and H = X +
∑W1

i=1 AJ+i.

We split the computation of the joint PGF W (z, x, y) of W1, G and H in two
parts corresponding to these two situations:

W (z, x, y) = E
[

zW1xGyH
1RJ=0

]

+ E
[

zW1xGyH
1RJ≥1

]

. (47)

For the first component we have:

E
[

zW1xGyH
1RJ=0

]

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

d(nc + m, k, 0)T (zA(y))nxmyk , (48)

with

d(n, m, k) , Pr [QJ + B = n, X = m, RJ = k] .

Due to the IID number of per-slot customer arrivals, we can write the corre-
sponding PGF D(z, x, y) as the following product:

D(z, x, y) = E
[

zBxX
]

V (z, 1, y) , (49)

with V (z, x, y) as defined in section 3.1. Taking into account that an arbitrary
customer is more likely to arrive in a slot with more customer arrivals (see e.g.
[7]), E

[

zBxX
]

is equal to

E
[

zBxX
]

=
A(z) − A(x)

λ(z − x)
. (50)

In order to relate E
[

zW1xGyH1RJ=0

]

with D(z, x, y), we first introduce some

notations. The function u(z, y) is defined as the ‘principal cth root’ of T (zA(y)),
i.e.

u(z, y) , |T (zA(y))|1/ceıArg
(

T (zA(y))
)

/c , (51)
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whereby |z| is the absolute value of z, Arg(z) is the principal value of the
argument of z and ı is the imaginary unit. Next, δ〈l = j〉 is the Kronecker-
Delta function (i.e. δ〈l = j〉 = 1 if l = j and δ〈l = j〉 = 0 if l 6= j). We now
obtain subsequently for E

[

zW1xGyH1RJ=0

]

, starting from (48):

E
[

zW1xGyH
1RJ=0

]

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

c−1
∑

j=0

d(nc + m, k, 0)u(z, y)nc+m−jxjykδ〈m = j〉

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

c−1
∑

j=0

d(nc + m, k, 0)u(z, y)nc+m−jxjyk
c−1
∑

i=0

1

c
ε
nc+m−j
i

=
1

c

c−1
∑

i=0

D(u(z, y)εi, y, 0)

c−1
∑

j=0

u(z, y)−jxjε
−j
i

=
u(z, y)c − xc

cu(z, y)c

c−1
∑

i=0

D(u(z, y)εi, y, 0)
u(z, y)εi

u(z, y)εi − x
, (52)

whereby we used the standard property δ〈m = j〉 =

c−1
∑

i=0

1

c
εnc+m−j

i in step 2 and

εi = eı2πi/c as in the previous section. We continue with the second part of (47).
In a similar way as formulas (48) and (52), we find

E
[

zW1xGyH
1RJ≥1

]

=
∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

∞
∑

r=1

d(nc + m, k, r)T (zA(y))n(zA(y))r−1xmyk ,

and

E
[

zW1xGyH
1RJ≥1

]

=
1

czA(y)

u(z, y)c − xc

u(z, y)c

.

c−1
∑

i=0

[D(u(z, y)εi, y, zA(y)) − D(u(z, y)εi, y, 0)]
u(z, y)εi

u(z, y)εi − x
. (53)

Substitution of (52) and (53) in (47) produces:

W (z, x, y) =
u(z, y)c − xc

cu(z, y)czA(y)

.

[

[zA(y) − 1]

c−1
∑

i=0

D(u(z, y)εi, y, 0)
u(z, y)εi

u(z, y)εi − x

+

c−1
∑

i=0

D(u(z, y)εi, y, zA(y))
u(z, y)εi

u(z, y)εi − x

]

.
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Making use of formulas (49), (50), (51), (4) and V (z, 1, 0) =
∑l−1

n=0 q0(n)zn

yields:

W (z, x, y) =
T (zA(y)) − xc

cλT (zA(y))

c−1
∑

i=0

A(u(z, y)εi) − A(y)

u(z, y)εi − y

u(z, y)εi

u(z, y)εi − x

.

{

[zA(y) − 1]

l−1
∑

n=0

q0(n)(u(z, y)εi)
n +

c−1
∑

n=l

e(n) [T (zA(y)) − (u(z, y)εi)
n]

}

·
1

zA(y) − A(u(z, y)εi)
.

Hence,

P (z, y) = yW (z, y, y)

= y
T (zA(y)) − yc

cλT (zA(y))

c−1
∑

i=0

A(u(z, y)εi) − A(y)

[u(z, y)εi − y]2
u(z, y)εi

zA(y) − A(u(z, y)εi)

.

