
Ologs: A Categorical Framework for Knowledge
Representation
David I. Spivak1*, Robert E. Kent2

1 Mathematics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 Ontologos, Pullman, Washington, United

States of America

Abstract

In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in
formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic
networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike
database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or
reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than
learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As
an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned
or connected together into a larger network using functors. The various methods of information flow and institutions can then be
used to integrate local and global world-views. We finish by providing several different avenues for future research.

Citation: Spivak DI, Kent RE (2012) Ologs: A Categorical Framework for Knowledge Representation. PLoS ONE 7(1): e24274. doi:10.1371/journal.pone.0024274

Editor: Chris Mavergames, The Cochrane Collaboration, Germany

Received February 18, 2011; Accepted August 9, 2011; Published January 31, 2012

Copyright: � 2012 Spivak, Kent. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by ONR grant N000141010841 and a generous contribution by Clark Barwick, Jacob Lurie, and the mathematics
department at Massachusetts Institute of Technology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dspivak@math.mit.edu

1 Introduction

Scientists have a pressing need to organize their experiments, their

data, their results, and their conclusions into a framework such that

this work is reusable, transferable, and comparable with the work of

other scientists. In this paper, we will discuss the ‘‘ontology log’’ or olog

as a possibility for such a framework. Ontology is the study of what

something is, i.e the nature of a given subject, and ologs are designed

to record the results of such a study. The structure of ologs is based on

a branch of mathematics called category theory. An olog is roughly a

category that models a given real-world situation.

The main advantages of authoring an olog rather than writing a

prose description of a subject are that

N an olog gives a precise formulation of a conceptual world-view,

N an olog can be formulaically converted into a database schema,

N an olog can be extended as new information is obtained,

N an olog written by one author can be easily and precisely

referenced by others,

N an olog can be input into a computer and ‘‘meaningfully

stored’’, and

N different ologs can be compared by functors, which in turn

generate automatic terminology translation systems.

The main disadvantage to using ologs over prose, aside from

taking more space on the page, is that writing a good olog demands

a clarity of thought that ordinary writing or conversation can more

easily elide. However, the contemplation required to write a good

olog about a subject may have unexpected benefits as well.

A category is a mathematical structure that appears much like a

directed graph: it consists of objects (often drawn as nodes or dots, but

here drawn as boxes) and arrows between them. The feature of

categories that distinguishes them from graphs is the ability to declare

an equivalence relation on the set of paths. A functor is a mapping

from one category to another that preserves the structure (i.e., the

nodes, the arrows, and the equivalences). If one views a category as a

kind of language (as we shall in this paper) then a functor would act as

a kind of translating dictionary between languages. There are many

good references on category theory, including [1], [2], [3], [4], [5],

and [6]; the first and second are suited for general audiences, the third

and fourth are suited for computer scientists, and the fifth and sixth

are suited for mathematicians (in each class the first reference is easier

than the second).

A basic olog, defined in Section 2, is a category in which the

objects and arrows have been labeled by English-language phrases

that indicate their intended meaning. The objects represent types

of things, the arrows represent functional relationships (also known

as aspects, attributes, or observables), and the commutative

diagrams represent facts. Figure 1 is a simple olog about an

amino acid called arginine ([7]).

ð1Þ

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e24274

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4434439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The idea of representing information in a graph is not new. For

example the Resource Descriptive Framework (RDF) is a system

for doing just that [8]. The key difference between a category and

a graph is the consideration of paths, and that two paths from A to

B may be declared identical in a category. For example, we can

further declare that in Diagram (1), the diagram

commutes, i.e., that the two paths A ?? R are equivalent, which can

be translated as follows. Let A be a molecule of arginine. On the

one hand A, being an amino acid, has a side chain; on the other

hand A has an electrically-charged side-chain, which is of course a

side chain. We seem to have associated two side-chains to A, but in

fact they both refer to the same physical thing, the same side-

chain. Thus, the two paths A?R are deemed equivalent. The fact

that this equivalence may seem trivial is not an indictment of the

category idea but instead reinforces its importance – we must be

able to indicate obvious facts within a given situation because what

is obvious is the most essential.

While many situations can be modeled using basic ologs

(categories), we often need to encode more structure. For this we

will need so-called sketches. An olog will be defined as a finite

limit, finite colimit sketch (see [9]), meaning we have the ability to

encode objects (‘‘types’’), arrows (‘‘aspects’’), commutative dia-

grams (‘‘facts’’), as well as finite limits (‘‘layouts’’) and finite colimits

(‘‘groupings’’).

Throughout this paper, whenever we refer to ‘‘the author’’ of an

olog we are referring to the fictitious person who created it. We

will refer to ourselves, David Spivak and Robert Kent, as ‘‘we’’ so

as not to confuse things.

1.0.1 Warning. The author of an olog has a world-view,

some fragment of which is captured in the olog. When person A

examines the olog of person B, person A may or may not

‘‘agree with it.’’ For example, person B may have the following

olog

which associates to each marriage a man and a woman. Person A

may take the position that some marriages involve two men or two

women, and thus see B’s olog as ‘‘wrong.’’ Such disputes are not

‘‘problems’’ with either A’s olog or B’s olog, they are discrepancies

between world-views. Hence, throughout this paper, a reader R

may see a displayed olog and notice a discrepancy between R’s

world-view and our own, but R should not worry that this is a

problem. This is not to say that ologs need not follow rules, but

instead that the rules are enforced to ensure that an olog is

structurally sound, rather than that it ‘‘correctly reflects reality,’’

whatever that may mean.

1.1 Plan of this paper
In this paper, we will define ologs and give several examples. We

will state some rules of ‘‘good practice’’ which help one to author

ologs that are meaningful to others and easily extendable. We will

begin in Section 2 by laying out the basics: types as objects, aspects

as arrows, and facts as commutative diagrams. In Section 3, we

will explain how to attach ‘‘instance data’’ to an olog and hence

realize ologs as database schemas. In Section 4, we will discuss

meaningful constraints betweeen ologs that allow us to develop a

higher-dimensional web of information called an information

system, and we will discuss how the various parts of such a system

interact via information channels. In Sections 5 and 6, we will

extend the olog definition language to include ‘‘layouts’’ and

‘‘groupings’’, which make for more expressive ologs; we will also

describe two applications, one which explicates the computation of

the factorial function, and the other which defines a notion from

pure mathematics (that of pseudo-metric spaces). Finally, in

Section 7, we will discuss some possible directions for future

research.

For the remainder of the present section, we will explain how

ologs relate to existing ideas in the field of knowledge

representation.

1.2 The semantic advantage of ologs: modularity
The difference between ologs and prose is modularity: small

conceptual pieces can form large ideas, and these pieces work

best when they are reusable. The same phenomenon is true

throughout computer science and mathematics. In programming

languages, modularity brings not only vast efficiency to the

writing of programs but enables an ‘‘abstraction barrier’’ that

keeps the ideas clean. In mathematics, the most powerful results

are often simple lemmas that are reusable in a wide variety of

circumstances.

Web pages that consist of prose writing are often referred to as

information silos. The idea is that a silo is a ‘‘big tube of stuff’’ which

is not organized in any real way. Links between web pages provide

some structure, but such a link does not carry with it a precise

method to correlate the information within the two pages.

Similarly in science, one author may reference another paper,

but such a reference carries very little structure – it just points to a

silo.

Ologs can be connected with links which are much richer than

the link between two silos could possibly be. Individual concepts

and connections within one olog can be ‘‘functorially aligned’’

with concepts and connections in another. A functor creates a

precise connection between the work of one author and the work

of another so that the precise nature of the comparison is not left to

the reader’s imagination but explicitly specified. The ability to

incorporate mathematical precision into the sharing of ideas is a

central feature of ologs.

1.3 Relation to other models
There are many languages for knowledge representation (KR).

For example, there are database languages such as SQL, ontology

languages such as RDF and OWL, the language of Semantic Nets,

and others (see [10]). One may ask what makes the olog concept

different or better than the others.

The first response is that ologs are closely related to the above

ideas. Indeed, all of these KR models can be ‘‘categorified’’ (i.e.,

phrased in the language of category theory) and related by

functors, so that many of the ideas align and can be transferred

between the different systems. In fact, as we will make clear in

Section 3, ologs are almost identical to the categorical model of

databases presented in Spivak’s unpublished paper ‘‘Functorial

Data Migration’’ available online http://arxiv.org/abs/1009.

1166, hereafter abbreviated FDM.

However, ologs have advantages over many existing KR

models. The first advantage arises from the notion of commutative

ð2Þ

ð3Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e24274

diagrams (which allow us to equate different paths through the

domain, see Section 2.3) and of limits and colimits (which allow

us to lay out and group things, see Sections 5 and 6). The

additional expressivity of ologs give them a certain semantic

clarity and interoperability that cannot be achieved with graphs

and networks in the usual sense. The second advantage arises

from the notion of olog morphisms, which allow the definition of

meaningful constraints between ologs. With this in hand, we can

integrate a set of similar ologs into a single information system,

and go on to define information fusion. This will be discussed

further Section 4.

In the remainder of this section we will provide a few more

details on the relationship between ologs and each of the above

KR models: databases, RDF/OWL, and semantic nets. The

reader who does not know or care much about other systems of

knowledge representation can skip to Section 2.

1.3.1 Ologs and Databases. A database is a system of tables,

each table of which consists of a header of columns and a set of

rows. A table represents a type of thing T , each column represents

an attribute of T , and each row represents an example of T . An

attribute is itself a ‘‘type of thing’’, so each column of a table points

to another table.

The relationship between ologs and databases is that every box

B in an olog represents a type of thing and every arrow B?X
emanating from B represents an attribute of B (whose results are of

type X). Thus the boxes and arrows in an olog correspond to

tables and their columns in a database. The rows of each table in a

database will correspond to ‘‘instances’’ of each type in an olog.

Again, this will be made more clear in Section 3 or one can see

FDM.

The point is that every olog can serve as a database schema, and

the schemas represented by ologs range from simple (just objects

and arrows) to complex (including commutative diagrams,

products, sums, etc.). However, whereas database schemas are

often prescriptive (‘‘you must put your data into this format!’’),

ologs are usually descriptive (‘‘this is how I see things’’). One can

think of an olog as an interface between people and databases: an

olog is human readable, but it is also easily converted to a database

schema upon which powerful applications can be put to work. Of

course, if one is to use an olog as a database schema, it will become

prescriptive. However, since the intention of each object and

arrow is well-documented (as its label), schema evolution would be

straightforward. Moreover, the categorical structure of ologs

allows for functorial data migration by which one can transfer the

instance data from an older schema to the current one (see FDM).

1.3.2 Ologs and RDF/OWL. In FDM, the first author

explained how a categorical database can be converted into an

RDF triple store using the Grothendieck construction. The main

difference between a categorical database schema (or an olog) and

an RDF schema is that one cannot specify commutativity in an

RDF schema. Thus one cannot express things like ‘‘the woman

parent of a person x is the mother of x.’’ Without this expressivity,

it is hard to enforce much rigor, and thus RDF data tends to be too

loose for many applications.

OWL schemas, on the other hand, can express many more

constraints on classes and properties. We have not yet explored the

connection, nor compared the expressive power, of ologs and

OWL. However, they are significantly different systems, most

obviously in that OWL relies on logic where ologs rely on category

theory.

1.3.3 Semantic Nets. On the surface, ologs look the most

like semantic networks, or concept webs, but there are important

differences between the two notions. First, arrows in a semantic

network need not indicate functions; they can be relations. So

there could be an arrow a father has a child in a semantic

network, but not in an olog (see Section 2.2.3 for how the same

idea is expressible in an olog). There is a nice category of sets and

relations, often denoted Rel, but this category is harder to reason

about than is the ordinary category of sets and functions (often

denoted Set). Thus, as mentioned above, semantic networks are

categorifiable (using Rel), but this underlying formalism does not

appear to play a part in the study or use of semantic networks.

However, some attempt to integrate category theory and neural

nets has been made, see [11].

Moreover, commutative diagrams and other expressive abilities

held by ologs are not generally part of the semantic network

concept (see [12]). For these reasons, semantic networks tend to be

brittle: minor changes can have devastating effects. For example, if

two semantic networks are somehow synced up and then one is

changed, the linkage must be revised or may be altogether broken.

Such a disaster is often avoided if one uses categories: because

different paths can be equivalent, one can simply add new ideas

(types and aspects) without changing the semantic meaning of

what was already there. As Section 4.4 demonstates with an

extended example, conceptual graphs, which are a popular

formalism for semantics nets, can be linearized to ologs, thereby

gaining in precision and expressibility.

2 Types, aspects, and facts

In this section we will explain basic ologs, which involve types,

aspects, and facts. A basic olog is a category in which each object

and arrow has been labeled by text; throughout this paper we will

assume that text to be written in English.

The purpose of this section is to show how one can convert a

real-world situation into an olog. It is probably impossible to

explain this process precisely in words. Instead, we will explain

mainly by example. We will give ‘‘rules of good practice’’ that lead

to good ologs. While these rules are not strictly necessary, they

help to ensure that the olog is properly formulated. As the Dalai

Lama says, ‘‘Learn the rules so you know how to break them

properly.’’

2.1 Types
A type is an abstract concept, a distinction the author has made.

We represent each type as a box containing a singular indefinite noun

phrase. Each of the following four boxes is a type:

Each of the four boxes in (4) represents a type of thing, a whole

class of things, and the label on that box is what one should call

each example of that class. Thus a man does not represent a single

man, but the set of men, each example of which is called ‘‘a man’’.

