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Abstract

This thesis describes the implementation of an algorithm for rigid body dynamics which
unifies the advantages of linear recursive algorithms with the advantages of earlier linear al-
gebra based constraint force approaches. No restriction is placed on the joints between links.
The algorithm is numerically robust and can deal with arbitrary trees of bodies, including
kinematic loops. Motion as well as force constraints on the dynamic behavior of any member
of the linkage can be added easily. Through the use of spatial algebra notation-including
my extension to account for spatial position-the mathematical expressions are simplified
and more efficient to execute. The algorithm has been implemented on workstation class
machines and performs at interactive speeds.

Thesis Supervisor: David L. Zeltzer
Title: Associate Professor of Computer Graphics

"This work was supported in part by the National Science Foundation Grant IRI-8712772, BBN Systems
and Technology Corp., Rome Air Development Center (RADC) of the Air Force System Command, Defense
Advanced Research Projects Agency (DARPA) Grant N00140-88-C-0806, and an equipment grant from
Hewlett Packard, Co.



Contents

1 Introduction
1.1 Why physics? ...............
1.2 B olio . . . . . . . . . . . . . . . . . . . .
1.3 Realism versus control . . . . . . . . . .
1.4 Levels of Abstraction. . . . . . . . . . .
1.5 Scenarios of Use . . . . . . . . . . . . .

1.5.1 The Engineer as User . . . . . .
1.5.2 The Animator as User . . . . . .
1.5.3 The Student as User . . . . . . .

2 Related work
2.1 Introduction . . . . . . . . . . . . . . . .
2.2 Constraints as algebraic conditions . . .

3 Problems of representing the degrees of
3.1 Motivation . . . . . . . . . . . . . . . .
3.2 The motion of a rigid body . . . . . . .
3.3 Manifolds . . . . . . . . . . . . . . . . .

3.3.1 Surfaces . . . . . . . . . . . . . .
3.4 The special orthogonal group . . . . . .

3.4.1 Rotations as orthogonal matrices
3.4.2 Rotations as unit quaternions . .

3.5 The exponential map . . . . . . . . . . .
3.6 Summary . . . . . . . . . . . . . . . . .

4 Numerical Methods
4.1 Introduction . . . . . . . . . .
4.2 Linear Algebra . . . . .
4.3 Importance of local frames in regards to efficiency
4.4 Integration . . . . . . . . . . . . . . . . . . . . . .

4.4.1 Discontinuities of the right hand side . . . .

freedom of a rigid body
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . .
. . . . . . . . . . . . . . . .

.

.

.



4.4.2 The problem of local frames . . .

5 Description of the Algorithm 32
5.1 Introduction..... ... . ...... ... ... ... ... .. . . . . . . .. 32
5.2 Constraints via constraint forces . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Mathematics of the model . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Reformulation in Spatial Algebra . . . . . . . . . . . . . . . . . . . . 35

5.3 Sample Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.1 Distance Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.2 Point to Point constraint . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Constraints via recursive propagation . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 Examples of endpoint constraints . . . . . . . . . . . . . . . . . . . . 40
5.6 Propagating the constrained DOFs . . . . . . . . . . . . . . . . . . . . . . . 41

5.6.1 The recursion in local frames . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Branched kinematic trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7.1 Implementation of the matrix reduction . . . . . . . . . . . . . . . . 46
5.8 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8.1 Propagating shared DOFs . . . . . . . . . . . . . . . . . . . . . . . . 48

6 The code 49
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Linear algebra classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Generic class of 3 vectors . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.2 Generic class of spatial vectors . . . . . . . . . . . . . . . . . . . . . 51
6.2.3 Orientations as quaternions . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.4 Matrix class for 3 by 3 transformations . . . . . . . . . . . . . . . . 54
6.2.5 Class of rigid body motions . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.6 Variable length vectors for K-DOF vectors . . . . . . . . . . . . . . . 56
6.2.7 Variable length matrices with 6 rows for M . . . . . . . . . . . . . . 58
6.2.8 Inertial tensor in principal axes of inertia frame . . . . . . . . . . . . 59

6.3 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 Support provided by other libraries . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 The recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6 Front end commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Results 76
7.1 Introduction..... ...... .. ..... .. . .. . . . . . . . . . . . . . .. 76
7.2 A tensegrity structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 The policecar scene in "Grinning Evil Death" . . . . . . . . . . . . . . . . . 80
7.4 Four ways to describe a simple linkage and some of the results . . . . . . . 81

. . . . . . . . . . 30



7.5 Endpoint constraints and their numerical behavior . . . . . . . . . . . . . . 84

8 Conclusion and future work 87

A Spatial Algebra 90
A.1 Line vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1.1 Spatial velocity and acceleration . . . . . . . . . . . . . . . . . . . . 90
A.1.2 Change of coordinate frame . . . . . . . . . . . . . . . . . . . . . . . 91
A.1.3 Spatial transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2 Differentiation in moving coordinates . . . . . . . . . . . . . . . . . . . . . . 92
A.2.1 Spatial rigid body inertia . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2.2 Spatial force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Chapter 1

Introduction

The Virtual Erector Set (VES) is a system which allows the user to build simple mechanical
devices (assemblages) in a virtual environment. These devices then follow the laws of physics
(Newton's laws). The main objective of this thesis is to build the underlying computational
engine for such a system. Since we would like to work with these virtual environments in an
interactive setting it is important that the system runs efficiently, yet maintains sufficient
generality to be runtime configurable. Obviously these are two conflicting design criteria
and we must therefore strive to find a balance.

In the computer graphics community there has been a heightened awareness and interest
in accurate physical modeling of rigid-body dynamics Barzel [1], Armstrong [2], Isaacs [3],
Wilhelms [4], Witkin [5], Moore [6], Hahn [7]. In computer animation it was found that
in order to have realistic looking motion of physical objects, it was not enough to use
techniques lent from traditional animation, such as key framing. Either the motion did
not "look right", i.e. viewers would be heard saying, "things look like they don't weigh
anything", or it required great skill and endless adjustment of non-intuitive parameters to
yield a visually pleasing result. On the other hand, there was an impact on the development
of interactive systems for modeling physical environments from the engineering disciplines.
These already had ways to simulate physical phenomena to great precision but only very
limited ways to develop an intuition from the generated data. In these disciplines research
in interactive virtual environments opened up the possibility for accelerating the design
cycle by allowing the user to iteratively improve a design based on physical criteria, rather
than wait for yet another overnight batch simulation to finish.

It is important to notice that the motivations behind these two uses of virtual environ-
ments are very different: The designer is interested in seeing and testing an object before
it is ever built, allowing her to rapidly refine the design through many iterations before
committing to an actual prototype. On the other hand, the animator is not necessarily
interested in physical realism per se, but only insofar as it helps to render moving sequences
which are perceived as realistic, without the drudgery associated with traditional tech-
niques. Nonetheless both have as a common denominator the use of computer graphics to



look at things that don't exist, i.e. which are virtual, and the need for behavioral realism
(albeit of slightly varying definition). The answer in both cases was the introduction of
physical modeling techniques into computer graphics.

Numerical algorithms for the simulation of physical systems have been developed for
a long time in many disciplines, especially in engineering. These algorithms however have
capitalized on the specific structure of the problems considered to achieve good performance.
Thus for every new problem considered by an engineer some amount of recoding was done
to simulate the intended system. I, however, strive for a system which allows the user to
configure the particular problem of interest at runtime and interactively. Obviously I also
have to restrict the problem domain. In my case that restriction is to rigid-body dynamics
which I feel is a large and general enough domain to be interesting for applications in virtual
environment research, and small enough to allow for an efficient implementation.

A number of approaches for physically realistic modeling in the context of computer
graphics have been published, but many of these suffer from slow execution times or lack
of generality. It is in the area of speed and generality that the VES makes its contribution.

The VES provides a system which will allow engineers, animators and others to design,
construct, test, and explore virtual machines or mechanical assemblies in a simulated New-
tonian world. Here two important aspects of design will be unified, the model building phase
will be linked with the model simulation phase.

The VES is able to model rigid body dynamics of trees of links, including loops, with
arbitrary joints between the links. Also it is possible to specify arbitrary constraints at the
endpoints.

Major parts of the system are

* An input/output module which accepts commands on stdin and writes commands
to stdout. Graphics and device management is provided via Bolio (see Brett [81,
Zeltzer [9]), so that the VES only needs to know the proper commands for Bolio. This
includes the creation of command scripts in Bolio which communicate the relevant
information to the VES.

e A constraint force modeling stage to assist in the assembly of structures oriented along
the lines of Barzel [1].

* A linear recursive dynamics algorithm able to handle arbitrary trees of linkages in-
cluding loops based on the work of Lathrop [10].

1.1 Why physics?

One of the goals of work in the area of virtual environments is to create as close as possible
an approximation to the real world. A fundamental part of this is physics. After all we want
objects in the virtual environment to behave like objects in the real world, e.g. fall to the
floor when we drop them. At the same time the computational models need to be flexible so



that we may "tweak" parameters that describe our models interactively and observe their
effects.

Even if we want to model and examine non-physical "things" in our virtual environment
the metaphor of physics is a powerful one. For example it makes sense to talk about
"pulling" the solution of an optimization problem away from a local minimum to a global
minimum (see Witkin [11]). This can be subsumed under the headline of interactive steering
of simulations, where simulations can be instantiations of abstract concepts, rather then just
concrete physical ones.

Furthermore physics is an important building block for any system that strives to allow
the user to specify actions at a high level, such as task level animation (see Zeltzer [9]).
For example, if we want to specify the actions of a legged figure at the level of commands
such as walk up the stairs we not only need a conceptual model of walking but also the
computational engine that supports the computations of relevant information, such as load
on a leg.

1.2 Bolio

One such system for the exploration of virtual environments which is being developed in the
Computer Graphics and Animation Group at the Media Laboratory is Bolio [8] [9]. Bolio
is a distributed graphical simulation platform which allows a number of simulation modules
to be executed in the same virtual universe. One of these modules is the VES. In order for
the VES to be integrated into Bolio it is implemented as an independent program which
reads commands sent to it from Bolio and writes commands which can be interpreted by
Bolio. This modular design has a number of advantages:

e The actual program implementing a given capability (the VES in this case) can focus
on it's particular problem and does not need to know any details about the inner
workings (data structures, flow of control, etc.) of Bolio.

* The program is much easier to build and maintain.

* Modules can be exchanged without disturbing the overall design.

e The usefulness of individual components of the overall system increases in a synergistic
way. For example, I/O devices such as the Spaceball can now interact with the virtual
environment in a physical way, and the VES can be controlled via the Spaceball.

1.3 Realism versus control

One of the dichotomies which we would like to bridge is that of physical realism versus
control over the outcome of a simulation. This is especially true in animation, where after
all we have a script that we would like the animation to follow, yet it should do so in a



realistic fashion. Consider the example of throwing a ball. Clearly the ball should fly freely
through the air, once released from the arm that threw it. On the other hand we might
want to have the ball hit a specific target. One possible approach to this is trial-and-error.
This, however, is only feasible if the simulation runs fast enough that we can afford the
repeated trials in terms of time. Another approach would be inverse dynamics, in which
we specify the trajectory completely and then compute the forces necessary to achieve it.
Barzel [1] uses such a scheme to maintain the constraints placed on the system. Witkin [5]
used this approach to specify weighted goals to be fulfilled over an entire range of time.
While that technique can produce a number of desirable effects the amount of computation
necessary makes this technique unusable in interactive contexts. These approaches, while
able to achieve any desired effect, are not realistic in the sense that we can specify arbitrary
trajectories at the price of computing force profiles which are unrealistic. However it would
be useful to be able to specify some components in an inverse dynamics fashion while
letting others be influenced entirely by their given initial conditions (forward dynamics).
McKenna [12] refers to this as hybrid dynamics. This allows us to achieve a whole continuum
of levels of control.

Thus we are led to consider only algorithms which incorporate constraints into an oth-
erwise forward simulation oriented approach.

1.4 Levels of Abstraction

When defining the problem domain that the VES is limiting itself to the notion of level
of abstraction becomes important. I am not interested in modeling quantum dynamical
details for reasons of efficiency, although it would be the most general level at which to
model physics. What is the proper level? I have chosen as primitives in the VES forces,
constraints, and bodies. These are sufficiently high level to allow efficient algorithms to be
used but are fine grain enough to allow the user to construct objects on the level at which
we perceive them in the real world, when we talk about mechanics. Not only has this
chunking a strong impact on the details of the algorithms used for the computations but
also influences the interface that the user is presented with. For example, the user specifies
bodies and their physical properties on the level of dimensions, inertia tensors, and weight.
Forces are specified as vectors associated with a coordinate system in respect to which they
are parameterized. While constraints by themselves are just mathematical functions which
fulfill certain conditions. These are the least specified part of the system, hence the VES
provides a number of primitive constraints such as point-to-nail, orientation, but also a
number of joints, such as ball-and-socket, rotary, etc.

So far I have only talked about the lowest level of organization when connecting and
constraining bodies. It is clear that the user will want to build higher level primitives
which were originally modeled as individual parts but which she now wants to refer to on
a more abstract level. For example an articulated arm which was built originally from its



constituent bodies and joints but can now be referred to as a higher level entity so that
we may instantiate several arms of the same specification. These operations are, strictly
speaking, not part of the specification language, but are handled (not unlike the I/O facilities
for the C programming language) as scripts of primitive operations. The management of
these abstraction mechanisms is therefore a task left to the front end. I took this design
choice to keep the underlying system simple and efficient.



1.5 Scenarios of Use

In order to give the reader a better sense of the problems for which the VES offers a solution
I will give three scenerios of the use of the VES.

1.5.1 The Engineer as User

Suppose you are an engineer trying to improve the design of a manipulator arm. The work
cell in which it is to be used on the factory floor has been changed slightly. Your task is to
come up with a minimal design change to the manipulator arm to be useful in the new cell.

You start by invoking the VES and load in a model of the redesigned work cell and a
model of the original manipulator arm. This model was built by you earlier and saved with
all the necessary parameters in a file. So far, gravity is not turned on to keep objects from
falling out of reach. First you position the arm's shoulder joint-a ball and socket joint,
one of the primitive joints selectable from a menu-at the correct location within the model
of the cell. The location itself is specified either at the command line or interactively, using
the spaceball, which controls a cursor. The ball and socket joint is represented by a 3d icon.
Fixing the position of an object is represented by a nail constraint, which specifies that its
argument is to be connected to a fixed reference point.

Now you turn on gravity, and some overall damping and let the manipulator arm move
into a rest position. You are ready to verify whether the arm can still reach every part of
the work cell.

In order to do this you grab the end of the arm with the DataGlove and move the
manipulator arm about. The actual grabbing is represented internally as a spring connecting
the kinematic DataGlove position to the dynamic model of the manipulator arm'.

Watching the simulated arm on the monitor it appears that a new corner in the cell
prevents the arm from reaching one of the tools. Connecting the "nail" from which the
shoulder hangs, to a knob, you can now interactively change the origin of the shoulder, to
find a new position for the arm's origin from which it can again reach every relevant part
of the workspace.

You notice, though, that the arm has to extend itself farther now than before. Wondering
how that will change the necessary torques at the joints, you invoke the actual program
which controls the actuators of the real arm. A menu choice lets you examine the torques
at the elbow in a window on the screen.

Using the motor control program, you execute a reaching motion to pick up a tool (which
has a certain mass associated with it) and observe the torques at the elbow. Indeed they
seem dangerously large.

You continue to execute some more experiments of the above kind and arrive at a

'Once the 3d force feedback joystick is available, it could be used with the feedback controlled by the
VES, based on the results of its internal simulation.



conclusion: the simplest way to adapt the manipulator arm to the new work cell is to move
its shoulder slightly and exchange one of the actuator motors at the elbow for a motor which
can yield higher torques.

1.5.2 The Animator as User

You are working on an animation which involves a scene in which the two main characters
get married. The task is to specify the path of the car as it takes off from the church, and
to have a string of cans trailing behind the car.

You have already built a little car yesterday and you used a function editor to specify a
path for the car to follow. Now you want to attach the string of cans to the back of the car.

The car is loaded into the VES and you proceed to build the string of cans. This is done
by instancing a number of cans and then connecting them with small rigid pieces of wire.
The attachment of a wire (an object you also instanced) to a can proceeds by using the
DataGlove to point to the attachment points of two cans and issuing a command connecting
the ends of the wire (its two attachment points) with spherical joints to the cans. In this
way you build up a string. The VES uses constraint forces at first to move the cans and
wires from their initial positions to positions in which they are connected. Again the VES
automatically invokes an algorithm to convert this chain into a Lathrop linkage as soon as
the constraints are met. From now on the chain will be simulated with the more efficient
linear recursive algorithm described in [10].

The car itself is connected to the path it is to follow by specifying a link to path constraint.
This constraint is selected from a set of primitive endpoint constraints. Using a command
in bolio, the output of the function editor2 is connected to the input of the link to path
constraint inside the VES. This operation is completely transparent to the VES, which
knows nothing about the origin of the parameters which specify this endpoint constraint.
Bolio will take care of polling the function editor and sending the appropriate parameter
setting command to the VES, at the beginning of each frame.

