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Abstract: In previous work on the thermo-mechanical fatigue (TMF) of compacted graphite iron
(CGI), lifetimes measured under total constraint were confirmed analytically by numerical integration
of Paris’ crack-growth law. In current work, the results for CGI are further validated for spheroidal
cast iron (SGI), while TMF tests at different constraint levels were additionally performed. The Paris
crack-growth law is found to require a different CParis parameter value per distinct constraint level,
indicating that Paris’ law does not capture all physical backgrounds of TMF crack growth, such as the
effect of constraint level. An adapted version of Paris’ law is developed, designated as the local strain
model. The new model considers cyclic plastic strains at the crack tip to control crack growth and is
found to predict TMF lifetimes of SGI very well for all constraint levels with a single set of parameters.
This includes not only full constraint but also over and partial constraint conditions, as encountered
in diesel engine service conditions. The local strain model considers the crack tip to experience
a distinct sharpening and blunting stage during each TMF cycle, with separate contributions to
crack-tip plasticity, originating from cyclic bulk stresses in the sharpening stage and cyclic plastic
bulk strains in the blunting stage.

Keywords: thermo-mechanical fatigue; spheroidal cast iron; partial constraint; crack growth models;
crack-tip cyclic plasticity; crack-tip blunting and sharpening

1. Introduction

Cast iron finds widespread application in the automotive industry. Spheroidal (or nodular) cast
iron is a grade of cast iron frequently used in engine components. It is often preferred over flake and
compacted cast irons for load-bearing applications. Higher strength of spheroidal cast iron stems from
the spheroidal shape of graphite particles. However, the spheroidal shape of the graphite particles also
leads to lower thermal conductivity. In SiMo spheroidal cast iron, silicon and molybdenum are added
to the material to compensate for the lower thermal conductivity by providing strength to the material
at high temperatures.

As a result of sequential start-up and shutdown, these engine components are subjected to
repeated thermal cycling, resulting in a phenomenon known as thermo-mechanical fatigue (TMF).
The extent of resulting TMF damage depends on the amount of constraint during the thermal expansion.
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This constraint emanates from the spatial temperature gradients that develop in the material during
start-up and shutdown.

For the manufacturers of engine components, it is imperative to predict the thermo-mechanical
fatigue lifetime of these components under the constraint conditions during service. Various approaches
are available for TMF lifetime prediction as summarized by Gocmez et al. [1]. According to this reference,
three main types of models can be distinguished: (i) phenomenological models, (ii) cumulative damage
models, and (iii) crack-growth models.

Rémy et al. [2] successfully calculated lifetimes under high cycle fatigue for a powder metallurgy
(PM) material containing defects, using the hypothesis that a defect can be considered a crack.
To calculate the high cycle fatigue (HCF) lifetime, they employed Paris’ fatigue crack-growth equation,
which describes the crack-growth rate (da/dN) as a function of the stress intensity range (∆K), taking a
representative dimension of particles as the initial crack size.

Fatigue-crack initiation and growth in graphitic cast irons is largely affected by the presence
of graphite particles. Because of the likely fast initiation of TMF cracks in cast irons as a result
of delamination at the graphite–metal interface, Ghodrat et al. [3–5] evaluated TMF lifetime using
a crack-growth model, and they proved that, in tension, the graphite particles can be considered
as internal notches or defects, from which TMF cracks start to grow during the very first TMF
cycles. In the presence of an external notch, the notch depth can be considered as the initial crack
length. The mechanical graphite/matrix interaction of CGI is demonstrated by Ghodrat and Kestens [6],
showing a weak mechanical bonding. This was confirmed by a recent work [7], studying the mechanical
behavior of the graphite/matrix interface for cycling load conditions at room temperature, for three
types of cast iron, including spheroidal cast iron. The measured macroscopic cyclic stress–strain
behavior was validated using both micromechanical calculations with the finite element method
(FEM) and microstructural strain measurements by digital image correlation (DIC). De-bonding of the
graphite/matrix interface was found to develop during the initial load cycles, resulting in an interface
free of bonding forces. Consistently, both the FEM calculations and the DIC observations showed
a pronounced increase in strain levels at the graphite particle boundaries. Therefore, the results of
Reference [7] confirmed that graphite particles can be considered as internal notches, as also argued in
the current work.

Despite the fact that TMF loading is often a case of low cycle fatigue involving bulk cyclic
plasticity, Ghodrat et al. [3] proved the applicability of the Paris’ crack-growth law in successfully
predicting the TMF lifetime of compacted graphite iron (CGI) under total constraint conditions,
although the Paris law is based on a linear elastic fracture mechanics (LEFM) approach, which ignores
low cycle fatigue conditions. However, total constraint conditions are rarely encountered in service.
A fracture-mechanical approach, capable of determining TMF lifetime under any possible constraint
condition, is lacking. Considering the diesel engine background of this research, this work focuses on
out-of-phase TMF loading, signifying that there is a 180◦ phase difference between temperature and
mechanical cycling.

This work aims to understand and model crack growth in spheroidal cast iron for any TMF
constraint condition. To this purpose, TMF tests were performed at different constraint levels, and
results were analyzed using two fatigue crack-growth models. Both models were developed using the
same set of experimental results, with their backgrounds covered in Section 3.

It is acknowledged that, apart from TMF constraint levels, other factors also influence TMF
lifetime, most notably high temperature effects such as creep and oxidation. However, the additional
variation of test conditions identifying high temperature effects, such as using prolonged holding
times [5], was considered to be beyond the scope of this research.

2. Experimental Set-Up and Methods

This section covers details about the materials used, as well as the experimental set-up, and
specifies the definition of test conditions.
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2.1. Material and Specimens

The material under investigation for this study was a type of SiMo spheroidal graphite cast
iron, also known as ductile cast iron, with a ferritic matrix, and Si and Mo as the major alloying
elements. The microstructure of the material under investigation is represented in Figure 1, showing
graphite nodules with an average size of 30 µm ± 8 µm. The chemical composition is listed in Table 1.
The coefficient α of linear thermal expansion of the material was obtained by measurements of the
strain during heating from 50 to 550 ◦C in free expansion. By plotting the axial strain measured as
a function of temperature, linear expansion was observed, of which the slope, α, was found to be
13.6× 10−6 ◦C−1.
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Figure 1. Typical microstructure of the material under consideration.

Table 1. Chemical composition (in wt%) of the spheroidal cast iron under consideration.

C Si Mo Mn S P Fe

3.40 4.20 0.80 0.50 0.05 0.02 Balance

Cylindrical dog bone-shaped specimens were used for TMF testing. A sharp circumferential
notch was machined in the center of the gauge section of some of the samples, using a lath and a sharp
chisel. The machined notch depth used for each TMF test is reported in Table 2. The geometrical
specifications of the sample and notch are given in Figure 2. A dedicated extensometer with a gauge
length of 12 mm was used to measure the total strain (extensometer model 632.53 F14, MTS systems,
Eden Prairie, MN, USA).

Table 2. Typical values for thermo-mechanical (TMF) crack-growth parameters for all TMF tests
performed, with calculated lifetimes according to the local stress model (Paris), with the CParis

coefficient based on units for da
dn and ∆K of m(cycle)−1 and MPa m0.5, respectively.

