
Algebraic & Geometric Topology XX (20XX) 1001–999 1001

More on the anti-automorphism of the Steenrod algebra
V. GIAMBALVO

H. R. MILLER

The relations of Barratt and Miller are shown to include all relations among the
elements PiχPn−i in the mod p Steenrod algebra, and a minimal set of relations
is given.

55S10

1 Introduction

Milnor [4] observed that the mod 2 Steenrod algebra A forms a Hopf algebra with
commutative diagonal determined by

(1) ∆Sqn =
∑

i

Sqi ⊗ Sqn−i .

This allowed him to interpret the Cartan formula as the assertion that the cohomology
of a space forms a module-algebra over A. The anti-automorphism χ in the Hopf
algebra structure, defined inductively by

(2) χSq0 = Sq0 ,
∑

i

SqiχSqn−i = 0 for n > 0 ,

has a topological interpretation too: If K is a finite complex then the homology of the
Spanier-Whitehead dual DK+ of K+ is canonically isomorphic to the cohomology of
K . Under this isomorphism the left action by θ ∈ A on H∗(K) corresponds to the
right action of χθ ∈ A on H∗(DK+).

In 1974 Davis [3] proved that sometimes much more efficient ways exist to compute
χSqn ; for example

(3) χSq2r−1 = Sq2r−1
χSq2r−1−1 ,

(4) χSq2r−r−1 = Sq2r−1−1χSq2r−1−r + Sq2r−1
χSq2r−1−r−1 .

Similarly, Straffin [6] proved that if r ≥ 0 and b ≥ 2 then

(5)
∑

i

Sq2riχSq2r(b−i) = 0 .
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Both authors give analogous identities among reduced powers and their images under
χ at an odd prime as well. Futher relations among the Steenrod squares and their
conjugates appear in these articles and elsewhere (e.g. [5]).

Barratt and Miller [1] found a general family of identities which includes (3), (4), and
(5), and their odd-prime analogues, as special cases. We state it for the general prime.
When p = 2, Pn denotes Sqn . Let α(n) denote the sum of the p-adic digits of n.

Theorem 1.1 [1, 2] For any integer k and any integer l ≥ 0 such that pl − α(l) <

(p − 1)n,

(6)
∑

i

(
k − i

l

)
PiχPn−i = 0 .

The relations defining χ occur with l = 0. Davis’s formulas (for p = 2) are the cases
in which (n, l, k) = (2r−1, 2r−1−1, 2r−1) or (n, l, k) = (2r− r−1, 2r−1−2, 2r−2).
Straffin’s identities (for p = 2) occur as (n, l, k) = (2rb, 2r − 1,−1).

Since
((k+1)−i

l

)
−

(k−i
l

)
=

(k−i
l−1

)
, the cases (l, k + 1) and (l, k) of (6) imply it for

(l − 1, k). Thus the relations for l = φ(n) − 1, where

(7) φ(n) = 1 + max{j : pj − α(j) < (p − 1)n} ,

imply all the rest. Here we have adopted the notation φ(n) used in [2]; we note that it
is not the Euler function ϕ(n).

When p = 2, φ(2r − 1) = 2r−1 and φ(2r − r − 1) = 2r−1 − 1, so Davis’s relations
are among these basic relations.

Two questions now arise. To express them uniformly in the prime, let P denote the
algebra of Steenrod reduced powers (which is the full Steenrod algebra when p = 2),
but assign Pn degree n. Write

Vn = Span{PiχPn−i : 0 ≤ i ≤ n} ⊆ Pn .

It is natural to ask:
– Are there yet other linear relations among the n + 1 elements PiχPn−i in Pn ?
– What is a basis for Vn ?
We answer these questions in Theorem 1.4 below.

Write ei, 0 ≤ i ≤ n, for the ith standard basis vector in Fn+1
p .
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Proposition 1.2 For any integers l, m, n, with 0 ≤ l ≤ n,

(8)

{∑
i

(
k − i

l

)
ei : m ≤ k ≤ m + l

}
is linear independent in Fn+1

p .

