More on the anti-automorphism of the Steenrod algebra

V. Giambalvo

H. R. Miller

Abstract

The relations of Barratt and Miller are shown to include all relations among the elements $P^{i} \chi P^{n-i}$ in the $\bmod p$ Steenrod algebra, and a minimal set of relations is given.

55S10

1 Introduction

Milnor [4] observed that the mod 2 Steenrod algebra \mathcal{A} forms a Hopf algebra with commutative diagonal determined by

$$
\begin{equation*}
\Delta \mathrm{Sq}^{n}=\sum_{i} \mathrm{Sq}^{i} \otimes \mathrm{Sq}^{n-i} \tag{1}
\end{equation*}
$$

This allowed him to interpret the Cartan formula as the assertion that the cohomology of a space forms a module-algebra over \mathcal{A}. The anti-automorphism χ in the Hopf algebra structure, defined inductively by

$$
\begin{equation*}
\chi \mathrm{Sq}^{0}=\mathrm{Sq}^{0}, \quad \sum_{i} \mathrm{Sq}^{i} \chi \mathrm{Sq}^{n-i}=0 \quad \text { for } \quad n>0 \tag{2}
\end{equation*}
$$

has a topological interpretation too: If K is a finite complex then the homology of the Spanier-Whitehead dual $D K_{+}$of K_{+}is canonically isomorphic to the cohomology of K. Under this isomorphism the left action by $\theta \in \mathcal{A}$ on $H^{*}(K)$ corresponds to the right action of $\chi \theta \in \mathcal{A}$ on $H_{*}\left(D K_{+}\right)$.

In 1974 Davis [3] proved that sometimes much more efficient ways exist to compute $\chi \mathrm{Sq}^{n}$; for example

$$
\begin{gather*}
\chi \mathrm{Sq}^{2^{r}-1}=\mathrm{Sq}^{2^{r-1}} \chi \mathrm{Sq}^{2^{r-1}-1} \tag{3}\\
\chi \mathrm{Sq}^{2^{r}-r-1}=\mathrm{Sq}^{2^{r-1}-1} \chi \mathrm{Sq}^{2^{r-1}-r}+\mathrm{Sq}^{2^{r-1}} \chi \mathrm{Sq}^{2^{r-1}-r-1} \tag{4}
\end{gather*}
$$

Similarly, Straffin [6] proved that if $r \geq 0$ and $b \geq 2$ then

$$
\begin{equation*}
\sum_{i} \mathrm{Sq}^{2^{r} i} \chi \mathrm{Sq}^{2^{r}(b-i)}=0 \tag{5}
\end{equation*}
$$

Both authors give analogous identities among reduced powers and their images under χ at an odd prime as well. Futher relations among the Steenrod squares and their conjugates appear in these articles and elsewhere (e.g. [5]).

Barratt and Miller [1] found a general family of identities which includes (3), (4), and (5), and their odd-prime analogues, as special cases. We state it for the general prime. When $p=2, P^{n}$ denotes Sq^{n}. Let $\alpha(n)$ denote the sum of the p-adic digits of n.

Theorem 1.1 [1, 2] For any integer k and any integer $l \geq 0$ such that $p l-\alpha(l)<$ $(p-1) n$,

$$
\begin{equation*}
\sum_{i}\binom{k-i}{l} P^{i} \chi P^{n-i}=0 \tag{6}
\end{equation*}
$$

The relations defining χ occur with $l=0$. Davis's formulas (for $p=2$) are the cases in which $(n, l, k)=\left(2^{r}-1,2^{r-1}-1,2^{r}-1\right)$ or $(n, l, k)=\left(2^{r}-r-1,2^{r-1}-2,2^{r}-2\right)$. Straffin's identities (for $p=2$) occur as $(n, l, k)=\left(2^{r} b, 2^{r}-1,-1\right)$.

Since $\binom{(k+1)-i}{l}-\binom{k-i}{l}=\binom{k-i}{l-1}$, the cases $(l, k+1)$ and (l, k) of (6) imply it for $(l-1, k)$. Thus the relations for $l=\phi(n)-1$, where

$$
\begin{equation*}
\phi(n)=1+\max \{j: p j-\alpha(j)<(p-1) n\} \tag{7}
\end{equation*}
$$

imply all the rest. Here we have adopted the notation $\phi(n)$ used in [2]; we note that it is not the Euler function $\varphi(n)$.