γ (%) ao (mm) Z (1)
Experimental Values Local Stress Model Calculations

(Paris’ Law)

S (2) (MPa) N10
(2) (–) ∆emech (%) N∆K

(2) (–) Cparis m (–)

125
0.15 3 836 ± 3% 29 ± 41%

0.84
24 ± 12%

9.0 × 10−11 3.580.40 2 808 ± 3% 8 ± 0% 8 ± 12%

100
0.03 6 718 ± 1% 157 ± 55%

0.67
287 ± 4%

8.5 × 10−11 3.580.15 3 772 ± 3% 48 ± 23% 41 ± 10%
0.40 2 710 ± 2% 13 ± 8% 14 ± 7%

75
0.15 3 654 ± 4% 168 ± 19%

0.51
193 ± 16%

3.3 × 10−11 3.580.40 2 631 ± 0% 56 ± 7% 55 ± 0%

50
0.15 3 480 ± 2% 803 ± 28%

0.34
990 ± 8%

1.8 × 10−11 3.580.40 4 480 ± 7% 284 ± 20% 276 ± 21%
0.60 3 453 ± 2% 244 ± 14% 144 ± 7%

(1) Number of replicate tests; (2) standard deviation (SD), given as a percentage of the average value.
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Figure 2. Geometry of thermo-mechanical fatigue (TMF) dog-bone specimen for (a) the case of
unnotched (smooth) specimens, and (b) for circumferentially notched specimens with notch depth of
0.2 mm (as example) and a 0.04-mm notch-tip radius (dimensions are given in mm).

2.2. Experimental Set-up

A TMF test set-up, capable of independently imposing temperature and strain profiles on the
specimen, was employed for TMF testing identical to the set-up that was as used by Ghodrat et al.
For a detailed description of the TMF test set-up, the reader is referred to this previous work [3,4].

The material was subjected to temperature cycling between minimum and maximum values of
50 ◦C and 550 ◦C, respectively. Holding times of 30 and 140 s were applied at maximum and minimum
temperatures, respectively, whereas the heating and cooling rates were 7 and 6 ◦C·s−1, respectively.
Out-of-phase TMF tests were performed at the following constraint levels: 125% (over constraint),
100% (total constraint), 75% (partial constraint), and 50% (partial constraint). The definition of the
constraint levels is given in Section 2.4. It is acknowledged that 100% is the maximum theoretical
constraint level possible, as a result of a thermal mismatch, in product service situations. However, the
enforced 125% constraint level, enabled by using a TMF test machine, was chosen to broaden the range
of TMF conditions, so as to model TMF crack-growth parameters more accurately. As a bonus, the
125% constraint TMF tests have the advantage of short lifetimes, i.e., short testing times.

The total strain (directly measured by the extensometer) was controlled in order to realize the
abovementioned constraint values. Figure 3 shows the schematic input temperature and total strain
profiles for different constraint conditions. Figure 4 presents the controlled temperature and strain
profiles of a conducted 75% constraint TMF test, together with resulting cycling out-of-phase stress
levels. Figure 5 exhibits typical resulting hysteresis loops, for the lowest (50%) and highest (125%)
constraint levels tested, demonstrating that a stable regime sets in already after the first few loops.
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Figure 3. Temperature and total strain profiles for the out-of-phase TMF tests. For all constraint levels,
temperature was varied from 50 ◦C to 550 ◦C in 70 s, and from 550 ◦C to 50 ◦C in 80 s. Holding times of
30 s and 80 s were introduced at 550 ◦C and 50 ◦C, respectively.Metals 2019, 9, 1068 6 of 23 
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2.3. The Necessity and Relevance of Using Notched Specimens

In order to shorten the tests and improve the statistical relevance of the data, the test program
necessarily employed specimens with various machined notch depths. In our previous work [3], it
was found that the average TMF lifetimes were calculated by taking the notch depth values as initial
fatigue crack length [3], which resulted in an accurate match between calculated and experimental
TMF lifetimes. Moreover, for unnotched (smooth) specimens, taking the average graphite particle
size as initial crack length for the numerical lifetime calculations also produced good results, which
indicated the general validity of the initial crack length concept. The quick crack initiation was also
microscopically confirmed in recent work on TMF of CGI [8]. The principle of initial crack lengths is
adopted in the current research on SGI, the results of which are discussed in Section 4.

The use of various notch depths is essential to determine the crack-growth model parameters.
For instance, a model with two unknown model parameters needs at least two distinct boundary
conditions to determine the model parameters. Different notch depths (i.e., initial crack lengths)
produce distinct TMF lifetimes and can, therefore, provide the necessary boundary conditions to
find the crack-growth model parameters. Also, with known model parameters, i.e., from notched
specimens, TMF lifetimes of smooth specimens can be calculated by taking the average graphite
particle size as initial crack length. This strategy is especially valuable for less severe (i.e., realistic) TMF
conditions, since a TMF test for a smooth specimen typically requires a testing time of several weeks.

2.4. TMF Test Constraint Levels and TMF Lifetime

The following constraint test conditions were applied in this work: (i) partial constraint, (ii) total
constraint, and (iii) over-constraint. The amount of constraint can be defined as the amount of thermal
strain (eth) that is converted into mechanical strain (emech), according to Equation (1). It is noted that e
and S are respectively used for bulk strain and bulk stress levels, while ε and σ are used respectively
for local strain and stress values, at the crack-tip level. The mechanical strain is defined as

emech = −γ·eth, (1)

where γ is the amount of constraint. The range of values for γ for the aforementioned constraint
conditions are 0 < γ < 1 (partial constraint), γ = 1 (total constraint), and γ > 1 (over-constraint) [9].

Thus, the thermal strain is partially, totally, or excessively converted into mechanical strain under
partial, total, or over-constraint conditions respectively.
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For a uniaxial case, the total strain (etotal), as could be measured by an extensometer, can be
obtained by making use of the Equations (1)–(3), resulting in Equation (4).

etotal = eth + emech (2)

where eth can be calculated using the values for the coefficient of thermal expansion (α) and the
temperature difference (∆T) (see Equation (3)).

eth = α·∆T (3)

From Equations (1)–(3), the following relationship is obtained between total strain, amount of
constraint, and temperature (Equation (4)):

etotal = (1− γ)α∆T (4)

The amount of constraint (γ) is commonly also designated as a percentage, for instance, a situation
of total constraint (γ = 1) is equivalently denoted as 100% constraint.

The experimentally determined TMF lifetimes are denoted as N10, signifying the number of cycles
at which σmax drops by 10% relative to the maximum value; the reason for having this criterion was
explained in Appendix C of Reference [4].

3. TMF Crack-Growth Models

This work studies the influence of TMF constraint levels on TMF lifetime using two crack-growth
models. Both models consider cyclic damage at the crack-tip level to control crack growth. The first
model is based on Paris’ fatigue crack-growth law and was successfully used in earlier work on CGI [3].
The second model is developed as an extension of the first model by considering the effect of TMF
constraint levels on a more fundamental level. As argued subsequently, these models are designated
as the local stress (or Paris’ law) model and the local strain model, respectively. The term local refers to
the crack tip, either sharp or blunt.

3.1. The Local Stress Crack-Growth Model

The Paris law equation establishes a relationship between the crack-growth rate da
dN and a

fracture-mechanical parameter, the stress-intensity range ∆K (see Equation (5)).

da
dN

= CParis(∆K)m, (5)

where a is the crack size, N is the number of load cycles, while coefficient CParis and exponent m are
material-dependent parameters. Since stress intensity characterizes the stress distribution ahead of a
crack tip, the Paris model can also be designated as the local stress model.

