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The very early appearance of abstract knowledge is often taken as evidence for innateness.
We explore the relative learning speeds of abstract and specific knowledge within a Bayesian
framework, and the role for innate structure. We focus on knowledge about causality, seen as
a domain-general intuitive theory, and ask whether this knowledge can be learned from co-
occurrence of events. We begin by phrasing the causal Bayes nets theory of causality, and a
range of alternatives, in a logical language for relational theories. This allows us to explore
simultaneous inductive learning of an abstract theory of causality and a causal model for each
of several causal systems. We find that the correct theory of causality can be learned relatively
quickly, often becoming available before specific causal theories have been learned—an effect
we term the blessing of abstraction. We then explore the effect of providing a variety of
auxiliary evidence, and find that a collection of simple “perceptual input analyzers” can help
to bootstrap abstract knowledge. Together these results suggest that the most efficient route
to causal knowledge may be to build in not an abstract notion of causality, but a powerful
inductive learning mechanism and a variety of perceptual supports. While these results are
purely computational, they have implications for cognitive development, which we explore in
the conclusion.

Pre-print June 2010—to appear in Psych. Review.

Introduction

What allows us to extract stable causal relations from the
stream of experience? Hume believed that it was the prin-
ciple of association: constant conjunction of events follow
from an underlying association; from this principle, and ob-
served events, one may infer a causal association (Hume,
1748). Recent psychological research (Cheng, 1997; Wald-
mann & Martignon, 1998; Steyvers, Tenenbaum, Wagen-
makers, & Blum, 2003; Gopnik et al., 2004; Lu, Yuille, Lil-
jeholm, Cheng, & Holyoak, 2008; Griffiths & Tenenbaum,
2005, 2009) has described mathematical models of how chil-
dren and adults learn domain-specific causal relations by ap-
plying abstract knowledge—knowledge that describes how
causal relations give rise to patterns of experience. None
of this work, however, addresses a more fundamental ques-
tion: what are the origins of our general understanding of
causality—of the abstract principles by which observation
and intervention can be used to infer causal structure? Most
previous work has assumed explicitly or implicitly that the
human sense of causality is innate, either because it is a nec-
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essary building block in models of cognitive development or
because it was not clear how such abstract knowledge could
be learned. Those who have proposed that our concept of
cause is constructed from experience (e.g. Carey, 2009) have
not attempted to give a formal learning model. In this paper
we will argue that the principles guiding causal understand-
ing in humans can be seen as an intuitive theory, learnable
from evidence out of more primitive representations. Our ar-
gument, which will proceed via an ideal learner analysis, can
be seen as both an investigation into the psychological basis
of causality, and a case-study of abstract learning and the role
of innate structure in Bayesian approaches to cognition.

A long tradition in psychology and philosophy has inves-
tigated the principles of causal understanding, largely con-
verging on the interventionist or causal Bayes nets account
of causality (Pearl, 2000; Woodward, 2003) as a description
of the principles by which causal reasoning proceeds. The
principles embodied by the causal Bayes network framework
include a directed, probabilistic notion of causal dependence,
and a privileged role for uncaused manipulation—the inter-
ventions, which include actions and experimental manipula-
tions. The causal Bayes network framework leads to quicker,
more reliable learning than weaker assumptions about the na-
ture of causation, and has been successful at predicting hu-
man learning data (Cheng, 1997; Waldmann & Martignon,
1998; Steyvers et al., 2003; Gopnik et al., 2004; Lu et al.,
2008; Griffiths & Tenenbaum, 2005). We have previously
proposed that intuitive theories—systems of abstract con-
cepts and laws relating them—can be represented in a “lan-
guage of thought” which includes aspects of probability and
logic (Kemp, Goodman, & Tenenbaum, 2008; Tenenbaum,
Griffiths, & Niyogi, 2007; Goodman, Tenenbaum, Griffiths,
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& Feldman, 2007). Because the assumptions of causal Bayes
networks are formalizable via probability and logic, they are
potentially expressible in such a language for intuitive theo-
ries. This suggests the hypothesis that the causal Bayes net-
work framework is not an innate resource, but is itself an in-
tuitive theory of causality, learned inductively from evidence
and represented in a more basic language of theories.

A theory of causality would have several properties un-
usual for an intuitive theory. First, it would be domain-
general knowledge. Intuitive theories are typically thought
of as domain-specific knowledge systems, organizing our
reasoning about domains such as physics or psychology,
but there is no a priori reason to rule out domain-general
knowledge. Second, a theory of causality would have to
be acquired remarkably early in development. If a theory
of causality is to underly the acquisition of specific causal
knowledge it must be available within the first year of life.
Could such an abstract theory be learned from evidence so
rapidly, even in principle? To investigate this question we
turn to hierarchical Bayesian modeling.