Similarly, the bottom right-hand box in (4) represents an abstract

type of thing, which probably has more than a million examples,

but the label on the box indicates a common name for each such

example.

Typographical problems emerge when writing a text-box in a

line of text, e.g. the text-box seems out of place here, and

the more in-line text-boxes one has in a given paragraph, the

ð4Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e24274

worse it gets. To remedy this, we will denote types which occur in

a line of text with corner-symbols, e.g. we will write a man
instead of .

For experts, types in ologs are intentional, rather than

extensional – the label on a type describes its intention. The

extension of a type will be captured by instance data; see Section 3.

2.1.1 Types with compound structures. Many types have

compound structures; i.e., they are composed of smaller units.

Examples include

It is good practice to declare the variables in a ‘‘compound

type’’, as we did in the last two cases of (5). In other words, it is

preferable to replace the first box above with something like

so that the variables (m,w) are clear.

2.1.2 Rules of good practice. A type is presented as a text

box. The text in that box should

i. begin with the word ‘‘a’’ or ‘‘an’’;

ii. refer to a distinction made and recognizable by the author;

iii. refer to a distinction for which instances can be documented;

iv. not end in a punctuation mark;

v. declare all variables in a compound structure.

The first, second, and third rules ensure that the class of things

represented by each box appears to the author as a well-defined

set; see Section 3 for more details. The fourth and fifth rules

encourage good ‘‘readability’’ of arrows, as will be discussed next

in Section 2.2.

We will not always follow the rules of good practice throughout

this document. We think of these rules being followed ‘‘in the

background’’ but that we have ‘‘nicknamed’’ various boxes. So

Steve may stand as a nickname for a thing classified as Steve
and arg inine as a nickname for a molecule of arg inine .

2.2 Aspects
An aspect of a thing x is a way of viewing it, a particular way in

which x can be regarded or measured. For example, a woman

can be regarded as a person; hence ‘‘being a person’’ is an aspect

of a woman. A man has a height (say, taken in inches), so ‘‘having

a height (in inches)’’ is an aspect of a man. In an olog, an aspect

of A is represented by an arrow A?B, where B is the set of

possible ‘‘answers’’ or results of the measurement. For example

when observing the height of a man, the set of possible results is

the set of integers, or perhaps the set of integers between 20 and

120.

We will formalize the notion of aspect by saying that aspects are

functional relationships. (Note that in type theory, what we here

call aspects are called functions. Since our types are not fixed sets

(see Section 3), we preferred a term that was less formal, namely

‘‘aspects’’.) Suppose we wish to say that a thing classified as X has

an aspect f whose result set is Y . This means there is a functional

relationship called f between X and Y , which can be denoted

f : X?Y . We call X the domain of definition for the aspect f , and we

call Y the set of result values for f . For example, a man has a height

in inches whose result is an integer, and we could denote this by

h : M?Int. Here, M is the domain of definition for height and

Int is the set of result values.

A set may always be drawn as a blob with dots in it. If X and Y
are two sets, then a a function from X to Y , denoted f : X?Y can

be presented by drawing arrows from dots in blob X to dots in

blob Y . There are two rules:

i. each arrow must emanate from a dot in X and point to a dot in

Y ;

ii. each dot in X must have precisely one arrow emanating from

it.

Given an element x [X , the arrow emanating from it points

to some element y [Y , which we call the image of x under f and

denote f (x)~y.

Again, in an olog, an aspect of a thing X is drawn as a labeled

arrow pointing from X to a ‘‘set of result values.’’ Let us

concentrate briefly on the arrow in (7). The domain of definition is

the set of women (a set with perhaps 3 billion elements); the set of

result values is the set of persons (a set with perhaps 6 billion

elements). We can imagine drawing an arrow from each dot in the

‘‘woman’’ set to a unique dot in the ‘‘person’’ set. No woman

points to two different people, nor to zero people – each woman is

exactly one person – so the rules for a functional relationship are

satisfied. Let us now concentrate briefly on the arrow in (8). The

domain of definition is the set of men, the set of result values is the

set of integers f20,21,22, . . . ,119,120g. We can imagine drawing

an arrow from each dot in the ‘‘man’’ set to a single dot in the

‘‘integer’’ set. No man points to two different heights, nor can a

man have no height: each man has exactly one height. Note

however that two different men can point to the same height.

2.2.1 Invalid aspects. We tried above to clarify what it is

that makes an aspect ‘‘valid’’, namely that it must be a ‘‘functional

relationship.’’ In this subsection we will present two arrows which

on their face may appear to be aspects, but which on closer

inspection are not functional (and hence are not valid as aspects).

Consider the following two arrows:

A person may have no children or may have more than one

child, so the first arrow is invalid: it is not functional because it

does not satisfy rule (2) above. Similarly, if we drew an arrow from

each mechanical pencil to each piece of lead it uses, it would not

satisfy rule (2) above. Thus neither of these is a valid aspect.

Of course, in keeping with Warning 1.0.1, the above arrows

may not be wrong but simply reflect that the author has a strange

world-view or a strange vocabulary. Maybe the author believes

that every mechanical pencil uses exactly one piece of lead. If this

is so, then a mechanical pencil uses a piece of lead is indeed a

valid aspect! Similarly, suppose the author meant to say that each

person was once a child, or that a person has an inner child. Since

every person has one and only one inner child (according to the

author), the map a person
has as inner child

a child is a valid aspect.

ð5Þ

ð6Þ

ð7Þ

ð8Þ

ð7�Þ

ð8�Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e24274

We cannot fault the author for such a view, but note that we

have changed the name of the label to make its intention more

explicit.

2.2.2 Reading aspects and paths as English

phrases. Each arrow (aspect) X
f

Y can be read by first

reading the label on its source box (domain of definition) X , then

the label on the arrow f , and finally the label on its target box (set

of result values) Y . For example, the arrow

is read ‘‘a book has as first author a person’’, a valid English

sentence.

Sometimes the label on an arrow can be shortened or dropped

altogether if it is obvious from context. We will discuss this more in

Section 2.3 but here is a common example from the way we write

ologs.

Neither arrow is readable by the protocol given above (e.g. ‘‘a pair

(x,y) where x and y are integers x an integer’’ is not an English

sentence), and yet it is obvious what each map means. For

example, given the pair (8,11) which belongs in box A, application

of arrow x would yield 8 in box B. The label x can be thought of

as a nickname for the full name ‘‘yields, via the value of x,’’ and

similarly for y. We do not generally use the full name for fear that

the olog would become cluttered with text.

One can also read paths through an olog by inserting the word

‘‘which’’ after each intermediate box. For example the following

olog has two paths of length 3 (counting arrows in a chain):

The top path is read ‘‘a child is a person, which has as parents a

pair (w,m) where w is a woman and m is a man, which yields, via

the value of w, a woman.’’ The reader should read and understand

the content of the bottom path.

2.2.3 Converting non-functional relationships to

aspects. There are many relationships that are not

functional, and these cannot be considered aspects. Often the

word ‘‘has’’ indicates a relationship – sometimes it is functional

as in a person has a stomach , and sometimes it is not, as in

a father has a child . (Obviously, a father may have more than

one child.) A quick fix would be to replace the latter by

a father has a set of children . This is ok, but the relationship

between a child and a set of children then becomes an issue

to deal with later. There is another way to indicate such ‘‘non-

functional’’ relationships.

In mathematics, a relation between sets A1,A2, and so on

through An is defined to be a subset of the Cartesian product

R(A1|A2| � � �|An: ð12Þ
The set R represents those sequences (a1,a2, . . . ,an) that are so-

related. In an olog, we represent this as follows

For example,

Whereas A1|A2|A3 includes all possible triples (p,a,j) where

a is a person, p is a paper, and j is a journal, it is obvious that not

all such triples are found in R. Thus R represents a proper subset

of A1|A2|A3.

Rules of good practice 2.1.2. An aspect is presented as a labeled

arrow, pointing from a source box to a target box. The arrow text

should

i. begin with a verb;

ii. yield an English sentence, when the source-box text followed

by the arrow text followed by the target-box text is read;

iii. refer to a functional dependence: each instance of the source

type should give rise to a specific instance of the target type;

2.3 Facts
In this section we will discuss facts and their relationship to ‘‘path

equivalences.’’ It is such path equivalences, which exist in categories

but do not exist in graphs, that make category theory so powerful.

Given an olog, the author may want to declare that two paths

are equivalent. For example consider the two paths from A to C in

the olog

ð10Þ

ð13Þ

ð11Þ

ð14Þ

ð9Þ

ð15Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e24274

We know as English speakers that a woman parent is called a

mother, so these two paths A?C should be equivalent. A more

mathematical way to say this is that the triangle in Olog (15)

commutes.

A commutative diagram is a graph with some declared path

equivalences. In the example above we concisely say ‘‘a woman

parent is equivalent to a mother.’’ We declare this by defining the

diagonal map in (15) to be the composition of the horizontal map and

the vertical map.

We generally prefer to indicate a commutative diagram by

drawing a check-mark, H, in the region bounded by the two paths,

as in Olog (15). Sometimes, however, one cannot do this

unambiguously on the 2-dimensional page. In such a case we

will indicate the commutative diagrams (fact) by writing an

equation. For example to say that the diagram

commutes, we could either draw a checkmark inside the square or

write the equation f ; g~h; i above it. Either way, it means that ‘‘f

then g’’ is equivalent to ‘‘h then i’’.

2.3.1 More complex facts. Recording real-world facts in an

olog can require some creativity. Whereas a fact like ‘‘the brother of

ones father is ones uncle’’ is recorded as a simple commutative

diagram, others are not so simple. We will try to show the range of

expressivity of commutative diagrams in the following two examples.

2.3.2 Example. How would one record a fact like ‘‘a truck

weighs more than a car’’? We suggest something like this:

where both top and bottom commute. This olog exemplifies the

fact that simple sentences sometimes contain large amounts of

information. While the long map may seem to suffice to convey

the idea ‘‘a truck weighs more than a car,’’ the path equivalences

(declared by check-marks) serve to ground the idea in more basic

types. These other types tend to be useful for other purposes, both

within the olog and when connecting it to others.

2.3.3 Specific facts at the olog level. Another fact one

might wish to record is that ‘‘John Doe’s weight is 150 lbs.’’ This is

established by declaring that the following diagram commutes:

If one only had the top line, it would be less obvious how to

connect its information with that of other ologs. (See Section 4 for

more on connecting different ologs).

Note that the top line in Diagram (18) might also be considered

as existing at the ‘‘data level’’ rather than at the ‘‘olog level.’’ In

other words, one could see John Doe as an ‘‘instance’’ of

a person , rather than as a type in and of itself, and similarly see

150 as an instance of a real number . This idea of an olog having

a ‘‘data level’’ is the subject of the Section 3.

2.3.4 Rules of good practice. A fact is the declaration that

two paths (having the same source and target) in an olog are

equivalent. Such a fact is either presented as a checkmark between

the two paths (if such a check-mark is unambiguous) or by an

equation. Every such equivalence should be declared; i.e., no fact

should be considered too obvious to declare.

3 Instances

The reader at this point hopefully sees an olog as a kind of

‘‘concept map,’’ and it is one, albeit a concept map with a formal

structure (implicitly coming from category theory) and specific

rules of good practice. In this section we will show that one can

also load an olog with data. Each type can be assigned a set of

instances, each aspect will map the instances of one type to

instances of the other, and each fact will equate two such

mappings. We give examples of these ideas in Section 3.1.

In Section 3.2, we will show that in fact every olog can also serve

as the layout for a database. In other words, given an olog one can

immediately generate a database schema, i.e., a system of tables, in any

reasonable data definition language such as that of SQL. The tables

in this database will be in one-to-one correspondence with the types

in the olog. The columns of a given table will be the aspects of the

corresponding type, i.e., the arrows whose source is that type.

Commutative diagrams in the olog will give constraints on the data.

In fact, this idea is the basic thesis in FDM, even though the word

olog does not appear in that paper. There it was explained that a

category C naturally can be viewed as a database schema and that a

functor I : C?Set, where Set is the category of sets, is a database

state. Since an olog is a drawing of a category, it is also a drawing of

a database schema. The current section is about the ‘‘states’’ of an

olog, i.e., the kinds of data that can be captured by it.

3.1 Instances of types, aspects, and facts
Recall from Section 2 that basic ologs consist of types, displayed

as boxes; aspects, displayed as arrows; and facts, displayed as

equations or check-marks. In this section we discuss the instances

of these three basic constructions. The rules of good practice

(2.1.1, 2.2.1, and 2.3.4) were specifically designed to simplify the

process of finding instances.

3.1.1 Instances of types. According to Rules 2.1.1, each box

in an olog contains text which should refer to a distinction
made and recognizable by the author for which
instances can be documented. For example if my olog

contains a box

then I must have some concept of when this situation occurs.

Every time I witness a new person-cat petting, I document it.

Whether this is done in my mind, in a ledger notebook, or on a

computer does not matter; however using a computer would

probably be the most self-explanatory. Imagine a computer

ð16Þ

ð17Þ

ð18Þ

ð19Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e24274

program in which one can create ologs. Clicking a text box in an

olog results in it ‘‘opening up’’ to show a list of documented

instances of that type. If one is reading the CBS news olog and

clicks on the box an episode of 60 Minutes , he or she should see

a list of all episodes of the TV show ‘‘60 Minutes.’’ If we wish to

document a new person-cat petting incident we click on the box in

(19) and add this new instance.

