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Abstract

We present the infinite dynamic Bayesian
network model (iDBN), a nonparametric,
factored state-space model that generalizes
dynamic Bayesian networks (DBNs). The
iDBN can infer every aspect of a DBN: the
number of hidden factors, the number of val-
ues each factor can take, and (arbitrarily
complex) connections and conditionals be-
tween factors and observations. In this way,
the iDBN generalizes other nonparametric
state space models, which until now generally
focused on binary hidden nodes and more re-
stricted connection structures. We show how
this new prior allows us to find interesting
structure in benchmark tests and on two real-
world datasets involving weather data and
neural information flow networks.

1. Introduction

Inferring structure in timeseries data has applications
ranging from modeling neurological signals, processing
language, and predicting weather patterns. For exam-
ple, given data from neurological probes, we may wish
to infer how different areas of the brain communicate
or what the subject was doing; given meteorological
data we may wish to infer regional patterns of weather.
Learning causal structures of the world is also impor-
tant for creating adaptive agents (as in reinforcement
learning or robotics), where agents can use their world
model for planning and control. In all of these ex-
amples,aspects of the world may be hidden from the
agent: for example, the results of an agent’s movement
may depend on what (unknown) room it is in, rather
than the agent’s immediately observed surroundings.
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Hidden Markov models (HMMs) provide one approach
for modeling time-series data with hidden states. The
HMM posits that, at every time step, there is a single
hidden state (which can take on many values) that ex-
plains the observed data and determines how the state
will evolve in the next time step. Dynamic Bayesian
networks (DBNs) extend HMMs by encoding struc-
ture: they posit that there are a number of hidden
variables at every time step, each of which can af-
fect the observed data and causally affect the hidden
nodes at the next time step. While a DBN can always
be flattened into an HMM in which a single hidden
state encodes the values of all the DBN’s factors, the
factored representation often allows for more efficient
inference. The DBN’s more structured explanation of
the observed variables may also have inherent interest.

In some applications, the number of these hidden fac-
tors and their values may be known: for example,
whether the robot moves as commanded may depend
on hidden factors such as the state of its motors and
brakes; we may even know that these factors have two
states—on or off. Much work exists on learning DBN
structure if all nodes are observed; work that allows
for missing data (Ghahramani, 1998; Xing-Chen et al.,
2007; Peña et al., 2005) still assumes knowledge about
the number of hidden nodes and their values. However,
in general it may be unclear how many hidden nodes
are needed to explain the observed data, how they are
connected, or even what values they may take.

Nonparametric extensions of the DBN have attempted
to capture various structure in the data. The Infi-
nite Factored HMM (Van Gael et al., 2009) posits that
there are a potentially unbounded number of binary
factors that explain the observed data, while the Infi-
nite Hierarchical HMM (Heller et al., 2009) posits that
there are a potentially unbounded number of discrete-
valued factors that explain the observed data. Both
of these models assume a fixed dependency structure:
the iFHMM assumes that each factor evolves indepen-
dently, while the iHHMM assumes that each factor is
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affected by itself and a factor one level above it at
the previous time step. The Infinite Latent Events
Model (Wingate et al., 2009) posits that there are bi-
nary factors that can have time-varying sequences of
causes. The Adaptive Dynamic Bayesian network (Ng,
2007) allows each factor to take on an unbounded num-
ber of values but assumes a fixed number of factors.

Generalizing these models, we present the Infinite
DBN (iDBN), a nonparametric time-series model with
a flexible number of factors, factor values, and factor
connections. The model allows each factor to take on
an arbitrary number of values (learned) as well as be
connected in an arbitrary fashion to previous nodes
(also learned). Setting concentration parameters lets
designers manage trade-offs between models with more
states and models with more factors without the hard
model constraints assumed in previous work.

2. Dynamic Bayesian Networks

A regular dynamic Bayesian network (DBN) is a di-
rected graphical model in which the state Xt at time t
is represented through a set of factors {x1

t
, x2

t
, . . . , xK

t
}.

The value of a node—or state—xk
t+1 at time t + 1 is

sampled from T (xk
t+1|Pak(X

t)), where Pak(X
t) rep-

resents values of the parents of node k at time t. The
parents of a node always come only from the previous
time slice (there are no intra-slice connections).

The state of a DBN is generally hidden; values of the
states must be inferred from a set of observed nodes
Yt = {y1

t
, y2

t
, . . . , yt

N
}. The value of an observation

yn
t
at time t is sampled from Ω(yn

t
|Pan(X

t)), where
Pan(X

t) represents values of the parents of observed
node n at time t. The parents of observed nodes at
time t are hidden nodes at time t; given the values of
the hidden nodes, the observations at different time
steps are independent (see Murphy, 2002).