The formalism of hierarchical Bayesian modeling makes
it possible to express the assumptions relating knowledge at
multiple levels of abstraction (Gelman, Carlin, Stern, & Ru-
bin, 1995), and Bayesian inference over such a model de-
scribes an ideal learner of abstract knowledge (Tenenbaum,
Griffiths, & Kemp, 2006). Though real learning is undoubt-
edly resource-constrained, the dynamics of an ideal learner
can uncover unexpected properties of what it is possible to
learn from a given set of evidence. For instance, it has
been reported (e.g. Kemp, Perfors, & Tenenbaum, 2007) that
learning at the abstract level of a hierarchical Bayesian model
is often surprisingly fast in relation to learning at the more
specific levels. We term this effect the blessing of abstrac-
tion1: abstract learning in an hierarchical Bayesian model is
often achieved before learning in the specific systems it relies
upon, and, as a result, a learner who is simultaneously learn-
ing abstract and specific knowledge is almost as efficient as
a learner with an innate (i.e. fixed) and correct abstract the-
ory. Hierarchical Bayesian models have been used before
to study domain-specific abstract causal knowledge (Kemp,
Goodman, & Tenenbaum, 2007), and simple relational theo-
ries (Kemp et al., 2008). Here we combine these approaches
to study knowledge of causality at the most abstract, domain
general level.

We will also explore the possibility that learning at the
abstract level in an hierarchical Bayesian model, and the
blessing of abstraction, can be substantially aided by pro-
viding appropriate low-level features in the input. Our mo-
tivation for considering this possibility is a suggestion by
Carey (2009) that part of infants’ core knowledge is in the
form of perceptual input analyzers: modules that perform
simple transformations of raw perceptual input, making it
suitable for conceptual cognition. These perceptual input
analyzers may not provide abstract conceptual knowledge
directly, but instead serve to make latent abstract concepts
more salient and thus more learnable. For instance, the feel-
ing of self-efficacy, advocated by Maine de Biran as a foun-
dation of causality (see discussion in Saxe & Carey, 2006),

could be an analyzer which highlights events resulting from
one’s own actions, making the latent concept of intervention
more salient. Alternatively, an innate or early-developing
agency-detector might help in identifying interventions re-
sulting from the actions of intentional agents. Altogether this
suggests a novel take on nativism—a “minimal nativism”—
in which strong, but domain-general, inference and repre-
sentational resources are aided by weaker, domain-specific
perceptual input analyzers.

The ideal learning results that we describe below have im-
plications for current work on the development of causal un-
derstanding and they have more general implications for the
debate surrounding innate knowledge. There is a long history
of philosophical speculation about the origin of the abstract
causal sense, including those who thought that this must be
an innate component of cognition (e.g. Hume) and those that
thought it could be constructed from more concrete starting
points (e.g. Maine de Biran, Michotte). More recently em-
pirical results have shown that aspects of causal knowledge
are present from early infancy, but have given little evidence
that a full notion of cause is innate (Saxe & Carey, 2006). In-
deed, very recent empirical results suggest that some aspects
of the adult causal sense are not available for children as old
as 18 months (Meltzoff, 2007), or even 24 months (Bonawitz
et al., 2010). Despite this philosophical and empirical in-
terest, there have been no computational investigations into
the learnability of abstract knowledge of causality, nor what
learning dynamics may emerge from the interaction of repre-
sentational abilities and different sources of evidence. In the
following sections we first formalize aspects of the causal
Bayes network framework within a logical language for in-
tuitive theories. We then study the ideal learner of causal
knowledge, investigating the speed of learning at different
levels of abstraction, and the effect of perceptual input ana-
lyzers on learning speed. In the Discussion we consider the
implications of our results both for empirical investigation
into the origin of the causal sense, and for core theoretical
questions of cognitive development more generally—What
must be innate? What can be learned from different kinds of
input? What knowledge must be present to enable learning
of other knowledge?

Theories of causality

Causality governs the relationship between events. For-
malizing this, the world consists of a collection of causal
systems; in each causal system there is a set of observable
causal variables. Causal systems are observed on a set of
trials—on each trial, each causal variable has a value. (We
will call an observation of a causal variable on a particular
trial an event.)