3.1.2 Instances of aspects. According to Rules 2.2.1, each

arrow in an olog should be labeled with text that refers to a

functional relationship between the source box and the target box.

A functional relationship f : A?B between finite sets A and B can

always be written as a 2-column table: the first column is filled with

the instances of type A and the second column is filled with their f -

values, which are instances of type B.

For example, consider the aspect

We can document some instances of this relationship using the

following table

Clearly, this table of instances can be updated as more moons

are discovered by the author (be it by telescope, conversation, or

research).

The correspondence between the aspect in (20) and Table (21)

makes it clear that ologs can serve to hold data which exemplifies

the author’s world-view. In Section 3.2, we will show that ologs

(which have many aspects and facts) can serve as bona fide

database schemas.

3.1.3 Instances of facts. Recall the following olog:

and consider the following instances of the three aspects in it

When we declare that the diagram in (15) commutes (using the

check-mark), we are saying that for every instance of a person (of

which we have three: Cain, Abel, and Chelsey), the two paths to

a woman give the same answers. Indeed, for Cain the two paths

are:

i. Cain . (Eve, Adam) . Eve;

ii. Cain . Eve;

and these answers agree. If one changed any instance of the word

‘‘Eve’’ to the word ‘‘Steve’’ in one of the tables in (22), some pair of

paths would fail to agree. Thus the ‘‘fact’’ that the diagram in (15)

commutes ensures that there is some internal consistency between

the meaning of parents and the meaning of mother, and this

consistency must be born out at the instance level.

All of this will be formalized in Section 3.2.2.

3.2 The relationship between ologs and databases
Recall from Section 3.1.1 that we can imagine creating an olog

on a computer. The user creates boxes, arrows, and compositions,

hence creating a category C. Each text-box x in the olog can be

‘‘clicked’’ by the computer mouse, an action which allows the user

to ‘‘view the contents’’ of x. The result will be a set of things, which

we might call I(x) [Set, whose elements are things of type x. So

clicking on the box a man one sees I(a man), the set of

everything the author has documented as being a man. For each

aspect f : x?y of x, the user can see a function from the set I(x)
to I(y), perhaps as a 2-column table as in (22).

The type x may have many aspects, which we can put together

into a single multi-column table. Its columns are the aspects of x,

and its rows are the elements of I(x). Consider the following olog,

taken from FDM where it was presented as a database schema.

The type Employee has four aspects, namely manager (valued

in Employee), works in (valued in department), and first name

and last name (valued in string). As a database, each type

together with its aspects form a multi-column table, as in the

following example.

3.2.1 Example. We can convert Olog (23) into a database

schema. Each box represents a table, each arrow out of a box

represents a column of that table. Here is an example state of that

database.

Note that every arrow f : x?y of Olog (23) is represented in

Database (24) as a column of table x, and that every cell in that

column can be found in the Id column of table y. For example,

ð15Þ

ð23Þ

ð20Þ

ð21Þ

ð22Þ ð24Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e24274

every cell in the ‘‘works in’’ column of table employee can be

found in the Id column of table department.
The point is that ologs can be drawn to represent a world-view

(as in Section 2), but they can also store data. Rules 1,2, and 3 in

2.1.1 align the construction of an olog with the ability to document

instances for each of its types.

3.2.2 Instance data as a set-valued functor. Let C be an

olog. Section 3 so far has described instances of types, aspects, and

facts and how all of these come together into a set of interconnected

tables. The assignment of a set of instances to each type and a

function to each aspect in C, such that the declared facts hold, is

called an assignment of instance data for C. More precisely, instance

data on C is a functor C?Set, as in Definition 3.2.3.

3.2.3 Definition. Let C be a category (olog) with underlying

graph jCj, and let Set denote the category of sets. An instance of C
(or an assignment of instance data for C) is a functor I : C?Set. That is,

it consists of

N a set I(x) for each object (type) x in C,
N a function I(f) : I(x)?I(y) for each arrow (aspect) f : x?y in

C, and

N for each fact (path-equivalence or equation)

f1 ; f2 ; � � � ; fn~f ’1 ; f ’2 ; � � � ; f ’m

declared in C, an equality of functions

I(f1) ; I(f2) ; � � � ; I(fn)~I(f ’1) ; I(f ’2) ; � � � ; I(f ’m):

The symbol ‘;’ in paths denotes concatenation or formal

composition. If we let f ~f1 ; f2 ; � � � ; fn and f ’~f ’1 ; f ’2 ; � � � ; f ’m
denote two paths, then we often write (f ~f ’) : i?j to denote the

fact that these paths are equivalent.

4 Communication between ologs

The world is inherently heterogeneous. Different individuals in

the world naturally have different world-views – each individual

has its own perspective on the world. By an individual we mean

either an individual person acting on their own, a community

acting as a single entity, a software agent, etc. Later in this section

we will use the notion of a community acting as a distributed

collection of linked, yet independent, individuals. The conceptual

knowledge (information resources) of an individual represents its

world-view, and is encoded in an ontology log, or olog, containing

the concepts, relations, and observations that are important to that

individual. An olog is a formal specification of an individual’s

world-view in a language representing the concepts and

relationships used by that individual. In addition to the

formulation of an expressive language, a specification needs to

contain axioms (facts) that constrain the possible interpretations of

that language.

Since the ologs of different individuals are encoded in different

languages, the important need to merge disparate ologs into a

more general representation is difficult, time-consuming and

expensive. The solution is to develop appropriate communication

between individuals to allow interoperability of their ologs.

Communication can occur between individuals when there is

some commonality between their world-views. It is this common-

ality that allows one individual to benefit from the knowledge and

experience of another. In this section we will discuss how to

formulate these channels of communication, thereby describing a

generalized and practical technique for merging ologs.

The mathematical concept that makes it all work is that of a

functor. A functor is a mapping from one category to another that

preserves all the declared structure. Whereas in Definition 3.2.3

we defined a functor from an olog to Set, here we will be

discussing functors from one olog to another.

Suppose we have two ologs, C and D, that represent the world-

views of two individuals. A functor F : C?D is basically a way of

matching each type (box) of C to a type of D, and each aspect

(arrow) in C to an aspect (or path of aspects) in D. Once ologs are

aligned in this way, communication can occur: the two individuals

know what each other is talking about. In fact, mathematically we

can show that instance data held in C can be transformed (in

coherent ways) to instance data held in D, and vice versa (see

FDM). In simple terms, once individuals understand each other in

a certain domain (be it social, mathematical, etc.), they can

communicate their views about it.

While the basic idea is not hard, the details can be a bit

technical. This section is written in a more formal and logical style,

and is decidedly more difficult than the others. For this section

only, we assume the reader is familiar with the notion of fibered

categories, colimits in the category Cat of categories, etc. We

return to our more informal style in Section 5, where we discuss

how an individual can author a more expressive olog.

4.1 Categories and their presentations
We never defined categories in this paper, but we defined ologs

and said that the two notions amounted to the same thing. Thus,

we implied that a category consists of the following: a set of

objects, a set of arrows (each pointing from one object to

another), and a congruence relation on paths; a congruence

relation on paths is an equivalence relation on paths that respects

endpoints and is closed under composition from left and right (see

the axioms in 25). This differs from the standard definition of

categories (see [6]), which replaces our congruence relation with a

composition rule and associativity law (obtained by taking the

categorical quotient). One could say that an olog is a presentation

of a category by generators (objects and arrows) and relations

(path congruences). Any category can be resolved and presented

in such a way, which we will call a specification. Likewise any

functor can be resolved and presented as a morphism between

specifications. We take an agnostic approach to foundations here.

With the presentation form, we show how categories and functors

are definable in terms of sets and functions, indicating how

category theoretic concepts could be defined in terms of set

theory. However, we fully understand that Set, the category of

sets and functions, is but one example of a topos, indicating how

set theoretic concepts could be defined in terms of category

theory.

In fact, this presentation form for categories (and the analogous

one for functors) is preferable for our work on communication

between ologs, because it separates the strictly graphical part of an

olog (its types and aspects, regarded as the olog language) from the

propositional part (its facts, regarded as the olog formalism). This

presentation form is standard in the institutions [13] and

information flow [14] communities, since it separates the

mechanism of flow from the content of flow; in this case the

formal content. Our work here applies the general theories of

institutions and information flow to the sketch logical system Sk (in

its various manifestations) that underlies categories and functors,

demonstrating how this logical system can be used for knowledge

representation. Using the presentation forms for categories and

functors, we show how communication between individuals is

effected by the flow of information along channels.

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e24274

4.2 The architecture underlying information systems
We think of a community of people, businesses, etc. in terms of

the ologs of each individual participant together with the

information channels that connect them. These channels are

functors between ologs, which allow communication to occur. The

heterogeneity of multiple differing world-views connected through

such links can lead to a flexibility and robustness of interaction.

For example, heterogeneity allows for multiple schemas to be

employed in the design of database systems in particular, and

multiple languages to be employed in the design of knowledge

representation systems in general.

For any olog, consider the underlying graph of types and

aspects. We regard this graph as being the language of the olog,

with the facts of the olog being a subset of all the possible assertions

that one can make within this language (in the other direction,

Section 4.4 indicates how natural languages can be encoded into

ologs). Any two ologs with the same underlying graph of types and

aspects have the same language, and since the facts of each olog

are expressed in the same language, they can be ‘‘understood’’ by

each other without translation. As such, we think of the collection

of all ologs with the same language (underlying graph) as forming a

homogeneous context, with the ologs ordered in a specialization-

generalization hierarchy.

Whereas an olog represents (the world-view of) a single

individual, an information system (of ologs) represents a commu-

nity of separate, independent and distributed individuals. Here we

consider an information system to be a diagram of ologs of some

shape I; that is, a collection of ologs and constraints indexed by a

base category I. The parts of the system represent either the ologs

of the various individuals in the system or common grounds

needed for communication between the individuals. Each part of

the system specifies its world-view as facts expressed in terms of its

language. The system is heterogeneous, since each part has a

separate language for the expression of its world-view. The

morphisms between the parts are the alignment (constraint) links

defining the common grounds.

As will be made clear in a moment, there is an underlying

distributed system consisting of the language (underlying graph) for

each component part of the information system and a translation

(graph morphism) for each alignment link. We can think of this

distributed system as an underlying system of languages linked by

translating dictionaries. This distributed system determines an

information channel with core language (graph) and component

translation links (graph morphisms) along which the specifications

of each component part can flow to the core. We can think of this

core as a universal language for the whole system and the channel

as a translation mechanism from parts to whole. At the core, the

direct flow of the component specifications are joined together

(unioned) and allowed to interact through entailment. The result

of this interaction can then be distributed back to the component

parts, thereby allowing the separate parts of an information system

to interoperate.

In this section, we will make all this clear and rigorous. As

mentioned above, we will work with category presentations (here

called specifications) rather than categories. We will discuss the

homogeneous contexts called fibers in detail and give the axioms

of satisfaction. We will then discuss how morphisms between

graphs (the translating dictionaries between the ologs) allow for

direct and inverse information flow between these homogeneous

fiber contexts. Finally, we discuss specifications (also known as

theories) and the lattice of theories construction for ontologies.

In Section 4.3 we will discuss how the information in ologs can

be aligned by the use of common grounds. This alignment will

result in the creation of information systems, which are systems of

ologs connected together along functors. We will discuss how to

take the information contained in each olog of a heterogeneous

system and integrate it all into a single whole, called the fusion

olog. Finally we will discuss how the consequence of bringing all

this information together, and allowing it to interact, can be

transferred back to each part of the system (individual olog) as a set

of local facts entailed by remote ologs, allowing for a kind of

interoperability between ologs. In Section 4.4 we will discuss

conceptual graphs and their relationship to ologs.

4.2.1 Fibers. A graph G contains types as nodes and aspects

as edges. The graphs underlying an olog is considered its language.

Any category C has an underlying graph jCj. In particular, jSetj is
the graph underlying the category of sets and functions. Olog (12)

has an underlying graph containing the three types person ,

person-pair and woman and the three aspects ‘has a parent’,

‘woman’ and ‘has as mother’. Olog (17) has an underlying graph

containing the three types emploee , department , and string
and the six aspects ‘manager’, ‘works in’, ‘secretary’, ‘name’, ‘first

name’ and ‘last name’. Let eqn(G) denote the set of all facts

(equations) that are possible to express using the types and aspects

of G. A G-specification is a set E(eqn(G) consisting of some of

the facts expressible in G. The singleton set with the one fact that

‘‘the female parent of a person is his/her mother’’ is a specification

for the graph of Olog (12). The set with the two facts that ‘‘the

manager has the same department as any employee’’ and ‘‘the

secretary of a department is an employee in that department’’ is a

specification for the graph of Olog (17). Let spec(G) denote the

collection of all G-specifications ordered by inclusion E1(E2.

4.2.2 Satisfaction. It will be useful here to define an instance

of a graph G, instead of an instance of a category C. An instance of

a graph populates the graph by assigning instance data to it. An

instance of a graph G is a graph morphism D : G?jSetj mapping

each type x in G to a set D(x) of instances and mapping each

aspect e : x?y in G to an instance function D(e) : D(x)?D(y).
Using database terminology, we also call D a key diagram, since it

gives the set of row identifiers (primary keys) of tables and the cell

contents defined by key maps.