Starting the simulation clock in bolio, the car starts moving along its path while the
centripetal forces, acting on the string of cans, make them follow along. All the while their
collisions with the ground will make them bounce wildly.

1.5.3 The Student as User

Physics class, today's topic: Buckminster Fuller's invention, tensegrity structures. The
teacher explains that tensegrity structures are made of rods, which, at their ends, are
connected to other rods via rubber strings. One of their peculiar properties is that they
will, when correctly assembled, yield a rigid structure, although no two rods will directly
connect. This defies intuition and so you go about building one in the VES.

2The function editor is just another client program of bolio, itself attached with a piping command.
Typically this might be a spline editor capable of returning a position in space when passed a time.



First you instance a number of rods and some rubber strings-actually modeled as
springs-that only exert a force when stretched. Right now you freeze time in the VES, so
that you can specify the connectivity of the structure without it bouncing around wildly
and collapsing. Following the diagram in the book you specify the connectivity using the
Spaceball input device as a 3d pointing cursor.

Now you start the clock in the VES. Since a great number of constraints are all switched
on at once, the integrator in the VES takes a few seconds to get going. But then your
structure slowly assembles into a flat mess.

Looks like you did some of the connectivity wrong. You stop time and request a connec-
tivity description from the VES. Sure enough, you connected two rubber bands to the wrong
rods. That is fixed easily-in this case, by just typing the command to unpost a certain
connection at the bolio prompt, followed by the instantiation of the right connectivity.

Starting time again the rods and rubber bands indeed inflate to a soccerball like struc-
ture, which lies on your virtual table, slightly flattened by gravity.

Meanwhile the VES is trying to convert the converging structure into a tree with some
loops to switch over to the linear recursive algorithm. It is having a very hard time deciding
how to cut the loops in this structure, since there are no obvious choices. At this point
the VES requests advice from the user (or from an expert system) as to where best to cut
loops. Having a higher-level understanding of the topology of the structure, it is an easy
matter for you to point to joints at which to cut the structure.

As a result the simulation speeds up noticeably. Now you try an experiment: you
instance a large heavy plate. Using the DataGlove you proceed to lay this plate on top
of the tensegrity structure. Sure enough, the structure flattens out more, but can clearly
support the load put on its top. Another experiment immediately suggests itself: you
increase the stiffness of the rubber bands. This is done by using a knob in bolio. As
expected the whole structure slowly inflates and deflates as you turn the knob.

You are also interested in finding out what the actual forces are, that act on the various
components. From a menu you select enquire state, which gives you a submenu of objects to
choose from. Selecting rod 15 you find the compressive force on it to be very small compared
to the weight of the plate on top. Observing the relationship between the weight on top
and the compressive force in one of the rods you conjecture a simple functional relationship
between the two.

In the next class you find out that the actual relationship between load and compressive
force is more complicated than the one you conjectured, but is approximately true for a
structure whose own weight is negligible compared to the load placed on it.

I have outlined three different scenarios in which the VES is a useful tool. The common
thread is the ability to experiment with design choices and receive rapid feedback on their
effect. In this way conjectures can be formed and examined quickly. The design of the VES
allows for taking advantage of many input modalities, such as menus, scripts, the spaceball,
and the DataGlove.



Chapter 2

Related work

2.1 Introduction

When simulating rigid body dynamics, one can distinguish between forward and inverse
simulation. In inverse simulation the user specifies positions for the objects as a function of
time and the system responds by computing forces necessary to achieve these goals. While
these systems use physical means (forces) to achieve their goals the forces required can be
arbitrary and may not be physically realizable. Barzel [1] shows the usefulness of these
techniques for the special case of assembling objects.

In contrast, forward simulation techniques are essentially initial value problems. Once
we specify the initial conditions and external forces acting on the system, such as gravity,
or actuators at a joint, the systems runs its course.

Inverse techniques can still be useful in forward simulation systems, however. E.g.
Barzel [1] uses inverse dynamics to establish and maintain connections between bodies
while forward simulating the assemblage as a whole.

For the special case of simulating multi-body systems we can distinguish two approaches.
Firstly, each body can be treated individually. In this case one simply integrates the equa-
tions of motion for each body. In order to connect bodies in linkages or express geometric
relationships with the surrounding world, one adds forces to the system to enforce these
constraints. This is the approach taken by Barzel [1]. For every body we keep track of 6
equations. Hence the DOFs which get integrated and manipulated by the linear algebra
correspond directly to physical DOFs. While easy to set up, this approach requires a maxi-
mal set of DOFs (i.e. six per body), and the resulting set of equations is unnecessarily large.
What makes matters worse is that these systems also tend to be ill-conditioned, making
them fragile in the numerical sense. This has prompted Barzel [1] to use singular value
decomposition (SVD) in the solution of this system, making the time complexity of their
algorithm cubic.

Secondly, there are those approaches which find the smallest set of DOFs that uniquely



parameterizes the total system; these DOFs don't necessarily correspond one-to-one to
actual physical parameters. The main advantage of this is that we only need to keep
track of a set of equations of the size of the number of independent DOFs in the system.
E.g. Isaacs [3] uses a minimal-set-of-DOFs technique to derive their linear algebra system.
Notice, though, that in their extension [13], which allows for kinematic loops, they had to
add more variables for the loop closure forces.

Linear recursive schemes are another set of approaches which keep track of only a mini-
mal set of DOFs. As pointed out by others (Wilhelms [14], Isaacs [3]) the recursive schemes
are preferable. However, they have not been widely used since they can accommodate
neither constraints (other then at the root, or via penalty forces) nor loops.

In this chapter I will discuss the reasoning and arguments behind those approaches
which essentially treat the bodies in an assemblage as separate with algebraic conditions
enforcing certain constraints among the bodies.

2.2 Constraints as algebraic conditions

The matrix based approaches treat constraints on the dynamic behavior of the system
which is being simulated as algebraic relationships between state variables. As an example
consider two bodies which are connected by a three DOF rotational joint. This can be
expressed as two points, one on each body, being coincident throughout the simulation. A
simple way to algebraically encode this is by taking the difference of these two points and
requiring it to vanish. In the mathematical literature these systems of differential equations
combined with algebraic equations are referred to as Differential Algebraic Systems and
special differential equation solvers have been proposed for them by Petzold [15].

The algebraic conditions imposed by kinematic constraints are typically not affine spaces
of the space of all configurations of the system-a linear space of dimension 6n where n is
the number of bodies-but manifolds. I will refer to these as constraint manifolds. This
suggest one possible approach for understanding how to integrate the state of an assemblage
of bodies. If the system is currently in an allowable configuration, i.e. in the constraint
manifold, then it will stay in the manifold to first order if its velocity does not take it out.
That is to say, we would like to constrain the system's first derivative to lie in the tangent
space to the manifold.

Since this is only a first order technique we need to compensate for errors. This is
especially true in practice since we will also have to compensate for numerical error in
the integration. One way to do this is to employ a feedback technique which penalizes
any deviation from the constraint manifold. A simple approach is to add a force which is
proportional to the distance to the constraint manifold. This can be interpreted as a spring
which pulls the solution towards the constraint manifold. In practice we also employ a term
which is proportional to the velocity taking the system away from the constraint manifold.
This corresponds to a damper. Using a damper in parallel is important since a spring alone



will not become active until the system has already left the constraint manifold. Thus if an
assemblage is in the manifold, but has a velocity which would take it off at the next instant,
it will not experience any corrective term until the assemblage has left the manifold. One
way to overcome this is to use very stiff springs (very large spring constants). This has
the disadvantage of yielding a so called stiff system of equations. Mathematically speaking
the system will have widely varying timeconstants, forcing us to take small timesteps even
if little motion is occurring. By adding a damper we in effect counteract velocities, which
threaten to take the assemblage out of the manifold, before these velocities can generate
actual displacements. This approach is used by Isaacs [13], which is similar to the use of
critically damped forces by Barzel [1].

So far we have not addressed the problem of moving the assemblage into the manifold.
When first assembling a linkage we have to achieve a valid initial configuration. In some
cases this is trivial. For example, when connecting two bodies together, it is an easy matter
to simply instantiate the second body in a configuration which has it connected to the first.
In other cases this is not so easy. Consider a chain which we want to suspend inbetween two
poles. We can instantiate the first link in the chain at one pole and all successive links at
their predecessors. However it is not clear how to connect the last link to the second tower.
We cannot simply instantiate it at the second tower since in general it will then not be
connected to its predecessor link. More generally speaking we have to adjust all parameters
of the system simultaneously to achieve a valid initial configuration. Since all allowable
configurations of our assemblage describe a manifold in state space we can express the
problem of finding a valid initial configuration as a multi dimensional root finding problem.

In the numerical literature many schemes can be found for multidimensional root finding.
A simple one would be the multidimensional extension of a Newton-Raphson root finder.
Multidimensional root finding is a difficult problem in general, but we do have a considerable
amount of a priori knowledge of the functions (constraints) whose zeros we are trying to
locate. Using such an approach would move the assemblage into an initial configuration in
a non-physical way. Depending on the application this can be a reasonable solution.

Barzel [1] uses a technique of critically damped forces to "self assemble" a system of
bodies. The approach is mathematically equivalent to the one outlined above but is moti-
vated very differently. He argues that in order to connect two bodies, for example, we can
introduce forces into the system, which in effect pull the two bodies together. Again a con-
straint is nothing more than an algebraic relationship of state variables. The force then to
"en-force" the constraint is derived by considering a critically damped differential equation.
This method was chosen since the solution to the critically damped second order differential
equation asymptotically approaches zero, that is, the state in which the constraint is met.
By casting the root finding problem in this form it becomes easy to incorporate outside
forces such as gravity, since the root finding itself is cast in terms of forces.

If one desires to use a matrix-based approach to forward simulate a constrained system,
as Barzel does, it makes sense to use a "physical" way to initially assemble the system.
That way modeling and simulation are unified. As we will see, though, there are numerical



drawbacks to using such a "root finder".



Chapter 3

Problems of representing the
degrees of freedom of a rigid body

3.1 Motivation

When simulating rigid body dynamics we need to consider various derivatives of the location
and orientation of a body as a function of time. While the linear (translational) aspects of a
body's motion do not present any problems, the rotational (orientation) aspects do require
some special attention due to the structure of the space of rotations (namely, it is not a
Euclidean space). Traditionally the rotational and translational aspects have been treated
separately, leading to expressions which can become very complicated. Spatial algebra
(see the appendix) has remedied this situation and provides us with a powerful notation.
However the derivative of position and orientation, as well as the integral of spatial velocity
have not been treated in the same consistent fashion.

In this chapter I will present an analysis of the derivative of orientation, using some
results from differential geometry. With the help of this analysis I argue that a compact
notation for spatial position is possible, and that this notation has numerical as well as
computational advantages. The latter arise from the economy of computation possible due
to this notation.

3.2 The motion of a rigid body

The motion of a rigid body is fully characterized by its time dependent orientation and
location in three space. While this is intuitively obvious we have strictly speaking used a
result from the theory of differential equations and the theory of Frenet curves when stating
this. Namely, a Frenet curve in three space is unique up to orthogonal transformations and
translations.

There is a fundamental difference between the three translational DOFs and the three



rotational DOFs. The set of all translations of three space has the structure of Euclidean
space, while the set of all rotations of three space has the structure of a (hyper-)sphere.
To see that this is a significant difference consider that after a rotation of 27r one arrives
again in the original orientation. Mathematically we have that the state of a rigid body
for purposes of dynamics is a point in the manifold R3 x S 3 . This means that we have to
use the rules of calculus on manifolds when differentiating. As we will see these rules are
different from ordinary calculus. Using some results from calculus on manifolds simplifies
the expressions we arrive at and sheds additional light on the quantities involved.

3.3 Manifolds

When the student is first introduced to calculus the concept of a linear vector space plays
a crucial role. This is so because we are interested in calculus in studying linear approxi-
mations to functions. For example consider a function

f : R" -> R"' (3.1)

from a real vector space of dimension n into a real vector space of dimension m. From
ordinary calculus we know that if this function is differentiable we have a function

Df : R" -> M(m, n) (3.2)

where M(m, n) denotes the (itself linear) vector space of all m by n matrices. This is to
say, for each point x in R", Df will give us a linear map-an element-from M(m, n), the
derivative of f in x. This map I will also call Dxf.

So far so good. But what about functions which do not go from a linear space into
another linear space? Consider a function

g : R -+ S 2  (3.3)

where S2 denotes the two dimensional unit sphere. For example g could be the parameteri-
zation with respect to time of a curve on the unit sphere in R3. Clearly we would like to be
able to talk about the derivative of such a function. This is where the problems start. S2
is not a linear space, since the sum of two points on a sphere, for example, does not itself
lie on the sphere.

Why is linearity so important? Clearly we can draw a picture of the unit sphere in
three space, we can imagine a curve on this sphere, and we have no reason do doubt
that the derivative vector of such a function is well defined (given the obvious necessary
differentiability assumptions). When we talk about a surface we can always come up with
a parameterization (at least locally) and a surrounding Euclidean space and thus know



what it means to take derivatives of functions on these surfaces 1. What is wrong with
this picture? One can indeed do calculus on surfaces in three space (and higher order
spaces) without ever using the word manifold. However, if the reader has ever looked into a
book that assumes this approach, she will quickly find herself engulfed by rather unwieldy
formulas. This is so because we need to parameterize the surface first and then differentiate
the resulting nested functions. This invokes the differentiation rule for nested functions and
leads to rather complicated formulas.

That this approach is almost hopeless becomes clear if we consider higher dimensional
spaces or such "strange" sets as the set of all rotations in the set of all matrices2 . Nonetheless
intuition tells us that there should be a way to do calculus on these surfaces in a very natural
way, since they are almost linear. It is exactly this idea that the notion of a manifold aims
to make precise.

A m dimensional manifold M is a set such that for each point p E M there exists a
function f : G -> R'", where G is an open set of M that contains p, which is differentiable
and whose inverse exists and is also differentiable. Loosely speaking we may say that every
set which "looks" like Euclidean space is a manifold. As an example consider any surface
patch in three space. Locally it is almost flat. Or, "almost linear".

For example the unit sphere in three space is a two dimensional manifold. Or, a more
interesting example, the set of all rotations of three space is a three dimensional manifold.

Now if we have a function
f : M -> N (3.4)

from one manifold into another what is the derivative of this function? One obvious way
to define it is via the parameterizations leading from R' to M, from there to N, and back
to R". Now we have a function from R' to R" and we know how to differentiate those.
Indeed if we ever need to compute a derivative for such an f this is just what we need to
do. Instead of writing this out, which leads to the mess alluded to above, we continue in a
more abstract fashion.

The tangent space to a m dimensional manifold M in the point p E M is defined as
TM = {(p, v) I v E Dq#(qR")} where # : R' -+ M is a parameterization of M around p.
As an example consider the tangent plane to the two dimensional sphere S2 in R' in some
point. This is exactly the tangent space to S2 in that point. What used to be Df for
functions of Euclidean space will now be referred to as dpf : TM -> T(p)N on manifolds.

'The celebrated result of minimal embedding states that any abstract manifold has an embedding in
a sufficiently high dimensional (2m + 1) Euclidean space. For a given manifold it might be practically
impossible to find this embedding, though.

2As an exercise try to visualize this set!



3.3.1 Surfaces

An interesting class of manifolds are iso-surfaces. An iso-surface may be defined as the
pre-image of a point q under some function f : G -+ W. The function needs to satisfy
certain differentiability conditions which we won't worry about here. Formally we have:
Let G be open in V, f : G -- W be a differentiable function, Vp E G : Dpf surjective 3,
q E W, then M = f-1({q}) is a (m = dim(V) - dim(W)) dimensional manifold with
TM = {(p, v) I Dpf(v) = 0} = {p} x Ker(Dpf). This result is also known as the
Submersion Theorem for manifolds [16].

An example: the unit sphere in three space An example is the unit sphere S 2 in
R3 . Here f : R3 -+ R is defined by f(x, y, z) = x 2 + y2 + z 2 . By the above we then have
that f-1({1}) is a 3 - 1 = 2 dimensional manifold and for any point p C S2 we have it's
tangent space TS 2 = {v E R3 v .I p}, which comes as no surprise.

While this is a rather simple example we are now equipped to examine an example which
is central to our discussion, the manifold of orientations of three space. But before we go
on to that a few remarks are in order about derivatives.

Suppose you have a function of time (one real variable) into a manifold (say, a surface).
If we consider the derivative vector to this function we have at each point along its path
a tangent space to the manifold (which is a different space at each point!) and a unique
vector therein. Given for example S3 we find that its tangent space at any point p E S3

is isomorphic to R3. Thus it makes sense to talk about the derivative curve of our original
function. If we differentiate again we find that the tangent space to R3 is naturally R3 .
Therefore it is not too surprising when we find below that things are "strange" only on the
first derivative.

Later we will consider the inverse problem of finding integral curves to a vector field in
the tangent bundle of a manifold-given a curve in the tangent spaces of some manifold M
recover the original function f in M.