{

[zA(y) − 1]

l−1
∑

n=0

q0(n)(u(z, y)εi)
n

+

c−1
∑

n=l

e(n) [T (zA(y)) − (u(z, y)εi)
n]

}

. (54)

Substitution of (51) and (54) in (46) produces the joint PGF W̃ (z, x). As
was the case in section 3, the obtained joint PGF enables us to extract several
characteristics. In the next subsections, we derive the PGF of the total customer
delay and the marginal PGF’s of the first and the second delay.

Remark 12. The analysis of W2 given P = p is substantially facilitated in the
event of single arrivals, since this then equals the sum of max(l − p,0) shifted
geometrically distributed service times. One can verify that if A(z) is substituted
by 1 − λ + λz, (45) reduces to this sum.

5.2. Important quantities

5.2.1. PGF of the customer delay
Since the customer delay W is the sum of the first and the second waiting

time, W (z) is found by substituting x by z in (46):

W (z) = W̃ (z, z) = P (z, 1) + (z − 1)

l−1
∑

n=0

1

n!

∂n

∂yn

P (z, y)

1 − zA(y)

∣

∣

∣

∣

y=0

. (55)

5.2.2. PGF of the first waiting time
The PGF of the first waiting time is found by summing out the second

waiting time in W̃ (z, x). Hence, substituting x by 1 in (46) gives:

W1(z) , E
[

zW1

]

= W̃ (z, 1) = P (z, 1) . (56)
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5.2.3. PGF of the second waiting time
Substituting z by 1 and x by z in (46) produces:

W2(z) , E
[

zW2

]

= W̃ (1, z) = 1 + (z − 1)

l−1
∑

n=0

1

n!

∂n

∂yn

P (1, y)

1 − zA(y)

∣

∣

∣

∣

y=0

. (57)

Expressions (55) - (57) enable us to calculate moments of the first, second and
total customer delay (note that the mean delay can also be obtained by applying
Little’s law to the mean queue content - see e.g. [15]). These moments serve as
performance measures. Furthermore, formula (55) can be used to calculate the
correlation between the first and the second waiting time.

5.3. Examples

The purpose of this section is twofold: (i) we demonstrate that the above
quantities can be applied to study the behaviour of batch-service systems and
(ii) we investigate the influence of the distribution of the number of customer
arrivals on the customer delay.

Fig. 9 shows the mean (part a) and the variance (part b) of the customer
delay, in the case of Poisson arrivals, geometrically distributed service times
with mean value equal to 10 and a server capacity equal to 10. We can draw
the same conclusions as was the case for the system content, except that the
curves go to infinity when the service threshold l > 1 and λ → 0.

Taking a closer look at E [W1] and E [W2] (respectively parts a and b of Fig. 10)
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Figure 9: E [W ] and Var [W ] versus λ for several values of l

learns us that the second waiting time is large in light-traffic scenarios, whereas
the first is large in heavy-traffic circumstances. Note also that the mean second
waiting time equals zero when l equals 1, since the server starts serving when
at least one customer (i.e. the tagged customer) is present in this case.
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As the inclusion of batch arrivals constitutes one of the major contributions
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Figure 10: E [W1] and E [W2] vs λ for several values of l

of this paper, we compare the mean (Fig. 11) and the variance (Fig. 12) of
the waiting time for three cases of the distribution of the number of customer
arrivals in a slot: Bernoulli (i.e. the single-arrival case), Poisson, and the ‘c-
centered’ distribution. The latter has a PGF

A(z) =
c − λ

c
+

λ

2c
(zc−1 + zc+1) ,

i.e., either 0, c − 1 or c + 1 customers arrive. We observe on the one hand
that the performance in case of Poisson arrivals approximates the performance
in the event of Bernoulli arrivals. On the other hand, the ‘c-centered’ arrival
distribution clearly leads to rather different results. We can thus conclude that
the distribution of the number of customer arrivals in an arbitrary slot plays a
significant role in the performance of the system.

As a closing, we investigate whether the relative difference in the mean
delays between l = 1 and l = c (defined as 2(D1 − Dc)/(D1 + Dc), with D1

(Dc) the customer delay when l = 1 (l = c)) is affected by the distribution
of the arriving batch sizes. Therefore, we consider Fig. 13, where the relative
differences in the mean (part a) and the variance (part b) of the customer delay
are plotted for the three above mentioned distributions. We observe that the
position of the transition points as well as the extent of the performance gain
are highly affected by the distribution of the sizes of the arriving batches. Also,
the difference between the Poisson and the Bernoulli distribution is larger here.
Hence, we can conclude that the inclusion of batch arrivals in the model is a
necessity.
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Figure 11: E [W ] versus λ for several arrival processes
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Figure 12: Var [W ] versus λ for several arrival processes