The causal Bayes nets theory of causation (Pearl, 2000)
describes the structure of dependence between events, isolat-
ing a special role for a set of interventions. Causal Bayes

1 Cf. the “curse of dimensionality,” which describes the expo-
nential growth of the space of possible hypotheses as the number of
dimensions grows.
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Law #1: ∀x ∀y A(x)→¬R(y,x) A-variables are exogenous.
Law #2: ∀x A(x)→ Fy R(x,y) A-variables have at most one child.
Law #3: ∀x F1(x)→ A(x) Fetaure 1 is diagnostic for A-variables.
Law #4: ∀x F2(x)→ A(x) Fetaure 2 is diagnostic for A-variables.
Law #5: ∀x ∀y R(x,y)∨R(y,x)∨ x=y Dependence graph is fully connected.
Law #6: ∀x ∀y ¬R(x,y) Dependence graph is unconnected.
Law #7: ∀x Fy R(x,y) Variables have at most one child.
Law #8: ∀x Fy R(y,x) Variables have at most one parent.
Law #9: ∀x ∀y ∀z R(x,y)∧R(y,z)→ R(x,z) Dependence graph is transitive.
Law #10: ∀x ∀y A(x)→¬R(x,y) A-variables have no children.
Law #11: ∀x Fy ¬A(y)∧R(y,x) Variables have at most one parent that is not an A-variable.

Table 1
Eleven laws that can be expressed in the language for theories. The predicate A is initially meaningless; given laws 1 and 2 it
becomes the causal Bayes network notion of intervention.

networks (CBN) can be seen as a collection of assump-
tions about causal dependence: (CBN1) Dependence is di-
rected, acyclic, and can be quantified as conditional prob-
ability. (CBN2) There is independence / indirect depen-
dence. (CBN3) There is a preferred set of variables, the
“interventions”, which are outside the system—they depend
on nothing. (CBN4) Interventions influence only one vari-
able. (CBN5) For each causal system the intervention set is
known. In addition, assumptions are often made about the
functional form of dependence (for instance, that interven-
tions are “arrow-breaking”). For simplicity we will address
only the aspects of this theory that determine the structure of
the dependency relation and will assume (CBN1).

A language for theories of causal dependence

We wish to specify a hypothesis space of alternative theo-
ries of the dependency relation, R. This space should contain
the causal Bayes network theory and a wide set of alterna-
tive theories, and should build these theories by combining
simple primitive units. Kemp et al. (2008) proposed a very
flexible language for expressing relational theories, which is
a small extension of first-order logic, and used this language
to predict the inductive generalization of human learners in
a novel domain. We propose that a version of this language
can be used to capture domain-general knowledge, including
(aspects of) a theory of causality.

The language we use contains logical operators: quan-
tifiers over causal variables—“for all” (∀), “there ex-
ists” (∃), and “there exists at most one” ( F)—and logical
connectives—not (¬), and (∧), or (∨), if (←). In addition
to the logical operators, and the causal dependence relation
R(·, ·), the language contains invented predicates and ob-
served predicates. Invented predicates are not observable,
or pre-defined, but can play a role in the theory. We re-
strict in this paper to at most one invented predicate, A(·);
this predicate need not a priori relate to causality in an in-
teresting way, however in the causal Bayes network theory it
will play the role of defining intervention. Finally, the two
predicates, Fi(·), are observable features of variables. These

can be thought of as perceptual features of events, extracted
by dedicated input analyzers2. These perceptual features are
meant to represent both features that could be very useful in
bootstrapping causality—such as Michottean launching per-
cepts or a feeling of self-efficacy—and “distractor” features
that would not be useful in a general theory of causality—
such as “happened in the morning.”

This language can express a variety of theories that range
from reasonable theories of causation, through incomplete
theories, to theories that are entirely wrong for causation. It
is useful to view a theory in this language as a collection
(conjunction) of laws; table 1 gives examples of laws that
can be expressed in this language. These include laws that
express parts of the correct theory of causation (e.g. Law #
1: certain variables are exogenous), laws which are reason-
able but not appropriate for causation (e.g. Law # 5: each
pair of variables is directly related), and laws which do not
seem very useful (e.g. Law # 6: no causal relations exist).
Importantly, these laws are sufficient to capture the causal
Bayes network theory of causality: (CBN3) corresponds to
Law #1; (CBN4) corresponds to Law #2; (CBN5) follows
from Laws #3 and/or #4 when the features can be used to
identify interventions; (CBN2) is the lack of Laws #5 or #9.
In addition, a variety of plausible variants can be expressed,
describing alternative restrictions on dependency. Many of
these theories may be useful for other domains of knowledge
(e.g. social relations) though not for causation—in the sim-
ulations which follow we explore whether an ideal learner
could construct a useful theory of causality from this domain-
general language for theories.

A hierarchical Bayesian model
To ground this language for theories into observed events

in a set of causal systems, we construct a hierarchical
Bayesian model with theories of causality at the most ab-
stract level and events at the most specific level (Fig. 1).