3.1.1. Calculating TMF Lifetime by Numerical Integration (Local Stress Model)

The cyclic lifetime N∆K is obtained from Equation (5) by performing numerical integration by
incrementing the crack size with small steps of, e.g., 0.001 mm. It is assumed that a crack initiates
immediately from the machined notch or from a graphite particle in the case of an un-notched specimen.
Assuming specific values for the Paris parameters CParis and m, the number of cycles is calculated
as needed for the first 0.001 mm of crack growth around the entire circumference of the specimen.
This process is repeated for subsequent steps of 0.001 mm, adjusting ∆K in each step in accordance
with the increased crack length, until a final crack length value. The chosen final crack length for the
iteration process is 2 mm, but this value was not found to be critical for the calculated number of cycles
to failure. As shown in Section 4, relatively high TMF crack growth rates are found for crack length
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values above 1 mm, i.e., the final crack growth stage does not represent a significant portion of the
TMF lifetime.

For smooth specimens, the average size of graphite particles (30 µm) is considered as the initial
crack size. For notched specimens, the cracks originate from the graphite particle location at or near
the notch tip. Thus, the effective initial crack length in the case of notched specimens is constituted by
the size of the notch. For calculating ∆K, the K solution for mode I loading in a cylindrical specimen
with a circumferential crack, reported in Reference [10], is used (see Equation (6)).

KI = S
√
πa

1(
1− a

r

) 3
2

(
1.122− 1.302

a
r
+ 0.988

(a
r

)2
− 0.308

(a
r

)3
)
, (6)

where r is the radius of the gauge length of the cylindrical test specimen, and S is the nominal (bulk)
stress level. To account for crack closure during compression, ∆K was assumed equal to Kmax in earlier
work [3,4,6]. However, a more detailed analysis of test results shows that most of TMF lifetime is
consumed during an initial crack extension of about 0.3–0.5 mm (originating from the machined notch).
In this situation, i.e., for short cracks growing from the notch, the effect of crack closure is reported to
be limited [11–13]. This indicates that the crack-tip stress intensity range (i.e., ∆K = Kmax −Kmin) is
more suitable to characterize TMF crack growth of cast iron.

Furthermore, to simplify calculations, the maximum stress range (∆S) developed during each
TMF test was taken to calculate ∆K. The coefficient CParis and exponent m are considered as model
parameters that are fitted to experimental data, whereby only one specific set of values is accepted as
best fit for all notch depths employed at a particular constraint level. For a more detailed description
regarding the Paris law calculations, the reader is referred to References [3,4,6,10].

3.2. The Local Strain Crack-Growth Model

In Section 4.1, it is discussed that the local stress model, previously used successfully for CGI, also
predicts TMF lifetimes for SGI well. However, each TMF constraint level tested for SGI required an
adaption of the CParis parameter value to match calculated and experimental results. The variation in
CParis values discounts the general applicability of the local stress model and inspired the development
of a local strain crack-growth model.

To better capture the effect of constraint levels on TMF lifetimes, an improvement of the local
stress model is proposed. From the literature, the acknowledged strain-life approach considers cyclic
bulk strains to govern low cycle fatigue (LCF) lifetimes, with a combined role for cyclic bulk elastic
strains and cyclic bulk plastic strains. For instance, the strain-life approach was used successfully to
model the fatigue behavior of three types of metal alloys, with a good match between modeled and
experimental results, with cycles to failure ranging from 103 to 107 cycles [14]. In the present work, the
original strain-life approach is the point of departure to develop a crack-growth model based on local
strains, i.e., strains acting at the crack-tip level, and assumed to originate from cyclic bulk strains.

A crack-growth model based on both cyclic bulk elasticity and cyclic bulk plasticity suggests
a mechanism to be controlled by a combined LEFM and elastic plastic fracture mechanics (EPFM)
damage mechanism. During each TMF cycle, the crack tip blunts during tensioning and sharpens
again during compressing. Therefore, the crack tip can be considered to experience a distinct sharp
stage and blunt stage during each TMF cycle. It is hypothesized that, during the sharp stage, an
LEFM damage mechanism is active, while, during the blunt stage, an EPFM damage mechanism
takes over. Most notably, the blunting mechanism can be associated with the EPFM concept of
crack-tip opening displacement (CTOD). In References [15–17], a model for TMF-lifetime prediction
was developed based on a crack-growth law, with the CTOD as main controlling parameter, signifying
the relevance of blunting during TMF. However, a sharpening mechanism was not implemented in the
referred models. The blunting and sharpening approach proposed here justifies a TMF crack-growth
model involving subsequently applying LEFM and EPFM approaches, with a cumulative effect.
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The blunting/sharpening concept is employed to translate bulk cyclic strains to local cyclic plastic
strains, with separate mechanisms acting during the sharp and blunt stages of the crack tip. As a result,
the local strain crack-growth model involves an unconventional combination of LEFM and EPFM.

3.2.1. The Blunting and Sharpening Mechanisms

Figure 6 shows a typical series of measured TMF (100% constraint tested example) hysteresis
loops, combined with a sketch of an ideal elastic–plastic TMF hysteresis loop i.e., points A–B–C–D.
As an example, a machined notch of 0.15 mm is illustrated, from which a TMF crack extends by about
0.2 mm, creating a crack length of 0.35 mm.
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Figure 6. Development of bulk and local plasticity during the different stages of a TMF hysteresis loop.
Note: For clarity, strain levels at the crack tip and notch root are illustrated in terms of dimensions of
the resulting plastic zones. It is recognized that this representation is valid schematically only.

Starting at point A (550 ◦C), the tip of a TMF crack is sharp due to high compressive bulk
stress levels, and pronounced plastic deformation in the bulk material during compression is present.
Along path A→ B, i.e., during the cooling phase, the sharp TMF crack tip is loaded toward a high
bulk tensile stress level, where crack-tip plasticity is considered to develop according LEFM principles.
Subsequently, along path B→ C, the plastic deformation of the bulk material surrounding the crack
tip blunts the crack tip, transforming the relatively sharp crack tip (point B) into a blunt crack tip
(point C). The plastic bulk strain produced along path B→ C causes a crack-tip strain development not
related to the previously formed LEFM crack-tip plasticity (path A→ B). At point C of the hysteresis
loop, the total crack-tip strain is considered a superposition of the two independent contributions
discussed above.

Following path C→ D→ A, i.e., heating up to 550 ◦C, the blunt crack tip is sharpened again due
to the development of both high compressive stresses and pronounced compressive bulk plasticity.
After reaching point A, the blunt crack transforms into a sharp crack again, as a starting point for the
next TMF cycle.
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3.2.2. Modeling Local Cyclic Plastic Strains for the Sharp and Blunt Crack Stage

A new model is proposed that incorporates the following elements: (i) applying the renowned
strain-life approach from bulk material to the crack tip, (ii) applying the local stress model (Paris), and
(iii) the assumed blunting/sharpening concept associated with the LEFM and EPFM mechanisms.

In the strain-life approach [12,14], cyclic bulk strain levels characterize the fatigue lifetime. For this,
both the cyclic plastic bulk strain and the cyclic elastic bulk strain are taken into account. This constitutes
the total cyclic bulk strain as a characterizing parameter and, therefore, could be referred to as the total
strain-life approach. However, in practice, the model is usually concisely referred to as the strain-life
approach, i.e., the term “total” is omitted.