A key diagram D : G?jSetj satisfies (is a model of) a G-fact

E [eqn(G) (see Definition 3.2.3), symbolized D�GE, when we have

an equality of functions D�(E0)~D�(E1). We also say that E (holds

in) is true when interpreted in D. An identity (f ~Gf) : i?j holds

in all key diagrams (hence, is a tautology), and vice-versa for any

set A [jSetj a constant key diagram D(A) : G?jSetj satisfies any

fact E [eqn(G). A key diagram D : G?jSetj satisfies (is a model

of) a G-specification E, symbolized D�GE, when it satisfies every

fact in the specification. For any graph G, a G-specification E
entails a G-fact E, denoted by E‘GE, when any model of the

specification satisfies the fact. The consequence E. of a G-

specification E is the set of all entailed equations. The

consequence operator ({). is a closure operator, and the

consequence of a specification is a congruence. For any G-

specification E, entailment satisfies the follow axioms.

These are converted to inference rules in Table 1. To construct

E., we first take the reflexive, symmetric, and transitive closure E�

of E (so that E� is a G-specification and also the smallest

equivalence relation containing E), and then we get E. by closing

up under composition on left and right. We extend specification

ð25Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e24274

inclusion with the entailment order, where E1ƒGE2 when E1

entails each equation in E2; that is, when E.
1)E2 or equivalently

when E.
1)E.

2 . The statement ‘‘E1ƒGE2’’ asserts that E1 is at least

as specialized as E2. The entailment order Sspec(G),ƒGT, which

is a specialization-generalization order, represents a local version

of the ‘‘lattice of theories’’ construction of Sowa [15] (see Section

4.2.5). The opposite entailment order f br(G)~Sspec(G),§GT is

called the fiber order. For consistency in discussion, we follow the

terminology of formal concept analysis [16], information flow [14]

and the theory of institutions [13]. This includes the polarity

induced by concept lattices and the directionality of infomorph-

isms. In the lattice spec(G) (this is a complete preorder, loosely

called a ‘‘lattice’’), the meet is union ^~| and the join is

intersection _~\; whereas in the lattice f br(G), the join is union

_~| and the meet is intersection ^~\. Any specification E is

entailment equivalent to its consequence E%E.. A specification E
is closed when it is equal to its consequence E~E.. There is a

one-one correspondence between closed G-specifications and

categories over graph G. The conceptual intent of a key diagram

D, implicit in satisfaction, is the closed specification int(D)
consisting of all facts satisfied by the key diagram. Hence, D�GE
iff E(int(D) iff int(D)ƒGE. This equivalence between satisfac-

tion and entailment order is the first step in the algebraization of

Tarski’s ‘‘semantic definition of truth’’.

4.2.3 Elementary flow. A graph morphism H : G1?G2 maps

the types and aspects of G1 to the types and aspects of G2. Graph

morphisms are the translations between ologs. A functor F : C1?C2

has an underlying graph morphism jF j : jC1j?jC2j. For any graph

morphism H : G1?G2, there is a fact function eqn(H) :
eqn(G1)?eqn(G2) that maps a G1-equation (f1~G1

f ’1) : i1?j1 to

the G2-equation (H�(f1)~G2
H�(f ’1)) : H(i1)?H(j1), and a key

diagram functor dgm(H) : dgm(G2)?dgm(G1) that maps a key

diagram D2 : G2?jSetj to the key diagram H0D2 : G2?jSetj (the

composition of graph morphisms is written in diagrammatic order). At

the abstraction of institutions [17], the fact function is the fundamental

unit of information (formal) flow for ologs, and the key diagram functor

is the fundamental unit of semantic flow for ologs. Formal flow is

adjoint to semantic flow – satisfaction is invariant under flow:

dgm(H)(D2)�G1
E1 iff D2�G2

eqn(H)(E1) for any graph morphism

H : G1?G2, source fact E1 and target diagram D2. Specifications can

be moved along graph morphisms by extending the fact (equation)

function. For any graph morphism H : G1?G2, define the direct

flow operator dir(H)~2eqn(H) : spec(G1)?spec(G2) to be the

direct image function, and the inverse flow operator inv(H)
~eqn(H){1(({).) : spec(G2)?spec(G1) to be the composition

of the specification consequence operator followed by the inverse

image function. Direct and inverse flow are adjoint monotonic

functions Sdir(H) a inv(H)T : f br(G1)?f br(G2) w.r.t. fiber order:

dir(H)(E1)§G2
E2 iff E1§G1

inv(H)(E2). For any graph morphism

H : G1?G2, any G1-specification E1, and any G2-specification E2,

entailment satisfies the following axioms.

These are converted to inference rules in Table 1. A graph

morphism H : G1?G2 defines a consequence operator

({)%H ~dir(H)0inv(H) on the fiber preorder f br(G1), where

E1§G1
E.

1§G1
E

%H

1 .

4.2.4 Specifications. A specification S~SG,ET is an indexed

notion consisting of a graph G and a G-specification E [spec(G). It

is sometimes convenient to use the symbol ‘S’ in place of ‘E’; for

example, to say that ‘‘S [spec(G)’’. A category C can be resolved

and presented as a specification spec(C)~SG,ET consisting of the

underlying graph G~jCj containing the types and aspects of C and

the collection E of all facts that hold in C. In the other direction, any

specification S induces a (quotient) category cat(S). Olog (12) and

Olog (17) are described as specifications in Section 4.2.1. A

specification morphism H : SG1,E1T?SG2,E2T is a graph

morphism H : G1?G2 that preserves entailment: E1‘G1
E1 implies

E2‘G2
eqn(H)(E1) for any E1 [eqn(G1); or equivalently that satisfies

the adjointness conditions, dir(H)(E1)§G2
E2 iff E1§G1

inv(H)
(E2). Being a graph morphism, it maps types to types and aspects

to aspects. Moreover, it also maps facts in E1 to facts in E2; that

is, it preserves all the declared structure. A functor F : C1?C2

can be resolved and presented as a specification morphism F :
spec(C1)?spec(C2). Hence, the presentation form for a functor does

exactly what the functor does. The fibered category of specifications

Spec has specifications as objects and specification morphisms as

morphisms. Thus, it is defined in terms of information flow. There is

an underlying graph functor gph : Spec?Gph from specifications to

graphs SG,ET.G. The subcategory over any fixed graph G is the

fiber f br(G); because of the opposite orientation, we say that ‘‘the

category of specifications points downward in the concept lattice’’.

Throughout this section we identify ologs with specifications and olog

morphisms with specification morphisms.

4.2.5 The lattice of theories construction. Sowa’s ‘‘lattice

of theories’’ construction (LOT) describes a modular framework

for ontologies [15]. The Olog formalism follows the approach to

LOT described in [18], where the IFF term ‘theory’ is replaced by

the Olog term ‘specification’ or ‘olog’. In the Olog formalism,

LOT is locally represented by the entailment preorders spec(G),
and globally represented by the category of specifications Spec.

We follow the discussion in Section 6.5 ‘‘Theories, Models and the

World’’ of Sowa [15]. From each olog (specification) in the ‘‘lattice

of theories’’, the entailment ordering defines paths to the more

generalized ologs above and the more specialized ologs below.

Sowa defines four ways for moving along paths from one olog to

another: contraction, expansion, revision and analogy.

Contraction: Any olog can be contracted or reduced to a

smaller, simpler olog, moving upward in the preorder spec(G), by

deleting one or more facts.

Expansion: Any olog can be expanded, moving downward in

the preorder spec(G), by adding one or more facts.

Table 1. Inference Rules.

equivalence: (reflexive)
(f ~Gf) : i?j

(symmetric) (f1~Gf2) : i?j

(f2~Gf1) : i?j

(transitive) (f1~Gf2) : i?j, (f2~Gf3) : i?j

(f1~Gf3) : i?j

algebra: (compositional) (f1~Gf2) : i?j, (g1~Gg2) : j?k

(f1 ; g1~Gf2 ; g2) : i?k

(bi-closed) (g1~Gg2) : j?k

(f ; g1~Gf ; g2) : i?k, (g1 ; h~Gg2 ; h) : j?l

morphic
flow:

(direct) (f1~G1
f ’1) : i1?j1

(H�(f1)~G2
H�(f ’1)) : H(i1)?H(j1)

(inverse) (H�(f1)~G2
H�(f ’1)) : H(i1)?H(j1)

(f1~G1
f ’1) : i1?j1

system
flow:

(direct) (f ~Gn
f ’) : i?j

(i�n(f)~ĜGi�n(f ’)) : in(i)?in(j)

(inverse) (i�n(f)~ĜGi�n(f ’)) : in(i)?in(j)
(f ~Gn

f ’) : i?j

doi:10.1371/journal.pone.0024274.t006

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e24274

Revision: A revision step is composite, moving crosswise in the

preorder spec(G); it uses a contraction step to discard irrelevant

details, followed by an expansion step to added new facts.

Analogy: Unlike contraction and expansion, which move to

nearby ologs in an entailment preorder spec(G), analogy moves to

an olog in a remote entailment preorder in the category Spec via

the flow along an underlying graph morphism H : G1?G2 by

systematically renaming the types and aspects that appear in the

facts: any olog E1 in spec(G1) is moved (by systematic renaming)

to the olog dir(H)(E1) in spec(G2).

According to Sowa, the various methods used in nonmonotonic

logic and the operators for belief revision correspond to movement

through the lattice of theories.

4.3 Alignment and integration of information systems
4.3.1 Common ground. Roughly speaking, an olog

morphism F : C?D is meaningful when for each type X in C,
every intended instance of X in C would be considered an

instance of F (X) by the author of D (in which case we say the

intention for types is respected), and in a similar way the intention

for aspects is respected. Precisely speaking, if I : C?Set and

J : D?Set are instance data for C and D, then F is meaningful

relative to I and J if one can exhibit a natural transformation

m : I[F0J as in FDM.

Given the world-views of two individuals, as represented by ologs

S1~SG1,E1T and S2~SG2,E2T, there is little hope that one of

them completely contains the other (even after allowing for

renaming of types and aspects), and there is correspondingly little

chance of finding a meaningful olog morphism between the two.

Instead, in order to communicate the two individuals could attempt

to find a common ground, a third olog S~SG,ET and meaningful

morphisms H1 : S?S1 and H2 : S?S2 (a common ground olog

is also called a reference ontology in knowledge represen-

tation). This connection is a 1-dimensional knowledge network

S1
H1 S H2 S2 of shape ./.?. called a span (in Spec), where

each node is an olog and each edge is a morphism between ologs.

The requirements of this span are that dir(H1)(E)§G1
E1 and

dir(H2)(E)§G2
E2, two requirements involving local flow. Equiv-

alently, that E§Ginv(H1)(E1)_Ginv(H2)(E2). The latter precise

expression can be rendered in natural language as ‘‘the world-view

of the common ground is contained in the combined world-views

of the two individuals’’. The various local direct/inverse flows

allow world-views to be compared. Such a common ground can be

expanded and improved over time. The basic idea is that one

individual can attempt to explain a new idea (type, aspect or fact) to

another in terms of the common ground. Then the other individual

can either interpret this idea as they already have, learn from it (i.e.,

freely add it to their olog), or reject it. At the abstraction of

institutions [17], an olog morphism H1 : S1?S2 is an atomic

constraint (alignment) link between S1 and S2. Following this, we

view a common ground span S1
H1 S H2 S2 as a molecular

constraint between S1 and S2, which is weakest when S~1 and

strongest when S1~S~S2.

4.3.2 Systems of ologs. In the general case, more than two

individuals will share a common ground. For example, companies

that do business together may have a common-ground olog as

part of a legal contract; or, the various participants at a

conference will have some common understanding of the topic

of that conference. In fact, for any finite set of ologs

X~fS1,S2, . . . ,Sng, there should be a common ground world-

view (even if empty), say SX. If Y(X is a subset, then there

should be a map SX?SY because any common understanding

held by the individuals in X is held by the individuals in Y. For

example, the triangular-shaped diagram

represents three individuals f1,2,3g, their ologs fS1,S2,S3g, their

pair-wise common ground ologs fS12,S13,S23g, and their three-way

commonality olog S123. This diagram, which stands for the interaction

between individuals f1,2,3g, does not stand alone, but is part of an

intricate web of other ologs and alignment constraints. In particular,

individuals 1 and 3 may be part of some different interacting group, say

of individuals f1,3,6,7g, and hence the right edge of the diagram

would be part of some tetrahedron-shaped diagram with vertices

f1,3,6,7g. If we take the point-of-view that ‘‘a collection of ologs

representing the world-views of various individuals’’ is a system, then

we can think of the ologs as being the types of that system, the

morphisms connecting the ologs as being the aspects of that system,

with the shape of a system being its underlying graph. In essence, we

can apply ologs to themselves. In the system represented by diagram

(26), there are seven types fS1,S2,S3,S12,S13,S23,S123g and nine

aspects f� � � ,S123?S13, . . .g, and the shape is the graph in the

diagram (27).

In addition, we can introduce certain facts to represent the

meaning of that system and then enforce those facts.

A distributed system is a diagram (functor) G : I?Gph of shape I
within the ambient category Gph. As such, it consists of an indexed

family fGnjn [Ig of graphs together with an indexed family

fGe : Gn?Gmj(e : n?m) [Ig of graph morphisms. Let Dist(I)
denote the collection of distributed systems of shape I. An

information system is a diagram S : I?Spec of shape I within the

ambient category Spec. As such, it consists of an indexed family

fSn~SGn,EnTjn [Ig of ologs together with an indexed family

fSe : Sn?Smj(e : n?m) [Ig of olog morphisms. Some of these

ologs might represent the world-views of various individuals,

whereas others could be common grounds; also included might be

portals between individual ologs and common grounds, as in the

CG example of Section 4.4. Let Info(I) denote the collection of

information systems of shape I. An information system S with

component ologs Sn~SGn,EnT has an underlying distributed

system G of the same shape with component graphs Gn for n [I.