3.4 The special orthogonal group

One particular manifold that has received a lot of attention for various reasons is the so
called special orthogonal group SO(3). It is interesting to us because SO(3) is the set of
all rotations of three space. Let Af be the set of all affine transformations of three space.
An element of Af consists of an orthogonal linear transformation and a translation. Let
these be denoted by (E, t). We can then think of the path of a rigid body as an affine

31.e. Dpf has rank dim(W).



transformation-valued function of time

f : R -+ Af (35)
t - (E,it)

That way at any point in time we can take a point x on the body and find its location
f(t)(F) = Ex-+ t If we want to find the velocity of a point on the body we differentiate its
position function

d d d-
eX (f(t))(x) = ( E)(x) + dt (3.6)

dt dtdt
We don't have any problems differentiating t since it corresponds to the translational DOFs
of our body which have the structure of Euclidean three space, but what is AE?

The answer to the last question can be found easily if we use the fact that the set of all
rotations is a manifold. To see this we will use two different representations for rotations,
quaternions and matrices.

3.4.1 Rotations as orthogonal matrices

Consider the set G = {A E M(3, 3) 1 det(A) > 0} of all matrices with positive determinant 4,
andW= {AE M(3,3)| A=A = } . Let f : G -+ W be defined as f(A) = AA T .
Notice that dAf is surjective for all A E G (Why?). Therefore by the Submersion theorem
f- 1 ({id}) = {A E G | AAT = id} = SO(3) is a three dimensional manifold. Furthermore
we know that the tangent space to SO(3) at some point A E SO(3) is of the form Ker(dAf).
For some B E M(3, 3) we have dAf(B) = BAT + ABT by the product rule. Thus for any
A E SO(3) we have TASO(3)= { A} x {X I X AT + AXT = 0} = { A} x {YA IY = -yT}
(Why?).

At this point we know that whatever AE might be, we can write it as XE where X is an
antisymmetric three by three matrix and E is the matrix representation of the orientation.
We now use the fact that any three by three antisymmetric matrix can be thought of as a
cross product with a specific vector. In our case let's call this vector W and we can write

d
E=wxE (3.7)

dt

The choice of the name w is of course deliberate! What properties does W possess? Consider
a point x on our body. What do we know about its velocity? For simplicity assume that
the body is only rotating and furthermore that we express x in the coordinates of the frame

4 Why is this set an open set? Remember that this was one of the preconditions of our theorem about
surfaces.



established with E, i.e. y = Ex. We then have

d
~-f(t)(x) = w x y (3.8)

From this we can see that any point y in the direction of w has a velocity of zero, and the
velocity of any other point is proportional to the length of w and its perpendicular distance
to w. Thus we are justified in calling w the angular velocity.

We use this in recovering f(t) in our dynamics computations from the current orientation
and the angular velocity and integrating. For numerical purposes though one is well advised
not to "integrate up" all entries of a matrix as integration error will introduce noticeable
skewing. Instead we use quaternion notation.

3.4.2 Rotations as unit quaternions

Consider the linear space R4 with the structure of quaternion algebra, for p, q E R4 define
pq = (s, i)(r, y) = (sr - x, sf-+ rz + Ex :V) and q = (s, i) = (s, -- ) Again we construct a
manifold as before:

f : R4  R4

f(q) = (3.9)
S3 =f-1((, )}

Or in other words all quaternions with unit length and the property that their conjugate
is their inverse. S3 as the name suggests is three dimensional and there exists a map from
its tangent space into S3 which we will meet later on. For now we notice that one possible
map from the elements of S3 to SO(3) is given by

q = (cos(l), sin( )F) '-* R(F,) (3.10)
R(F, 6)V = q(O,iU)q- 1,i E R3

where the latter is quaternion multiplication as defined above. R(F, 0) is a rotation about
r by an angle of 0.

What is the structure of the tangent space to S3? As before we consider Tq S 3 {q}xfpI
pq + qp = 0} = {q} x {qp I -P = p = (0, F)}. As it turns out we will find that 2XF= W. For
numerical purposes we now have a much easier equation

d 1

3.5 The exponential map

We can now see that when we integrate the equations of motion we are taking curves in
tangent spaces into their respective manifolds. This is easy for going from acceleration to
velocity, since we are taking a function from one Euclidean space TR' into another R'.



However when we go from the tangent space of our configuration manifold T,( R 3 x S 3 ) to
the manifold itself we have

v ( q(0,w), 6) (3.12)

That something has changed can be noticed from the fact that differentiating q leads to a
differential equation involving q on both sides.

When we draw a picture of a manifold and its associated tangent space in a point, it
seems reasonable from the picture that there should be a map which projects a vector from
the tangent space into a curve on the manifold. This problem is also referred to as the
question of integral curves. Given a smooth continuum of vectors in tangent spaces to a
manifold, does there exist a function on the manifold whose derivative gives rise to exactly
these tangent vectors? One of the first manifolds for which this question was studied was
indeed SO(3). For SO(3) the map which takes tangent vectors into curves on the manifold
can be found easily. Consider the differential equation

= yf (3.13)

which has the solution
y = ef c (3.14)

where c is a constant of integration to be adjusted to satisfy the initial conditions. When
we compare this equation to equation 3.11 we can see that at least formally we have

q(t) = qoef TO' (3.15)

The question that remains is, what does it mean to take the exponential of a quaternion?
Since the quaternions have the structure of an algebra we can write

e4 00 q(3.16)
0

Since the the Taylor expansion for the exp function is absolutely convergent, the above some
converges for any q E 'R4. In practice we would want to avoid an explicit summing of this
series. As it turns out we can evaluate the above some in terms of elementary functions for
the case of q whose scalar part vanishes. We start by observing that

(0, 2)(0,z) = (1|-|| 2, )

(T|h||2 0)(0 s (0, 9 se c)

This allows us to evaluate the exponential by reordering the series and collecting even and



odd powers

e(O) = Eoo(O6)

(= k! 2kw Z o + ) ) (3.18)
= (cos ||6|, " " fll)i;)

The above equation is of fundamental importance to our computing technique, since we can
solve equation 3.11 with analytic methods if only we have f w. The latter however falls out
for free if we just integrate up v. Since the rotation of three space which is parameterized by
a quaternion has a factor of 1/2 (see equation 3.10) we can now see why we claimed earlier
that 2X = w. It is also interesting to observe that for a local frame attached at the origin
equation 3.11 reduces to multiplying the current angular velocity by the identity, which has
no effect.

3.6 Summary

Considering the manifold structure of the set of all rotations I have shown that the integral
of w corresponds exactly to the log of the current orientation. Furthermore exponentiating
f w can be thought of as creating a rotation about f w by an amount of || f wI| radians, giving
us a pleasing intuitive interpretation as well. Not only does this simplify the computations
necessary in the integrator, but it also reduces the number of equations that need to be
integrated from 7 to 6.

In the old formulation we would have had to execute a cross product in the integrator
every time the derivative of orientation was requested (as does Barzel [1]), we now sim-
ply return the current velocity. Another advantage of this scheme is the fact that we do
not need to reunitize the quaternion representation of an orientation in the integrator to
avoid numerical drift. This occurs automatically when exponentiating the angular velocity,
since for any 3 vector its quaternion exponential is of unit length by definition. Numerical
precision is increased at the same time that we achieve a better economy of computation.



Chapter 4

Numerical Methods

4.1 Introduction

When considering the actual implementation of the algorithms discussed in this thesis a
number of numerical problems, some of which are unique to doing simulation of dynamics,
need attention.

As an example consider the fact that when we perform a simulation of dynamics as
opposed to kinematics we are dealing with differential equations. This allows errors to feed
back into the system in such a way that, for example, an object accelerates without a force
acting on it. Barr reports in [17, pages E44-E46] that performing the computations for
the constraint force approach in single precision arithmetic was not sufficient. Wilhelms
also reports problems in [14] when attempting to reliably solve the matrix problem. In an
earlier implementation of the Barzel [1] algorithm I found matrices with condition numbers
surpassing the dynamic range of double precision numbers (approximately 1016). Barzel
has used a singular value decomposition (SVD) to deal with this as best as possible. I
have also found that some simulations required the use of a SVD to avoid instabilities and
that an ordinary conjugate gradient (CG) algorithm was not sufficient. This is a significant
drawback insofar as a SVD does not allow for exploiting the considerable sparsity of the
matrices involved.

On the other hand the recursive algorithms, one of which I implemented, amount to a
direct technique for solving the associated matrix problem. Consider the simple case of a
linear chain. Since every body is only connected to its immediate left and right neighbor
the associated matrix has tridiagonal structure. Gaussian elimination on such a matrix can
be done in linear time and corresponds exactly to the recursion which I would perform in
the recursive algorithm.

In the following paragraphs I will discuss some of unique problems associated with the
linear algebra based approaches and ways to attack them. This is followed by more detailed
considerations of the implementation consequences of local frames, and the problems unique



to integration.

4.2 Linear Algebra

For solving the matrix problem which arises in the constraint force approach we need to
use an algorithm which can deal with over-constrained as well as under-constrained systems
of linear equations. This is so, since the user might specify constraints which cannot be
satisfied at the same time, or constraints which are not sufficient to yield a unique configu-
ration of the assemblage being simulated. While it is reasonable to consider an impossible
set of constraints an error, it is nonetheless desirable to return with the "best possible
compromise". Algebraically we have that the right hand side of the system

Jq = f (4.1)

does not lie in the range of the matrix. In this case the "best possible" solution is the
projection of the right hand side onto the range of the matrix. Or in other words, the
closest (in the sense of the Euclidean metric) vector to f in the range of J. If f is in
the range of J but the matrix is rank deficient we have many possible solutions. In this
case we want a solution which is orthonormal to the null space of J. Solutions which do
have a contribution in the null space of the matrix are undesirable, since they correspond
to solutions which contribute forces to the system that are not necessary to maintain the
constraints. At best these forces will move the system in legal but undesired ways, at worst
they will cause the integrator to diverge.

One way to find such solutions is via a SVD. When performing a SVD on the matrix
we compute explicitly a set of orthogonal vectors which span the range of the matrix and
a set of orthogonal vectors which span the null space of the matrix. Hence it is an easy
matter to find the desired solution by projecting f onto the vectors that span the range
of J. The numerical properties of the SVD are excellent due to the orthogonality of the
bases computed. But as pointed out above a SVD has cubic time complexity even for sparse
matrices.

Another set of algorithms available to find a solution which satisfies the above criteria,
are the CG algorithms. Given exact arithmetic CG schemes find a least squares solution in
a finite number of steps. In practice they are always implemented as iterative algorithms
with a criterion for stopping the iteration. All of them are based on the observation that
any solution to the original problem also satisfies

IIJ4 - fI|= 0 (4.2)

If the problem is overconstrained and no solution exists, then finding that solution which
minimizes the above quantity satisfies our criteria. Avoiding contributions in the null space
of 5 is achieved by using a starting vector which has no such contribution and only adding



correction terms in the iteration which are not in the null space of J themselves.
These algorithms can take advantage of the sparsity of the matrix by virtue of the

fact that they require the multiplication of J with certain test vectors. This allows the
implementor to use any data structure desired for the matrix itself so long as she supplies a
function which executes a matrix multiply. The disadvantage of these schemes is that they
tend to square the condition number of the matrix involved. For ill-conditioned systems this
actually makes things much worse. One CG algorithm that does not suffer from this is the
LSQR algorithm [18]. In their paper Page and Saunders compare the LSQR algorithm with
various other CG algorithms and show that it performs by far the best. This means that it
converges in the least number of iterations especially when confronted with ill-conditioned
systems.

During various rounds of debugging the code I have compared actual solution vectors
found by my implementation of the LSQR algorithm with the solution produced by a SVD
executed in Mathematica. The difference was on the order of double precision accuracy,
10-16.

4.3 Importance of local frames in regards to efficiency

Featherstone discusses in great length [19] the efficiency advantages of local frames. These
fall into the following categories

e simplification of the algebraic expressions due to certain quantities being constant in
local frames

* simplification of the computations due to special structure of certain quantities in
local frames

e increased numerical precision due to local frames, allowing the integrator to take larger
steps

For example, the inertia tensor is constant in body local coordinates. Furthermore by
choosing a principal axes of inertia frame the inertia tensor itself is fully expressed by four
scalars and trivially inverted. Joint axes can also be chosen so as to be constant in the local
frame. Another set of simplifications is possible by aligning the local coordinate axes with
a joint axis. This means that dot products involving the joint axes reduce to selecting an
entry from the vector with which the joint axis is dotted.

The internal representation of spatial transforms also has a great influence on efficiency.
A spatial transform can be realized as a 6 by 6 matrix. Due to its spatial orthogonality
we can store it as an affine transform (i.e. a 3 vector and a rotation matrix) and execute
multiplies with an efficiency gain of factor 6 (for more such optimizations refer to Feath-
erstone [19]). This also has the side effect that all transforms, whether they transform 3
vectors or spatial vectors have the structure of affine transformations.



When bodies are far from the origin, a small change in rotation can result in a large
linear displacement in space. Hence the integrator can take larger time steps for a given
amount of precision when using local frames (see McKenna [12]).

4.4 Integration

In the spirit of efficiency as well as stability of the numerical computations I am using an
adaptive stepsize, adaptive order, Adams-Bashforth predictor-corrector algorithm for the
integration (see Gear [20]). I chose this particular algorithm since it requires the least
number of right-hand-side evaluations, which, after all, is the most expensive part of the
system. This is achieved by using past values of the integrand to estimate future values,
as opposed to a Runge-Kutta algorithm which uses several values during the current time
step only to discard them immediately afterwards. Aside from the usual adaptive stepsize
it also chooses the order of integration adaptively from 1 to 12 (in practice I have mostly
seen third to fifth order). These algorithms are in our opinion the best available but are
typically very difficult to implement. One has to be mindful of two issues though. One
concerns the question of how to deal with discontinuities and the other concerns changes
to the algorithm to accommodate the local frames (in essence we are constantly changing
the reference frame, leading the integrator to believe that the function to be integrated
continually stays at the origin).

4.4.1 Discontinuities of the right hand side

Whenever a new force gets added to the system the joint accelerations are discontinuous.
This of course violates the basic assumption of the integrator, which after all uses a polyno-
mial approximation of the function to be integrated. While it is possible to use polynomial
approximations of arbitrary precision to "negotiate" the discontinuity it will require the in-
tegrator to take much smaller steps, noticeably slowing down the simulation. This in effect
removes the advantages that the multistep formulas, such as Adams Bashforth, have over
multistage approximations, such as Runge-Kutta. Lotstedt has shown in [21], [22] that the
obvious thing to do, i.e. to restart the integrator at the discontinuity, is the mathematically
correct thing to do. The overall order of approximation of the integrator does not suffer
under this scheme.

Implementation of restart

Since the code in effect uses a polynomial approximation internally, one can request the
integrator to interpolate up to a specific time and then restart. Whenever an event occurs
at the top level that has an influence on the integration (these are mostly user actions), the
algorithm interpolates all states to the current time and uses these on the next step as an
initial value problem. Another important support is available for specific events that happen



at a point in time in the future. It is possible to set a "tcrit" value, in effect preventing the
integrator from overshooting this particular value of the independent variable when doing
the predictor corrector iteration.

Any command that can cause a discontinuity sets an integrator dirty flag to trigger the
above actions.

4.4.2 The problem of local frames

The actual code I am using for the integration is derived from original sources of Hind-
marsh [23], who implemented and improved the algorithm originally proposed by Gear [20].
It assumes a constant reference frame when computing the solution of the system of differ-
ential equations. Since I am using local frames the code had to be changed to do this. In
a multistage solver such as Runge-Kutta essentially the same problem has to be accounted
for, but it is easier, since for a Runge-Kutta integrator one only needs to maintain a con-
sistent coordinate frame for a single step. For a multistep integrator, such as the one I use
all past values used in the integration have to be in the same coordinate frame. Since this
frame changes at every step one needs to incrementally transform all of the current set of
past values at every step. This is further complicated by the fact that the integrator will
back-up at times.

Multistep methods construct a polynomial approximation to the function to be inte-
grated. This polynomial can be represented uniquely in various bases. One such basis is
the Lagrange basis. This corresponds to maintaining a set of past values of the dependent
variable. The basis is dependent on the stepsize currently used in the integrator. Since the
integrator adapts its stepsize, this is not the best basis to use. Another basis is given by
successive powers of the independent variable. This corresponds to constructing a Taylor
polynomial from successive derivatives of the dependent variable. The coefficients of the
Taylor polynomial are also dependent on the stepsize. To change stepsize it is only neces-
sary to multiply these coefficients with successive powers of the ratio of the new and the old
stepsize. It is for this reason that the integrator I am using, LSODE, uses past values in the
equivalent form of higher order derivatives at the current value of the independent variable.
This is also referred to as the so-called Nordsiek history representation (see Gear [20]).