2 It is most realistic to think of input analyzers operating at the
level of specific events; we idealize them as features of causal vari-
ables (i.e. types of events).
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We first describe the generative process of this model, then
we describe the ideal learner by inverting this process using
Bayes’ rule.

Generating a theory. A causal theory—represented in the
theory language described in the previous section—is drawn
from the prior distribution over theories, P(T ). We take P(T )
to be uniform over theories (of size less than some maxi-
mum). While a representation-length prior (see Kemp et al.,
2008) would naturally capture a bias for simpler theories, we
choose a uniform prior in order to focus on the dynamics of
learning driven entirely by the hierarchical setup.

Generating causal models. Next a causal model is gener-
ated for each causal system s. A causal model is an instan-
tiation of each predicate in the theory—Rs and, if it is used,
As. Following (Kemp et al., 2008), we will assume that the
distribution on causal models, P(As,Rs|T ), is uniform over
those consistent with T —that is, the instantiations of Rs and
As that satisfy the logical laws of T .

Generating events. Each causal model in turn generates
observed events (a value for each variable) for a set of trials.
The probability of generating a series of trials D = {dt} from
a system with causal relation R is given by:

P(D|R) =
∫

∏
t

P(dt |R,Θ)P(Θ|α)dΘ (1)

Where the conditional probability tables, Θ, list the proba-
bility of each event given each set of values for its parents
in R. We make the weak assumption that each entry of Θ

is drawn independently from a symmetric-beta distribution
with hyperparameter α. The integral in Eq. 1 is a product of
standard beta-binomial forms, which can be integrated ana-
lytically.

Theory induction
The ideal Bayesian learner infers a posterior belief dis-

tribution over theories from a set of observed trials across a
range of causal systems. The posterior probability of a the-
ory, T , given data, D = {Ds} is given by:

P(T |D) ∝ P(D|T )P(T ) (2)

Where the likelihood is given by:

P(D|T ) = ∏
s

P(Ds|T )

= ∏
s

∑
A,R

P(Ds|A,R)P(A,R|T )

= ∏
s

∑
A,R

P(Ds|R)P(A,R|T )

(3)

System marginals. The effect of an abstract theory on
learning in a specific system, s, may be described by the pos-
terior belief distribution over Rs. If we fix a theory, T , and
use this to provide the prior over Rs, the posterior is given by:

P(Rs|T,Ds) ∝ P(Ds|Rs)P(Rs|T ) (4)

Theory
T

Causal
model

Rs,As

Events
ds,t

Systems s
Trials t

∀x, y A(x)→ ¬R(y, x)

1 0 1 1

0 0 0 1

1 1 0 1

1 0 0 1

1 0 1 1

0 0 0 1

1 1 0 1

System1: System2:

Variables

Trials...

Figure 1. The hierarchical Bayesian model, and examples of the
information at each level. The causal dependence relation R(·, ·)
is shown as directed edges between variables (circles), the latent
predicate A(·) is shown as shading of the variables. Binary events
for each system, trial, and variable are shown as contingency tables.

If the theory is not fixed, but is learned simultaneously with
the causal systems, we may still want to capture what has
been learned about one specific system within the hierarchi-
cal setup. This is given by the posterior marginal of Rs:

P(Rs|D) = ∑
T

P(Rs|T,D)P(T |D)

= ∑
T

P(Rs|T,Ds)P(T |D)
(5)

Ideal learner simulations

To investigate the dynamics of learning in the theory in-
duction framework outlined above, we performed a series of
simulation studies3.

The probability landscape of this model is complex, mak-
ing it difficult to accurately characterize learning at all levels
of abstraction. To ensure correct results, we chose to imple-
ment the learning model by explicit enumeration over theo-
ries and causal structures. To make this enumeration possible
we restricted to theories which can be formed as a conjunc-
tion of at most five of the laws shown in Table 1, and to sys-
tems of only four variables. (Counting only theories with a
satisfying causal model, there are 691 theories in the set we
considered. There are 543 possible causal structures R, and
16 possible intervention sets A.)