For any distributed system G, let inf oI(G) denote the collection of

information systems over G of shape I. There is a pointwise

entailment order SƒI
GS0 on inf oI(G) when component ologs

satisfy the same entailment ordering EnƒGn
E’n for n [I, and by

taking the coproduct there is a pointwise entailment order on

Info(I)~
‘
G [Dist(I) inf oI(G). A constant distributed system

D(G) [Dist(I) is a distributed system D(G) : I?Gph with the

same language G for any index n [I. Any constant distributed

system defines join and meet monotonic functions

_I
G ,^I

G : inf oI(D(G))?f br(G) mapping an information system

S [inf oI(D(G)) to the join and meet ologs _S~
S

n [I En and

^S~
T

n [I En in f br(G). The join monotonic function is adjoint

ð26Þ

ð27Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 11 January 2012 | Volume 7 | Issue 1 | e24274

to the constant monotonic function DI
G : f br(G)?inf oI(D(G))

that distributes an olog S0 [f br(G) to the various locations n [I
forming a constant information system D(S0) [inf oI(D(G)), since

_S§GS0 iff S§I
D(G)D(S0) for any system S [inf oI(D(G)) and

any olog S0 [f br(G).
4.3.3 System morphisms. Just as ologs are linked by

morphisms, information systems are also linked by morphisms. For

these there is the new complication of shape. In this paper we define

fixed-shape system moorphisms, but a more general definition would

allow the shape to vary. A distributed system morphism h : G[G0 in

Dist(I) consists of a collection fhn : Gn?G’njn [Ig of component

graph morphisms, which are systematically coordinated in the sense

that they satisfy the naturality conditions Ge0hm~hn0G’e for any

indexing link e : n?m in I. A direct flow operator

dirI(h) : inf oI(G)?inf oI(G0) along h can be define, which maps

an information system S [inf oI(G) to an information system

dirI(h)(S) [inf oI(G0) defined by dirI(h)(S)n~dir(hn)(En) for

n [I. This is well-defined, since dir(G’e)(dir(hn)(En))~dir(hm)
(dir(Ge)(En))§mdir(hm)(Em). An inverse flow operator invI(h) :
inf oI(G0)?inf oI(G) can similarly be defined. Direct and inverse flow

are adjoint monotonic functions SdirI(h) a invI(h)T : inf oI(G)
?inf oI(G0), since dirI(h)(S)§I

G0S
0 iff S§I

GinvI(h)(S0). An

information system morphism h : S[S0 in Info(I) consists of a

collection fhn : Sn?S0njn [Ig of component olog morphisms, which

are systematically coordinated and preserve alignment in the sense that

they satisfy the naturality conditions Se0hm~hn0S0e for any indexing

link e : n?m in I; equivalently, h is a morphism between the

underlying distributed systems h : G[G0 and the direct flow of S is at

least as general as S0: dirI(h)(S)§I
G0S
0. The ordering S§I

GS0 is an

information system morphism h : S[S0 with identity component

translations hn~idGn
for each index n [I.

4.3.4 Channels. We continue with our systems point-of-view.

Since we have represented the whole system as a diagram S of parts

(ologs) Sn with part-part relations (alignment constraints) Sn?Sm,

we also want to represent the whole system as an olog C with part-

whole relations Sn?C. The theory of part-whole relations is called

mereology. It studies how parts are related to wholes, and how

parts are related to other parts within a whole. An information

channel Sc :M[D(C),CT consists of an indexed family

fcn : Gn?Cjn [Ig of graph morphisms called flow links with a

common target graph C called the core of the channel. A channel

Sc,CT covers a distributed system G of shape I when the part-whole

relationships respect the alignment constraints (are consistent with

the part-part relationships): cn~Ge0cm for each indexing morphism

e : n?m in I. A covering channel is a distributed system morphism

c : G[D(C) in Dist(I) from distributed system G to constant

distributed system D(C) : I?Gph. Such a channel defines a direct

flow operator dirI(c) : inf oI(G)?inf oI(D(C)) and an inverse flow

operator invI(c) : inf oI(D(C))?inf oI(G). For any two covering

channels Sc’,C’T and Sc,CT over the same distributed system G, a

refinement H : Sc’,C’T?Sc,CT is a graph morphism between

cores H : C’?C that respects the part-whole relationships of the

two channels: c’n0H~cn for n [I. In such a situation, we say the

channel Sc’,C’T is a refinement of the channel Sc,CT. A channel

Si,
‘
G T is called a minimal cover (using information flow

terminology [14]) or an optimal(ly refined covering) channel of a

distributed system G when it covers G and for any other covering

channel Sc,CT there is a unique refinement ½c,C� :
‘
G?C from

Si,
‘
G T to Sc,CT.

4.3.5 System flow. In order to represent an information

system S~fSn
Se Smg as a single olog

‘
S , called the fusion of

S, with part-whole relations Sn?
‘
S , we follow the colimit

theorem of [19] by recognizing the following three properties.

N Optimal channels exist for any distributed system G.

N f br(G) is a complete preorder for any graph G, loosely called a

‘‘lattice’’.

N For any graph morphism H : G1?G2, direct and inverse flow are

adjoint monotonic functions Sdir(H),inv(H)T : f br(G1)?
f br(G2).

Let G [Dist(I) be a distributed system of shape I with optimal

channel Si,
‘
G T. The optimal core ĜG~

‘
G is called the sum of

the distributed system G, and the optimal channel components

(graph morphisms) fin : Gn?
‘
G jn [Ig are called flow links.

There is a direct system flow monotonic function (see Diagram 28)

dirSI,GT~dirI(i):_I
ĜG : inf oI(G)?f br(ĜG). Direct system flow has

two steps: (i) direct (fixed shape) system flow of an information

system along the optimal channel (Dist(I)-morphism) i : G[D ĜG
� �

and (ii) lattice join combining the contributions of the parts into a

whole. In the opposite direction, there is an inverse system flow

monotonic function (see Diagram 28) invSI,GT~DI
ĜG
:invI(i) :

f br(ĜG)?inf oI(G). Inverse system flow has two steps: (i) mapping

an olog with core language ĜG to a constant information system

over D ĜG
� �

with shape I by distributing the olog to the locations

n [I, and (ii) inverse (fixed shape) system flow of this constant

information system back along the optimal channel i : G[D ĜG
� �

.

Direct system flow is adjoint to inverse system flow

SdirSI,GT a invSI,GTT : inf oI(G)?f br(ĜG), since the composition

components are adjoint. For any distributed system G [Dist(I)
with optimal core ĜG~

‘
G, any information system S [inf oI(G),

and any olog ŜS [f br (ĜG)
� �

, entailment satisfies the following

axioms.

These are converted to inference rules in Table 1.

Information flow can be used to compute the fusion olog for an

information system and to define the consequence of an

information system. Fusion is direct system flow, and consequence

is the composition of direct and inverse system flow. Let

S [inf oI(G) be any information system. The fusion‘
S~dirSI,GT(S)~S

‘
G ,_n [I dir(in)(En)T [f br(ĜG) is an olog

that represents the whole system in a centralized fashion [20],[17].

The consequence S%
SI,GT~invSI,GT(dirSI,GT(S))~invSI,GT(

‘
S)~

finv(in)(
‘
S)jn [Ig [inf oI(G) is an information system that

represents the whole system in a distributed fashion [17]. It is

inverse flow of the fusion olog along the optimal channel, transfering

the entailed facts of the whole system to the component parts. By

allowing system shape to vary, channels can be generalized to

morphisms of distributed systems. Then a notion of relative fusion

(direct system flow) can be defined in terms of left Kan extension,

and a notion of relative system consequence can be defined as the

composition of direct followed by inverse system flow.

The consequence operator ({)%, which is defined on

information systems, is a closure operator on the complete

preorder inf oI(G), and by taking the coproduct it is a closure

operator on the complete preorder Info(I)~
‘
G [Dist(I) inf oI(G):

(increasing) S§S%, (monotonic) S§S0 implies S%
§S0% and

ð28Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 12 January 2012 | Volume 7 | Issue 1 | e24274

(idempotent) S%%~S%. Pointwise entailment order ƒ on Info(I)
is only a preliminary order, since it does not incorporate

interactions between system component parts. System entailment

order [on Info(I) is defined by S1[S2 when S%
1 ƒS%

2 ;

equivalently, S%
1 ƒS2. Pointwise order is stronger than system

entailment order: S1ƒS2 implies S1[S2. This is a specialization-

generalization order. Any information system S is entailment

equivalent to its consequence S%S%. An information system S is

closed when it is equal to its consequence S~S%.

The whole effect of taking the system consequence may be

greater than the sum of its parts, in the sense that Sn§nS%in
n

§n _m inv(in)(dir(im)(Sm))§nS%

n for any n [I, since separate parts

may have a productive interaction at the channel core. A final part

of an information system is a part with no non-trivial constraint links

from it. (The graphical subsystem beneath) nonfinal parts are

necessary for the alignment of information systems, resulting in the

equivalencing of types and aspects through quotienting. However,

because of the covering condition in~Ge0im and the entailment

order dir(Ge)(En)§mEm for constraint links Se : Sn?Sm, only the

fact(ual) content of final parts of information systems are necessary

to compute the system fusion and consequence.

4.3.6 General examples. Here are some examples of system

fusion/consequence.

N An information system S with a constant underlying distributed

system, Gi~G for all n [I, gathers together all the component

parts of the information system and forms their consequence. It

has identity flow links fin~idG : G?G~
‘
G jn [Ig, compo

nent join fusion
‘
S~_n [I Sn~SG,

S
n [I EnT, and constant

system consequence S%
n ~ _n’ [I Sn’ð Þ. for all n [I.

N A discrete information system S~fSn~SGn,EnTjn [Ig with

no constraint links Ge : Sn?Sm for n=m, has coproduct

injection flow links in : Gn?zn [I Gn, non-restricting fusion,

and inverse flow projecting back to individual component

consequence S%
n ~S.n for all n [I. No alignment (constraint)

links means no interaction.

N An information system S~fS1
H1 S H2 S2g consisting of a

single common ground S~SG,ET between two component

ologs S1~SG1,E1T and S2~SG2,E2T, with underlying

distributed system (span) G~fG1
H1 G

H2 G2g, has pushout

injection flow links G1
i1 ‘

G
i2 G2, direct image union

fusion
‘
S~langle

‘
G ,dir(i1)(E1)|dir(i2)(E2)T, and system

consequence components S%
n ~SGn,inv(in)(dir(i1)(E1)|dir(i2)

(E2))T for n~1,2. The flow links will quotient any types and

aspects that are connected through the common ground

allowing for the approprate interaction in the fusion conse

quence (dir(i1)(E1)|dir(i2)(E2))., then the inverse flow will

reconnect this with the component types and aspects.

4.4 Conceptual graphs
The conceptual graph formalism (CG) for knowledge represen-

tation [15], was initially formulated to represent database systems

(DBS), but is now used in natural language processing (NLP) and

first-order logic (FOL). Verbs in NLP can often be represented

relationally by star(-shaped conceptual) graphs. For example, the

sentence ‘‘John is going to Boston by bus’’ might be represented by

the conceptual graph

In a sentence of natural language, thematic roles are semantic

descriptions of the way (the entities described by) a noun phrase

functions with respect to (the action of) the verb. These entities are

the participants in the occurrent expressed by the verb. For the

action of ‘going’ in the above sentence there are three participants

and hence three thematic roles. ‘John’ plays the role of the agent of

the action, a ‘Bus’ is the instrument used in the action and ‘Boston’

is the destination of the action. Translations using thematic roles

can be used to align two ontologies with respect to a common

ground. A CG-style translation of conceptual graph (29) would

replace the verb relation ‘going’ with a concept ‘Go’ and replace

the edges that form the signature of the ‘going’ relation with binary

relations for the three roles ‘agent’, ‘instrument’ and ‘destination’.

However, the case relations that semantically describe the thematic

roles should be viewed as functional in nature; that is, for any instance

of the action of a sentence’s verb there is a unique entity described by a

noun phrase of the sentence. When this semantics is respected, the

translation to thematic roles becomes a process of ‘‘linearization’’,

which is best described abstractly as: (1) the identification of relation

types with entity types, (2) the translation of a sorted multiarity relation

to a span of functions, one function for each role, and (3) the functional

interpretation of thematic roles.

The Olog formalism, which also represents DBS and NLP, is a

version of equational logic. Both the Olog and CG formalisms

were designed as graphical representations. However, the CG

formalism is binary and relational, whereas the Olog formalism is

unary and functional. The CG formalism is binary since it has two

kinds of type, concepts and relations; it is relational in the way it

interprets edges. The Olog formalism is unary since it has only one

kind of type, the abstract concept; it is functional in the way it

interprets aspects (edges). However, much of the semantics of the

CG formalism can be transformed to the Olog formalism by the

process of linearization, thereby gaining in efficiency and

conciseness. This linearization process works for any binary/

relational knowledge representation, such as CGs, entity-relation-

ship data modelling [21], relational database systems or the

Information Flow Framework [22]. In the entity-relationship data

modelling, n-ary relationship links are replaced by n-ary spans of

aspects and attributes are included as types.