Implementation of local frames in LSODE

I modified the code in such a way that every time the integrator attempts to make another
step a user-supplied function to set the reference frame is called. For the VES this function
linearly transforms the Nordsiek history representation into a set of coefficients which cor-
respond to a basis consisting of the current values of the dependent variable, the current
value of the first derivatives, and past values of the first derivatives. By using past values of
the first derivatives the computation of the new reference frame is further simplified. I use
the current value of the spatial position to construct an incremental "push-down" transfor-



mation. This transformation is used to incrementally transform the past derivative values,
i.e. velocities and accelerations. Had I used past values, which is mathematically equiva-
lent, each one of the past spatial positions would have needed to be converted to an affine
transform, multiplied, and converted back. This would increase the number of operations
considerably. After this transformation the values are converted back into the Nordsiek
history representation. The transformations to and from the Nordsiek representation are
precomputed for all orders of integration from 1 to 12 and the code dynamically switches
between these depending on the current order of integration.



Chapter 5

Description of the Algorithm

5.1 Introduction

In the previous chapter I have discussed the algorithmic choices that I have made in the im-
plementation. These were based on numerical precision considerations as well as economies
of representation. By themselves they were general remarks on the low level elements of
the algorithm. That description is followed in this chapter by a detailed description of the
linear algebra based approach and the recursive approach.

I will describe the derivation of the mathematics followed by some actual examples of
its application. Whenever necessary detailed descriptions of the implementation are also
included. The chapter finishes off with a description of my implementation of branches
and loops, which Lathrop in his original article ( [10]) only treated very cursory and in an
extension respectively.

5.2 Constraints via constraint forces

The first stage of the algorithm consists of bringing the assemblage into a valid initial
configuration. For this I use an approach similar to the one proposed by Barzel [1]. Since
he did not use spatial algebra notation to express his constraints I will rederive this approach
in the following paragraph using spatial algebra.

5.2.1 Mathematics of the model

This method describes constraints as functions

Cj : Q -+ !RdI, j = 1,... ,n (5.1)

where Q is the state space of the system (typically the positions and orientations of the
bodies involved, although it is not limited to these) Each such constraint has a certain



dimensionality which is indicated in the above by d3 . For example the constraint that
connects two points has dj = 3 since 3 variables (translation) are constrained. C must be
twice differentiable and

C(Q) = 0 <-> the constraint is met (5.2)

He then proceeds to derive the forces necessary to meet the constraints and keep them met
under the influence of outside forces. The relationship between the force to apply and the
current state of the system is derived by considering the constraint function to be subject
to the critically damped second order differential equation

C + C + RCj = , j = 1,...,n (5.3)

This is in contrast to earlier approaches which used springs to pull the system towards
satisfying the constraints. By requiring the constraint function to satisfy this differential
equation it is ascertained that the variable will asymptotically approach zero as required.
Since this a linear differential equation, we now have a linear relationship between the
constraint force and other state dependent quantities. This way the total force acting on a
body is

Ft =Fc + F', i = 1,., k (5.4)

j acting on body i

Here F* is the external force applied to the body, and i indexes the bodies. Fc0 arises from
constraint C3 and is parameterized by equation 5.3.

This then leads to a linear algebra problem of the form

fl#1-L C - C1

'I=(5.5)

where #3 contains the parts of C( which are independent of force and 'R is the matrix3

composed of the C j = 1,..., n as functionals of a force argument.
There are a number of observations to be made here. When comparing the above for-

mulation with the derivation in Barzel [1] we find an apparently large number of differences.
However this is so only on the surface. As a matter of fact all of the additional quantities
in [1] are just coordinate transforms. To wit

1. I' and A' are the operators which take a force at some specific point on the body into
an acceleration with reference to the center of mass of that body.

2. G. and Hj serve as coordinate transforms which take the force F0 , and express it in



the coordinate frame of body i.

Another way of looking at the problem is to think of the constraints as defining a
manifold in configuration space (as suggested by Witkin [11] and Isaacs [13]). Keeping the
constraint met is equivalent to staying in this manifold. At any instant in time this can be
achieved by limiting motion to the tangent plane of this manifold.

Assume that the constraint is currently met. The constraint will stay met (to first order)
if

Cy = V4 C3 = 0 (5.6)

This can be interpreted as requiring that the change in state be in a direction in which the
constraint itself does not change (at least infinitesimally). Thus the notion of staying in the
tangent space of the constraint manifold.

If we assume that velocity is proportional to force, as is approximately the case in an
environment dominated by friction and damping, we are let to consider the following linear
algebra problem

F1 + Fe,

1=0 (5.7)
Fk + Fe/

where Fi, and Fe;, i = 1, ... , k are the combined constraint forces and external forces felt
by body i respectively. 3 is the matrix of derivatives of the constraints.

The argument can easily be extended to a second order approximation in the following
way. We require that the second derivative be zero as well

C= 0 = Vq C7 + V4 V4 C; (5.8)

In this fashion we can avoid the buildup of a velocity that would take us off the constraint
manifold. Since numerical error will tend to take the system off the manifold anyway, I
use a simple control technique which opposes velocities as well as displacements off of the
constraint manifold

2 1
V4 Ci = -Vg V4 C, V4 Ci ,2 Ci (5.9)

The rj are time constants which parameterize the speed with which errors are balanced. As
can be seen by comparing this equation with equation 5.3 this approach is mathematically
equivalent to Barzel's formulation, driving the constrained variables to zero. It is this
property that I exploit to bring the assemblage into a valid initial configuration, if this is
not already trivially the case.



5.2.2 Reformulation in Spatial Algebra

Since the aim is to use the recursive algorithm I decided to formulate the above in terms of
spatial algebra. In this way a uniform treatment of the initial phase of building the assem-
blage and of forward simulating it, is achieved. Recall Newton's equations are expressed in
spatial notation as

I a^ + V i = ? (5.10)

Solving the above for 5 and substituting for 4 in equation 5.9 we get

1
1 (?ei + fCbl

1 Y(fek + fCbk

-(V 1...Vk V 1 .

V1...V, V 1.

- 91 X 11)

C1 )
..VkCfl/1 - Di

.. k Cn

Here the fcb. are the accumulated constraint forces as felt by body b; which in general will
be a sum of forces which arise from several constraints all acting on a given body. Notice
that in all of this I have ignored all transform matrices.

When the algorithm evaluates equation 5.11 all quantities but icb. are known. In order
to bring this system into the standard form for solving it we rearrange

Kacb

aCb

: 

A

Ik- (fe, -k 10kI~)

V1

Vk

-Diag(

-CV1...k V1...Vk C1

V1...Vk V1..V Cn

(5.12)

1C1
12

rn

K7
(5.11)

C1

I .

~cn



I will write this in the following short form

75 = >((v, P);=1,...,k, t) (5.13)

The actual computation will be performed in each bodies local coordinate frame to avoid
numerical difficulties. In the constraint derivations below I will spell out explicitly all the
transformations involved.

5.3 Sample Derivations

5.3.1 Distance Constraint

Suppose we have two bodies b1, b2 and we want to constrain these two bodies to have a
constant, non-zero distance. In general we may wish to constrain specific points on each of
the bodies P1,P2 to have a desired distance dd > 0. The distance constraint then is

(P1 - P2,P1 - P2) - dd2 = C(pip 2) E 0 (5.14)

where the pi are in worldspace. For the formulation of the actual algorithm however I will
cast everything into body local coordinates.

First however we need to establish the necessary transforms. Let the subscripts 1, 2
relate to quantities of body 1 and 2 respectively and define

Ei0
GXL = (rix Ei E)

id 0
pAxT id (5.15)

GXL = (Ei, ri)
GXL1 LiXG = (ET, -Efri)

n1 ([a, ao])= a
n2 ([a, ao]) =ao

where i = 1, 2. The subscripts L and G stand for local and global respectively. The local
frame being the center of mass, principal axes of inertia frame and the global being an
arbitrary but fixed inertial frame. E is the matrix composed of the column vectors which
describe the local frame with respect to the global frame (alternatively it may be thought
of as made of rows which are the global frame basis vectors in the local coordinate frame).
ri refers to the location of the center of mass of the respective body in world space. In
computer graphics notation the matrix E and the vector r are the rotation and translation
respectively that one would use to go from modeling to world coordinate frame.

With these definitions we can formulate the distance constraint precisely (notice that



time is a variable, since the transforms depend on it. However, for clarity I will not write
the explicit dependence on t ). In order for the expression to be well-defined we need to
convert all quantities to some common space. For this I arbitrarily choose the local space
of body 1 with L1 XL2 = Li XG GXL 2 and Li XL 2 = L1 XG GXL 2

2(
2(

(P1 - L1 XL 2 P2,P1 - L1 XL 2 P2 _ dd 2 = C(P1,P 2 , t)
0

P1 - L1 XL 2 P2 P, LXL P L1 XL 2 -2 ) = VQ1,0 2 C(P1, P 2 , t)

0
, Ty1 1 - TL1 XL 2 P2 L1XL 2 a2 ) = S2 C(P1, P2, t)

We can rewrite VC as an operator defined in body local coordinates

vC=
T 0L1 T P1L 1 XL 2 P2

(-T LixL P2 Li XL2 )T (P - LjXL2 P2

T

(5.16)

(5.17)

which should be thought of as a sparse vector. Notice the number of common subterms
which should be exploited to cut down the overall operations count.

The expression for V70, 2 V01, 2 C is given in body local coordinates by

(t 1 Qi - L, XL2 P2 L1XL 2 L2 ,tp 1 Q1 - TLXL2 P2 L, XL 2 v2) (5.18)

5.3.2 Point to Point constraint

This constraint is very similar to the distance constraint in that it constrains two points to
have zero distance to one another. This could be implemented with the distance constraint
for dd = 0, however there is a simpler way which avoids computing the dot product and its
derivatives. Define

P1 - P2 = C(p 1 ,P 2 ) 0 6
and with a simple derivation as above we get

(5.19)

P1 - L XL 2 P2 =

n2 (ipi 1 - TL1XL2 2 Li XL 2 V2) =

n2 (Ti 1P - TLXL P2 L XL 2 a2) =

C(p1 , P2 , t)

V2 1 )02 C(P1 , P2 , t)

VS1i2 C(P1, P2, t)

Here again we think of VC as a sparse vector. Notice that in this case VVC = 0.

(5.20)



5.4 Implementation

In the code a particular constraint is derived from an abstract constraint class. Each con-
straint maintains its own data structures and only needs to define certain member functions.
These include right-hand.side, which computes <$, and dot, which evaluates the left hand
side of the matrix equation. In this way I never need to define and deal with sparse ma-
trix data structures and can leave it up to the individual constraint to exploit common
subexpressions and structure such as spatial orthogonality in a transparent and maximal
fashion.

When the linear algebra module gets called, it only receives two lists, rows, which is the
list of constraints, and cols, which is the list of bodies. In this fashion the LSQR algorithm
need not know about sparsity or the particular dimensionality of a given member of the
row list. A matrix multiply is a linear traversal of the row list, calling each list members'
right hand side function.



5.5 Constraints via recursive propagation

Since we are interested in connected bodies (if they are not connected any forward inte-
gration for the individual body's equations of motion will do) one obvious approach is to
parameterize one body in terms of another that it is connected to. It is this point of view
that leads to a class of recursive formulations. Featherstone has shown [19] that for more
than 9 DOFs in a linkage the most efficient forward simulation algorithm is the articu-
lated body method. Based on this formulation Lathrop proposed an algorithm capable of
propagating constraints along a linkage.

At first we consider only chains without branches, numbering the bodies from base to
tip, i = 0,..., n. Quantities with script i refer to body i, and fi is the force exerted by body
i onto body i - 1. For now the joints between bodies will be one DOF joints only. Joint i,
designated Si connects body i and i - 1. Newton's equations can then be expressed as

fi = lisi + fi+1 + #V (5.21)

which relates fi to the derivative of the momentum of body i, plus the force that body i + 1
exerts on it (t = v; IA0 is the bias force). Relating accelerations we get

ai = a.- 1 + si + i X sq (5.22)

expressing the acceleration of body i as the sum of the acceleration of body i - 1, the
acceleration along the joint axis, and accelerations due to the velocity across the joint.
Furthermore we have the joint constraint

Qi = S;fi (5.23)

which expresses the force acting along the joint axis. Given this numbering convention, fo
is the force applied by the environment to the linkage and in+1 is the force applied by the
tip to the environment. Sign, however, can be incorporated in the affine transform.

Each body has 6 motion DOFs. Given the spatial rigid body inertia tensor this is
equivalent to the 6 force DOFs. We introduce another set of 6 abstract DOFs, which can
be thought of as parameterizing the balance of force between the proximal (closer to the
root) and distal (farther from the root) end of a body. Let these DOFs be represented by
Q; at body i and assume that the endpoint force and acceleration are some known affine
combination of these DOFs

fo = Uoo + KO
f o =M 0  0 ± o 0 (5.24)

an = MnQn + ^
(n+1 +1 n t e g+1

(quantities with an overbar refer to root constraints). Substituting in the expression gov-



erning the force that body n exerts on body n - 1 we get

fn= (in±n + 1)In + (inKi + ^n+ + p) (5.25)
= Min + ^nf

So far we have made no assumptions about the dimensionality of Q, although typically
it will be six dimensional, but the development of the algorithm is independent of the
dimensionality of R. This is important for the argument allowing loops to be broken. We
now have a means to "work" up the chain. Since we really want to solve for the joint
accelerations we need to use the entries of n to hold these. This can be accomplished by an
algebraic manipulation which in effect reflects a relationship among the entries of f imposed
by the joint constraints Qi = sfi. In order for this algebraic manipulation to succeed (see
below) we need to ascertain that W, i = 0,..., n has maximal rank. Indeed, if this were
not so, we could have a body with non-zero acceleration yet with no force acting on it.

5.5.1 Examples of endpoint constraints

The basic mechanism to formulate an endpoint constraint is to write down the equations
which describe the force exerted by the last link onto the environment, as well as the
acceleration of the tip link. Forces that the environment exerts onto the tip can be encoded
by a sign change, expressing them as an equal and opposite force exerted by the tip onto
the environment.

Say, the last body in a linkage has no interaction with the environment. Then the force
that it exerts on the environment (or the environment on it) must be zero

Mn+1 = 0

r%1+1 = 0

Hence, independent of the values of Qn no force is transmitted. Clearly we don't know what
the acceleration of the body is. This fact is expressed by

Qa ( 0 id
" id 0

^aKn = 0

Now we have in effect used Qn to hold the variables directly determining acceleration since

an = Mnf + Kn n

The spatial transpose arises because the coordinate locations of rotational and translational
DOFs are reversed between motion and force type spatial quantities.

Another common constraint is for a body to be connected to the inertial frame. Assume



we want to connect the base of the linkage to the inertial frame. In this case the base body
does not experience any acceleration

M0 =a

n 0

The force that the environment is exerting on body 0, which can be thought of as the
reaction force, is not known however

MO = id

Ro = 0

Notice that in this case qo is used to hold the variables which directly determine the reaction
that the inertial frame exerts on the base.

5.6 Propagating the constrained DOFs

The main process in going from one body to the next can be summarized as exploiting the
joint constraint (equation 5.23) to eliminate one of the abstract DOFs (one of the coefficients
in fG;) and replacing it by the new DOF qi, the joint acceleration. This process is repeated
recursively up the tree until we get to the root. At that point we can solve for the root
DOFs and propagate these back out the tree.

Combining the joint force constraint at joint i with the parameterization of f; we get

Qi = sti= st(Of; + Kf) (5.26)

Since M[ has maximal rank at least one of the coefficients of ^s M must be non-zero, say the
jth. Hence we can divide through by it and express the jth coefficient of ti as a constant
plus a linear combination of the other coefficients of Qi

[i-s-f] -z
k:Ai

(5.27)

[b]j designates the jth coefficient of the vector G. We can rewrite the DOFs to reflect this

eje,) E + ej * s ) (2
2 M

( - 13 )

(5.28)
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ej designates a vector with all zeros but in the jth position. We define

= (1 - eje) ;

which is just fi with the jth entry set to zero. Substituting the new expression for Q; into
the parameterizations of force and acceleration at body i we get

M'?e, z- + ki'

Q. MWz
(5.29)

Since the jth column of 1 - is zero so is the jth column of Mf' and M*. We

exploit this to augment Qi with the unknown joint acceleration at joint i as our new DOF
to be solved for

Qi-1 = S2 + eji

ai = $7 _1 + KQ* (5.30)

Having rewritten Si and fi in this form as functions of Gi_1 we can now substitute these in
the recursive relationships for acceleration and force (equations 5.21, 5.22) to arrive at the
parameterization of i_,1 and fi_ 1

i... = (i' - sie ) i-1 + (K i - i)

= Mg_ 1 Qs 1 + _

fi1 = (liM?_1 + M ) -1+ (li- 14 1 +±t +p_1+ ^ _
(5.31)

At the root then we have a parameterization of So and fo in terms of the DOFs of the linkage
itself and a prescribed parameterization due to the root constraint. Hence we can actually



solve for Qo by considering the system

Ao =Mgo + -a
= Mono + no
= ^VI0L+-f-~ (5.32)

fo= Mo Ko
^ f a

= Mlono + Ko

This system might not have any solution, which is the case when the constraints placed
on the linkage are incompatible with constraints placed on the root. It might have many
solutions, which means that the force and acceleration are determined, but not all DOFs
can be solved for. An example is a grip which holds a brick. The accelerations of the contact
points can be solved for, namely zero, but the forces can not be uniquely solved for. My
implementation uses the LSQR algorithm to solve the following equivalent system

/Ma -1 0 0 -/ a

IM 0 0 -1 o _gg
0 -1 So 0 Qo -Ro (.3

0 0 Mo -1 \o -ao /

The solution for the root acceleration is used for updating the root body and the solution
for f o is used to recur back down the chain. This is accomplished by using equation (5.27).
Each body contains local storage holding the j value designating the entry that was freed
up in the recursion up the chain to make room for the joint acceleration. Now that we have
n; we have

[ l] (5.34)

and remembering that W1 is just Q; with the jth entry zeroed

Gi+1 = D + ej3' * - * __ (5.35)

In the actual implementation all that happens is that the jth entry of Q is recovered, set
to zero and then filled with the above expression. Since all the elements of the above
expression, but Q , are subexpressions of earlier computations they are simply stored in the
body data structure as well. This way the actual computation only involves the last dot
product.