For each run of the model we generated evidence for the
learner by first choosing one variable in each system to be an
intervention, then generating a causal model for each system
(consistent with the correct, causal Bayes network, theory

3 An implementation of the model can be found at: http://
www.mit.edu/˜ndg/GoodmanEtAl LTBC.tgz
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Figure 2. (a) Rank of the correct theory, mean and 10th/90th percentiles across 100 model runs. (b) Rank of the correct causal structure
(mean over systems and runs), given no theory, fixed correct theory, and simultaneously learned theory. Learning abstract knowledge always
helps relative to not having a theory, and is quickly as useful as an innate, correct theory. (c) The probability of correct learning: the fraction
of systems in which the correct structure has been learned (is at rank 1), and the fraction of runs in which the correct theory has been learned.
(In each run there were 50 systems, and one feature perfectly diagnostic of interventions. Hyperparameter α=0.5.)

of causality) and data for each trial according to the genera-
tive process described above. We initially fixed the number
of systems to 50, and included one feature which correlates
perfectly with intervention and another which is uncorrelated
with intervention; we consider the effect of varying these
conditions below.

We explore the dynamics of learning by varying the
amount of evidence given to the learner, as measured by the
total number of samples (i.e. trials) across all systems, with
each system given the same number of samples. The ideal
Bayesian learner is able to learn the correct theory, given suf-
ficient evidence (Fig. 2a). This, by itself, is unsurprising—
indeed, Bayesian induction is guaranteed to converge to the
correct hypothesis in the limit of an infinite amount of evi-
dence. It is more interesting to see that learning the correct
theory appears relatively quick in this model (being achieved
with fewer than 30 samples per system in most runs).

The blessing of abstraction

Abstract knowledge acts as an inductive bias, speeding the
learning of specific causal structure. Fig. 2b shows the mean
rank of the correct causal structure across systems with no
abstract theory (i.e. a uniform prior over causal relations),
with innate (i.e. fixed) correct theory, and with learned the-
ory (i.e. with the theory learned simultaneously with spe-
cific causal models). We see, as expected, that the correct
abstract theory results in quicker learning of causal struc-
ture than having no theory. Comparing the learned-theory
curve to the no-theory curve, we see that abstract knowl-
edge helps at all stages of learning, despite having to learn it.
Comparing the learned-theory curve with the innate-theory
curve shows that by around 60 samples per system the theory
learner has matched the performance of a learner endowed
with an innate, correct theory. Thus, the abstract layer of
knowledge can serve a role as inductive bias even when the
abstract knowledge itself must be learned—learning a theory
of causality is as good (from the perspective of causal model
learning) as having an innate theory of causality.
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Figure 3. The posterior log-probability of the correct theory as a
function of total number of samples across systems, for different
numbers of systems. Each curve starts at 2 samples per system.
Learning is best when evidence is gathered from many systems,
even when only a few samples are taken in each system.

How can abstract knowledge appropriately bias specific
learning, when it must be learned itself? Comparing Fig. 2a
to Fig. 2b suggests that the correct theory is learned before
most of the correct causal structures. In Fig. 2c we have in-
vestigated this by plotting the probability of learning (defined
as the correct hypothesis being most probable), at the levels
of both systems and theories. We see that learning at the
abstract theory level is much faster than at the system level.
Further, the time to correct learning at the system level is
almost identical for innate-theory and learned-theory, which
are both faster than no-theory. This illustrates the fact that
abstract learning is not bottom-up, waiting on specific learn-
ing; instead, learning is being carried out at all levels simulta-
neously, and here abstract knowledge is often learned before
specific knowledge. Note that this effect is not due to the
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Figure 4. Learning curves for the eleven laws of Table 1.

relative size of hypothesis spaces (we consider 691 theories
and 542 specific causal structures), nor a “helpful” choice of
prior (we use a maximum entropy—uniform—prior on the-
ories, and for the no-theory case a similar prior on specific
systems). Rather, this effect is driven by the ability of the
higher level of the model to learn from a wide range of evi-
dence drawn from multiple systems.

To confirm that breadth of evidence is important, we con-
sider the effect of distributing the same amount of evidence
among a different number of systems—is it better to spend
effort becoming an expert in a few systems, or to be a dilet-
tante, learning only a small amount about many systems?
Fig. 3 shows the result of varying the number of systems,
while matching the total number of samples (resulting in dif-
fering numbers of samples per system). Learning is fastest
when evidence is drawn from a broad array of causal sys-
tems, even when only a few samples are observed in each
system. Indeed, at one extreme learning is very slow when
only five systems are available. At the other extreme, learn-
ing from 500 systems is quick overall, and “catches up” to
other conditions after only three samples per system.