Proposition 1.3 The set

(9)
{

PiχPn−i : φ(n) ≤ i ≤ n
}

is linearly independent in Pn .

Define a linear map

(10) µ : Fn+1
p → Pn , µei = PiχPn−i .

Theorem 1.1 implies that if l = φ(n)−1 the elements in (8) lie in ker µ, so Propositions
1.2 and 1.3 imply that (8) with l = φ(n) − 1 is a basis for ker µ and that (9) is a basis
for Vn ⊆ Pn . Thus:

Theorem 1.4 Any φ(n) consecutive relations from the set (6) with l = φ(n) − 1
form a basis of relations among the elements of {PiχPn−i : 0 ≤ i ≤ n}. The set
{PiχPn−i : φ(n) ≤ i ≤ n} is a basis for Vn .

Acknowledgements. We thank Richard Stanley for the slick proof of Proposition 1.2.
This material is based upon work supported by the National Science Foundation under
Grant No. 0905950.

2 Independence of the relations

We wish to show that (8) is a linearly independent set. Regard elements of Fn+1
p as

column vectors, and arrange the l + 1 vectors in (8) as columns in a matrix, which
we claim is of rank l + 1. The top square portion is the mod p reduction of the
(l + 1) × (l + 1) integral Toeplitz matrix Al(m) with (i, j)th entry(

m + j − i
l

)
, 0 ≤ i, j ≤ l .

Lemma 2.1 det Al(m) = 1.
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Proof. By induction on m. Since
(−1

l

)
= (−1)l and

(−1+j
l

)
= 0 for 0 < j ≤ l, Al(−1)

is lower triangular with determinant ((−1)l)l+1 = 1. Now we note the identity

BAl(m) = Al(m + 1)

where

B =



(l+1
1

)
−

(l+1
2

)
· · · (−1)l−1

(l+1
l

)
(−1)l

(l+1
l+1

)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 .

The matrix identity is an expression of the binomial identity

(11)
∑

k

(−1)k
(

l + 1
k

)(
n − k

l

)
= 0

(taking n = m + 1 − j and k = j + 1). Since det B = 1, the result follows for all
m ∈ Z. �

For completeness, we note that (11) is the case m = l + 1 of the equation

(12)
∑

k

(−1)k
(

m
k

)(
n − k

l

)
=

(
n − m
l − m

)
.

To prove this formula, note that the defining identity for binomial coefficients implies
the case m = 1, and also that both sides satisfy the recursion C(l, m, n)−C(l, m, n−1) =
C(l, m + 1, n).

3 Independence of the operations

We will prove Proposition 1.3 by studying how PiχPn−i pairs against elements in P∗ ,
the dual of the Hopf algebra of Steenrod reduced powers. According to Milnor [4],
with our grading conventions

P∗ = Fp[ξ1, ξ2, . . .], |ξj| =
pj − 1
p − 1

,

and

(13) ∆ξk =
∑

i+j=k

ξpj

i ⊗ ξj .
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For a finitely nonzero sequence of nonnegative integers R = (r1, r2, . . .) write ξR =
ξr1

1 ξr2
2 · · · and let ‖R‖ = r1 + pr2 + p2r3 + · · · and

|R| = |ξR| = r1 +
(

p2 − 1
p − 1

)
r2 +

(
p3 − 1
p − 1

)
r3 + · · · .

The following clearly implies Proposition 1.3.

Proposition 3.1 For any integer n > 0 there exist sequences Rn,j , 0 ≤ j ≤ n − φ(n),
such that |Rn,j| = n and

〈PiχPn−i, ξRn,j〉 =
{
±1 for i = n − j
0 for i > n − j .

The starting point in proving this is the following result of Milnor.

Lemma 3.2 ([4], Corollary 6) 〈χPn, ξR〉 = ±1 for all sequences R with |R| = n.