5.6.1 The recursion in local frames

So far I have ignored all questions of frames. When going to local frames the a^ and f; have
to be transformed incrementally from one body to the next. Let ; 1X^ designate the spatial



transformation that takes us from the local frame of body i to body j - 1. The recursion
then becomes

Mg - i-1Ri -A sieT)

Ri_1 = ;_1;Xi K* - sidi) (5.36)
Mi-i - 1+i- 5q
Ofi_1 = I1 7_ 1 + ;-A;-1
pS-1 =-1 _1;-1A '

On the way down, when we recover the joint accelerations no transformations are necessary,
since the Qi are not expressed with respect to any basis. The joint accelerations which are
recovered from the P; are scalars that are always relative to the constant joint axis and
hence also do not need any transformation.

5.7 Branched kinematic trees

In order to deal with branched kinematic trees the original numbering scheme which pa-
rameterized the recursion has to be modified. While every body still has a unique parent,
some bodies have multiple children. In the numbering of the bodies we only require that
successor bodies (more distal) have numbers higher then their predecessors (more proxi-
mal). For body i the index of its predecessor is Ai and pi is the set of its successors with
p;(k) the kth element of that set. Joint i still connects body i and Ai. The acceleration is
unchanged and given by

ai = aA1 + ^;#; + Gi X sidi (5.37)

The force of body i now has a contribution from all successor bodies

f= ii~ + P + Z i

3Epi

The acceleration of body i is parameterized in terms of quantities which arise from the
successors of body i when going across the joints k E pi. Say we have m children of body
i, then we have m different ways to express ai

a S = MKS C + a (5.38)

In what follows I will refer to the elements of pi by the numbers k = 1, ... , m to simplify
the discussion. We also have one equation expressing fi in terms of 12 . Using the fact that

$ ij O, M- and choosing one of the parameterizations of ai, say j = 1 to substitute3 8 3 tj

into the recursive expression for the force (equation 5.21), we get

S j + (5.39)
j=2 j=1



we now have a system of m + 1 equations relating the f;, to each other. We can exploit
these to build a parameterization of force and acceleration at body i in terms of a new Q;.

Lathrop treats this case in an extension to his algorithm and shows that this system of
equations can be solved in time linear in the number of distal joints of body i. Finding the
new parameterization however is not entirely trivial since we cannot just solve for it directly
as we don't yet actually know 5i and fi. For this I have chosen the following approach. For
greater clarity I will rename the matrices of the force parameterization

A1  = 1 M + Mf
Aj =M , j=2,...,m

We also collect the constant terms

?1 = K1
77j = K1 - Kj,7 j = 2, ..., m

This leaves us with the following matrix equation

a/ ; / 0 ... ...... .0 \
0 Ma -M 0 -... ... ... 0

0 = 0 -.. 0 -Mq 0 -.. (5.40)

0............ .. o _Ma Qmm

fi Al A2  .... Aj . . . . . Am
)~ U -m+1

Since the left hand side of this equation has at most 12 independent scalars, the matrix
on the right can at most have rank 12. But that means that by a suitable coordinate
transformation we can rewrite the system as

a - S I= Bi + k (5.41)
f,

where the length of Q; is less then or equal to 12. Once we achieve this the first 6 rows of
B will be the new M? and the bottom 6 rows will give us M[ while the first 6 rows of k will
be si and the bottom 6 rows will be 4[.



5.7.1 Implementation of the matrix reduction

One possible way to do affect the change to the form outlined in equation (5.41) is to use
Gaussian elimination on the branch equations (5.40), which is of linear time complexity
in this case due to the special structure of the matrix. This is the approach suggested by
Lathrop. It however suffers from numerical problems due to ill conditioning. Furthermore
it is complicated by the fact that we can only do row operations on the rows corresponding
to j = 2,... , m and otherwise have to use column operations which makes it very difficult
to recover the individual Q;, from R; when we come back down the tree to solve for the
actual joint accelerations.

For j = 2,-. , m consider the equation

0 =M - MA +7i

Using a SVD this equation can be partially solved for Qj in terms of Q1

[U1 ,. ',uk] Diag(pi, - --,Pk , 0 k+1, -, Orj) [V1 ,. -. VrjT M 1 +i

Here ul,l = 1,. .. , k is an orthogonal basis for the range of W1, pi,l = 1, . - . ,k are the
associated singular values, and vi, 1 = 1,---, rj is an orthogonal basis for the domain of Q3,
where rj is equal to the length of fj. First we change the basis of Qj to the new orthogonal
basis

~ r T
%3.= [n1, .. I ~

We can now rewrite the first k. coefficients of Q. in terms of n1

n = Diag(pi-,--, p-1) [1,- , u ( 1 + hj)

= N!Q1 + ^j

The same substitution is applied in the last row, first transforming to the new basis

A3 = Aj vi, -- , vrl

and then substituting the first k3 coefficients of Q. as functions of Q1 (to avoid yet another
set of variable names I will use the C language operator "+ =")

?+1 += Ni
1-dcol=1,--.,kg ^Tm+1 + o =,.,k

This way we have effectively used the equations j = 2, -. - , m to eliminate as many DOFs



from the last row of equation (5.40) as possible. Remembering that A1 and ^m+1 have been
modified above we are left with

af~
ai = Mi 11

f= A101 + (,"= 2 [A Col=kj+l,*..,r +^7+,...,r m+1

We are now down to the desired 12 rows but might still have more columns then the rank
of the matrix we started with (equation 5.40). At this point the algorithm does a final SVD
to remove all unnecessary DOFs leaving us with the desired system of equation (5.41).

When the recursion comes back down with the actual Q; we are faced with the task of
reconstructing the original Q; to be sent down the child chains. All necessary quantities
reside in local storage within the body data structure itself. We now have

Mq~ a K~

= Mn

As before I use a SVD on M1 to recover Q1. With %1 recovered the algorithm uses the
SVDs of equation (5.7.1) to build the first k3 entries of f, for all j = 2,-. , m from which
we can recover the actual Oj themselves

QJ = [V1, -- , I -|- Dj)

The recursion continues on every child chain with these Qj.

5.8 Loops

Loops are handled by breaking them. After that they can be treated as the endpoints of
two linkages. The only difference is that constraints on the DOFs of one arm have to be
related to the corresponding DOFs of the other arm. To simplify the discussion I will first
consider breaking an ordinary chain between bodies i + 1 and i. From the point of view of
body i the force fi+1 can be thought of as the force that it exerts on the environment if it
was the last body in a chain. Similarly for body i + 1 the force fi+ 1 is what it experiences
from the environment, or we can say the negative of what it exerts on the environment.
We now set j = i + 1 and think of body i and body j as the last bodies in their respective
linkages. I will indicate this by the indices jn+1 and in+1. This leads to

fjn+ = -fi+1

fi, =fi+1



Using the same argument for accelerations we get

Sjn = i + ^i+14i+1 + V+1 +

ai, =as

and the joint constraint becomes

Qi+1 = S+1 i+

Let the unknown DOFs be

We can now define the parameterization for the last body of each of these two chains as we
would normally do for an ordinary chain

Sin = (id, 0,0) 2ij + 0
= M( QGii + YK

InIn
i M = (i ,i ,0Q ij + i^ >

a+ K = (5.42)
=in = (id, 0, ^Sg) Qij + i (Qj2

=-Mt Qij +K

Notice that so far we have 13 DOFs, but there are only 12 at the breaking point since one of
the DOFs is constrained by the joint. Before we start the recursion I exploit this constraint
as before (assume the coefficient I of sj is non-zero)

= - ~_ - eef) [f 2ij)7,..., 1 2 + el

This time however we use this fact to actually eliminate a column from the M matrices
above, bringing them all down to 12 columns. Now it is also clear why we wanted the
development of the algorithm to be independent of the actual length of Q.

5.8.1 Propagating shared DOFs

The DOFs arising from the breaking of a loop come in pairs. When the recursion moves up
one of the arms, we encounter constraints on these DOFs. Any such constraint has to be
communicated to the same DOFs off the other arm. This is accomplished by substituting
the expression of equation (5.27) for the eliminated DOF on the other arm.



Chapter 6

The code

6.1 Introduction

This chapter gives an overview of the C++ code that went into the implementation of
the VES. It introduces the class libraries which realize all the algebra, and the basic data
structures for bodies, constraints, and forces. The system can be expanded on that level
through the use of derivation from a few abstract base classes. Examples of this will be
given. The other major part of the algorithm that is documented here with the help of
actual program text, is the recursive constraint propagation algorithm. The documentation
for the front end parser can be found at the end of this chapter. The actual files have been
slightly edited from the ones actually used, wherever this increased readability. For example
many inline functions defined in the class definition itself have been taken out.

Historical note: The class libraries were first implemented using AT&T cfront version
1.2.1. I have only ported these to 2.0 without taking advantage of a number of new features.
For example the streams are still only oldstyle stream.h.

6.2 Linear algebra classes

A number of primitive data types are required when using linear algebra for dynamics.
These include 3 vectors which come as column vectors and row vectors. I have used generic
types to define these. The same goes for spatial vectors. Matrices operate on these, but
more important is the class of affine transforms. This class is defined to act on spatial
vectors like a spatial transform and on 3 vectors like an ordinary affine transform. This rep-
resentation is possible due to the fact that spatial transformations follow the same rules for
concatenation as do affine transformations. Not only does this allow for increased economy
in terms of storage but also time, since executing a spatial transformation concatenation
requires 6 times as many floating point operations as does the associated affine transforma-



tion concatenation (see [19, page 144]). The actual code that executes these operations is
straightforward and thus not included here. It is interesting to note, though that I found
the code to be considerably faster on the HP9000/800 when unrolling each and every loop.

6.2.1 Generic class of 3 vectors

This generic class is instantiated as Cvector for column vectors and Rvector for row vectors.
I chose this distinction to use the compiler to flag errors such as crossing a row and a column
vector, or multiplying a column vector by a matrix (as opposed to multiplying a matrix by
a column vector).

class <T>vector{
protected:

double vec[3];
public:

<T>vectorO {
<T>vector( const int ) { vec[O] = vec[1] = vec[2] = 0.; }
// useful for fortran
< T>vector( const double *ar )

{ vec[0] = ar[O]; vec[1] = ar[1]; vec[2] = ar[2]; }
<T>vector( const double, const double, const double );
<T>vector( const <T>vector& );
<T>vector& operator=( const <T>vector& );

friend ostream& operator<<( ostream&, const <T>vector& );

< T>vector
< T>vector
< T>vector
< T>vector
friend <
< T>vector

operator-( const < T>vector& ) const;
operator-() const;
operator+( const <T>vector& ) const;
operator*( const double ) const;

T>vector operator*( const double, const <T>vector& );
operator/( const double ) const;

< T >vector&
< T >vector&
< T>vector&
< T>vector&

operator-=(
operator+=(
operator*=(
operator/=(

const
const
const
const

< T >vector& );
< T >vector& );
double );
double );

// takes the cross product with its argument
<T>vector cross( const <T>vector& ) const;
// takes the dot product with its argument
double T( const < T>vector& ) const;



// returns a unitized vector
< T >vector dir() const;

// returns its length
double len() const;

// could have indexing protection
double& operator[]( const int i ) const { return vec[i]; }

};

6.2.2 Generic class of spatial vectors

These vectors too, come as Csvector for column spatial vectors and as Rsvector for row
spatial vectors.

class <T>svector{
protected:

< T >vector upper, lower;
public:

<T>svectorO {}
// for a spatial vector initialized to zero
< T>svector( const int );
<T>svector( const <T>vector&, const <T>vector& );
< T>svector( const double* );
< T>svector( const double*, const double* ); 10
< T>svector( const < T>svector& );
< T>svector( const double, const double, const double,

const double, const double, const double );
<T>svector& operator=( const <T>svector& );

friend ostream& operator<<( ostream&, const <T>svector& );

<T>svector operator-( const <T>svector& ) const;
<T>svector operator-() const;
<T>svector operator+( const <T>svector& ) const; 20
<T>svector operator*( const double ) const;
friend <T>svector operator*( const double, const < T>svector& );
< T>svector operator/( const double ) const;

<T>svector& operator-=( const <T>svector& );
< T>svector& operator+=( const <T>svector& );
<T>svector& operator*=( const double );
< T>svector& operator/=( const double );



// spatial cross product with its argument 30

<T>svector cross( const <T>svector& ) const;
// ordinary dot product with its argument
double T( const < T>svector& ) const;
// spatial dot product with its argument
double S( const < T>svector& ) const;
// returns the index of the absolutely largest element
// starting at the (possibly) specified index
int max( int = 0 ) const;
// to get the individual sub vectors
< T>vector& up() const { return upper; } 40

< T>vector& low() const { return lower; }
// for indeces 0 - 5, could error check
double& operator[]( const int i ) const

{ return ( i < 3 ? upper[i] : lower[i - 3] ); }

6.2.3 Orientations as quaternions

In order to facilitate using the most efficient representation for rotations given the context I
not only built a quaternion class but various cast operators to and from matrices as well as
the exponential map and its inverse (logarithm). This allows the user of this class to stay
fairly detached from the various actual representations of rotations. Depending on context
for example it might be much more intuitive to specify a rotation by an axis vector scaled
by the amount of rotation. An exponentiation of the vector followed by an assignment to a
matrix will do the right thing in a transparent fashion.

class quaternion : private Cvector{
protected:

// actually cos( theta / 2 )
double s;

public:
quaternion() : Cvector() {}
// identity
quaternion( const int ) : Cvector( 0 ), s( 1.0 ) {}
quaternion( const double, const double, const double, const double
quaternion( const double, const Cvector& );10
quaternion( const quaterniongi );
// initialization and cast operator
quaternion( const matrix& );
quaternion& operator=( const quaternion& );
// assignment of matrix to quaternion



quaternion& operator=( const matrix& );

friend ostream& operator<<( ostream&, const quaternion& );

quaternion operator*( const quaternion& ) const; 20

quaternion& operator*=( const quaternion& );
// quaternion multiplication with the column 3 vector
// treated as a quaternion with zero scalar part
quaternion operator*( const Cvector& ) const;
quaternion& operator*=( const Cvector& );
quaternion operator/( const quaternion& ) const;

quaternion operator-( const quaternion& ) const;
quaternion operator+( const quaternion& ) const;
quaternion operator*( const double ) const; 30
friend quaternion operator*( const double, const quaternion& );
quaternion operator/( const double ) const;

quaternion& operator-=( const quaternion& );
quaternion& operator+=( const quaternion& );
quaternion& operator*=( const double )
quaternion& operator/=( const double );

// returns a unitized quaternion
quaternion dir() const; 40
// dot product with its argument
double dot( const quaternion& q ) const;

// returns the length
double len() const { return sqrt( dot( *this ) ); }
// inverts a quaternion without regard to it being unitized or not
quaternion inv() const;

// rotate a column vector by the rotation parameterized by the quaternion
Cvector rot( const Cvector& ) const;
// like taking the transpose of the matrix associated with
// this quaternion; actually conjugation 50
quaternion To const { return quaternion( s, Cvector::operator-() ); }
// as if it was a four vector
double& operator[]( const int i )

{ return ( ( i ) ? Cvector::operator[](i - 1) :s }
// member selection
double& w() const { return s; }



const Cvector& vo const

// exponentiation 60
quaternion exp( const Cvector& );
// inverse of exponentiation
Cvector log( const quaternion& );

6.2.4 Matrix class for 3 by 3 transformations

This class does allow for non-orthogonal matrices, however I currently only use it to hold
orthogonal transformations (rotations). Note that the matrix class could just as well have
been the quaternions, since in my system they are able hold all the information (rotations)
needed.

class matrix{
protected:

double mat[9];
public:

matrix() {}
// 0 for the zero matrix
// 1 for the identity matrix
matrix( const int );
matrix( const double, const double, const double,

const double, const double, const double, 10
const double, const double, const double );

matrix( const matrix& );
// initialization with quaternion as well
// as cast operator from quaternion to matrix
matrix( const quaternion& );
matrix& operator=( const matrix& );
matrix& operator=( const quaternion& );

friend ostream& operator<<( ostream&, const matrixz& );
20

matrix operator-( const matrix& ) const;
matrix operator-() const;
matrix operator+( const matrix& ) const;
matrix operator/( const double ) const;
matrix operator*( const matrix& ) const;
matrix operator*( const double ) const;

{ return *this; }



matrix& operator-=( const matrix& );
matrix& operator+=( const matrix& );
matrix& operator*=( const double ); 30
matrix& operator*=( const matrix& );
matrix& operator/=( const double );

// returns the transpose of itself
matrix To const;
// multiplies a column vector on the right
Cvector operator*( const Cvector& ) const;
// transpose of itself times column vector
Cvector T( const Cvector& ) const;

// could do error checking 40
double& operator(( const int r, const int c )const

{ return mat[r * 3 + c]; }
};

// matrix times the cross operator arising from the vector argument
matrix cross( const matrix&, const Cvector& );
// cross operator arising from the vector argument times matrix
matrix cross( const Cvector&, const matrix& );

6.2.5 Class of rigid body motions

A translation vector and a rotation specify a rigid body motion. In this case the rotation
is encoded as a matrix. The original design used matrices, however it could just as well be
logarithms of rotations. It would be interesting to consider carefully the operations counts
involved for the current algorithm when replacing the matrix member of affine transforma-
tions by a quaternion. As pointed out above spatial transformations follow the same rules
as affine transformations, but act differently on spatial vectors. Hence there is no separate
spatial transformation class, but rather variously defined multiplication operators.

class affine{
protected:

Cvector t; // translation
matrix r; // rotation

public:
affineo {}t
// 0 for the zero affine transform
// 1 for the identity affine transform
affine( const int );
affine( const Cvector&, const matrix& ); 10



afjfine( const affine& );
affine& operator=( const affine& xf );

friend ostream& operator<<( ostream&, const affine& );

// concatenation
affine operator*( const affine& ) const;
affine& operator*=( const affine& );
smatrix operator*( const smatrix& ) const;
// affine transform of column 3 vector 20

Cvector operator*( const Cvector& ) const;
// spatial transform of column spatial vector
Csvector operator*( const Csvector& ) const;
// returns the inverse for an affine transform
affine inv() const;

// returns the inverse (spatial transpose) of a spatial transform
affine So const { return inv(; }
// apply the inverse affine transform to a column 3 vector
// without actually creating the inverse
Cvector inv( const Cvector& ) const; 30
// spatial transpose of spatial transform times spatial column
// vector, again without actually forming the transpose
Csvector S( const Csvector& c ) const;
// the same for the ordinary transpose
Csvector T( const Csvector& c ) const;

// selection of members
Cvector& trans() const { return t; }
matrix& rot() const { return r; }

For the definition of smatrix see below.