When $p=2, \phi\left(2^{r}-1\right)=2^{r-1}$ and $\phi\left(2^{r}-r-1\right)=2^{r-1}-1$, so Davis's relations are among these basic relations.

Two questions now arise. To express them uniformly in the prime, let \mathcal{P} denote the algebra of Steenrod reduced powers (which is the full Steenrod algebra when $p=2$), but assign P^{n} degree n. Write

$$
V_{n}=\operatorname{Span}\left\{P^{i} \chi P^{n-i}: 0 \leq i \leq n\right\} \subseteq \mathcal{P}^{n}
$$

It is natural to ask:

- Are there yet other linear relations among the $n+1$ elements $P^{i} \chi P^{n-i}$ in \mathcal{P}^{n} ?
- What is a basis for V_{n} ?

We answer these questions in Theorem 1.4 below.
Write $e_{i}, 0 \leq i \leq n$, for the i th standard basis vector in \mathbb{F}_{p}^{n+1}.

Proposition 1.2 For any integers l, m, n, with $0 \leq l \leq n$,

$$
\begin{equation*}
\left\{\sum_{i}\binom{k-i}{l} e_{i}: m \leq k \leq m+l\right\} \tag{8}
\end{equation*}
$$

is linear independent in \mathbb{F}_{p}^{n+1}.
Proposition 1.3 The set

$$
\begin{equation*}
\left\{P^{i} \chi P^{n-i}: \phi(n) \leq i \leq n\right\} \tag{9}
\end{equation*}
$$

is linearly independent in \mathcal{P}^{n}.
Define a linear map

$$
\begin{equation*}
\mu: \mathbb{F}_{p}^{n+1} \rightarrow \mathcal{P}^{n}, \quad \mu e_{i}=P^{i} \chi P^{n-i} \tag{10}
\end{equation*}
$$

Theorem 1.1 implies that if $l=\phi(n)-1$ the elements in (8) lie in ker μ, so Propositions 1.2 and 1.3 imply that (8) with $l=\phi(n)-1$ is a basis for $\operatorname{ker} \mu$ and that (9) is a basis for $V_{n} \subseteq \mathcal{P}^{n}$. Thus:

Theorem 1.4 Any $\phi(n)$ consecutive relations from the set (6) with $l=\phi(n)-1$ form a basis of relations among the elements of $\left\{P^{i} \chi P^{n-i}: 0 \leq i \leq n\right\}$. The set $\left\{P^{i} \chi P^{n-i}: \phi(n) \leq i \leq n\right\}$ is a basis for V_{n}.

Acknowledgements. We thank Richard Stanley for the slick proof of Proposition 1.2. This material is based upon work supported by the National Science Foundation under Grant No. 0905950.

2 Independence of the relations

We wish to show that (8) is a linearly independent set. Regard elements of \mathbb{F}_{p}^{n+1} as column vectors, and arrange the $l+1$ vectors in (8) as columns in a matrix, which we claim is of rank $l+1$. The top square portion is the $\bmod p$ reduction of the $(l+1) \times(l+1)$ integral Toeplitz matrix $A_{l}(m)$ with (i, j) th entry

$$
\binom{m+j-i}{l}, \quad 0 \leq i, j \leq l .
$$

Lemma $2.1 \operatorname{det} A_{l}(m)=1$.

Proof. By induction on m. Since $\binom{-1}{l}=(-1)^{l}$ and $\binom{-1+j}{l}=0$ for $0<j \leq l, A_{l}(-1)$ is lower triangular with determinant $\left((-1)^{l}\right)^{l+1}=1$. Now we note the identity

$$
B A_{l}(m)=A_{l}(m+1)
$$

where

$$
B=\left[\begin{array}{ccccc}
\binom{l+1}{1} & -\binom{l+1}{2} & \cdots & (-1)^{l-1}\binom{l+1}{l} & (-1)^{l}\binom{l+1}{l+1} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] .
$$

The matrix identity is an expression of the binomial identity

$$
\begin{equation*}
\sum_{k}(-1)^{k}\binom{l+1}{k}\binom{n-k}{l}=0 \tag{11}
\end{equation*}
$$

(taking $n=m+1-j$ and $k=j+1$). Since $\operatorname{det} B=1$, the result follows for all $m \in \mathbb{Z}$.