The area surrounding the crack tip is not an isolated region, but is an integral part of the adjacent
bulk material. A crack tip experiences a level of cyclic plasticity that is related to that in the surrounding
bulk material. Therefore, a crack-growth model should involve a parameter related to cyclic bulk
plasticity. In addition, the strain-life approach also incorporates cyclic bulk elastic strain as a parameter
controlling fatigue lifetime. A crack-growth model should, therefore, also include a parameter reflecting
the effect of bulk elasticity.

The local strain crack-growth model is developed respecting the aspects mentioned above.
Where the strain-life approach is based on cyclic bulk strains, this crack-growth model is based on
cyclic plastic strains at the crack-tip level. A polynomial relation is postulated, which relates the
crack-growth rate (da/dN) to the cyclic crack-tip plastic strain (∆εpl sum), i.e.,

da
dN

= B
(
∆εpl sum

)m
, (7)

where B and m represent material-related constants.
The crack-tip cyclic plastic strain ∆εpl sum is considered to be the superposition of the cyclic

crack-tip plastic strain developing during the sharp crack stage of the TMF cycle (∆εpl sharp), and that
developing subsequently during the blunt crack stage of the TMF cycle (∆εpl blunt), i.e.,

∆εpl sum = ∆εpl sharp + ∆εpl blunt. (8)

The local cyclic plastic strain originating from the blunt crack stage, (∆εpl blunt), is considered to
be related straightforwardly to the cyclic plastic bulk strain, (∆epl bulk), as mentioned before. A blunt
crack can also be perceived as a highly loaded notch, for which a strain concentration factor can be
used to define the notch root strain level. Even in the case of full bulk plasticity, the principle of
strain concentrations is documented to be still relevant [18]. Therefore, a strain concentration factor
(Kε) is used for estimating the cyclic crack-tip plastic strain, (∆εpl blunt), during the blunt crack stage
(see Equation (10)). For clarity, it is mentioned that the cyclic plastic bulk strain, (∆epl bulk), is taken
straightforwardly as the width of the stabilized hysteresis loop at a zero-stress level (see Figure 4).

The local cyclic plastic strain contribution for the sharp crack stage (∆εpl sharp) is hypothesized to
be related to the stress intensity range (∆K ), i.e., the cyclic stress distribution ahead of the sharp crack
tip is assumed to also characterize the cyclic strain distribution, within the plastic zone. The value
of ∆εpl sharp should be considered a characteristic (or average) cyclic plastic strain near the crack tip,
affecting TMF crack growth. Its value is assumed to be linearly related to ∆K using a proportionality
factor A (see Equation (9)).

To summarize, in the local strain model, crack growth is controlled by cyclic plasticity at the
crack-tip level (∆εpl sum), with its value being a superposition of the local cyclic plasticities produced
during the sequence of the sharp stage and the subsequent blunt stage of each TMF cycle, i.e., ∆εpl sharp
and ∆εpl blunt, respectively. The sharp crack-stage contribution is related to cyclic bulk elasticity, while
the blunt crack-stage contribution originates from cyclic bulk plasticity. Therefore, the strain-life
approach and the local strain model share the same controlling cyclic bulk parameters.
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The new local strain model is built-up with the following model equations:

∆εpl sharp = A× ∆K , i.e., based on LEFM; (9)

∆εpl blunt = Kε × ∆epl bulk , i.e., based on EPFM. (10)

Combining Equations (7)–(10) gives the overall representation of the local strain crack-growth
model as follows:

da
dN

= B
(
∆εpl sum

)m
= B

(
∆εpl sharp + ∆εpl blunt

)m
= B

(
A× ∆K + Kε × ∆epl bulk

)m
. (11)

It can be seen from Equation (11) that the local strain model implicitly incorporates a role for the
local stress model (see Equation (5)). For instance, at a 50% constraint level, the amount of cyclic bulk
plasticity is negligible (∆epl bulk ≈ 0) and, therefore, the local stress model and the local strain model
coincide, i.e.,

da
dN

= CParis(∆K)m = B (A× ∆K)m. (12)

For a 50% constraint level, the local stress model parameter CParis, and the local strain parameter
combination B Am should match, which is covered in Section 4.3.

In Equations (7)–(12), the local cyclic plastic strains produced during the sharp and blunt crack tip
stage are represented by ∆εpl sharp (m/m) and ∆εpl blunt (m/m), respectively. The total local cyclic plastic
strain produced during each TMF cycle is ∆εpl sum (m/m), the cyclic plastic bulk strain is ∆epl bulk (m/m),
the crack length is a (m), the number of TMF cycles elapsed is N and the stress intensity range is ∆K
(MPa

√
m ), defined in Section 3.1.1. The units of the local strain model parameters A, B, and m can be

deduced from Equations (9) and (11).

3.2.3. Calculating TMF Lifetime by Numerical Integration (Local Strain Model)

For the local strain model, TMF lifetimes are calculated numerically in a similar manner as
described for the local stress-based model. Assuming specific values for the model parameters B, A,
Kε, and m, the number of cycles is calculated for the first 0.001 mm of crack extension around the entire
circumference of the specimen (see Equations (7) and (11)). This process is repeated for subsequent
steps of 0.001 mm, adjusting the values of ∆εpl sharp in each step in accordance with the increased crack
length (the value of ∆εpl blunt is constant). Summing the results of all steps gives the total number of
cycles to failure, N∆εpl sum A detailed account of all calculations and model parameters involved is given
in Appendix A.

4. Results and Discussion

The results of the TMF tests performed are listed in Tables 2 and 3, with calculated lifetimes
using the local stress and local strain crack-growth models, respectively. The tables share the same
underlying experimental data, but Table 2 is organized around the constraint level (first column), while
Table 3 is structured around the machined notch depth (first column). From the experimental results,
a clear decrease in TMF lifetimes is found for higher constraint levels (see Table 2) and larger notch
depth values (see Table 3).

In the following sections, it is presented that, by using notched specimens, both local stress and
local strain crack-growth models are found to predict TMF lifetimes well for SGI, for all constraint
levels tested, within a short testing time and with reduced scatter, while still being representative for
TMF behavior of unnotched specimens. The local stress model does not directly address the effect
of cyclic bulk plasticity, but accounts for the effect of bulk plasticity by adjusting the values of the
(elastic) local stress model parameters. Therefore, the local stress model can be considered useful
as a straightforward method to predict TMF lifetimes for a certain TMF constraint level, but does
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not identify or quantify the underlying contribution of cyclic bulk plasticity as is done in the local
strain model.