For example, the conceptual graph (29) can be linearized to the

olog graph in diagram (31), where 1 is the universal type to which

all types have a unique aspect. Since olog aspects are interpreted

functionally, the functional nature of thematic roles is respected. In

this manner, the olog formalism could be used to replace the CG

representation of ontologies. For example, a community (acting as

an individual) could build its ontology C from ground up by aligning

it with some top-level reference ontology T (such as in the appendix

of [15]), thereby importing some formal semantics from T . The

following fragment demonstrates how this works.

ð29Þ

ð30Þ

ð31Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 13 January 2012 | Volume 7 | Issue 1 | e24274

Assume that ontology T contains the concept of ‘‘spatial process’’

as represented by the general concept type with aspects

Spatial{Process
agent

Agent , Spatial{Process inst Vehicle and

Spatial{Process dest Location . At some stage assume that the

community ontology C has specified the concept type orderings

Person ƒAgent , Bus ƒVehicle and City ƒLocation with

corresponding injective aspects Person is Agent , Bus is Vehicle
and City is Location . At the next stage it could define a concept

type with aspects C
person

Person , C bus Bus and C
city

City , and

link it with the reference ontology concept by specifying a connecting

aspect C
process

Spatial{Process and asserting the facts

‘person ; is~process ; agent ’, ‘bus ; is~process ; vehicle ’

and ‘city ; is~process ; location ’. In the more expressive ologs

with joins (Section 5), the process concept of ‘‘going to city by bus’’ can

then be defined as the pullback of the ‘‘spatial process’’ concept: here,

the concept type with aspects Go
person

Person , Go bus Bus and

Go
city

City is pulled back along the above injective aspects, resulting

in the injective aspect Go is Spatial{Process with corresponding

concept type ordering Go ƒSpatial{Process . As a result, the

concept C has the new mediating aspect C
going

Go , which satisfies

the fact ‘going ; is~process ’. In this manner the community

ontology C has been enlarged.

We assume that community ontology C and reference

ontology T are combined into a portal ontology P with portal

link C P P and alignment link T A P. If some other ontology

C0 is built up and aligned in the same fashion, then T is being

used as a common ground, and we have a ‘W’-shaped

information system

with portals P and P0 being the final parts. This ‘W’-shaped

information system uses the sketch institution Sk for ologs. It can

be compared to the ‘W’-shaped information system in [23], which

uses the information flow IF institution for (local) logics.

5 More expressive ologs I

In this section and the next (5 and 6) we will introduce limits and

colimits within the context of ologs. These will allow authors to

build ologs that are quite expressive. For example we can declare

one type to be the union or intersection of other types. We do not

assume mathematical knowledge beyond that of sets and functions,

which were loosely defined in Section 2.2. However, the reader

may benefit by consulting a reference on category theory, such as

[5].

The basic ologs discussed in previous sections are based on the

mathematical notion of categories, whereas the olog presentation

language we will discuss in this section and the next are based on

general sketches (see [24]). The difference is in what can be expressed:

in basic ologs we can declare types, aspects, and facts, whereas in

general ologs we can express ideas like products and sums, as we

will see below.

We will begin by discussing layouts, which will be represented

categorically by ‘‘finite limits’’. As usual, the english terminology

(layout) is not precise enough to express the notion we mean it to

express (limit). Intuitively, a limit can be thought of as a system: it

is a collection of units, each of a specific type, such that these

units have compatible aspects. These will include types like

a man and a woman with the same last name . In Section 6 we will

discuss groupings, which will be represented by colimits. These will

include types like a thing that is either a paper or a watermelon .

5.1 Layouts
A dictionary might define the word layout as something like

‘‘a structured arrangement of items within certain limits; a plan

for such arrangement.’’ In other words, we can lay out or

specify the need for a set of parts, each of a given type, such

that the parts fit together well. This idea roughly corresponds to

the notion of limits in category theory, especially limits in the

category of sets. Given a diagram of sets and functions, its limit

is the set of ways to accordingly choose one element from each.

For example, we could have a type a car and a driver , which

category-theoretically is a product, but which we are calling a

‘‘layout’’ – a compound type whose parts are ‘‘laid out.’’ Of

course, the term layout is insufficient to express the precise

meaning of limits, but it will have to do for now. To understand

limits, one really only need understand pullbacks and products.

These will be the subjects of Sections 5.2 and 5.3, or one can

see [5] for more details.

5.2 Pullbacks
Given three objects and two arrows arranged as to the left, the

pullback is the commutative square to the right

We write A~B|DC and say ‘‘A is the pullback of B and C
over D.’’ The question is, what does it signify? We will begin with

some examples and then give a precise definition.

5.2.1 Example. We will now give four examples to

motivate the definition of pullback. In the first example, (34),

both B and C will be subtypes of D, and in such cases the

pullback will be their intersection. In the next two examples

(35 and 36), only B will be a subtype of D, and in such cases the

pullback will be the ‘‘corresponding subtype of C’’ (as should

make sense upon inspection). In the last example (37), neither

B nor C will be a subtype of D. In each line below, the

pullback of the diagram to the left is the diagram to the right.

The reader should think of the left-hand olog as a kind of

problem to which the new box A in the right-hand olog is a

solution.

ð32Þ
ð33Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 14 January 2012 | Volume 7 | Issue 1 | e24274

See Example 5.2.3 for a justification of these, in light of

Definition 5.2.2.

The following is the definition of pullbacks in the category of

sets. For an olog, the instance data are given by sets (at least in this

paper, see Section 3), so this definition suffices for now. See [5] for

more details on pullbacks.
5.2.2 Definition. Let B,C, and D be sets, and let f : B?D

and g : C?D be functions. The pullback of B
f

D
g

C,

denoted B|DC, is defined to be the set

B|DC : ~f(b,c) j b [B,c [C,and f (b)~g(c)g

together with the obvious maps B|DC?B and B|DC?C,

which send an element (b,c) to b and to c, respectively. In other

words, the pullback of B
f

D
g

C is a commutative square

5.2.3 Example. In Example 5.2.1 we gave four examples of

pullbacks. For each, we will consider B
f

D
g

C to be sets and

functions as in Definition 5.2.2 and explain how the set A follows

that definition, i.e., how its label fits with the set

B|DC~f(b,c) j b [B,c [C,and f (b)~g(c)g.
In the case of (34), the set B|DC should consist of pairs (w,l)

where w is a wealthy customer, l is a loyal customer, and w is equal

to l (as customers). But if w and l are the same customer then (w,l)
is just a customer that is both wealthy and loyal, not two different

customers. In other words, an instance of the pullback is a

customer that is both loyal and wealthy, so the label of A fits.

In the case of (35), the set B|DC should consist of pairs (p,b)
where p is a person, b is the color blue, and the favorite color of p

is equal to b (as colors). In other words, it is a person whose

favorite color is blue, so the label of A fits. If desired, one could

instead label A with a pair p,bð Þwhere p is a person, b is blue,
and the favorite color of p is b .

In the case of (36), the set B|DC should consist of pairs (d,w)
where d is a dog, w is a woman, and the owner of d is equal to w

(as people). In other words, it is a dog whose owner is a woman, so

the label of A fits. If desired, one could instead label A with a pair
d,wð Þwhere d is a person , w is blue, and the owner of d is w .

In the case of (37), the set B|DC should consist of pairs (f ,s) where

f is a piece of furniture, s is a space in our house, and the width of f is

equal to the width of s. This is fits perfectly with the label of A.

5.2.4 Using pullbacks to classify. To distinguish between

two things, one must find a common aspect of the two things for

which they have differing results. For example, a pen is different

from a pencil in that they both use some material to write (a

common aspect), but the two materials they use are different. Thus

the material which a writing implement uses is an aspect of writing

implements, and this aspect serves to segregate or classify them.

We can think of three such writing-materials: graphite, ink, and

pigment-wax. For each, we will make a layout in the olog below:

One could also replace the label of box A1 with ‘‘a pencil’’, the

label of box A2 with ‘‘a pen’’, and the label of box A3 with ‘‘a

crayon’’; in so doing, the layouts at the top would define a pencil, a

pen, and a crayon to be a writing implement that uses respectively

graphite, ink, and pigment-wax.

5.2.5 Building pullbacks on pullbacks. There is a theorem

in category theory which states the following. Suppose given two

commutative squares

such that the right-hand square (3,4,5,6) is a pullback. It follows

that if the left-hand square (1,2,3,4) is a pullback then so is the big

rectangle (1,2,5,6). It also follows that if the big rectangle (1,2,5,6)

is a pullback then so is the left-hand square (1,2,3,4). This fact can

be useful in authoring ologs.

For example, the type a cellphone that has a bad battery is

vague, but we can lay out precisely what it means using pullbacks

ð34Þ

ð35Þ

ð36Þ

ð37Þ

ð38Þ

ð39Þ

ð40Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 15 January 2012 | Volume 7 | Issue 1 | e24274

The category-theoretic fact described above says that since

A~B|DC and C~D|F E, it follows that A~B|F E. That is,

we can deduce the definition ‘‘a cellphone that has a bad battery is

defined as a cellphone that has a battery which remains charged

for less than one hour.’’ In other words, A~B|F E.

5.3 Products
Given a set of types (boxes) in an olog, one can select one

instance from each. All the ways of doing just that comprise what

is called the product of these types. For example, if

A~a number between 1 and 10 and B~a letter between x and
z , the product includes a total of 30 elements, including (4,z). We

are ready for the definition.

5.3.1 Definition. Given sets A,B, their product, denoted

A|B, is the set

A|B~f(a,b) j a [A and b [Bg: ð42Þ

There are two obvious projection maps A|B?A and A|B?B,

sending the pair (a,b) to a and to b respectively.

5.3.2 Example. In Example 5.2.1, (37) we presented the idea

of a piece of furniture that was the same width as a space in the

house. What if we say that a nice furniture placement is any

space that is between 1 and 8 inches bigger than a piece of

furniture? We can use a combination of products and pullbacks to

create the appropriate type

Here B and D are products and A is a pullback. This olog

lays out what it means to be ‘‘a nice furniture placement’’ using

products. The bottom horizontal aspect B?D is an example of a

map obtained by the ‘‘universal property of products’’; see Section

5.6.

5.3.3 Products of more (or fewer) types. The product of

two sets A and B was defined in 5.3.1. One may also take the

product of three sets A,B,C in a similar way, so the elements are

triples (a,b,c) where a [A,b [B, and c [C. In fact this idea holds

for any number of sets. It even makes sense to take the product of

one set (just A) or no sets! The product of one set is itself, and the

product of no sets is the singleton set f�g. For more on this, see

Section 5.5 or [6].

5.4 Declaring an injective aspect
A function is called injective if different inputs always yield

different outputs. For example the function that doubles every

integer (x.2x) is injective, whereas the function that squares

every integer (x.x2) is not because 32~({3)2. An example of an

injective aspect is a woman is a person because different

women are always different as people. An example of a non-

injective aspect is a person has as father a person because different

people may have the same father.

The easiest way to indicate that an aspect is injective is to use a

‘‘hook arrow’’ as in f : A B, instead of a regular arrow

f : A?B, to denote it. For example, the first map is injective (and

specified as such with a hook-arrow), but the second is not in the

olog:

The author of this olog believes that no two people can have

precisely the same personality (though they may have the same

personality type).

We include injective aspects in this section because it turns out

that injectivity can also be specified by pullbacks. See [25] for

details.

5.5 Singleton types
A singleton set is a set with one element; it can be considered the

‘‘empty product.’’ In other words if we denote An~A|A| � � �A
(where A is written n times), then A0 is the empty product and is a

singleton set. One can specify that a certain type has only one instance

by annotating it with A~f�g in the olog. For example the olog

says that the author considers God to be single. As a more

concrete example, the intersection of fx [R j x§0g and fy
[R j xƒ0g is a singleton set, as expressed in the olog

The fact that A~B|DC and A~f�g are declared indicates that

there is only one possible instance of a real number that is in both B
and C.

5.6 The universal property of layouts
We cannot do the notion of universal properties justice in this

paper, but the basic idea is as follows. Suppose that D is an olog,

that D1,D2 are types in it, and that D~D1|D2 (together with its

projection maps p1 : D?D1 and p2 : D?D2) is their product.

ð41Þ

ð43Þ

ð44Þ

ð45Þ

ð46Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 16 January 2012 | Volume 7 | Issue 1 | e24274

The so-called universal property of products should be thought

of as ‘‘an existence and uniqueness’’ claim in D. Namely, for any

type X with maps f : X?D1 and g : X?D2, there is exactly one

possible map m : X?D such that the facts f ~m; p1 and g~m; p2

hold.

This may sound esoteric, but consider the following example.

The following olog in similar to the one in Example 5.3.2

Here the only unlabeled map is the horizontal one B?D; how

can we get away with leaving it unlabeled? How does a piece of

furniture and a space in the house yield a pair of numbers? The

answer is that B has a map to D1 (the path across the top) and a

map to D2 (the path across the bottom), and hence the universal

property of products gives a unique arrow B?D such that the two

facts indicated by checkmarks hold. (In terms of (46) and (47) we

are using X~B.) In other words, there is exactly one way to take a

piece of furniture and a space in the house and yield a pair of

numbers if we enforce that the first number is the width in inches

of the piece of furniture and the second number is the width in

inches of the space in the house.

At this point we hope it is clear that the universal property of

products is a useful and constructive one. We will not describe the

other universal properties (either for pullbacks, singletons, or any

colimits); as mentioned above they can be found in [5].