In the basis of P dual to the monomial basis of P∗ , the element corresponding to ξi
1

is Pi . Since the diagonal in P∗ is dual to the product in P , it follows from (13) and
Lemma 3.2 that

〈PiχPn−i, ξR〉 =
{
±1 for i = ‖R‖
0 for i > ‖R‖ .

So we wish to construct sequences Rn,j , for φ(n) ≤ j ≤ n, such that |Rn,j| = n and
‖Rn,j‖ = j. We deal first with the case j = φ(n).

Proposition 3.3 For any n ≥ 0 there is a sequence M = (m1, m2, . . .) such that
(1) |M| = n,
(2) 0 ≤ mi ≤ p for all i, and
(3) If mj = p then mi = 0 for all i < j.
For any such sequence, ‖M‖ = φ(n).

Proof. Give the set of sequences of dimension n the right-lexicographic order. We
claim that the maximal sequence satisfies the hypotheses.

Suppose that R = (r1, r2, . . .) does not satisfy the hypotheses. If r1 > p then the
sequence (r1− (p+1), r2 +1, r3, . . .) is larger. If rj > p, with j > 1, then the sequence
(r1, . . . , rj−2, rj−1+p, rj−(p+1), rj+1+1, rk+2, . . .) is larger. This proves (2). To prove
(3), suppose that rj = p with j > 1, and suppose that some earlier entry is nonzero.
Let i = min{k : rk > 0}. If i = 1, then the sequence (r1 − 1, r2, . . . , rj−1, 0, rj+1 +
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1, rj+2, . . .) is larger. If i > 1, then S with sk = 0 for k < i − 1 and i ≤ k ≤ j,
si−1 = p, sj+1 = rj+1 + 1, and sk = rk for k > j + 1, is larger.

Let M be a sequence satisfying (1)–(3), and write l = ‖M‖−1. To see that l = φ(n)−1
we must show that

(14) p(l + 1) − α(l + 1) ≥ (p − 1)n

and

(15) pl − α(l) < (p − 1)n .

The excess e(R) is the sum of the entries in R, so that p‖R‖ − e(R) = (p − 1)|R|.
The p-adic representation of a number minimizes excess, so for any sequence R we
have e(R) ≥ α(‖R‖) and hence p‖R‖ − α(‖R‖) ≥ (p − 1)|R|: so (14) holds for any
sequence.

To see that (15) holds for M , let j = min{i : mi > 0}, so that (p− 1)n = (pj − 1)mj +
(pj+1 − 1)mj+1 + · · · and l + 1 = pj−1mj + pjmj+1 + · · · . The hypotheses imply that
l has p-adic expansion

(1 + · · ·+ pj−2)(p − 1) + pj−1(mj − 1) + pjmj+1 + · · · ,

so
α(l) = (j − 1)(p − 1) + (mj − 1) + mj+1 + · · ·

from which we deduce

pl − α(l) = (p − 1)(n − j) < (p − 1)n .

This completes the proof of Proposition 3.3. �

Corollary 3.4 The function φ(n) is weakly increasing.

Proof. Let M be a sequence satisfying the conditions of Proposition 3.3, and note that
the sequence R = (1, 0, 0, . . .) + M has |R| = n + 1 and ‖R‖ = ‖M‖+ 1 = φ(n) + 1.
If p does not occur in M , then R satisfies the hypotheses of the proposition (in degree
n + 1) and hence φ(n) ≤ φ(n + 1). If p does occur in M , then the moves described
above will lead to a sequence M′ satisfying the hypotheses. None of the moves decrease
‖−‖, so φ(n) ≤ φ(n + 1). �

Remark 3.5 Properties (1)–(3) of Proposition 3.3 in fact determine M uniquely.

Proof of Proposition 3.1. Define Rn,φ(n) to be a sequence M as in Proposition 3.3.
Then inductively define

Rn,j = (1, 0, 0, . . .) + Rn−1,j−1 for φ(n) < j ≤ n .

This makes sense by monotonicity of φ(n), and the elements clearly satisfy |Rn,j| = n
and ‖Rn,j‖ = j. This completes the proof. �
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