Table 3. Values for TMF crack-growth parameters for all TMF tests performed, with calculated lifetimes
based on the local strain model.

ao;Kε Z (1) S ± SD (2) ∆epl bulk N10 ± SD (2) N∆εpl sum ±

SD (2) ∆ (3) ∆εpl sum
(4) REPFM

(5) ∆Kao

(mm);(–) (%) (–) MPa (%) (–) (–) (%) (%) (–) MPa
√

m

0.03;
1.35

125 - 836 0.37 - 73 - 0.77 0.27
0.49 0.64 9.1

100 6 718 ± 3% 0.26 157 ± 56% 170 ± 7% +8 0.59 0.24
0.35 0.60 7.9

75 - 654 0.10 - 636 - 0.35 0.21
0.14 0.39 7.1

50 - 490 0.05 - 2478 - 0.20 0.16
0.07 0.30 5.4

0.15;
1.80

125 3 836 ± 3% 0.37 29 ± 42% 26 ± 7% −9 1.28 0.62
0.66 0.51 21

100 3 772 ± 3% 0.23 48 ± 22% 56 ± 8% +17 0.99 0.58
0.41 0.42 19

75 3 654 ± 4% 0.10 168 ± 19% 183 ± 13% +9 0.67 0.49
0.18 0.27 16

50 3 490 ± 2% 0.05 803 ± 28% 656 ± 7% −18 0.45 0.36
0.09 0.20 12

0.40;
2.90

125 2 808 ± 3% 0.40 8 ± 0.5% 7 ± 6% −18 2.15 1.03
1.13 0.52 34

100 2 710 ± 2% 0.25 13 ± 11% 16 ± 5% +26 1.61 0.90
0.71 0.44 30

75 2 631 ± 0% 0.05 56 ± 6% 83 ± 0% +49 0.93 0.80
0.13 0.13 27

50 4 480 ± 7% 0.02 284 ± 56% 256 ± 19% −10 0.68 0.61
0.07 0.07 20

(1) Number of replicate tests; (2) standard deviation (SD), given as a percentage of the average value; (3) relative
difference of the calculate lifetime (local strain model), with the experimental lifetime; (4) superscripts and subscripts
are the calculated local cyclic plastic ranges for the sharp and blunt crack stages, i.e., ∆εpl sharp and ∆εpl blunt,
respectively. The values represent calculated results for the initial crack length ao. (5) Example: For ao = 0.15 mm,
in 100% constraint, values of ∆εpl sharp = 0.58% and ∆εpl blunt = 0.41% are calculated (see Appendix A). Therefore,
∆εpl sum = (0.58 + 0.41) = 0.99%. REPFM = 0.41/0.99 = 0.42. Note: The italic and underlined fonts, for the “smooth”
specimens, are based on calculations only, using the values of cyclic bulk stress/strain ranges of the 0.15 notched
experiments, in order to estimate TMF test conditions, for tests not actually performed.

4.1. Results of the Local Stress Crack-Growth Model

Results for the local stress crack-growth model (i.e., Paris), are presented in Table 2 and Figure 7.
A good match between experimental results (N10) and calculated results (N∆K) is found. For smooth
specimens (i.e., without machined notch), the average graphite particle size of 30 µm was taken as
initial crack length.Metals 2019, 9, 1068 13 of 23 
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As a starting point, the values of the model parameters CParis and m were roughly estimated,
using a straightforward method (see Appendix B). Subsequently, the values of CParis and m were
implemented in the numerical procedure, with values of CParis and m further optimized, to match
calculated and measured TMF lifetimes. A uniform value was found for the local stress parameter
m = 3.58, for all constraint levels. However, the values of CParis needed to be adjusted per constraint
level. Therefore, this approach does not completely capture the influence of the constraint level on
TMF lifetimes. For instance, at a 50% constraint level and a 125% constraint level, the constant CParis
increased by a factor of five, from a value of 1.8 × 10−11 to a value of 9.0 × 10−11. A clarification for the
increase of CParis at higher constraint levels is given in Section 4.3.

4.2. Results of the Local Strain Crack-Growth Model

Results for the local strain crack-growth model are presented in Table 3 and Figures 7 and 8,
revealing a good match between measured and calculated lifetimes for all constraint levels using a
fixed set of three model parameters. For smooth specimens (i.e., without machined notch), the average
graphite particle size of 30 µm was taken as initial crack length. Model parameter m was copied from
the local stress model, signifying the coherence between two approaches.
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Figure 8. TMF lifetimes plotted as a function of ∆εpl sum−0.2 , with ∆εpl sum−0.2 being the cumulative
local cyclic plastic strain at the crack tip (i.e., ∆εpl sum), calculated according to the local strain model
for a crack length extension of 0.2 mm (ahead of the start crack length, i.e., ahead of the machined
notch depth).

The values of model parameters A and B were initially estimated using assumptions explained in
Appendix C. Using the estimated values as a starting point, the parameter values of A and B were
optimized in the numerical lifetime model to match the experimental results. Values of A = 3.00 × 10−4

and B = 62.0 were found to give the best results.
An estimated value for the fourth model parameter, the strain concentration factor Kε, would

ideally be found using Neuber’s Equation (12).

KσKε = K2
t . (13)

In Neuber’s equation, Kσ and Kε represent the ratios of the local notch stress/strain levels and the
remote nominal stress/strain levels, respectively. The symbol Kt represents the stress concentration
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factor, for a pure elastic case, having a value depending on notch depth and notch root radius. In view
of the extended bulk plasticity, during TMF, the value of Kσ is likely to approach unity (Kσ ≈ 1), and
Kε would equal K2

t . A problem, however, is that the radius of the blunt crack is not known and Kt,
therefore, cannot be determined analytically. Apart from depending on the (unknown) blunt crack-tip
radius, the value of Kt also depends on the notch depth and, for small notch depths (i.e., smooth
specimens), a value Kt ≈ 1 is reasonable to assume, i.e., Kε ≈ 1 also. Implementing a value Kε = 1 in the
numerical calculations for smooth specimens already gave a reasonable match between calculated
and measured lifetimes. However, a value of Kε = 1.35 was found to give the best match for smooth
specimens. For notched specimens, the value of Kε can be expected to rise, since Kt increases with
notch depth, and, according to Neuber’s equation, Kε would also increase. For notch depths of 0.15
and 0.40 mm, implementing values for Kε of 1.85 and 2.80, respectively, proved to give the best match
between calculated and measured TMF lifetimes.

In the recent work of Besel and Breitbarth [19], plastic zone strain levels were quantified using
finite element calculations and digital image correlation techniques. From this work, it was recognized
that strain values vary within the plastic zone of a crack tip, with the highest values near the crack tip.
In this respect, the value of ∆εpl sum (Equation (8)) should be interpreted as an average (or representative)
crack-tip plastic strain range, controlling TMF crack growth. However, the levels of local strain at
distinct ∆K values (see Table 3) were found to be of the same order of magnitude as reported in the
literature for metals [19,20]. It is acknowledged that TMF lifetimes are also successfully determined as
a function of plastic CTOD, with TMF crack growth rates found to be approximately linear with plastic
CTOD values [15–17]. Both the plastic CTOD parameter and the ∆εpl sum parameter (used in Equation
(7)) characterize a degree of cyclic plasticity at the crack tip. The plastic CTOD is defined for one
specific position, being the exact location of the crack tip (this also holds for its associated plastic strain).
However, ∆εpl sum (Equations (7) and (8)) constitutes a more averaged level of plasticity, within the
crack-tip plastic zone as a whole. Considering the different backgrounds of the plastic CTOD parameter
and the ∆εpl sum parameters, their role in controlling crack growth cannot be compared directly.

Figure 7 gives a straightforward and useful overview on how TMF lifetimes are affected by
constraint levels. However, constraint levels are not the direct physical TMF damaging mechanism, but
constitute boundary conditions. Representing TMF lifetimes as a function of the crack-tip cyclic plastic
strain (∆εpl sum) should give more fundamental information about the TMF crack-growth mechanism.
However, ∆εpl sum is a crack-tip parameter, increasing in value during crack growth and, therefore,
complicating a straightforward characterization. From the numerical results, the development of crack
length with the number of elapsed cycles is known, revealing that 80% of TMF lifetime is consumed
during a limited crack extension of only 0.4–0.5 mm. Also, the early stage of crack growth should be
associated with low crack-growth rates. In other words, the values of ∆εpl.sum, present during the early
stage of crack growth, dominate the overall TMF lifetimes.