6. Conclusions

In this paper, we have studied a general (batch arrivals, general service
times, threshold-based service policy) batch-service queueing model. We have
first computed the joint probability generating function (PGF) of the number of
customers in the queue, the number of customers in service and the remaining
service time. From this joint PGF, we have extracted various (known as well as
new) important quantities related to the buffer content.
These formulas are semi-analytic, in the sense that they contain some unknown
probabilities that have to be calculated numerically. This can become an unfea-
sible assignment when the batch size is large. Therefore, in a second part of the
paper, we have established accurate light- and heavy-traffic approximations of
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Figure 13: Relative difference versus λ for several arrival processes

the system content, which require fewer numerical calculations or none at all.
In the last part of the paper, we have studied the customer delay. We have first
computed the joint PGF of the first (time to serve older batches) and the sec-
ond (time until the number of present customers reaches or exceeds the service
threshold) waiting time. From that joint PGF, we have extracted the marginal
PGF’s and the PGF of the customer delay. We have illustrated that these PGF’s
again enable to extract performance measures, by which batch-service systems
can be examined. We have also evaluated the influence of the distribution of
the sizes of the arriving batches on the mean and the variance of the customer
delay. This influence turned out to be significant, implying that the inclusion
of batch arrivals in a batch-service queueing model is a necessity.
In conclusion, we feel this paper provides various useful tools to evaluate a wide
range of practical batch-service queueing systems.

Acknowledgement: We would like to thank the referees for their valuable
comments and suggestions which led to improvements in the paper.

A. Analyticity of the zeroes zi and U(z) in λ = 0

In this section, we show that, if A(λ, z) is analytic in

D = {(λ, z) : |λ| < δ, |z| < 1 + γ} , δ > 0, γ > 0 ,

then (i) the zeroes zj, 0 ≤ j ≤ c − 1 of zc − T (A(λ, z)) are analytic in λ = 0,
(ii) q0(n) and ũn are analytic in λ = 0 and (iii) U(λ, z) is analytic in λ = 0 for
|z| ≤ 1.

From A(λ, z) being analytic in D, it follows that f(λ, z) , zc − T (A(λ, z))
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is analytic in D (mark that we have previously assumed that the radius of con-
vergence of T (z) is larger than 1). Hence, f(λ, z) is analytic in a neighbourhood
of the points (0, εj), 0 ≤ j ≤ c − 1 (a). Further, f(0, εj) = 0 and

∂

∂z
f(λ, z)

∣

∣

∣

∣

λ=0,z=εj

=
c

εj
6= 0 (b) .

From (a) and (b) and the implicit function theorem, it follows that there exists
a unique function zj(λ), that satisfies

f(λ, zj(λ)) = 0 ,

and
zj(0) = εj ,

and that is analytic in λ = 0 and this for all j, 0 ≤ j ≤ c−1. Next, it is possible
to prove that (i) implies (ii) by virtue of the implicit function theorem (see e.g.
[16]). Finally, from the calculus of analytic functions, it follows that (iii) also
holds.

B. Intuitive explanation of the constant terms in the light-traffic ap-
proximation

In case of light traffic, the time between slots during which one or more
customers arrive is long (and tends to infinity). Hence, if the system content is
below the service threshold l, it will take a long time until at least l customers
have accumulated. When, finally, l or more customers are present, these are
served immediately as the service time is negligible in this case. As a result, the
fraction of slots during which l or more customers are present in the system tends
to zero. In fact, we can claim that if the system content equals i, 0 ≤ i < l, and
customers arrive so that the system content goes to nc+j ,(n, j) ∈ {N2 : j < c},
the system content practically immediately evolves to 0 if j ≥ l or to j if j < l.
In addition, due to the BASTA property, the system content at a random slot
boundary is equally distributed as the system content at the beginning of a
slot during which customers arrive. On account of the above observations, the
system content is practically always below l and is governed by a Markov chain
with the following transition matrix:

P = [pij ]0≤i,j≤l−1 ,

with

pij =







∑c−i
m=l−i φ(m) , j = 0,

φ(c − i + j) , j > 0 and j ≤ i,
φ(j − i) , j > 0 and j > i,

whereby

φ(m) ,

∞
∑

n=0

lim
k→∞

Pr [Ak = nc + m|Ak > 0] , 0 ≤ m ≤ c .
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Of course, when l = 1, the system content nearly always equals zero, implying
that Pr [U = 0] → 1. When, on the other hand, l = c, P is a circulant matrix.
In addition, as zc − T (A(z)) is aperiodic, the Markov chain governed by the
transition matrix P is irreducible. These two facts imply that the system content
is uniformly distributed between 0 and c − 1.

References

[1] L. Abolnikov, A. Dukhovny, Optimization in HIV screening problems, Jour-
nal of Applied Mathematics and Stochastic Analysis 16(4) (2003) 361–374.

[2] I.J.B.F. Adan, J.S.H. van Leeuwaarden, E.M.M. Winands, On the applica-
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