3. Infinite Dynamic Bayesian Networks

If the hidden factors in a DBN are truly hidden, know-
ing how many hidden factors exist may also be un-
known. Our nonparametric DBN model places a prior
over DBNs with unbounded numbers of hidden factors.
Inference on this infinite structure is tractable only if
the prior ensures that only a finite number of hidden
nodes will be needed to explain a finite sample of time-
series data. More generally, the following properties
are desirable in a general nonparametric DBN model:

• A finite dataset should be generated by a finite
number of hidden factors with probability one.

• The structure connecting the hidden nodes should
be as general as possible (we do not wish to en-

force a particular form of connections as the hier-
archical or factorial HMM do).

• Each node should be able to take on multiple val-
ues (we do not wish to limit ourselves to binary
nodes).

The first desideratum requires particular attention de-
pending on how the hidden nodes at one time slice
affect nodes at the next: care must be taken to ensure
that inference for any particular hidden node k at time
t + 1 does not require knowing the values of an infi-
nite number of hidden nodes at time t. There exist, of
course, many priors that satisfy these desiderata; we
present one here with an eye toward tractable infer-
ence. Our infinite DBN (iDBN) model posits that the
world actually has an infinite number of hidden factors
xt

k
at any time t. Only a finite number of factors are

needed to explain a finite set of observed nodes; how-
ever, as we attempt to model more observed nodes,
we expect that more hidden nodes will be required to
explain the data.
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Figure 1. Graphical model for the iDBN prior: one con-
centration parameter, αDBN controls the structure of the
connections, while a second, αHDP controls the number
of values each hidden node is expected to take in a finite
time-series.

The generative process, summarized in Fig. 1, for our
iDBN model proceeds as follows: first, for each ob-
served node, the generative model draws zero or more
parent hidden factors via a non-parametric process
with hyper-parameter αDBN

Pan ∼ NP(αDBN ) (1)

where Pan(k) = 1 if hidden node k is a parent of ob-
served node n. Once the observed nodes have chosen
parents, all parent hidden nodes choose their own par-
ent nodes via the same process:

Pak ∼ NP(αDBN ) (2)
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where Pak(j) = 1 if hidden node j is a parent of hid-
den node k. This process is repeated for any newly
instantiated parents until all hidden nodes that may
affect the observed nodes have been instantiated. For
example, suppose that there is only one observed node
n, and it chooses hidden nodes i and j as its parents.
Next, nodes i and j would choose their parents: sup-
pose node i chooses only node j, but node j chooses
itself and a new node k. Then we would have to again
sample parents for node k: suppose it chooses nodes
i and j. At this point, all nodes’ parents are already-
instantiated nodes, and we have a finite set of nodes
(i,j,k) that are needed to predict observed node n.

The process NP should have a rich-get-richer property
such that (1) nodes choose a finite number of par-
ents with probability one and (2) when a new node
is choosing its parents, there is always a finite proba-
bility that it not choose any new (uninstantiated par-
ents). In this work, we use the Indian Buffet Pro-
cess (IBP) (Griffiths & Ghahramani, 2005) as our non-
parametric process NP. In the IBP, the nth factor
(the “customer”) chooses Poisson(α/n) new parents
(“dishes”). The probability that the factor chooses
no new parents is exp(−α/n). Fig. 2 shows the how,
when using the IBP as NP, the expected number of
hidden factors grows logarithmically with the dimen-
sions of the observation.

However, any nonparametric process satisfying (1) and
(2) above will ensure number of observed nodes will be
explained by a finite number of hidden nodes:

Proposition 1. If NP is a nonparametric process such
that the kth node selects a new node chooses a new
(uninstantiated) parent with probability less than some
constant c for all k greater than some constant K, then
the DBN is guaranteed to have a finite number of nodes
with probability one.

Proof. Once a new node selects no new parents, the
process for growing the part of the DBN relevant to
the observations is complete. Suppose that the prob-
ability that a new (uninstantiated) parent is chosen is
always less than c after K nodes have already been
instantiated. Then the distribution of number of new
parent nodes that will be added to the DBN is dom-
inated by a geometric distribution with parameter c.
Since a geometric distribution outputs a finite value
with probability one, only a finite number of nodes
will be instantiated with probability one.