Figure 8 is an alternative of Figure 7, with TMF lifetimes given as a function of a newly defined
crack-tip parameter, designated as ∆εpl sum−0.2. The new crack-tip parameter (∆εpl sum−0.2) represents
the total local cyclic plastic strain (∆εpl sum), as calculated to be present at a crack extension of
0.2 mm (i.e., ahead of the machined notch). According to Figure 8, the TMF lifetimes can be well
approximated by a polynomial function of ∆εpl sum−0.2, qualifying the ∆εpl sum−0.2 crack-tip parameter
as a representative condition during crack growth, apparently able to characterize TMF lifetimes. In the
final paragraph of Appendix A, an example for calculating the value of ∆εpl sum−0.2 is given.

4.3. Comparing the Local Stress and the Local Strain Models

In previous sections, it was observed that for SGI both the local stress and the local strain models
predict TMF lifetimes well, for all constraint levels under consideration. The good match for the local
strain model can be ascribed to its incorporated ∆εpl blunt parameter, which is a function of cyclic bulk
plasticity. In contrast, the local stress model (Paris) does not contain a dedicated parameter involving
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cyclic bulk plasticity; however, paradoxically, it is still capable of predicting satisfactory TMF lifetimes
for all constraint levels. The reasoning below can shed some light on this paradox.

In general, fatigue lifetime largely depends on the initial crack-growth rate, since the first phase
of crack growth is slow and, thus, consumes most part of fatigue lifetime. In this study, the initial
crack-growth rates in the local stress model (Paris) and the local strain model were found to be of the
same order of magnitude. Therefore, the two models produced comparable calculated TMF lifetimes.
The local stress model adjusts the initial crack-growth rate by choosing the CParis parameter such that
calculated results match experimental results. Therefore, the variation of CParis for different levels of
constraint does not have a physical background, but only expresses the effect of constraint on TMF
lifetime. In contrast, the local strain model captures the effect of the constraint level on TMF lifetime
with a clear physical parameter, i.e., the local cyclic plastic strain at the crack-tip level (∆εpl sum).

The local stress model and the local strain models are, in principle, developed separately.
Consequently, the values of the parameters of both models are also determined independently, without
obvious interrelation. However, in the case of the 50% constraint TMF tests, the near lack of cyclic
bulk plasticity observed enabled a direct comparison between both models, as discussed before in
Section 3.2.2, considering Equation (12). Using the values found for the local strain model parameters
A, B, and m, the parameter combination (B Am) constitutes a value of 1.51 × 10−11. For the 50% TMF
constraint levels, the local stress model parameter CParis is determined to assume a value of 1.80 × 10−11.
Therefore, for the 50% TMF constraint level, both models predict a TMF crack growth rate of the same
order of magnitude, validating the coinciding of both models (for 50% constraint levels).

4.4. The Balance between LEFM and EPFM Mechanisms during TMF (Local Strain Model)

As covered in Section 3.2, the local strain crack-growth model is based on a cyclic
blunting/sharpening mechanism of the crack tip during each TMF cycle. As a result, in the local
strain approach, crack growth originates from contributions produced separately during the sharp and
blunt crack-tip stages. These separate crack-growth contributions are based on distinct principles of
LEFM (sharp stage) and EPFM (blunt stage), and originate from cyclic bulk elasticity and cyclic bulk
plasticity, respectively.

The separate roles of LEFM and EPFM during TMF can be quantified by considering the ratio of
∆εpl blunt and ∆εpl sum for each TMF condition tested, reflecting the contribution of the blunt crack stage
to the overall TMF lifetime. This strain ratio, ∆εpl blunt/∆εpl sum, is designated as REPFM. An REPFM

value of unity indicates the case that TMF is dominated by EPFM crack-growth mechanisms, while a
zero value reflects domination by the LEFM mechanism.

Table 3 shows REPFM for all TMF tests performed. With constraint levels increasing from 50%
to 125%, REPFM was found to consistently increase, ranging from a value of 0.10 to 0.64, respectively.
Clearly, an EPFM mechanism gradually takes over TMF crack growth at higher constraint levels due
to the associated increased cyclic plastic bulk strain levels. However, it is striking that, even at the
maximum 125% constraint level (with only a few cycles to failure), according to the local strain model,
TMF is still controlled considerably by an LEFM crack-growth contribution and the associated cyclic
bulk elasticity. The considerable role of LEFM, found for pronounced TMF conditions, contradicts the
classical Manson–Coffin relationship approach, where LCF/TMF is predominantly attributed to cyclic
bulk plasticity [12,18].

Considering Equations (9) and (11), at increased notch depths (i.e., longer initial crack lengths), the
related higher initial ∆K values would suggest a transition toward the sharp crack stage mechanism
(increase in ∆εpl sharp). However, on average, per distinct constraint level, similar values for the REPFM

parameter were found for all notch depths. For instance, for the 125% TMF constraint tests, for notch
depths of 0.03 mm, 0.15 mm, and 0.40 mm, respective REPFM values of 0.64, 0.51, and 0.52 were found
(see Table 3). The REPFM ≈ 0.5 values found for both the 0.15-mm and 0.40-mm notches reflect similar
roles for the blunt and sharp crack stages, independent of notch depth. It can be reasoned that, with
an increase in notch depth, not only does the value of the initial ∆K level increases (i.e., sharp crack
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stage), but the strain concentration Kε also becomes larger (i.e., blunt crack stage, increase in ∆εpl blunt;
see Equation (11)). The increases in both ∆K and Kε with notch depth are probably in balance, keeping
the sharp and blunt crack stage contributions in equilibrium independent of notch depth.

5. Summary and Conclusions

In the present paper, the lifetime was measured and numerically calculated in thermo-mechanical
fatigue (TMF) tests under various constraint levels on spheroidal graphite cast iron (SGI) with
temperatures cycling between 50 and 550 ◦C. The tested constraint levels were employed to predict
TMF lifetimes more in line with actual service conditions of heavy-duty diesel engines.

For SGI, the fracture mechanical Paris law approach worked well to predict lifetimes for all TMF
constraint levels. However, a different CParis parameter value was found for each TMF constraint level.
Therefore, this approach does not completely capture the influence of the constraint level on TMF
lifetimes. As this model is based on cyclic crack-tip stress distributions (characterized by ∆K), the Paris
model was addressed as the local stress approach.

A second crack-growth model was proposed here, based on cyclic plastic strains at the crack-tip
level. This model, which was labeled the local strain model, was found to predict TMF lifetimes well
for all constraint levels, using a fixed set of four model parameters. The local strain model postulates
a cyclic blunting and sharpening of the crack tip during each TMF cycle, involving contributions of
both linear elastic fracture mechanics (LEFM) and elastic plastic fracture mechanics (EPFM) principles.
The LEFM contribution is associated with the stress intensity range (∆K) and, therefore, is largely
controlled by cyclic elastic bulk deformation (i.e., cyclic bulk stress levels). The EPFM contribution is
related directly to cyclic plastic bulk strain levels. This means that, in the local strain model, crack
growth is induced by both cyclic bulk elasticity (LEFM) and cyclic bulk plasticity (EPFM). Therefore,
the local strain crack-growth model and the established strain-life approach share TMF-controlling bulk
parameters, demonstrating a coherence between the local strain model and the established strain-life
approach. The coherence, however, is weakened for high TMF constraint levels, where the local
strain model still involves a considerable role for cyclic bulk stress levels (contradicting the strain-life
approach).