Turning to the dynamics of learning for individual laws,
Fig. 4 shows the marginal probability of each of the eleven
laws in Table 1. Law #3, relating interventions to the ob-
served predicate F1, is learned first, but is closely followed
by Law #1, which defines the main role of interventions in
causal Bayes networks. Slightly later, Law #2—specifying
that interventions effect only one variable—is learned. All
other laws slowly drop off as the correct theory becomes
entrenched. The gradual learning curves of Fig. 4, which
are averaged over 100 runs of the model, belie the fact that
learning of the laws was actually quite abrupt in most runs.
Though the exact timing of these learning events was dis-
tributed widely between runs, the order of acquisition of the
laws was quite consistent: in two-thirds of runs Laws #1
and #3 were learned almost simultaneously, followed later
by Law #2. (To be precise, in 92% of runs Law #2 was
learned last, as measured by number of samples required to

cross probability 0.75; of these runs, Law #1 led Law #3
on 59% of runs, but the two laws were learned within one
step of each other on 74% of runs.) This observation may be
significant given that cognitive development is characterized
by wide variation in timing of acquisition, but remarkable
consistency in order of acquisition.

A minimal nativism
Thus far we have assumed that there is an observed fea-

ture which can be used to tell when a variable is an interven-
tion. We can imagine that this feature provides information
extracted from perception of the observed events—that is,
it results from an input analyzer (Carey, 2009): an innate
mechanism that performs simple transformations of percep-
tual evidence. A number of relatively simple input analyzers
could provide features useful for identifying interventions.
For instance, the feeling of self-efficacy discussed by Maine
de Biran, proprioceptive processing as suggested by White
(2009), or, more broadly, an agency-detector able to identify
the actions of intentional agents (see Saxe & Carey, 2006).
Critically, none of these simple input analyzers is likely to
identify all interventions (or even most), and they are likely
to be mixed together with features quite un-useful for causal
learning.
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F1 and F2 both 0%

Figure 5. The marginal probability of the correct theory of inter-
vention (i.e. Laws #1 and #2) given different sets of “input analyz-
ers”: each condition has two features which are diagnostic of inter-
vention variables to the extent indicated (e.g. “F1 50%” indicates
that the first feature covers half of interventions). In the 50%/25%
case the two features overlap, otherwise they are disjoint. Learning
is difficult when no diagnostic features are present, but quite rapid
under all other conditions.

We simulated learning under several different “input ana-
lyzer” conditions varying in: the number of useful features
(the remaining feature(s) were distractors), what portion of
intervention variables could be identified from the useful fea-
tures, and the overlap between features. It should be noted
that each of these features could potentially be incorporated
into the theory. Thus we are investigating the ability of the
ideal learner to leverage partially useful features, to reject
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irrelevant features, and to learn when there are no relevant
features. In Fig. 5 we have plotted the marginal probability
of the “intervention” portion of the correct theory—Laws #1
and #2, which govern the role of interventions in determin-
ing causal dependency, independent of the identification of
interventions. We see that learning is extremely slow when
no features are available to help identify interventions. In
contrast, learning is about equally quick in all other con-
ditions, depending slightly on the coverage of features (the
portion of interventions they identify) but not on how this
coverage is achieved (via one or multiple features). Thus,
even a patchwork collection of partial input analyzers, which
pick out only a portion of intervention variables, is sufficient
to bootstrap abstract causal knowledge; learning can be re-
lied on to pick the useful features from the distractors and to
sort out the underlying truth that each partially represents.

Discussion and conclusion

We have studied an ideal Bayesian learner acquiring as-
pects of a domain-general intuitive theory of causality. This
theory and a wide set of alternatives were represented in
a “language of thought” for relational theories, based upon
first-order logic. We found that the correct theory of causal-
ity can be learned from relatively little evidence, often be-
coming entrenched before specific causal models are learned.
This enabled the learned abstract knowledge to act as an in-
ductive bias on specific causal models nearly as efficiently
as an innately specified theory—what we termed the bless-
ing of abstraction. However, in our setting the blessing of
abstraction itself relied on a set of observable event features
that served to make the latent concept of intervention more
salient. We close by considering the significance of these
results in a broader psychological context.

Given that our interest is ultimately in matters of psycho-
logical fact, not philosophical speculation, it is reasonable
to ask how an ideal learnability analysis informs the study of
human learning. Should it be surprising or impressive that an
ideal Bayesian learner can learn a theory of causality, given
data sampled from this theory? Though the mere possibility
of learning may not be surprising, there are several ways that
our results go beyond a demonstration of mere learnability
to challenge conventional thinking about cognitive develop-
ment.