6.2.6 Variable length vectors for Q-DOF vectors

For the recursive constraint propagation we need vectors whose length will be between 6
and 12. Since the length is bounded above by 12 these vectors are of fixed length 12 and
maintain a member indicating the actual length. All operators are optimized for length 6,
since that is almost always the length of an Q vector. When conflicts as to length arise
in a computation (which should never occur under ordinary circumstances), all operators
will print a diagnostic message and assume the vector to be padded with zeros beyond its
currently active range.

class omega{



private:
double vec[12];
int active; // the entries currently valid

public:
omega( : active( 6 ) {}
// for a vector of length 6 initialized to zero
omega( const int );
omega( const double, const double, const double,

const double, const double, const double ); 10

omega( const omega& );
omega& operator=( const omega& );

friend ostream& operator<<( ostream&, const omega& );

omega operator-( const omega& ) const;
omega operator-() const;
omega operator+( const omega& ) const;
omega operator*( const double ) const;
friend omega operator*( const double, const omega& ); 20
omega operator/( const double ) const;

omega& operator-=( const omega& );
omega& operator+=( const omega& );
omega& operator*=( const double );
omega& operator/=( const double );

// returns dot product with its argument
double T( const omega& ) const;

// extend the currenly active length by zero padding 30
void fill( int, const int );
// the actual current length (between 6 and 12)
int length() const { return active; }
// only for those who know what they are doing
void set-active( const int a ) { active = a; }
// index of largest element
int max( int = 0 ) const;
// when accessing a member beyond the current range,
// the range is extended and padded with zeros;
double& operator[]( const int i ) 40

{ if( i >= active ) fill( active, i ); return vec[i]; }
// access without check, only for those who know what they are doing



double& ele( const int i ) const { return vec[i]; }

6.2.7 Variable length matrices with 6 rows for M

The various l/ matrices used to parameterize the body state in terms of the Q vectors of
DOFs, will always have 6 rows but from 6 to 12 columns. Again it contains the maximal
number of columns and a variable describing its current state. Notice that in this case the
internal representation in column major form (transparent to the programmer) made these
matrices well suited for using fortran SVD algorithms on them.

class smatrix{
private:

Csvector cols[12];
int active; // the columns currently valid

public:
smatrix() : active( 6 ) {}
// 0 for a 6 by 6 zero matrix
// 1 for a 6 by 6 identity matrix
smatrix( const int );
smatrix( const Csvector&, const Csvector&, const Csvector&, 10

const Csvector&, const Csvector&, const Csvector& );
// upper left, upper right, lower left, lower right
// of a 6 by 6 smatrix
smatrix( const matrix&, const matrix&, const matrix&, const matrix& );
smatrix( const smatrix& );
smatrix& operator=( const smatrix& );

friend ostream& operator<<( ostream&, const smatrix& );

smatrix operator*( const smatrix& ) const; 20

smatrix& operator*=( const smatrix& );
smatrix operator+( const smatrix& ) const;
smatrix& operator+=( const smatrix& );

// a row spatial vector times a smatrix yields an omega vector
friend omega operator*( const Rsvector&, const smatrixz& );
// smatrix times an omega vector yields a column spatial vector
Csvector operator*( const omega& ) const;
// transpose smatrix times column spatial vector yields omega vector
omega T( const Csvector& ) const; 30

// extend the currently active set of columns with zero padding



void fill( int, const int );
// how many columns are in this smatrix (currently active)
int length() const { return active; }
// only if you know what you are doing
void set-active( const int a ) { active = a; }
// select a column with access check and possible
// zero padding for columns beyond the currently active range
Csvector& col( const int i )

{ if( i >= active ) fill( active, i + 1 ); return cols[i]; } 40

// no checking, only if you know what you are doing
Csvector& coLnofill( const int i ) const { return cols[i]; }
// access an element, if beyond the currently
// active range, zero pad first
double& operator(( const int i, const int j )

{ if( j >= active ) fill( active, j + 1 ); return cols[j][i]; }
// no checking, only if you know what you are doing
double& ele( const int i, const int j ) const { return cols[j][i]; }

6.2.8 Inertial tensor in principal axes of inertia frame

A interesting change that I have not explored is to use a joint centered coordinate frame.
In that case the inertial tensors would need to be represented by a matrix, a scalar, and
a vector. We would only need to redefine the appropriate operators in this class. This
would cut down on the number of full spatial transform concatenations in traversing the
tree, when maintaining the local body coordinate frame.

class inertia : private Cvector{
protected:

double mass;
public:

inertia() : CvectorO {}
// sort of an identity
inertia( const int ) : Cvector( 1, 1, 1 ), mass( 1. ) {}
inertia( const double, const double, const double, const double );
inertia( const double, const Cvector& );
inertia( const inertia& ); 10

inertia& operator=( const inertia& );

friend ostream& operator<<( ostream&, const inertia& );

// inertia times spatial column vector



Csvector operator*( const Csvector& cs ) const;
// inverse inertia times spatial column vector
Csvector inv( const Csvector& cs ) const;
// inertia times smatrix
smatrix operator*( const smatrix& ) const; 20

// member selection
double& m() const { return mass; }
const Cvector& i() const { return *this; }

6.3 Forces

In order to facilitate the extensibility of the system forces are defined as derivations from
an abstract class. The base class for all forces defines a number of virtual functions that
need to be redefined for any actual force class. This design has the advantage that a force
can maintain whatever state it needs in a transparent fashion and various pieces of the code
that use forces need not know anything about the actual computations involved. This code
was written when pure virtual functions were not available yet. Hence the functions in the
base class print a diagnostic should they ever get executed.

class Force{
protected:

char nomen[64];
int active;

public:
Force() {}
Force( const char* );
Force( const Force& );
Force& operator=( const Force& );

10

friend ostream& operator<<( ostream&, const Force& );

// += its contribution to the body force field
virtual void apply( Body*, const double ) const;
// used by the parser
virtual int set-parameters( int, char**, char* );
// for commands such as "print all forces"
virtual ostream& print( ostream& ) const;
// to communicate the state to the graphics front end
virtual void draw( Body* ) const; 20



char *name() const { return nomen; }
int toggle() { if( active ) active = 0; else active = 1; return active; }
int stateO const { return active; }

};

Example of a derived class

To give a better understanding of how these functions are realized in a particular force I
will give the example of the derived class motor.

class MForce : public Force{
private:

matrix E; // orientation of the local frame
Cvector loc; // where in the parent body does it act
Csvector dir; // the force itself

public:
MForce();
MForce( const char* );
MForce( const MForce& );

10

MForce& operator=( const MForce& );

virtual void apply( Body*, const double ) const;
virtual int set-parameters( int, char**, char* );
virtual ostream& print( ostream& ) const;

void
MForce::apply( Body *b, const double ) const

{ 20
if( stateo ){

b->cforceo += affine( loc, E ) * dir;

}
}

char motusage[] =
"\t\t-f XF XF XF %F XF XF (the actual force applied)\n\

\t\t-t XF XF XF (where to apply it in local space)\n\

\t\t-E XF XF XF XF (a quaternion specification of orientation)\n";
30

int
MForce::set-parameters( int argc, char **argv, char *usage )



Cvector newloc = loc;
Csvector newdir = dir;
quaternion newE = E; // notice implicit conversion matrix -> quaternion

// scan the input
int i = args( 0, argc, argv,

"-f %F XF XF XF XF XF",
&( newdir[O] ), &( newdir[1] ), &( newdir[2] ),
&( newdir[3] ), &( newdir[4] ), &( newdir[5] ),

"-t X% F %F",

&( newloc[0] ), &( newloc[1] ), &( newloc[2] ),
"-E XF XF %F F",

&( newE.w() ), &( newE.v([0] ), &( newE.vo[1] ), &( newE.vo[2] ),
( char* )0 );

if( i < 0 ){
cerr << usage << motusage;

}else{
E = matrix( newE );
dir = newdir;
loc = newloc;
integrator-dirty = 1; // restart the integrator

return i;

}
The "set parameter" functions is noteworthy. By making it virtual it is possible to the

front end parser to be ignorant as to what types of arguments an individual force takes.
Rather it just calls the member function in a transparent way.

6.4 Support provided by other libraries

The VES code takes advantage of the capabilities of a set of libraries which include btools
and bobjs for the parser, args for argument option scanning, isode for the integration, and
Unpack and blas for the SVD code as well as for isode.

6.5 The recursion

In order to give an impression of how the above classes have helped simplify the code
I include here a slightly edited version of the core functions which execute the Lathrop



recursion. The last function lathrop of the following segment of code is the actual entry
point.

// compute all the starred intermediate variables, also some body local
// variables which are needed for the down recursion
void
Body:: compute-star()
{

// here are the body local variables
// first the matrix which expresses the constraint introduced by the joint

sM() = S( sO ) * Mf ();
// get the element which is largest in the absolut sense
j-offset() = sMo.maxo;
scale() = ( Q() - s().S( kf() ) ) / sM()[joffset(];

// normalize
sMo /= sM([joffset();
// and here are the starred M matrices and kappa vectors
// accelerations
for( int i = 0; i < sM(.length(; i++ ){

Mastar(.col( i ) = Ma().col( i ) - sM()[i] * Mao.col( j-offset() );

}
// we also subtract the joint axis right away
Mastar(.col( j-offset() ) -= s(;

kastar() = Mao.col( j.offset() ) * scale(;
kastar() += ka();

kastar( -= vel().cross( s( ) * qdot(;

// forces
for( i = 0; i < sM(.length(; i++ ){

Mfstar(.col( i ) = Mf().col( i ) - sM

}
kfstar( Mfo.col( j-offset() ) * scale(;
kfstar() += kf();

}

void
Body::acel-up( Body *child )
{

// percolate up, the recursive step
Mao = child->pXc() * child->Mastar(;
ka) = child->pXc() * child->kastar(;

()[i] * Mf().col( j-offset() );



} 40

void
Body::force-up( Body *child )
{

Mf() = I() * Mao;
if( child ){

Mf() += child->pXco * child->Mfstar(;
}else{

// if we are at the end of a chain we need to incorporate the
// endpoint constraint which is stored in Mfstar directly 50

Mf () += Mfstaro;
}

kf() = I() * ka(;
kf() += pv(;
if( child ){

kf() += child->pXc() * child-> kfstar0;
}else{

// if we are at the end of a chain we need to incorporate the
// endpoint constraint which is stored in kfstar directly 60

kf() += kfstar(;

}
}

void
Body:: extract-dof( omega& om )
{

// the j-th entry was the joint acceleration
qddot() = omUj-offset(];
// the next omega is the same as the current one but for the j-th entry 70

om[joffseto] = 0.;
om[joffset(] = scale( - sM(. T( om

}

void
decompose-Ma( Body *b )
{

smatrix& ma = b->MaO;
// go for the svd: ma = u * d * v^T
const int cols = ma.length(; 80



// linpack SVD function
dsvdc( &ma.ele(0,0), ldm, rows, cols, &b->svaluesO.ele(O),

&b->evalueso.ele(O), &ma.ele(0,0), ldu, &( b->vo[01 ), ldv,
scratch, job, info );

// let's see how many good singular values we have
if( info > 0 ){

cerr << "decomposeMa: error in dsvdco: info " << info << "\n";

}
90

// svalues[O] is the larges singular value (they are all positive!)
const double limit = le-10 * b->svaluesO[0];
b->no-svalues() = 0;
int& ns = b->no-svalueso;
while( limit < b->svaluesOns] ){ ns++; }

}

smatrix
change-basis( const smatrix& m, const double *v )
{ 100

smatrix res( 0 );
res.fill( res.length(, m.length( );
// since we are dealing with fortran the matrix v is column major
for( int i = 0; i < res.length(); i++ ){

for( int j = 0; j < res.length(; j++ ){
res.col-no-fill( i ) += m.coLnojfill( j ) * v[ldv * i + j];

}
}
return res;

} 110

smatrix
dyad( const smatrix& a, const omega *r, const int n )
{

smatrix res( 0 );
res.fill( res.length(, r[0].length( );

// a sum of dyads, really
for( int i = 0; i < n; i++ ){

for( int c = 0; c < r[i].length(; c++ ){
res.col-no-fil( c ) += a.col-no-fill( i ) * r[i].ele( c 120

}



}
return res;

}

// the function which reduces the big branching matrix
int
eliminate( Body *bi, Body *bj )
{

// we are processing the j-th row

Csvector& ka = bj->kao;
ka = bi ->ka() - bj->kao; // build the constant term
smatrix& mal = b ->Mao; // the matrix in the first column
smatrix& maj = bj->Mao; /1 the matrix in the jth column
decomposeMa( bj ); // do a SVD of maj
// apply the partial inversion to mal and ka: svalues^-1 * uT (
for( int i = 0; i < bj->no-svalues(; i++ ){

bj->res( i ) = mal.T( maj.col( i ) ) / bj->svalueso[i];
bj->resk( i ) = maj.col( i ).T( ka ) / bj->svalues([i];

mal + ka )

smatrix& aj = bj->Mf(); // the j-th matrix in the bottom row
// bring the child's Mfstar up, and express it in the new
// basis of right singular vectors
aj = change-basis( bj->pXc( * bj->Mfstaro, bj->v) );
// the constant term of the last row of the big matrix
Csvector& kf = bl->kf ();

// and the same for kfstar which will be added into kf
kf += bj->pXc() * bj->kfstar);
// since the first no-svalues entries of the changed basis
// omegaj are already available as a function of omegal
// we'll add that contribution of A-1
bl->Mf() += dyad( aj, bj->res(, bj->no-svalues() );
for( i = 0; i < bj->no-svalues(; i++ ){

kf += aj.col( i ) * bj->resk( i );

}
// return the number of left over dofs
// which are not constrained by this row of eq 30
return maj.length() - bj ->no-svalues(;

}

// we are down to 12 rows but might have many columns left



// this will do the final removal of unnecessary DOFs
void
col-reduce( Body *p, int totaLcols )
{

// we are now down to 12 rows and possibly tons of
// columns from all the bodies;
if( totaLcols == 6 ){

// nothing to do 170

p->Ma( = p->childo-> Mao;
p->Mf() = p->childo-> Mf ();
p->ka) = p->childo->kao;
p->kf() = p->child(->kf);
// indicate this for later
p->no-svalues() = -1;
return;

}

// we always have the columns corresponding to omegal in this final rank 180

// reduction we'll start out with considering the first 12 by length()
// matrix due to the first body
Body *b1 = p->childo;
smatrix& mal = bi ->Mao;
smatrix& al = bl->Mf();
int i, j, k, 1;
for( i = 0; i < mal.length(; i++ ){

// we have two block rows of 6 rows each
for( j = 0; j < 6; j++ ){

// matreduce is a global array 190

matreduce[i * 1dB + j] = mal.ele(j,i);
matreduce[i * 1dB + 6 + j] = al.ele(j,i);