Although both the local stress model and the local strain model predict TMF lifetimes satisfactorily,
the local strain model can be considered to have a clear physical basis, being the local cyclic plastic
strain at the crack tip (∆εpl sum). In contrast, the local stress model can be considered a useful fitting
method for a distinct TMF constraint level, but it does not physically account for the effect of constraint
levels. The local cyclic plastic strain, as calculated to be present 0.2 mm ahead of the initial crack length
(i.e., the machined notch depths), was found to be a suitable characterizing parameter to determine
TMF lifetimes.
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Abbreviations and Symbols

a TMF crack length
A Proportionality constant, linking ∆K to cyclic (sharp) crack-tip plasticity; see Equation (9)
α Coefficient of thermal expansion
ao Depth of a machined notch, also being the assumed initial crack length
B Proportionality constant in the local strain crack-growth model; see Equation (7)

C1
A combination of parameters in the analytical solution for TMF lifetime, for crack growth according
to local stress model (i.e., Paris’ law)

CParis Proportionality constant in the local stress crack-growth law (i.e., Paris’ law); see Equation (5)
C2 see C1

CGI Compacted graphite iron
CTE Coefficient of thermal expansion
da/dN TMF crack-growth rate
etotal Bulk strain, as measured by the extensometer (i.e., total strain)
emech Bulk strain, resulting from stress (i.e., mechanical strain)
eth Bulk strain, resulting from thermal expansion (i.e., thermal strain)
∆epl bulk Cyclic plastic bulk strain, i.e., the width of the hysteresis loop

∆εpl sharp
Local cyclic plastic strain at the crack tip, produced during the sharp crack stage of the local strain
model; see Equation (9) (mechanical strain)

∆εpl blunt
Local cyclic plastic strain at the crack tip, produced during the blunt crack stage of the local strain
model; see Equation (10) (mechanical strain)

∆εpl sum The cumulative local cyclic plastic strain at the crack tip; see Equation (8) (mechanical strain)

∆εpl sum(ao)
The value of ∆εpl sum at the initial crack length ao, being the depth of the machined notch (a similar
notation is used for initial values of ∆εpl sharp and ∆εpl blunt)

∆εpl sum−0.2 The value of ∆εplsum, at a crack length of (ao + 0.2 mm), characterizing TMF lifetime
EPFM Elastic plastic fracture mechanics
REPFM The relative contribution on TMF of the blunt crack stage (local strain crack-growth model)
γ Relative degree of thermal constraint during a TMF test
Kε Strain concentration factor (local strain/nominal strain)
Kt Geometrical stress concentration factor (defined for elastic strains only)
Kσ Stress concentration factor (local stress/nominal stress)
Kmin Minimum value of the stress concentration factor during TMF
Kmax Maximum value of the stress concentration factor during TMF
∆K Stress-intensity range = (Kmax − Kmin)

∆Kao

Initial stress-intensity range, with the machined notched depth (ao) taken as initial crack length. For
unnotched specimens, the average graphite particle size is taken as initial crack length.

∆K∆a=0.2 The value of ∆K, at a crack length of (ao + 0.2 mm)

LCF Low cycle fatigue
LEFM Linear elastic fracture mechanics
N10 Number of cycles at a 10% load drop in a TMF test (i.e., experimental cycles to failure)

N∆K
Number of TMF cycles to failure, calculated by numerical integration of the local stress
crack-growth model (i.e., Paris’ law)

N∆K−an.
Number of TMF cycles to failure, given by the analytical solution of the local stress crack-growth
model (i.e., Paris’ law)

∆N Number of TMF cycles elapsed

N∆εpl sum

Number of TMF cycles to failure, calculated by numerical integration of the local strain
crack-growth model

r Radius of the cylindrical gauge length of the TMF test specimen
S Bulk stress
∆S Nominal (bulk) stress range
SGI Spheroidal graphite iron
SiMo Cast iron with silicon and molybdenum as major alloying elements
∆T TMF cycle temperature range
TMF Thermo-mechanical fatigue
Z Number of replicate TMF tests
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Appendix A. Example Calculations of TMF Lifetimes, Using the Local Strain Model

Example Calculation for 100% Constraint TMF Test Results, for a 0.15-mm Machined Notch

Averaging TMF test results of three replicate tests (Z = 3) resulted in a representative (measured) bulk cyclic
stress level ∆S of 772 MPa, and a representative measured bulk cyclic plastic strain level (∆epl bulk) of 0.23%.

At the crack-tip level, the value of the total local cyclic plastic strain (∆εpl sum) is calculated below to be
0.99% This result consists of two contributions, being the cyclic crack-tip plastic strain for the sharp crack stage
(∆εpl sharp) and the (additional) cyclic crack-tip plastic strain developed during the blunt crack stage (∆εpl blunt).
These two contributions are calculated below under (i) and (ii), respectively.

i. The initial value of ∆K value (∆Kao ) is calculated according to Equation (6), i.e., ∆Kao =
F(ao/r)·∆S

√
πao considering the notch depth as initial crack length (i.e., 0.15 mm), resulting in ∆Kao =

F(0.15/3)·772·
√
π·0.00015 = 19.17 MPa

√
m (see Table 3). Using Equation (9), ∆εpl sharp = A × ∆K, and,

using the determined value of constant A = 3× 10−4, ∆εpl sharp = A×∆K = 3× 10−4
× 19.2× 100% = 0.58%.

It should be noted that the value of A is taken as a constant for all TMF tests performed.
ii. Using Equation (10), ∆εpl blunt = Kε × ∆epl bulk , with a value of Kε = 1.80 and ∆ebulk = 0.23% results in

∆εpl blunt = 1.80 × 0.23 = 0.41%. It should be noted that the value of Kε = 1.80 is identical for all TMF
tests performed using a 0.15-mm notch depth. Superposition of contributions (i) and (ii), according to
Equation (8), gives

∆εpl sum = ∆εpl sharp + ∆εpl blunt = 0.58 + 0.41 = 0.99%, (A1)

which is reported as

∆εpl sum
∆εpl sharp

∆εpl blunt
i.e. 0.99 0.58

0.41. (A2)

The initial value of ∆εpl sum of 0.99%, according to Equation (7) (or Equation (11)), using values of local
strain-model constants B and m of 62 and 3.58, respectively, gives an initial crack-growth rate.

da
dN

= B
(
∆εpl sum

)m
= 62× (0.0099)3.58 = 4.14× 10 −6 m

cycle
. (A3)

It should be noted that the local strain model constants B and m are identical for all TMF lifetimes calculations,
being 62 and 3.58, respectively.

For subsequent discrete steps of 0.001 mm of crack growth, the number of cycles is calculated needed to
cover this growth. For instance, for the first iteration step, covering a crack length interval from 0.150 to 0.151 mm,
the following is found:

∆a
∆N

= 4.13× 10 −6 m
cycle

or ∆N =
∆a

4.13× 10 −6 with ∆a = 10−6 m, ∆N = 0.242 cycle / 0.001 mm. (A4)

Due to the small step size, the results of the second calculated iteration step, being the crack-length increment
from 0.151 to 0.152, are almost similar to those of the first step.