First, it is often assumed that an abstract understanding of
causality is innate—either necessarily or because it would be
very useful—and even that this innate causal sense is what
separates us from other species (Gopnik et al., 2004; Cheng,
1997). Others have suggested that the adult causal sense
could be bootstrapped from earlier and more specific knowl-
edge (Saxe & Carey, 2006), but no formal account of how
this bootstrapping could work has been provided. The lack of
a concrete and computationally viable learning account has
likely been one of the reasons why many—even advocates
of domain-general learning mechanisms—have assumed that
the causal sense is largely innate. Here we have provided
such a formal account, showing how the causal sense can be
represented as one hypothesis in a language that also gener-

ates a broad range of alternative hypotheses, and how learn-
ing in this language can be bootstrapped from simpler struc-
tures. This work required several technical innovations, in
specifying how to represent a theory of causality as a set of
laws in first-order logic, how these logical laws can generate
priors over graphical models, and how Bayesian inference
can effectively operate over both these levels of representa-
tion to work backwards from observable data to inferences
about the abstract theory underlying them.

Second, it is often assumed that abstract knowledge can
only be built up slowly, or at least much more slowly than
more specific knowledge. Work on the development of ab-
stract representations in neural networks has been designed
around this intuition, building up increasingly abstract layers
of representation on top of lower-level, more specific layers,
which are formed earlier in learning (Hinton, Osindero, &
Teh, 2006). The blessing of abstraction suggests that this is
not a necessary order for the construction of knowledge, but
that abstract knowledge can become available before specific
knowledge in any of the systems that it depends on. The ab-
stractness of a theory of causality proved not to hinder learn-
ing, given a rich language of thought and a powerful induc-
tive learning mechanism. We found that abstract learning
was fastest when evidence was drawn from a wide variety of
causal systems, even if only a small number of observations
was available for each system. Because a domain-general
theory is able to draw evidence from the widest set of expe-
riences, this suggests that domain-general intuitive theories
may, in some cases, be easier to learn than their domain-
specific counterparts. Indeed, an abstract, domain-general
theory of causality may be learned remarkably early because
evidence for it may be collected from almost every experi-
ence. In future work we plan to investigate further the effects
of distribution and variety of evidence; it will also be impor-
tant to understand how diversity of evidence interacts with
noise in the evidence, a factor we have not yet explored.

We expect that our approach to analyzing the learnabil-
ity of abstract causal knowledge will be relevant for under-
standing the origins of abstract knowledge more generally.
Whenever young infants behave as if they have some piece
of abstract knowledge, it is tempting to conclude that this
knowledge is innate, particularly when the abstract knowl-
edge is present before relevant specific knowledge. This ten-
dency may misguide—we have shown that abstract knowl-
edge of causality can be learned so quickly that it might
seem to be innate, and effectively function as an innate con-
straint guiding learning of more specific causal knowledge.
More general versions of the framework we have described
here could be applied to evaluate learnability and learning
dynamics for other domain theories that have been argued
to be innate—for instance the physics of objects (Spelke,
1998), or the psychology of intentional agents (Gergely &
Csibra, 2003). Where innate structure is required to explain
complex cognition, it is often assumed to be abstract concep-
tual knowledge (Carey, 2009). This step should also be ap-
proached with care—simpler innate structures, without con-
ceptual content, may be sufficient when paired with a pow-
erful learning mechanism. Finally, in domains of cognition
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where abstract knowledge is clearly constructed, such as in-
tuitive biology, it has been observed that the most abstract
domain knowledge often comes into place first, before spe-
cific knowledge (Wellman & Gelman, 1998). The blessing
of abstraction provides a potential explanation of this obser-
vation as well.

Though we have argued that abstract knowledge about
causality may be learnable, our results should also not be
taken to support an entirely empiricist viewpoint. Our ideal
learner possesses a rich language for expressing theories and
a strong inductive learning mechanism. These are both sig-
nificant innate structures, though ones that may be required
for many learning tasks. In addition, we have shown that
the domain-general mechanisms for learning and representa-
tion are greatly aided by a collection of domain-specific “per-
ceptual input analyzers.” It may be ontogenetically cheap to
build innate structures that make some intervention events
salient, but quite expensive to build an innate abstract the-
ory (or a comprehensive analyzer). Our simulations sug-
gested that these analyzers need not be perfectly tuned to
causality or cover all intervention events. There are a num-
ber of plausible candidates that have been previously sug-
gested to support causal reasoning: animacy or agency detec-
tors, Michottean event detectors, proprioception, etc. Since
a powerful learning mechanism is present in human cogni-
tion, the most efficient route to abstract knowledge may be
by bootstrapping from these simple, non-conceptual mech-
anisms. Thus we are suggesting a kind of minimal na-
tivism: strong domain-general inference and representational
resources, aided by weak domain-specific input analyzers.

While our ideal learning results are purely computational,
they should provide a useful viewpoint for guiding and in-
terpreting empirical research on cognitive development. Our
analysis depended on two kinds of innate (or at least pre-
existing) capacities that might specifically promote learning
of causality, and empirical work can probe the nature, exis-
tence and development of both.