For completeness, we note that (11) is the case $m=l+1$ of the equation

$$
\begin{equation*}
\sum_{k}(-1)^{k}\binom{m}{k}\binom{n-k}{l}=\binom{n-m}{l-m} \tag{12}
\end{equation*}
$$

To prove this formula, note that the defining identity for binomial coefficients implies the case $m=1$, and also that both sides satisfy the recursion $C(l, m, n)-C(l, m, n-1)=$ $C(l, m+1, n)$.

3 Independence of the operations

We will prove Proposition 1.3 by studying how $P^{i} \chi P^{n-i}$ pairs against elements in \mathcal{P}_{*}, the dual of the Hopf algebra of Steenrod reduced powers. According to Milnor [4], with our grading conventions

$$
\mathcal{P}_{*}=\mathbb{F}_{p}\left[\xi_{1}, \xi_{2}, \ldots\right], \quad\left|\xi_{j}\right|=\frac{p^{j}-1}{p-1}
$$

and

$$
\begin{equation*}
\Delta \xi_{k}=\sum_{i+j=k} \xi_{i}^{p^{j}} \otimes \xi_{j} \tag{13}
\end{equation*}
$$

For a finitely nonzero sequence of nonnegative integers $R=\left(r_{1}, r_{2}, \ldots\right)$ write $\xi^{R}=$ $\xi_{1}^{r_{1}} \xi_{2}^{r_{2}} \cdots$ and let $\|R\|=r_{1}+p r_{2}+p^{2} r_{3}+\cdots$ and

$$
|R|=\left|\xi^{R}\right|=r_{1}+\left(\frac{p^{2}-1}{p-1}\right) r_{2}+\left(\frac{p^{3}-1}{p-1}\right) r_{3}+\cdots
$$

The following clearly implies Proposition 1.3.
Proposition 3.1 For any integer $n>0$ there exist sequences $R_{n, j}, 0 \leq j \leq n-\phi(n)$, such that $\left|R_{n, j}\right|=n$ and

$$
\left\langle P^{i} \chi P^{n-i}, \xi^{R_{n, j}}\right\rangle=\left\{\begin{array}{ccc}
\pm 1 & \text { for } \quad i=n-j \\
0 & \text { for } \quad i>n-j .
\end{array}\right.
$$

The starting point in proving this is the following result of Milnor.
Lemma 3.2 ([4], Corollary 6) $\left\langle\chi P^{n}, \xi^{R}\right\rangle= \pm 1$ for all sequences R with $|R|=n$.
In the basis of \mathcal{P} dual to the monomial basis of \mathcal{P}_{*}, the element corresponding to ξ_{1}^{i} is P^{i}. Since the diagonal in \mathcal{P}_{*} is dual to the product in \mathcal{P}, it follows from (13) and Lemma 3.2 that

$$
\left\langle P^{i} \chi P^{n-i}, \xi^{R}\right\rangle=\left\{\begin{array}{ccc}
\pm 1 & \text { for } \quad & i=\|R\| \\
0 & \text { for } & i>\|R\| .
\end{array}\right.
$$

So we wish to construct sequences $R_{n, j}$, for $\phi(n) \leq j \leq n$, such that $\left|R_{n, j}\right|=n$ and $\left\|R_{n, j}\right\|=j$. We deal first with the case $j=\phi(n)$.

Proposition 3.3 For any $n \geq 0$ there is a sequence $M=\left(m_{1}, m_{2}, \ldots\right)$ such that
(1) $|M|=n$,
(2) $0 \leq m_{i} \leq p$ for all i, and
(3) If $m_{j}=p$ then $m_{i}=0$ for all $i<j$.

For any such sequence, $\|M\|=\phi(n)$.
Proof. Give the set of sequences of dimension n the right-lexicographic order. We claim that the maximal sequence satisfies the hypotheses.