Adding the ∆N values of all iteration steps gives a numerically calculated TMF lifetime N∆εpl sum of 56 cycles.
As an example, the situation of the iteration step 0.2 mm ahead of the machined notch tip is considered, i.e.,

from a crack length of 0.350 mm to 0.351 mm. In this step, due to the longer crack, the value of ∆K raised to a
value of 30.31 MPa

√
m leads to a value of

∆εpl sharp = A× ∆K = 3× 10−4
× 30.31× 100% = 0.91%. (A5)

The blunt crack-stage contribution (∆εpl blunt) is independent of crack length, i.e., 0.41%, as calculated above
under (ii). Therefore, at a crack length a = 0.35 mm, the local cyclic plastic strain (∆εpl sum) can be reported
as 1.32 0.91

0.41 . The new crack-growth rate is calculated as 1.27×10 −5 m/cycle, while the increment from 0.350 mm
to 0.351 mm consumes a number of cycles ∆N = 0.079 cycle/0.001 mm.

The calculation for a specific crack extension of 0.2 mm was chosen because, in this case, the value of ∆εpl sum
also constitutes the value of ∆εpl sum−0.2, as discussed in Section 4.2. The value of ∆εpl sum−0.2 = 1.32% can also be
observed for label J in Figure 8.

Appendix B. Initial Estimation of the Local Stress Model Parameters

The Local Stress Model Parameters

Considering the local stress model, da
dN = CParis(∆K)m (Equation (5)), the preliminary values for the

parameters CParis and m are evaluated by considering an estimation of the analytical solution of the local stress
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crack-growth law. As simplification, the geometrical function F
(

ao
r

)
, as defined in Equation (6), is taken as a

constant value, being the initial value for a crack length equal to the machined notch depth. The analytical solution,
with the bulk stress range (∆S) given in MPa, can now be derived from Paris’ law, and is also reported in the
literature [12].

N∆K−an. =
1

C1C2

[(
a f

)C2
− (ao)

C2

]
with C1 =

[
Cparis(π)

1
2 m

]{
F
( ao

r

)
·∆S

}m
;C2 =

(
1−

1
2

m
)
. (A6)

Using the 50% constraint test results for 0.15-mm and 0.40-mm notched specimens, experimental results
are summarized below. The 50% constraint test results are chosen specifically, because, at 50% constraint, the
experiments showed a virtual absence of cyclic bulk plasticity, typical for Paris fatigue crack growth behavior.

0.15-mm machined notch: (∆S)0.15 = 490 MPa, (N10)0.15 = 803 cycles, F
(

0.15
3

)
= 1.144.

0.40-mm machined notch: (∆S)0.40 = 480 MPa, (N10)0.40 = 284 cycles, F
(

0.40
3

)
= 1.196.

Implementing the experimental lifetimes in the analytical solution (Equation (A6)) is achieved by equating
the ratio of experimental lifetimes with the ratio of the analytical lifetimes, as shown below for the 0.15-mm and
0.40-mm machined notches, respectively.

(N10)0.15

(N10)0.40
=

(N∆K−an.)0.15

(N∆K−an.)0.40
. (A7)

For the analytical solution, the effect of the final crack length (af) can be omitted, since the slow crack growth
at initial crack length (ao) dominates the TMF lifetime, which results in the following:

(N10)0.15
(N10)0.40

=
(F( 0.40

3 )(∆S)0.40)
m

(F( 0.15
3 )(∆S)0.15)

m ·
[−0.15 ](1−

1
2 m)

[−0.40](1−
1
2 m)

,

2.827 = (1.024)m
× (0.375)(1−

1
2 m),

log(2.827) = log (1.024)m + log(0.375)(1−
1
2 m),

0.451 = m× log(1.024) +
(
1− 1

2 m
)
× log(0.375),

= 0.010m − 0.426 + 0.213m,
resulting in the estimation m = 3.932.
The estimated value of CParis is found by substituting the estimated value of m = 3.932 in Equation (A6), using

the experimental results of the 0.15-mm notch, being (∆S)0.15= 490 MPa, (N10)0.15 = 803 cycles and F
(

0.15
3

)
= 1.144.

C1 =
[
Cparis(π)

1
2 m

]{
F
(

ao
r

)
·∆S

}m
= Cparis × 9.493× {1.144× 490}3.932 = 6.095× 1011

×CParis;

C2 =
(
1− 1

2 m
)
= −0.966;

N∆K−an. =
1

C1C2

[(
a f

)C2
− (ao)

C2

]
≈

1
C1C2

[
− (ao)

C2
]
↔ C1 = 1

N∆K−an. ·C2

[
− (ao)

C2
]
;

With C1 = 6.095×1011
×CParis; C2 = −0.966 ; ao = 0.00015 m, and N∆K−an. = 803 cycles yields : 6.095× 1011

×

CParis =
−1

803 − 0.966 [0.00015]−0.966
↔ CParis = 1.05× 10−11.

The estimated values of CParis = 1.05 × 10−11 and m = 3.932 were implemented as initial values in the
numerical lifetime calculation for the 50% constraint experiments, as discussed in Section 3.1. By adjusting the
parameter values incrementally (i.e., by trial and error), the numerical lifetime results were found to match all
experimental results optimally for parameter values CParis = 1.80× 10−11 and m = 3.58.

Appendix C. Initial Estimation of the Local Strain Model Parameters

As discussed in Section 3.2.2, in the local strain model the crack-growth rate is given by

da
dN

= B
(
A× ∆K + Kε × ∆epl bulk

)m
. (A8)

Preliminary values for the parameters A and B were evaluated by considering the local strain model to be
equivalent to the local stress model, for the case of 50% constraint. Also, it was hypothesized that ratios of lifetimes
found reflect ratios of initial crack-growth rates, since initial crack-growth rates can be expected to dominate
TMF lifetimes.

Considering 50% and 100% constraint tests for 0.15 mm-notched specimens, the following can be found:
50% constraint case (0.15-mm notch): (N10)0.15 = 803 cycles, (∆K)50% = 12.0 MPa

√
m (see Table 3);

100% constraint case (0.15-mm notch): (N10)0.15 = 48 cycles, (∆K)100% = 19.0 MPa
√

m and
(
∆epl bulk

)
100%

=

0.0023 (m/m) (see Table 3);
( da

dN )50%

( da
dN )100%

= 48
803 = 6.00 × 10−2 =

B (A×∆K50%)
m

B (A×∆K100%+·∆epl bulk, 100%)
m =

(A×∆K50%)
m

(A×∆K100%+·∆epl bulk, 100%)
m . To summarize, with

(∆K)50% = 12.0 MPa
√

m, (∆K)100% = 19.0 MPa
√

m , and
(
∆epl bulk

)
100%

= 0.0023 (m/m) and m = 3.58, a value

for parameter A is estimated as 3.16× 10−4. The value of parameter B is estimated by considering the local stress
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and local strain models to coincide for the 50% constraint level, as is discussed in Section 4.3 i.e. (CParis)50% =

BAm. With values of (CParis)50%= 1.80× 10−11, parameter A = 3.16× 10−4 and parameter m = 3.58, the value of
parameter B is estimated as 61.2.

The provisionally estimated values of A = 3.16× 10−4 and B = 61.2 were implemented as initial values in
the numerical lifetime calculation for the 50% constraint experiments, as discussed in Section 3.2.3. By gradually
adjusting these estimated parameter values of A and B (i.e., by trial and error), the numerical lifetime results were
found to match all experimental results optimally for parameter values A = 3.00× 10−4 and B = 62.0. Therefore,
the estimated and final values found for parameters A and B are in good agreement.
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