6 More expressive ologs II

In this section we will describe various colimits, which are in

some sense dual to limits. Whereas limits allow one to ‘‘lay out’’ a

team consisting of many different interacting or non-interacting

parts, colimits allow one to ‘‘group’’ different types together. For

example, whereas the product of a number between 1 and 10 of

and a letter between x and z has 30 elements (such as (3,y)), the

coproduct of these two types has 13 elements (including 4). Just as

‘‘layout’’ is a too weak a word to capture the essence of limits,

‘‘grouping’’ is too weak a word to capture the essence of colimits,

but it will have to do.

We will start by describing coproducts or ‘‘disjoint unions’’ in

Section 6.1. Then we will describe pushouts in Section 6.2,

wherein one can declare some elements in a union to be equivalent

to others. There is a category-theoretic duality between coproducts

and products and between pushouts and pullbacks. It extends to a

duality between surjections and injections and a duality between

empty types and singleton types, the subject of Sections 6.3 and

6.4. The interested reader can see [5] for details.

6.1 Coproducts
Coproducts are also called ‘‘disjoint unions.’’ If A and B are sets

with no members in common, then the coproduct of A and B is

their union. However, if they have elements in common, one must

include both copies in A
‘

B and differentiate between them.

Here is a definition.
6.1.1 Definition. Given sets A and B, their coproduct, denoted

A
‘

B, is the set

A
a

B~f(a,‘‘A") j a [Ag|f(b,‘‘B") j b [Bg: ð50Þ

There are two obvious inclusion maps A?A
‘

B and B?A
‘

B,

sending a to (a,‘‘A") and b to (b,‘‘B"), respectively.

If A and B have no elements in common, then the one can drop

the ‘‘A’’ and ‘‘B’’ labels without changing the set A
‘

B in a

substantial way. Here are two examples that should make the

coproduct idea clear.
6.1.2 Example. In the following olog the types A and B are

disjoint, so the coproduct C~A
‘

B is just the union.

6.1.3 Example. In the following olog, A and B are not

disjoint, so care must be taken to differentiate common elements.

Since ducks can both swim and fly, each duck is found twice in

C, once labeled as a flyer and once labeled as a swimmer. The

types A and B are kept disjoint in C, which justifies the name

‘‘disjoint union.’’

6.2 Pushouts
Pushouts can express unions in which an overlap is declared.

They can also express ‘‘quotients,’’ where different objects can be

declared equivalent. Given three objects and two arrows arranged

as to the left, the pushout is drawn as the commutative square to

the right

We write D~B
‘

AC and say ‘‘D is the pushout of B and C
along A.’’ The question is, what does it signify?

The idea is that an instance of the pushout B
‘

AC is any

instance of B or any instance of C, but where some instances are

considered equivalent to others. That is, for any instance of A, its

B-aspect is considered the same as its C-aspect. This is formalized

in Definition 6.2.2 after being exemplified in Example 6.2.1.

6.2.1 Example. In each example below, the diagram to the

right is the pushout of the diagram to the left. The new object, D,

is the union of B and C, but instances of A are equated to their B

and C aspects. This will be discussed after the two diagrams.

ð47Þ

ð48Þ

ð49Þ

ð51Þ

ð52Þ

ð53Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 17 January 2012 | Volume 7 | Issue 1 | e24274

In the olog (52), the shoulder is seen as part of the arm and part

of the torso. When taking the union of these two parts, we do not

want to ‘‘double-count’’ the shoulder (as would be done in the

coproduct B
‘

C, see Example 6.1.3). Thus we create a new type

A for cells in the shoulder, which are considered the same whether

viewed as cells in the arm or cells in the body. In general, if one

wishes to take two things and glue them together, the glue serves as

A and the two things serve as B and C, and the union (or

grouping) is the pushout B
‘

AC.

In the olog (53), if every mathematics course is simply ‘‘too

hard,’’ then when reading off a list of courses, each math course

will not be read aloud but simply read as ‘‘too hard.’’ To form D
we begin by taking the union of B and C, and then we consider

everything in A to be the same whether one looks at it as a course

or as the phrase ‘‘too hard.’’ The math courses are all blurred

together as one thing. Thus we see that the power to equate

different things can be exercised with pushouts.

6.2.2 Definition. Let A,B, and C be sets and let f : A?B
and g : A?C be functions. The pushout of B

f
A

g
C,

denoted B
‘

AC, is the quotient of B
‘

C (see Definition 6.1.1)

by the equivalence relation generated by declaring b*c (i.e., b is

equivalent to c) if: b [B,c [C, and there exists a [A with f (a)~b
and g(a)~c.

6.3 Declaring a surjective aspect
A function f : A?B is called surjective if every value in B is the image

of something in the domain A. For example, the function which

subtracts 1 from every integer (x.x{1) is surjective, because every

integer has a successor; whereas the function that doubles every integer

(x.2x) is not surjective because odd numbers are not mapped to. The

aspect is a published paper
was published in

an established journal is

surjective because every established journal has had at least

one paper published in it. The aspect is a published
paper has as first author a person is not surjective because not every

person is the first author of a published paper.

The easiest way to indicate that an aspect is surjective is to

denote it with a ‘‘two-headed arrow’’ as in f : A B. For example,

the second map is surjective (and indicated with a two-headed

arrow) in the olog

Here the first aspect is not considered surjective, presumably

because the author imagines personalities had by no person.

We include surjective aspects in this section because it turns out

that surjectivity can also be specified by pushouts. See [26] for

details.

6.4 Empty types
The empty set is a set with no elements; it can be considered

the ‘‘empty coproduct.’’ In other words if we denote n � A
~A

‘
A
‘
� � �
‘

A (where A is written n times), then 0 � A is

the empty coproduct and is the empty set. One can declare a type to

be empty by annotating it with A~1 in the olog.

says that the set of supernatural beings is empty. As a more

concrete example, the intersection of positive numbers and

negative numbers is empty, as expressed in the olog

6.5 Images
In what remains of Section 6, we will discuss how the ideas of

this section and the previous (Section 5) can be used together to

create quite expressive ologs. First we will discuss how each aspect

f : A?B has an ‘‘image,’’ the subset of B that are ‘‘hit’’ by f .

Then, in Sections 6.6 and 6.7, we will discuss how ologs can

express all primitive recursive functions and many other

mathematical concepts. Consider the olog

Some people own more than one computer, and some

computers are owned by more than one person. Some computers

are not owned by a person, and some people do not own a

computer. The purpose of this section is to show how to use ologs

to capture ideas such as ‘‘a person who owns a computer’’ and ‘‘a

computer that is owned by a person’’. These are called the images

of p and c respectively.

Every aspect has an image, and these are quite important for

human understanding. For example the image of the map

a person has as father a person is the type a father . In other

words, a father is defined to be a person x for which there is some

other person y such that x is the father of y.

The image of a function f : A?B is a commutative diagram (fact)

ð54Þ

ð55Þ

ð56Þ

ð57Þ

ð58Þ

ð59Þ

ð60Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 18 January 2012 | Volume 7 | Issue 1 | e24274

where fs is surjective and fi is injective (see Sections 6.3 and 5.4).

We indicate that a type is the image of a map f by annotating it

with Im(f), as in follow olog:

Hopefully it is also clear that a person who owns a computer
and a computer that is owned by a person are the images of

p : X?Y and c : X?Z (respectively) in Olog (57).

Using the label Im(f) is the easiest way to indicate an image,

although one can also do so categorically using limits and colimits.

See [6, Chapter VIII] for details.

6.6 Application: Primitive recursion
We have already seen how ologs can be used to express a

conceptual understanding of a situation (all the ologs thus far

exemplify this idea). In this section we hope to convince the reader

that ologs are also able to express certain computations. In

particular we will show by example that primitive recursive

functions (like factorial or fibonacci) can be expressed by ologs. In

this way, we can to put computation and knowledge representa-

tion together into the same framework. It would be quite valuable

to strengthen this connection by showing that Ologs (or an

extension thereof) can express any recursive function (i.e., simulate

Turing machines). This is an open research possibility.

Example 6.6.1. In this example we will present an olog that can

represent the ‘‘Factorial function,’’ often denoted n.n!, where for

example the factorial of 4 is 24. Recall that a natural number is any

nonnegative whole number: 0,1,2,3,4,

The idea of this olog is to convey the factorial function as

follows. A natural number is either zero or positive. Every positive

natural number n has a decrement, n{1. The factorial of zero is

1. The factorial of a positive number n is obtained by multiplying n
by the factorial of n{1.

To more explicitly describe the above olog, we must describe its

intended instances. Hopefully the instances of each type (A
through E) are self-explanatory, so we will describe the grouping,

the layout, the aspects, and the facts. The set of natural numbers is

the disjoint union of zero and the set of positive natural numbers

and the maps i0 and i1 are the inclusions into the coproduct, which

explains the grouping C~A
‘

E. The layout B~A|D is self-

explanatory, and the maps p and q are the projections from the

product. The map d is the decrement map n.n{1, the map v
sends 0 to 1, the map m is multiplication (n,n’).n � n’. Once m, d,

and v are so-defined, the first two facts (s; p~idA and s; q~d; f)

specify that s sends n to the pair (n,f (d(n))), and the second two

facts specify that f sends 0 to 1 and sends a positive number n to

m(s(n))~m(n,f (d(n))), i.e., n goes to the product n � (n{1)!.
The above olog defines the factorial function (f) in terms of

itself, which is the hallmark of primitive recursion. Note, however,

that this same olog can compute many things besides the factorial

function. That is, nothing about the olog says that the instances of

Zero is the set f0g, that v sends 0 to 1, that d is the decrement

function, or that m is multiplication – changing any of these will

change f as a function. For example, the same olog can be used to

compute ‘‘triangle numbers’’ (e.g. f(4) = 1+2+3+4 = 10) by simply

changing the instances of v and m in the obvious ways (use

v~0,m~z rather than v~1,m~ �)). For a radical departure,

fix any forest (set of graphical trees) F , let E~ zero represent its

set of roots, A the other nodes, v the constant 0 function, d the

parent function, and m sending (p,d(p)) to f (d(p))z1. Then for

each tree in F and each node n in that tree, the function f will

send n to its height on the tree.

Primitive recursion is a powerful technique for deriving new

functions from the repetition of others using a kind of ‘‘while

loop.’’ The general form of primitive recursive functions can be

found in [27], and it is not hard to imitate Example 6.6.1 for the

general case.

6.7 Application: Defining mathematical concepts
In this subsection we hope to convince the reader that many

mathematical concepts can be defined by ologs. This should not

seem like much of a stretch: ologs describe relationships between

sets, so we rely on the maxim that all of mathematics can be

formulated within set theory. To make the idea explicit, however,

we will recall the definition of pseudo-metric space (in 6.7.1) and

then provide an olog with the same content (in 61).

6.7.1 Definition. Let R§0 denote the set of non-negative real

numbers. A pseudo-metric space is a pair (X ,d) where X is a set and

d : X|X?R§0 is a function with the following properties for all

elements x,y,z [X :

1. d(x,x)~0;

2. d(x,y)~d(y,x); and

3. d(x,z)ƒd(x,y)zd(y,z).

ð61Þ

ð62Þ

ð63Þ

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 19 January 2012 | Volume 7 | Issue 1 | e24274

As long as the instances for the right-hand side of the olog are

mathematically correct (i.e., we assign 4 the set of non-negative

real numbers), this olog has the same content as Definition 6.7.1.

One can use ologs to define usual metric spaces (in which Property

(1) in Definition 6.7.1 is strengthened), but it would have taken too

much space here.

It should be clear that ologs provide a more precise and explicit

description of any concept, relying less on the grammar of English

and more on the mathematical ‘‘grammar’’ of sets and functions.

Assumptions are exposed as all the working parts of an object need

to be explicitly documented. Thus an olog is likely to be instantly

readable by a theorem prover such as Coq ([28]), at least if one

creates the olog within an appropriate Olog-Coq interface API.

Moreover, various parts of this olog may be reusable in other

contexts, and hence connect pseudo-metric spaces into a web of

neighboring definitions and theorems.

In fact, once a corpus of mathematics has been written in olog

form, evidence of conjectures not yet proven could be written

down as instance data. For example, one could record every

known prime as instances of a type and a machine could

automatically check that Goldbach’s conjecture (written as an olog

containing as a type) holds for all example ‘‘so far.’’ With

definitions, theorems, and examples all written in the same

computer-readable language of ologs, one may hope for much

more advanced searching and knowledge retrieval by humans. For

example, one could formulate very precise questions as database

queries and use SQL on the database corresponding to a given

olog (see Section 3.2).

7 Further directions

Ologs are basically categories which have text labels to explain

their intended semantic. As such there are many directions to

explore ranging from quite theoretical to quite practical. Here we

consider three main classes: extending the theory of ologs, studying

communication with ologs, and implementing ologs in the real

world.

7.1 Extending the theory of ologs
In this paper we began by discussing basic ologs, which are rich

enough to capture the semantic of many situations. In Sections 5

and 6 we added more expressivity to ologs to allow one to encode

ideas such as intersections, unions, and images. However, ologs

could be even more expressive. One could add ‘‘function types’’

(also known as exponentials); add a ‘‘subobject classifier type,’’

which could allow for negation and complements as well as power-

sets; or even add fixed sets (like the set of Strings) to the language

of ologs. This is not too hard (using sketches, see [24]); the reason

we did not include them in this paper was more because of space

than any other reason.