}
}
totaLcols -= i;
decompose-Ma( b1 );
// maybe there are more, but usually there are not...
if( totaLcols ){

// get the others in order, pack them...
int no-ch = p->no-children(; 200

for( j = 1; j < no-ch; j++ ){
Body *bj = p->child( j );
// start after the svalues



for( k = bj->no-svalueso; k < bj ->Mao.length(;
k++, i++, totaLcols-- ){
// the top 6 rows are always zero now
for( 1 = 0; 1 < 6; l++ ){

matreduce[i * 1dB + L] = 0.;
matreduce[i * ldB + 6 + 1] = bj->Mf).ele(l,k);

} 210

}
}
if( totaLcols ){

// this better be zero now...
cerr << "col.reduce: something wrong with looping " <<

totaLcols << "\n";

}
}

int job = 20; // we don't care about the right singular values 220

dsvdc( matreduce, ldB, ldB, i, &p->svalueso.ele(O), &p->evalues(.ele(O),
matreduce, 1dB, scratch, ldv, scratch, job, info );

// let's see how many good singular values we have
if( info > 0 ){

cerr << "error in dsvdco: info " << info << "\n";

}
const double limit = le-10 * p->svalues[0];
p->no-svalues() = 0;
int& ns = p->no-svalues(; 230

while( limit < p->svalues([ns] ) +;

// for sanity we will always leave with at least
// 6 columns
if( ns < 6 ){

= ns;

// pad with zero columns
p->Ma.fill( ns, 6 );
p->Mf().fill( ns, 6 );

}else{ 240

p->Ma).set-active( ns
p->Mf().set-active( ns

I



// finally build Ma and Mf for p
for( i = 0; i < ns; i++ ){

for( j = 0; j < 6; j++ ){
// load Ma and Mf with u * D
p->Ma).ele(j,i) = matreduce[i * 1dB + j] * p->svalues([i];
p->Mf().ele(j,i) = matreduce[i * 1dB + 6 + j] * p->svalues([i]; 250

}
}
p->ka() = bl->kao;
p->kf() = bl->kf(0;

}

// take a string of bodies and propagate all constraints from the end
// up to the beginning
void
branch-up( Body *const start, Body *body ) 260

{
// compute the final M matrices and kappa vectors from their starred brethren
while( start != body ){

// now compute the intermediate starred quantities
body -> compute-star(;
body->parent()-> aceLup( body );
body ->parent( )->force-up( body );
body = body->parent(;

}
} 270

// to do branched kinematic trees
void
tree-up( Body *body )
{

Body *const start = body;
// find the first that has more then one child
while( body ){

int sib = body-> no-children(;
if( sib == 1 ){ 280

// one child, keep looking for the end of this string
body = body->child(;

}else{
if( sib > 1 ){

int total-cols = 0;



// more then one child, recurse
for( int i = 0; i < sib; i++ ){

Body *sibling = body->child( i );
// bring the child chains up to one body
// below this body via recursion 290

tree.up( sibling );
sibling-> compute.star(; // get the starred quantities
// lift them up from the child
sibling->Mao = sibling->pXc() * sibling->MastarQ;
sibling->kaO = sibling->pXc() * sibling-> kastarQ;
// Now bring Ma for 1 <= i < sib to diagonal form
if( i ){

// this will simultaneously do the current row
// in the big matrix and the last row of that matrix
totaLcols += eliminate( body->child(, sibling ); 300

}else{
sibling->Mf() = body->I() * sibling->MaQ;
sibling->Mf() += sibling->pXcO * sibling-> MfstarQ;
sibling->kf() = body->I() * sibling->ka(;
sibling->kf() += sibling->pXc( * sibling-> kfstar(;
sibling->kf() += body->pv();
totaLcols = sibling-> Mf (). length(;

}
}
/now build the actual Ma, ka, Mf, kf used for 'body' 310

// do the final rank reduction
coLreduce( body, totaLcols );

}else{ // sib == 0
body->force-up( body->child() );

}
branch-up( start, body ); // move everything up
body = NULL; // terminate the while

}

} 320

omega
partiaLinvert( Body *b, const Csvector& rhs )
{

omega res( 0 );
// make it long enough if necessary



res.fill( res.length(, b-> Mao. length) );

// compute the solution to v^T res = d^-1 * u^T rhs
for( int i = 0; i < b->no-svalueso; i++ ){

double coeff = b->Ma.col( i ).T( rhs ) / b->svalues([i]; 330

for( int j = 0; j < res.length(; j++ ){
res.ele(j) += coeff * b->vo[i * ldv + j];

}
}
return res;

I

void
tree-down( Body *body, omega& om )
{ 340

Body * start = body;
while( body ){

int sib = body->no-children(;
if( sib == 1 ){

body = body->childQ;
body-> extract-dof( om

}else{
if( sib > 1 ){

Body *sibling = body->childo;
// with om as we have it right now we have 350

// body->acel() = body->Ma() * om + body->ka()
// = body->childo->Ma() * om1 + body->child(->ka()
const Csvector Ma-oml = body->Ma) * om;
omega om1;
if( body->no-svalues() == -1 ){

om1 = om; // we never did a SVD in the final col-reduce
sibling->extract-dof( om1 );
tree-down( sibling, om1 );

}else{

// now we exploit the fact that we have a SVD of sibling->Ma() 360

om1 = partiaLinvert( sibling, Ma-oml );
sibling->extract-dof( omi );
tree-down( sibling, om1 );

}
// for all children we have that their respective omega can be
// gotten from the fact that child->Ma() * omegaj =

// Ma-oml + child->ka() (this of course takes advantage of the fact



/that child->kaO = b1->ka() - bj->ka( !) since each child
// holds a SVD of its Ma( we now recover omegaj easily
for( int i = 1; i < sib; i++ ){ 370

sibling = body->child( i );
omi = partiaLinvert( sibling, Ma-oml + sibling->ka() );
sibling-> extract-dof ( omi );
tree-down( sibling, omi );

}
}
body = NULL;

}
}

} 380

static omega om;
static omega om-bar;
static omega root-acel;
static omega root-force;
// these are the ones we actually solve for
static omega *x[4] = { &om, &root-acel, &ombar, &root-force };
static smatrix *m[4] = { NULL, NULL, NULL, NULL };
static Csvector *b[4] = { NULL, NULL, NULL, NULL };
static const Csvector zero = 0; 390

void
lathrop( BodyList& body-list, double )
{

Body * body;
for( int i = 0, l = body-list.sizeO; i < 1; i++

if( ( body = body-list.get-nth( i ) )->child( )I
//this is a chain
tree-up( body );
// load the base constraints 400

body->sfb-prep( m, x, b );
solve-for-base( m, x, b );
body->cacel() = rootacel;
// back substitute
tree-down( body, om

}
}

I)



6.6 Front end commands

At the current time the set of commands the front end parser understands consists of the
following commands

" ib <localname> Instance a body with the unique name localname. Creates a gener-
ically initialized body on the list of bodies.

" il <rootname> <localname> Iinstance a link with the (unique) name localname as a
daughter of rootname. The joint connecting the two is initialized to a rotational joint
about the local z axis.

" ilc <body> <type> Instance a Lathrop constraint on body of type type. Currently
type can be free, nail, and move-to-point.

" pb [localname] Print body with an optional named body as argument. Else it prints
all bodies.

" sb <body> Set body parameter. The list of optional parameters and their arguments
are

1. -vl %F XF XF Velocity linear

2. -vr %F %F %F Velocity rotational

3. -t %F %F XF Translation

4. -E %F Y.F %F %F Orientation as a quaternion (E is the letter used throughout
the literature for orientation)

5. -in %F %F XF Inertia along principal axes

6. -m %F Mass

7. -if <type> <name> Instance force of type with name to refer to it later, where
type can be any of

(a) gravity A linear force that acts at the center of mass in the negative global
z direction

(b) motor A spatial force that acts on a body with a local frame of its own
(c) damping A spatial viscous damping force which acts at the origin of the body

local frame

(d) support A parallel spring/damper combination with a support point that it
tries to keep from going below global z == 0

(e) brake A linear viscous damping force that has a local frame associated with
it

8. -f <name> Force acting on this body with name, toggling it on and off



" sl <parent> <child> Set parameters of a link. With the following optional argu-
ments

1. -s %F %F XF %F %F %F An explicit spatial joint axis for the proximal joint in
the child (s is the notation used for spatial joint axes in spatial algebra)

2. -q XF To set joint position (a DOF generally abbreviated with the letter q)

3. -qdot XF The derivative of the joint variable

4. -pjt %F %F %F Proximal joint translation in the child frame

5. -pjE XF %F XF .F Orientation of the joint axis in the child frame

6. -djt Y.F %F %F Distal joint translation in the parent frame

7. -djE XF XF XF %F Orientation of the joint axis in the parent frame

" step Xd Take a specified (integer) multiple of the current step size forward in time,
drawing after every step. The integrator internally takes whatever number of internal
steps necessary to realize these.

" rtime Read time of the internal simulation clock

" stime Set time of the internal simulation clock

" sacc Set accuracy goal of the integrator. Has the optional arguments

1. -r XF Relative accuracy

2. -a XF Absolute accuracy

" rstepsize Read stepsize returns the current increment of time from one frame to
the next

" sstepsize Set stepsize sets the stepsize between frames

* risode Read Isode prints statistics of the integrator such as

1. last (internal) stepsize used

2. next (internal) stepsize to attempt

3. number of steps taken since the last restart

4. number of calls to the dynamics algorithm since the last restart

5. method order last used

6. absolute accuracy goal

7. relative accuracy goal

" ir <localname> <bodyl> <body2> Instance a rubber string, localname, between
bodyl and body2 with the optional arguments



-k %F

-1 XF

-e XF

-lone

-ltwo

The spring constant

The rest length

The coefficient of restitution (e is the letter used in the literature)

XF XF XF Location of attachment point in body one

XF XF XF Location of attachment point in body two

e sf <body> <f orce> Set force acting on body by name. This command takes optional
parameters whose validity and interpretation is based on the type of the force.

1. Gravity

(a) -g XF

2. Motor

(a) -f XF

(b) -t XF

(c) -E XF

3. Damping

(a) -d XF

4. Support

(a) -d XF
(b) -k XF

(c) -s XF

5. Brake

(a) -d XF

(b) -t XF

To set the gravitational constant

XF XF XF XF XF The spatial force to apply
XF XF Where to apply in the body
XF XF XF With what orientation

To set the damping constant

To set the damping constant

To set the spring constant
XF XF To set the point of support in the body local frame

To set the damping constant

XF XF To set the point of action

* pf [body [force]] Print Force(s) associated with an optional body

* draw <bolio I corpus <filename> %d I null> Select the convention for drawing
objects used by the invoking program. (Currently supported are bolio [9], corpus [12],
and null, i.e. no drawing at all.)

e ? and help to print usages messages for all commands available



Chapter 7

Results

7.1 Introduction

Over the past 2 months I have been designing various testcases and demonstration simula-
tions to use and prove the capabilities of the VES. Some of these I will describe in a more
detailed fashion in this chapter. I will also use this chance to discuss some of the things I
learned when I did these simulations.

7.2 A tensegrity structure

In one of the scenarios of use I had given the example of the construction of a tensegrity
structure. To actually build such a structure I implemented a force called rubber, which is
modeled as a spring that does not exert a force when it becomes shorter then the rest length.
It also incorporates a coefficient of restitution idea 1, namely that the force exerted when
the endpoints move towards each other is scaled down from what it would have been had
the endpoints been moving away from each other. This way energy is effectively absorbed,
allowing the tensegrity structure to come to a rest state.

With the above model there exists a jump discontinuity in the force applied when the
relative velocity of the endpoints goes through zero. It turned out that the integrator was
very sensitive to this discontinuity. Fixing this problem by restarting the integrator was not
really an option since the worst such behavior occurred when the structure had assumed its
final position. In that constellation a small bit of noise would continually move the structure
back and forth over the discontinuity bringing the integrator to a halt. Using the idea of
restarting the integrator to deal with this would have forced me to continually restart.
Instead I used a smoothing polynomial of third order to remove the discontinuity. Even
though the change is still rather steep the fact that it is now smooth solved the problem

'This suggestion is due to Michael McKenna.
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Figure 7-2: The same structure having reached its final state after 8 seconds of simulation
time.
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with the integrator.
The tensegrity structure that I actually built uses 5 sticks and 15 rubber strings to

connect the sticks. The following set of commands instances the structure in an initial
configuration.

;instance the bodies
ib stickO
ib sticki
ib stick2
ib stick3
ib stick4
;set inertia and initial position and orientation
sb stickO -in 0.104167 8.35417 8.41667 -E .5 0 .5 0 -t 6 -15 10
sb sticki -in 0.104167 8.35417 8.41667 -E .5 0 .5 0 -t 0 -12 10
sb stick2 -in 0.104167 8.35417 8.41667 -E .5 0 .5 0 -t -1 -17 10

sb stick3 -in 0.104167 8.35417 8.41667 -E .5 0 .5 0 -t 0 -18 10
sb stick4 -in 0.104167 8.35417 8.41667 -E .5 0 .5 0 -t 4 -18 10

;to make things settle faster instance damping for the bodies
sb stick0 -if damping damping

sb stickI -if damping damping

sb stick2 -if damping damping

sb stick3 -if damping damping

sb stick4 -if damping damping

;set the damping constant

sf stickO damping -d 10

sf stick1 damping -d 10

sf stick2 damping -d 10

sf stick3 damping -d 10

sf stick4 damping -d 10

;instance the rubber strings connecting the top
;spring constant 20, rest length 4, coefficient of restitution .1
ir stringB1 stickO stick1 -lone -4 -.5 0 -ltwo -4 -.5 0 -k 20 -1 4 -e .1
ir stringB2 stickI stick2 -lone -4 -. 5 0 -ltwo -4 -.5 0 -k 20 -1 4 -e .1
ir stringB3 stick2 stick3 -lone -4 -. 5 0 -ltwo -4 -.5 0 -k 20 -1 4 -e .1

ir stringB4 stick3 stick4 -lone -4 -.5 0 -ltwo -4 -.5 0 -k 20 -1 4 -e .1

ir stringB5 stick4 stickO -lone -4 -.5 0 -ltwo -4 -.5 0 -k 20 -1 4 -e .1
;instance the strings connecting across the middle
ir stringM1 stickO stick4 -lone -4 .5 0 -ltwo 4 -.5 0 -k 20 -1 4 -e .1

ir stringM2 sticki stickO -lone -4 .5 0 -ltwo 4 -.5 0 -k 20 -1 4 -e .1

ir stringM3 stick2 sticki -lone -4 .5 0 -ltwo 4 -.5 0 -k 20 -1 4 -e .1
ir stringM4 stick3 stick2 -lone -4 .5 0 -ltwo 4 -.5 0 -k 20 -1 4 -e .1

ir stringM5 stick4 stick3 -lone -4 .5 0 -ltwo 4 -.5 0 -k 20 -1 4 -e .1



;instance the strings connecting the bottom
ir stringT1 stick4 stickO -lone 4 .5 0 -ltwo 4 .5 0
ir stringT2 stickO sticki -lone 4 .5 0 -ltwo 4 .5 0
ir stringT3 stick1 stick2 -lone 4 .5 0 -ltwo 4 .5 0
ir stringT4 stick2 stick3 -lone 4 .5 0 -ltwo 4 .5 0
ir stringTS stick3 stick4 -lone 4 .5 0 -ltwo 4 .5 0

This assembly of bodies has 30 DOFs and 30 forces which are dependent on the states
of the bodies. In the following table times are in seconds. "d" is the damping constant
used.

rel.
acc.

10-6
10-6
10-4

10-4

abs.
acc.
10-7

10-7
10-3

10-3

fn.
evals.
23337
16192
20949
16612

steps

14368
14992
11603
9245

fn. evals /
step
1.62
1.08
1.81
1.80

total
time

195
165
156
125

time /
step

0.01357
0.01101
0.01344
0.01352

When changing the spring constants from 20 to 40 the following data results

rel.
acc.

10-7

10-7

10-4

10-4

abs.
acc.

10-6

10-6

10-3
10~3

fn.
evals.
41947
34196
48726
38257

steps

40064
31725
26737
21147

fn. evals /
step
1.05
1.08
1.82
1.81

total
time
427
347
361
285

time /
step

0.01066
0.01094
0.01350
0.01348

While lowering the accuracy requirements speeds up the simulation somewhat the main
cause for small stepsizes in this case are the relatively numerous and strong springs. Also
notice the ratio of function calls to steps which in all cases is lower then 2. It is possible to
set the accuracy requirements so low (rel. acc >= 10-2) that the assembly goes unstable.
However the integrator is mostly led by the modes that it detects, since for lesser accuracy
requirements it still takes essentially the same number of function evaluations, but larger
internal steps, increasing the ratio of function evaluations per step.