First, the language we used to represent alternative theo-
ries biases the learner by expressing some theories more sim-
ply than others. In terms of Bayesian learning, the represen-
tation language provides a hypothesis space of possible the-
ories, and a prior based on a complexity measure over these
hypotheses, much as universal grammar has been suggested
to provide a hypothesis space and prior for the acquisition of
natural language. A crucial difference between our language
for theories and universal grammar is that our language of
thought is a domain-general representational resource—out
of it may be learned many theories for other domains, most
of which would be useless as theories of causality. (In con-
trast, all grammars consistent with UG are grammars for pos-
sible human languages and only for natural languages—they
don’t provide theories of chemistry or causality. Griffiths
and Tenenbaum (2009) have recently suggested an analogy
between causal knowledge of a more specific sort and uni-
versal grammar in this narrower sense.) If causality is in fact
constructed from domain-general representational resources,
then a crucial project for understanding the “innateness” of
causality is to characterize this “language of thought.” For-

tunately, the very domain generality of this resource implies
that it can be studied in older children, by exploring what
theories can be learned most easily in novel domains. We
have begun such studies with adults (Kemp et al., 2008) and
hope to extend them soon to children.

Second, perceptual input analyzers provided crucial evi-
dence for bootstrapping the abstract theory of causality in our
simulations. Traditionally, perceptual processing specific to
one kind of knowledge (e.g. Michottean percepts) were seen
as an alternative to abstract knowledge. Instead, we view
them as a noisy signal that supports the processing and, cru-
cially, the learning of more abstract knowledge. Understand-
ing what is innate or learned about causality may thus de-
pend crucially on empirically characterizing the lower-level
perceptual mechanisms that respond preferentially to causal
stimuli, and how these mechanisms contribute to early ab-
stract learning.

Finally, a key empirical question that must be answered
is whether children ever consider alternative theories or
frameworks for causality en route to the adult causal sense.
Meltzoff (2007) suggests that children’s developing causal
sense can be framed in terms of two alternative views out-
lined by Jim Woodward: Infants initially adopt an “agent
causal view,” in which they appreciate effects of their own
actions and recognize that these relationships also apply to
the actions of other people, or other entities that can be rec-
ognized as agents. Only around 18 months do infants come
to a “fully causal view” in which they truly grasp what an
intervention is: that the same causal relationships they inter-
vene on can also be used by other agents and can exist in
the world independent of any agent. This account is broadly
consistent with the trajectory followed in our ideal learning
analysis if we assume that the learner has access to input an-
alyzers including both self-efficacy cues and (perhaps less
reliably) cues about the actions of other agents. The tra-
jectories we have observed suggest that further experiments
should aim to tease apart the availability and developmental
trajectory of abstract knowledge by young children. For in-
stance, studies might investigate when children become able
to use particular features to identify an intervention in a novel
causal system by testing whether they use this intervention to
de-confound evidence that is otherwise ambiguous between
several causal structures. Recent experiments by Bonawitz
et al. (2010) use a similar method to show that as late as
24 months, children’s ability to appreciate candidate inter-
ventions in a novel causal system is enhanced by agent cues
as well as two other sources of information: physical con-
tact between cause and effect objects, and event descrip-
tions using causal language. Language and culture repre-
sent an enormously important source of evidence that chil-
dren have about the world, and particularly about abstract re-
lations that may not be directly observable from sense data.
Both Meltzoff (2007) and Bonawitz et al. (2010) suggest that
causal language may be a useful cue to causal structure, and
may even be partly responsible for the final theory of causal-
ity that children achieve. However, as we have shown, the
blessing of abstraction, supported by much earlier cues to in-
terventions such as self-efficacy and agency detection, likely
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implies that some abstract knowledge of causality will be in
play long before children have begun to learn language. This
early abstract causal knowledge may then serve as scaffold-
ing for a later, linguistically mediated and more sophisticated
understanding of causation.

An ideal learner analysis can tell us what learning behav-
iors are possible. Another investigation is needed to tell us
which aspects of ideal learning are possible to implement in
practice; this is especially true where knowledge structures
are complex and naive approaches to learning are very inef-
ficient, as in the model described in this paper. Fortunately,
a large body of work in machine learning and statistics sug-
gests that it is possible to efficiently approximate ideal learn-
ing by stochastic search over hypotheses (MacKay, 2003). In
recent work Ullman, Goodman, and Tenenbaum (2010) have
shown that stochastic search methods can provide a practical
and psychologically plausible means of constructing abstract
theories. This demonstrates, at least, that the behaviors of an
ideal learner can also be found in an efficient learner.
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