Another generalization would be to allow the instances of an olog

to take values in a category other than Set. For example, one could

have an instance-space rather than an instance-set, e.g. it is clear

that the instances of the type a point on the unit circle constitute a

topological space. One could similarly argue that the instances of

the type a human invention have a topology or metric as well (e.g.

as an invention, the cellphone is closer to the telephone than it is to

artificial flavoring). Instance data on an olog C corresponds to a

functor C?Set in this paper, but it is quite easy to replace Set with a

different category such as Top (the category of topological spaces),

and this may have interesting uses in data modeling.

In Section 6.7, we explicitly showed that pseudo-metric spaces

(and we stated further that metric spaces) can be presented by

ologs. It would be interesting to see if theorems could also be

proven entirely within the context of ologs. If so, a teacher could

first sketch a mathematical proof as a small or sparse olog C, and

then use a functor C?D to rigorously ‘‘zoom in’’ on that proof so

that the sketch becomes a full-fledged proof (as the maps in C are

factored into understandable units in D).

If ologs are to be viable venues in which to discuss results in

mathematics, then they should be capable of describing all

recursion, not just primitive recursion (as in Section 6.6). We do

not yet have an understanding for how this can be done. If

recursion can be fully defined with the ologs described above, it

would be interesting to see it written out; if not, it would be

interesting to understand what basic idea could be gracefully

added to ologs so that recursion becomes expressible.

In a different direction, one could test the expressive power of

ologs by defining simple games, like Tic Tac Toe or Chess, using

ologs. It would be impressive to define a vocabulary for writing

games and a program which could automatically convert an olog-

defined game into a playable computer game. This would show

that the same theory that we have seen express ideas about

fatherhood and factorials can also be used to invent games and

program computers.

7.2 Studying communication with ologs
As discussed in Section 4, ologs can be connected by functors

into networks that are not just 2-way, but n-way. These

communication networks should be studied: what kinds of

information can pass, how reliable is it, how quickly can it spread,

etc. This may be applicable in fields from economics to psychology

to sociology. Such research may use results from established

mathematics such as Network Coding Theory (see [29]).

Spivak and coauthor Mathieu Anel are preparing for publica-

tion the results of their mathematical description of how two or

more entities (described as ologs) can communicate new ideas (not

just new instance data) to each other. It would be interesting to see

how well this ‘‘communication protocol’’ works in practice, and

whether it can be theoretically automated. Furthermore, this

communication protocol and any theoretical automation of it

should be implemented on a computer to see if different database

schemas can be meaningfully integrated with minimal human

assistance.

It may be possible to train children to create ologs about their

interests or about a given lesson. These ologs would show how the

child actually perceives something, which would probably be

fascinating. By our experience and that of people we have taught,

the process of building an olog usually leads to a clarification of the

concepts involved. Moreover, a class project to connect the ologs

of different students and between the students and the teacher,

may have excellent pedagogical benefits.

Finally, it may be interesting to study ‘‘local truth’’ vs. ‘‘global

truth’’ in a network of ologs. Functorial connections between ologs

can allow for translation of ideas between members of a group, but

there may be ideas which do not extend globally, just as a Möbius

band does not admit a global orientation. That is, given three

parties on the Möbius band, any pair can agree on a compass

orientation, but there is no choice that the three can simulta-

neously agree on. Similarly, whether or not it is possible to

construct a global language which extends all the existing local

ones could be determined if these local languages and their

connections were entered into a computer olog system.

7.3 Implementing ologs in the real world
Once ologs are implemented on computers, and once people

learn how to author good ologs, much is possible. One advantage

comes in searching the information space. Currently when we

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 20 January 2012 | Volume 7 | Issue 1 | e24274

search for a concept (say in Google or on our hard drive), we can

only describe the concept in words and hope that those words are

found in a document describing the concept. That is, search is

always text-based. Better would be if the concept is meaningfully

interconnected in a web of concepts (an olog) that could be

navigated in a meaningful (as opposed to text-based) way.

Indeed, this is the semantic web vision: When internet data is

machine-readable, search becomes much more powerful. Cur-

rently, we rely on RDF scrapers that scour web pages for Ssubject,

predicate, objectT sentences and store them in RDF format, as

though each such sentence is a fact. Since people are inputting

their data as prose text, this may be the best available method for

now; however, it is quite inaccurate (e.g. often 15% of the facts are

wrong, a number which can lead to degeneration of deductive

reasoning – see [30]). If ideas could be put on the internet such

that they compatibly made sense to both human and computer, it

would give a huge boost to the semantic web. We believe that

ologs can serve as such a human-computer interface.

While it is often assumed that because we all speak the same

language we all must mean the same things by it, this is simply not

true. The age-old question about whether ‘‘blue for me’’ is the

same as ‘‘blue for you’’ is applicable to every single word and

idiom in our language. There is no easy way to sync up different

people’s perceptions. If communication is to be efficient,

agreements must be fairly explicit and precise, and this precision

demands a rigor that is simply unavailable in English prose. It is

available in a network of ologs (as described in Section 4).

For example, the laws of the United States are hopelessly

complex. Residents of the US are required to obey the laws.

However, unlike the rules of the Scholastic Aptitude Test (SAT),

which take 10 minutes for the proctor to read aloud, the laws of

the US are never really expressed – the most important among

them are hopefully picked up by cultural osmosis. If an olog was

created which had enough detail that laws could be written in that

format, then a woman could research for herself whether her

landlord was required to fix her refrigerator or whether this was

her responsibility. It may prove that the olog of laws is internally

inconsistent, i.e., that it is impossible for a person to satisfy all the

laws – such an analysis, if performed, could fundamentally change

our outlook on the legal system.

The same goes for science; information written up in articles is

much less accessible than information that is entered into an

ontology. However, the dream of a single universal ontology is

untenable ([31]). Instead we must allow each lab or institute to

create its own ontology, and then require citations to be functorial

olog connections, rather than mere silo-to-silo pointers. Thus, a

network of ologs should be created to represent the understanding

of the modern scientific community as a multi-faceted whole.

Another impetus for a scientist to write an olog about the study

at hand is that, once an olog is made, it can be instantly converted

to a database schema which the scientist can use to input all the

data pertaining to this study. Indeed, if some data did not fit within

this schema, then the olog must have been insufficient to begin

with and should be modified to fully describe the experiment. If

scientists work this way, then the separation between them and

database modelers can be reduced or eliminated (the scientist

assumes the database modeling role with little additional burden).

Moreover, if functorial connections are established between the

ologs of different labs, then data can be meaningfully shared along

those connections, and ideas written in the language of one lab’s

olog can be translated automatically into the language of the

other’s. The speed and accuracy of scientific research should

improve.

Acknowledgments

David Spivak’s acknowledgments

I would like to thank Mathieu Anel and Henrik Forssell for many

pleasant and quite useful conversations. I would also like to thank Micha

Breakstone for his help on understanding the relationship between ologs

and linguistics. Finally I would like to thank Dave Balaban for helpful

suggestions on this document itself.

Robert Kent’s acknowledgments

I would like to thank the participants in the Standard Upper Ontology

working group for many interesting, spirited, rewarding and enlightening

discussions about knowledge representation in general and ontologies in

particular; I especially want to thank Leo Obrst, Marco Schorlemmer and

John Sowa from that group. I want to thank Rudolf Wille for leading the

development of the theory of formal concept analysis and for pointing me

towards the theory of information control. I want to thank Jon Barwise for

leading the development of the theory of information flow. I want to thank

Joseph Goguen for leading the development of the theory of institutions,

and for pointing out the common approach to knowledge representation

used by both the Information Flow Framework and the theory of

institutions.

Author Contributions

Wrote the paper: DIS REK. Invented Ologs: DIS. Wrote sections

1,2,3,5,6,7: DIS. Wrote section 4: REK.

References

1. Lawvere FW, Schanuel SH (2009) Conceptual Mathematics. A First

Introduction to Categories. Cambridge: Cambridge University Press, second
edition.

2. Sica G, ed (2006) What is category theory? Milan, Italy: Polimetrica.

3. Pierce BC (1991) Basic Category Theory for Computer Scientists. Cambridge
Massachusetts: MIT Press.

4. Barr M, Wells C (1990) Category Theory for Computing Science. Prentice Hall

International Series in Computer Science. New York: Prentice Hall Interna-

tional.

5. Awodey S (2010) Category Theory, volume 52 of Oxford Logic Guides. Oxford:
Oxford University Press, second edition.

6. Lane SM (1998) Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. New York: Springer-Verlag, second edition.

7. Contributors Amino acid. Wikipedia, The Free Encyclopedia. Available: http://

en.wikipedia.org/wiki/Amino_acid.

8. Chein M, Mugnier ML (2008) Graph-based Knowledge Representation and

Reasoning: Computational Foundations of Conceptual Graphs. Advanced
Information and Knowledge Processing. London: Springer.

9. Barr M, Wells C (1985) Toposes, Triples and Theories, volume 278 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences]. New York: Springer-Verlag.

10. Borgida A (2007) Knowledge representation meets databases — a view of the
symbiosys —. In: CEUR Workshop Procedings. volume 250, pp. 1–11. Invited

talk and paper at the 20th International Workshop on Description Logics (DL
2007).

11. Healy MJ, Cavdell TP (2004) Neural networks, knowledge and cognition: A
mathematical semantic model based upon category theory. Technical Report

TR-04-020, University of New Mexico, Electrical and Computer Engineering.

12. Sowa J Semantic networks. Available: http://www.jfsowa.com/pubs/semnet.

htm.

13. Goguen J, Burstall R (1992) Institutions: Abstract model theory for specification

and programming. Journal of the Association for Computing Machinery 39:

95–146.

14. Barwise J, Seligman J (1997) Information Flow: The Logic of Distributed

Systems, volume 44 of Cambridge Tracts in Theoretical Computer Science. Cambridge:
Cambridge University Press.

15. Sowa J (2000) Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Pacific GroveCalifornia: Brooks/Cole.

16. Ganter B, Wille R (1999) Formal Concept Analysis: Mathematical Foundations,
volume 44 of Cambridge Tracts in Theoretical Computer Science. New York: Springer.

Translated from the German by Cornelia Franzke. Title of the original German
edition: Formale Begriffesanalyse –Mathe maticische Grundlagen.

17. Kent RE (2009) System consequence. In: Rudolph S, Dau F, Kuznetsov S, eds.
Conceptual Structures: Leveraging Semantic Technologies, Springer, volume

5662 of Lecture Notes in Computer Science. pp. 201–218. The Proceedings of the 17th

International Conference on Conceptual Structures, ICCS 2009, Moscow,

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 21 January 2012 | Volume 7 | Issue 1 | e24274

Russia. Available: http://www.hse.ru/data/708/792/1224/system-consequence_

Robert_E_Kent.pdf.
18. Kent RE (2003) The IFF approach to the lattice of theories. IEEE P1600.1 the

Standard Upper Ontology Working Group (SUO WG). Available: http://suo.

ieee.org/IFF/work-in-progress/LOT/lattice-of-theories.pdf.
19. Tarlecki A, Burstall R, Goguen J (1991) Some fundamental algebraic tools for

the semantics of computation, Part III: Indexed categories. Theoretical
Computer Science 91: 239–264.

20. Kent RE (2005) Semantic integration in the information flow framework. In:

Kalfoglou Y, Schorlemmer M, Sheth A, Staab S, Uschold M, eds. Semantic
Interoperability and Integration. Dagstuhl, Germany: Internationales Begeg-

nungs - und Forschungszentrum f̈ur Informatik (IBFI), number 04391 in
Dagstuhl Seminar Proceedings. Available: http://drops.dagstuhl.de/opus/front-

door.php?source_opus=41.
21. Johnson M, Rosebrugh R, Wood R (2002) Entity relationship attribute designs

and sketches. Theory and Application of Categories 10: 94–112.

22. Members The Information Flow Framework (IFF). IEEE P1600.1 the Standard
Upper Ontology Working Group (SUO WG). Start Document. Available:

http://suo.ieee.org/IFF/.
23. Kent RE (2003) The IFF foundation for ontological knowledge organization. In:

Williamson NJ, Beghtol C, eds. Knowledge Organization and Classification in

International Information Retrieval, Haworth, volume 37 of Cataloging &

Classification Quarterlypp. 187–203. Invited chapter.

24. Makkai M (1997) Generalized sketches as a framework for completeness

theorems. Part I. Journal of Pure and Applied Algebra 115: 49–79.

25. nLab contributors Monomorphism. nLab, a wiki-lab for collaborative work on

Mathematics, Physics and Philosophy. Available: http://ncatlab.org/nlab/

show/monomorphism.

26. nLab contributors Epimorphism. nLab, a wiki-lab for collaborative work on

Mathematics, Physics and Philosophy. Available: http://ncatlab.org/nlab/

show/epimorphism.

27. Boolos GS, Burgess JP, Jeffrey RC (2007) Computability and Logic. Cambridge:

Cambridge University Press, fifth edition.

28. The Coq proof assistant. Available: http://coq.inria.fr/.

29. Yeung R, Li SY, Cai N (2006) Network coding theory. Foundations and trends

in communications and information theory. Boston: Now Publishers.

30. Mitchell TM, Betteridge J, Carlson A, Hruschka E, Wang RC (2009) Populating

the semantic web by macro-reading internet text. Proceedings of the 8th

International Semantic Web Conference (ISWC 2009) 5823: 998–1002.

31. Mineau GW (1992) Knowledge sharing: Starting with the integration of

vocabularies. Conceptual Structures: Theory and Implementation 754: 34–45.

Ologs: A Categorical Framework for KR

PLoS ONE | www.plosone.org 22 January 2012 | Volume 7 | Issue 1 | e24274