7.3 The policecar scene in "Grinning Evil Death"

The forthcoming movie "Grinning Evil Death" [24] contains a scene in which a police car
can be seen driving down a street. The driver abruptly brakes the car as a consequence of
which the car slides at a 100 degree angle into the crossing. The task I tried to solve was



to do the dynamic simulation for the car. To this end I modeled the mass of the car as a
parallelepiped of 2000 kg. The dimensions of the car were taken directly from the animation
placing the front wheels 1.95 m ahead and the back wheels 1.521 m behind the center of
mass. The axle width was 1.794 m. The suspension was modeled as a spring damper
combination. This is a primitive force in the VES called support. The spring constants
were set to 50000 for all wheels and the damping constants to 2500 and 3500 for the front
and back respectively. The car had a front wheel drive which was modeled as a linear force
at the point of contact of the front wheels with the ground, oriented in the direction of
the wheel (the primitive force motor with its local frame aligned with the wheel). Braking
was accomplished with velocity damping at the point of contact of all four wheels with the
ground. The brakes in the front where able to exert linear damping with a constant of 1000
and in the back with a constant of 500.

The "practice runs" for the "stunt" were performed by constructing a menu of actions.
These included motor toggle, brake toggle, turn steering, straighten steering, reset. All of
these would also print a time stamp when activated by a mouse click. This allowed me to
reproduce later the best version. I then proceeded to go through a number of iterations,
accelerating the car, turning the steering, and braking. Needless to say I overturned the
car a few times. When I had a slide that was almost perfect as far as satisfying the final
position requirement, I turned the actions for that run into a script. For this is used the
time stamps printed on the console and "tweaked" the parameters slightly to make the
braking action as dramatic as possible without having the car overturn.

Originally I had set the time intervals at which the VES would update the positions of
the associated objects in bolio to 1/30th of a second. At this rate the graphical simulation
was running at about 8 Hz. Most of this time however is due to communication and
rendering overhead as evidenced by the fact that increasing the update time interval (which
is distinct from the stepsizes that the integrator takes) to 1/4 second only lowered the speed
to 6 Hz, effectively 1.5 times real time. This of course is no surprise since the model was
very simple. The main point about this example is that it showed that for an animation
task such as this film provided, the interactiveness of the simulator was good enough to
allow for the necessary repeated trial and error runs.

7.4 Four ways to describe a simple linkage and some of the
results

As a sample test and also a way to verify the code I simulated a simple 3 bar linkage 4
different ways. Consider 3 beams, each 10 m long. They are connected by a revolute joint
at 4 m out from the center of mass with the joint axis perpendicular to the longitudinal
axis of the beams. There are four distinct ways these can be treated when simulating them
with the algorithm that I implemented. The linkage can be treated as a simple chain with
the root at one end or the other, or as a body with two children, one to the left, one to the
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Figure 7-3: Four different parameterizations of a 3 bar linkage after 53 seconds of simulation
time. The top linkage has noticably drifted from its original alignment with the other three.

right. Since in the branching code I arbitrarily pick the first body on the list of children to
represent the first column in the branching matrix, there are 2 distinct ways of simulating
this case as well, the left child being first or second on the list of children (see 7-3). I started
the simulation by having the linkage aligned with the x axis, the joint axes pointing up, and
initially every body at rest but one of the endbodies, which was given an initial velocity
about its joint axis of 0.1 radians per second.

When running the simulation it can be noticed that the 4 separate linkages start to
drift apart after a few seconds of simulation time. Examination of the actual accelerations
computed revealed that these initially only disagreed on the order of 10-16 to 10-14, the
best that can be expected given double precision arithmetic. However due to feedback these
differences soon grow.
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In all of the following simulations the requested local precision
10-6 relative When only simulating the two linkages with the root in
to the left and right the velocities after one second were:

I rotational velocity I

was 10-7 absolute and
the middle and children

linear velocity
(0, 0,3.58176 10-4) (1.40613 10-2, 1.031 10-3 ,0)
(0,0,3.58294 10-4) (1.40613 10-2, 1.03091 10~, 0)

At this point it is important to note that the error estimation in the integrator uses a
weighted 12 norm, not an l, norm. So rather then trying to keep the worst channel of the
integration accurate to the requested degree, the integrator attempts to keep a weighted
least squares estimation below the requested accuracy. This means for example that when
introducing another body into the simulation that does nothing the integrator will believe
the achieved accuracy is higher, because the extra body at rest incurs no errors whatso-
ever but increases the number of equations integrated. These are the results of the same
simulation as above with such a null body included in the world:

rotational velocity linear velocity

(0, 0, 3.48003 1 0 -4) (1.38485 10-2, 1.00062 10-3, 0)
(0, 0,3.46133 10-4) (1.38486 10-2, 0.998151 10-3, 0)

It comes as no surprise then that when I added one of the "root at one

the simulation the values were again different. On the last run I simulated
with the following results for the velocity of the middle body:

end" linkages to
all four together

rotational velocity linear velocity
(0, 0,3.63908 10-4) (1.41807 10-2, 1.04783 10-3, 0)

(0, 0, 3.63802 10-4) (1.41805 10-2, 1.04814 10-3, 0)
(0,0,3.649 10-4) (1.41806 10-2, 1.04916 10-3, 0)
(0, 0, 3.649 10-4) (1.41734 10-2, 1.42664 10-3, 0)

Notice that all of these simulations were run without any damping at all and I did leave
one of them running for more then 9 simulation minutes. The bodies had not picked up
any energy but had clearly drifted apart. It was also apparent that they were still following
the same motion only separated in space. In other words locally they were following the

same history, but not globally. Since there was no damping present, something one would
not find in any simulation attempting to model the real world, these differences had time
to accumulate out of floating arithmetic noise into noticeable differences. For any system

modeling the real world with terms that loose energy these differences are likely not to



show up. These experiments do point out though that even under ideal conditions we can
ultimately only hope to get behavior qualitatively correct (which is good enough).

From this set of experiments and many more along the same lines, varying different
parameters, I have drawn the following conclusions. All ways of parameterizing a given
linkage yield qualitatively the same simulation. The closer the center of mass of the linkage
as a whole is to the root body the less abberation. Small changes in the time step history (see
the introduction of the null body above) will result in quantitative changes but qualitatively
the behavior is identical.

7.5 Endpoint constraints and their numerical behavior

Another set of experiments concerned the use of endpoint or root constraints that depended
on reaction forces or other forces due to a geometric constraint. The setup was similar the
the above mentioned experiments, only this time I used a 4 bar linkage with the root at
one end. The immediate child of the root had a pure couple acting about its center of
mass. This linkage was instanced 3 times, once with no geometric constraint on either end,
once with the root immovably connected to the inertial frame, and once with the end-body
immovably connected to the inertial frame (see 7-4 and 7-5). After 15 seconds of simulation
time the displacements and velocities respectively of the bodies constrained to the inertial
frame were:

rotational velocity linear velocity displacement
(0, 0, -2.50395 10-3) (-3.33889 10-4, -2.50178 10-4, 0) (-4.9 10-3, -3.5 10-3, 0)

(0, 0,0) (3.91406 10-3, 6.7218 10-4, 0) (1.26 10-2, -1.46 10-2, 0)

Again inspection of the actual values as they were computed showed that the initial
accelerations that were constrained to be zero were only off by floating point arithmetic
noise.

While I consider these results excellent from a numerical point of view (1 cm or less
displacement out of a 40 m linkage after 15 seconds of simulation time), they do point out
that in order to maintain constraints for long periods of time it is necessary to add feedback
terms which penalize errors in the appropriate way. One such possibility is to add a weak
damper/spring combination between the body locked to the inertial frame and the inertial
frame itself.



Figure 7-4: The endpoint constrained linkages after 5 seconds of simulation time. The root
bodies are at the far end. The bottom linkage is moving freely while the middle linkage has
a motionless root and the top linkage is constrained to have a motionless endlink.
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Figure 7-5: The same three linkages after 25 simulation seconds.



Chapter 8

Conclusion and future work

In this thesis I have presented a recursive linear time algorithm for the dynamic simulation
of multibody systems in the presence of constraints. The algorithm as implemented is
useful for interactive graphical simulation work and allows for a wide variety of effects to be
modeled. The use of object oriented programming techniques and the C++ programming
language has greatly facilitated the implementation without sacrificing much in terms of
efficiency. During the implementation 1 I have filled in many of the details-such as the
code to deal with branches-which only received cursory treatment in the original article. I
also addressed a number of numerical issues and uncovered more that need to be addressed
by future work in this area. Another contribution of this work is the extension of spatial
algebra notation through an explicit representation of spatial position which is numerically
advantageous.

Interesting areas for future work include the following

9 The development of the algorithm was motivated purely by mathematical considera-
tions. This leaves us with the M matrices without understanding much of the structure
of these matrices. I believe more structure can be extracted from the various M ma-
trices. For example consider an linkage with freely moving end bodies. In this case
the algorithm should be equivalent to Featherstone's articulated body method. This
would mean that various expressions can be simplified or computed more efficiently.
Another question is the invertability of the M matrices. More understanding on this
issue would allow for parameterizing the state of individual bodies with a smaller set
of equations, possibly resulting in further efficiency gains.

e Featherstone [19] can do branches with exactly 6 DOFs. Hence an interesting hypoth-
esis to examine would be to see if the B matrix of equation (5.41) must always be of
rank exactly 6. This can not be argued from the mathematics of the equation alone,

'To my knowledge, and that of Richard Lathrop, mine is the first actual implementation of the algorithm
that he had proposed.



but possibly by finding the mapping to the articulated body method (so far all cases
that I have studied have indeed been of rank 6).

" The relationship between motion and force constraints as expressed by the endpoint M
matrices is not clear and could be elucidated further using physical arguments rather
then pure mathematical ones.

" The integrator in the current implementation was a modified version of LSODE [23]
which is written in Fortran. It would be valuable to translate this code to C or better
yet C++ to be able to take finer control over its inner workings. This would include

- the accommodation of lists rather then arrays.

- finer tuning of the error checking to treat the various channels of the integration
differently, and actually separate the integration of each linkage in a simulation
with several linkages.

- accommodate an option for immediate return from an attempted evaluation of
the dynamics to the top level, if an exception is raised (such as a collision).

" More work should be invested in analyzing closely the interaction between the in-
tegrator and the dynamics algorithm. Specifically more sophisticated techniques for
dealing with discontinuities should be explored.

" Another interesting analysis would concern the condition of the matrices involved and
possible approaches to preconditioning these to have better error behavior and thus
help the integrator.

" Experiments with endpoint constraints have shown that errors can accumulate from
floating arithmetic noise-due to feedback-to quite noticeable levels in very long
simulations. While numerically no surprise and certainly in line it would be desirable
to devise techniques that counteract the feedback. As mentioned a simple such a ap-
proach would be dampers and springs in parallel with the constraint to be maintained.

" It seems now clear to me that there is no need at all anymore for the linear algebra
based constraint force approach, as the endpoint constraints satisfy all needs for which
I had originally envisioned the use of constraint forces. If it is still felt necessary to
include a stage which treats constraints as a set of equations whose roots are to be
found, I would strongly encourage the implementation of such a stage using stan-
dard root finding techniques, which are much better conditioned then the Barzel [1]
approach.

" More primitives, such as forces and joints should be incorporated into the implemen-
tation. The current set of joints are all one DOF joints. While multi DOF joints can
be built from these, it would be a nice addition to the algorithm to accommodate



these joints directly by turning various scalar quantities into vector quantities (Q, q,
q, 4). This does not change the algorithm but only impacts the code itself. It is hoped
that such a change is actually very simple due to the use of data abstraction in the
current implementation. The set of endpoint constraints should be extended as well.
Many of these desirable new derived classes will only become apparent through the
continued use of the system.

* The VES itself does not contain a front end aside from a rather terse command parser.
Some tools already exist in bolio to use menus for invoking some of the commands
of the VES. However the interaction could be improved by developing these tools for
bolio further. Notice that the interactive front end was not part of the scope of this
work.

e The C++ source code could be improved by taking advantage of new features of the
latest language definition, most notably the iostream class, virtual base classes, pure
virtual functions, and multiple inheritance.

e By far the most important and the most intriguing extension would be a linear time
recursive collision response algorithm. To my knowledge there exists no such algorithm
in the literature. The reason why I believe that it should be possible is the following.
When we write down a matrix formulation for the dynamics of a given linkage the
sparsity pattern in this matrix is purely a function of the connectivity of the linkage.
The same holds true for the matrix associated with the preservation of momentum
equations of the same linkage. Hence the Lathrop recursive algorithm corresponds to
a certain traversal of the graph associated with the sparsity pattern of the matrix.
The same traversal should also work for the preservation of momentum equations,
giving a linear recursive algorithm for collision response.



Appendix A

Spatial Algebra

In [25], [19] Roy Featherstone introduced the use of spatial algebra for the analysis and
modeling of newtonian dynamics. We will give a short introduction to its use and major
equalities and refer the reader interested in a more thorough treatment to the original
sources in [25], [19], and [26]

A.1 Line vectors

The six DOF's of a rigid body can be described as a point on the manifold R3 x S 3.
Differentiating spatial position we get elements in the tangent space to R3 x S3 , namely in
R3x 93. Differentiating once more for acceleration we stay in the latter space (R3 x'R3
has the structure of R' and thus is isomorphic to its own tangent space). Thus velocities,
accelerations and forces have the structure of a line which is parameterized uniquely by its
so called Plicker pair, (aT, a )T

R3 E r E line
'-> (r - OA) x a = 0 (A.1)

+-> r xa = ao
ao = OAxa

where 0 is the origin of the current frame and A is a point on the line. This notation is
closely related to screw calculus [26].

A.1.1 Spatial velocity and acceleration

We can now define spatial velocity Q = (wT, vT)T and spatial acceleration T = (aT, as)".



Since we need to take cross products we define

X 0 -z y
y x z 0 -X (A.2)
z ) -y X 0

with this now we can formulate the shifting rule

id 0
ap d aO (A.3)

To convince herself that this is the right definition, the reader should consider finding the
linear velocity of a point P on a body given the body's linear and angular velocity at e.g.
the center of mass 0.

A.1.2 Change of coordinate frame

In order to execute coordinate changes we also need to define how to change the orientation
of a spatial quantity. Again we motivate the definition via the properties we desire and the
reader may convince himself that this is the correct definition by considering the spatial
velocity of a body expressed in coordinate frame 0 and how to derive the appropriate linear
and angular velocity in coordinate frame P

ap =(0E r T id aO = PXo So (A.4)

where r = OP and E is the rotation matrix which takes us from the orientation of frame 0
to the orientation of frame P, i.e. its columns are the coordinates of the 0 frame expressed
in the P frame.

A.1.3 Spatial transpose

We define the following notion of a transpose for spatial transforms such as the ones which
arise from a change of coordinate frame

A B )S(DT BT
C D CT AT (A.5)

Notice that with this definition we have the identity

1 = S
oXP = PXo PXo (A.6)



A.2 Differentiation in moving coordinates

Since the time behavior of a rigid body is a curve on our manifold R3 x S' we need to take
this into account when differentiating. Let P be a possibly moving coordinate frame and 0
a stationary one then we get for 5 E R3 S3 arbitrary

DS = p5 o (o~p 5) (A.7)
=t + PAO (d OXP)^

The constituent derivatives can be resolved as follows

( !ET
o = ( jr)x E T r x E T E (A.8)

dt +t dt T A8

If the P frame has velocity Q expressed in the frame 0 as Qo = (wT, vO)T we have jr =
vp = vo - rx w and !E = wx E. With this we can simplify the above expression into

d (V X ET 0
dt OP voxE ET+wx rx ET wx ET

ox 0 ET 0
VOX ox rx ET Er (A9

(ox 0-

where we have used the identity (ax b)x = a x bx - bx a x .
By introducing the spatial cross operator

a ) ax (A00
ao aox ax

we can simplify equation A.9 to

d
--oXP = Go X oAP (A.11)
di

Let Qp be the velocity of frame P in P coordinates. Using the tensor transformation rule
MP = PXo MooXp we can state equation A.7 as

d (



by applying this rule to Vo X .

A.2.1 Spatial rigid body inertia

Let 0 be the frame centered at the body's center of mass we may then define the spatial
rigid body inertia as

( 0 m id )
10- = 1* 0 )(.3

where I* is the ordinary inertia tensor. This tensor follows the ordinary transformation
rules for tensors.

Let P be a coordinate frame moving with velocity Qp as expressed in P coordinates.
We can then derive an expression for DI with the same approach used in equation A.7 by
writing

DIP = p~o (-Yo)oAP (A.14)

where

jo =IPPXo

= (0 AO5P; )IPPAO + OcP5 ((P)PO - OXPiP(QP PAO ) (A.15)

where we used
DPXo = DoXps

= (VO $ 0 P )S
PO (Qoi)S (A.16)

= (QP )SP A0

= -vPx PAo

which leads to
d

DIP = Ip + GP I - IPP (A.17)dt

Thus a rigid body moving with absolute velocity Q and inertia I gives rise to

DI QxI I VX (A.18)

where [,] stands for the Lie bracket (also known as 'commutator').



A.2.2 Spatial force

We are now equipped to express Newton's equations of motion in spatial notation

f = D(IQ)
= {X , I]+I (A.19)
= IS + VX IV

Special attention should be directed to the so called bias force term Qx I which accounts
for all velocity dependent terms and falls out from first principles (!).
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