Suppose that $R=\left(r_{1}, r_{2}, \ldots\right)$ does not satisfy the hypotheses. If $r_{1}>p$ then the sequence $\left(r_{1}-(p+1), r_{2}+1, r_{3}, \ldots\right)$ is larger. If $r_{j}>p$, with $j>1$, then the sequence $\left(r_{1}, \ldots, r_{j-2}, r_{j-1}+p, r_{j}-(p+1), r_{j+1}+1, r_{k+2}, \ldots\right)$ is larger. This proves (2). To prove (3), suppose that $r_{j}=p$ with $j>1$, and suppose that some earlier entry is nonzero. Let $i=\min \left\{k: r_{k}>0\right\}$. If $i=1$, then the sequence $\left(r_{1}-1, r_{2}, \ldots, r_{j-1}, 0, r_{j+1}+\right.$
$1, r_{j+2}, \ldots$) is larger. If $i>1$, then S with $s_{k}=0$ for $k<i-1$ and $i \leq k \leq j$, $s_{i-1}=p, s_{j+1}=r_{j+1}+1$, and $s_{k}=r_{k}$ for $k>j+1$, is larger.
Let M be a sequence satisfying (1)-(3), and write $l=\|M\|-1$. To see that $l=\phi(n)-1$ we must show that

$$
\begin{equation*}
p(l+1)-\alpha(l+1) \geq(p-1) n \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
p l-\alpha(l)<(p-1) n \tag{15}
\end{equation*}
$$

The excess $e(R)$ is the sum of the entries in R, so that $p\|R\|-e(R)=(p-1)|R|$. The p-adic representation of a number minimizes excess, so for any sequence R we have $e(R) \geq \alpha(\|R\|)$ and hence $p\|R\|-\alpha(\|R\|) \geq(p-1)|R|$: so (14) holds for any sequence.
To see that (15) holds for M, let $j=\min \left\{i: m_{i}>0\right\}$, so that $(p-1) n=\left(p^{j}-1\right) m_{j}+$ $\left(p^{j+1}-1\right) m_{j+1}+\cdots$ and $l+1=p^{j-1} m_{j}+p^{j} m_{j+1}+\cdots$. The hypotheses imply that l has p-adic expansion

$$
\left(1+\cdots+p^{j-2}\right)(p-1)+p^{j-1}\left(m_{j}-1\right)+p^{j} m_{j+1}+\cdots
$$

So

$$
\alpha(l)=(j-1)(p-1)+\left(m_{j}-1\right)+m_{j+1}+\cdots
$$

from which we deduce

$$
p l-\alpha(l)=(p-1)(n-j)<(p-1) n .
$$

This completes the proof of Proposition 3.3.
Corollary 3.4 The function $\phi(n)$ is weakly increasing.
Proof. Let M be a sequence satisfying the conditions of Proposition 3.3, and note that the sequence $R=(1,0,0, \ldots)+M$ has $|R|=n+1$ and $\|R\|=\|M\|+1=\phi(n)+1$. If p does not occur in M, then R satisfies the hypotheses of the proposition (in degree $n+1)$ and hence $\phi(n) \leq \phi(n+1)$. If p does occur in M, then the moves described above will lead to a sequence M^{\prime} satisfying the hypotheses. None of the moves decrease $\|-\|$, so $\phi(n) \leq \phi(n+1)$.

Remark 3.5 Properties (1)-(3) of Proposition 3.3 in fact determine M uniquely.
Proof of Proposition 3.1. Define $R_{n, \phi(n)}$ to be a sequence M as in Proposition 3.3. Then inductively define

$$
R_{n, j}=(1,0,0, \ldots)+R_{n-1, j-1} \quad \text { for } \quad \phi(n)<j \leq n
$$

This makes sense by monotonicity of $\phi(n)$, and the elements clearly satisfy $\left|R_{n, j}\right|=n$ and $\left\|R_{n, j}\right\|=j$. This completes the proof.

References

[1] M. G. Barratt and H. R. Miller, On the anti-automorphism of the Steenrod algebra, Contemp. Math. 12 (1981) 47-52.
[2] M. C. Crabb, M. D. Crossley, and J. R. Hubbuck, K-theory and the anti-automorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 124 (1996) 2275-2281.
[3] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974) 235-236.
[4] J. Milnor, The Steenrod algebra and its dual, Ann. Math. 67 (1958) 150-171.
[5] J. H. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993) 657-661.
[6] P. D. Straffin, Jr., Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975) 253-255.

Department of Mathematics, University of Connecticut, Storrs, CT 06269
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
vince@math.uconn.edu, hrm@math.mit.edu