Finally, we note that this process for sampling inter-
factor connections is closely related to the cascad-
ing Indian Buffet Process (cIBP) (Adams et al., 2010).
The key difference between the two structure models is
that the cIBP uses an IBP used to winnow the number
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Figure 2. Expected number of hidden factors given differ-
ent numbers of observed nodes, for varying alpha.

of factors in each layer of a deep belief network, while
the iDBN uses its nonparametric prior to winnow the
number of parents in a flatter two-layer network (rep-
resenting the current and future time slices).

Once the connections of the iDBN are speci-
fied, the next step in specifying the iDBN model
is describing the prior over transition distribu-
tions T (xk

t+1|Pak(X
t)) and the emission distributions

Ω(yn
t
|Pan(X

t)). For the emission distribution, we sim-
ply specify some base distribution Hn for each ob-
served node. For the transition distributions, we use
the hierarchical construction of the hierarchical Dirich-
let process HMM (HDP-HMM) (Teh et al., 2006): we
first sample a base, or expected, transition distribution
β from a Dirichlet process prior, and then use that dis-
tribution β as the base distribution for each transition
distribution T (xk

t+1|Pak(X
t)).1

The complete generative process for the iDBN prior is
as follows:

• Sample parents X for all observed nodes
yn according to some nonparametric process
NP(αDBN ): Pan ∼ NP(αDBN ), where αDBN is
the concentration parameter of the nonparametric
process.

• While there exist hidden nodes xk without as-
signed parents, sample parents for them via the
same process NP(αDBN ): Pak ∼ NP(αDBN ).

• For each observed node yn, sample emission dis-

1For simplicity, we used the same base distribution β
for all hidden nodes k. While it may appear restrictive,
evidence from the data still allowed the transitions T to
vary; if needed, the hierarchy could easily be extended to
sample a private base distribution βk for each hidden node.
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tributions Ω(yn
t
|Pan(X

t)) ∼ Hn for each setting
of the parent variables Pan(X).

• Sample a base transition distribution β ∼
Stick(αHDP ), where αHDP is the concentration
parameter of the base transition distribution.

• For each hidden node xk, sample a transition dis-
tribution T (xk

t+1|Pak(X
t)) ∼ DP(β, γ), where γ

is the concentration parameter for sampling the
individual transition distributions.

Besides the properties induced by the nonparametric
process, the choices of the concentration parameters
adjust the biases of the iDBN prior regarding the num-
ber of hidden nodes (αDBN ), the number of values (or
states) that a hidden node is likely to take (αHDP ),
and the determinism of the transitions (γ). We also
note that while the iDBN prior ensures that a finite
number of hidden nodes will explain a finite number of
observed nodes, as time goes on, those hidden nodes
may take on new values (as sampled from the HDP
prior on transitions) to explain new trends in the ob-
servations.

4. Inference

We sample potential DBNs from the iDBN posterior
by cyclically resampling each of the hidden variables—
the hidden factors X, the parent structure for the hid-
den nodes Pak and the observed nodes Pan, the base
transition distribution β, and the transition and emis-
sion distributions T and Ω—one at a time conditioned
on all of the other variables. Throughout this section
and paper, we use the IBP as our nonparametric prior
NP because of its straight-forward inference properties.

Resampling structure. We separate the pro-
cess of resampling the structure Pan and Pak into
two parts: resampling connections for already in-
stantiated nodes and changing the number of hid-
den factors. Given the hidden state sequence X, it
is straightforward to integrate out the transition or
emission distribution and compute the probability of
the hidden state sequence with or without an already-
instantiated node as a parent (Heckerman, 1995), so
that p(Pan|Pak, X, β, T,Ω, Y ) = p(Pan|Pak, X, β)
and p(Pak|Pan, X, β, T,Ω, Y ) = p(Pak|Pan, X, β).

To add or delete factors, we use a Metropolis Hastings
(MH) birth-death move of the following form:

• Choose whether to attempt adding or deleting a
node with probability p = .5.

• If attempting to delete a node: only delete node
whose hidden state sequences are constant.

• If attempting to add a node: add a node whose

hidden state sequence is constant and connect it
to existing nodes with probability p.

Computing the prior probability p(Pak, Pan, β, T,Ω)
of the structure following this MH move is straight-
forward because adding or removing a node with a
constant state sequence affects the structure of DBN
but not the likelihood of the model with respect to the
observations.

In addition to the MH-step above, we also sampled
hidden state sequences from the iDBN prior for nodes
unconnected to the currently-instantiated nodes; in
following iterations these nodes may be connected to
instantiated nodes that influence the observed nodes.
Finally, we deleted a hidden node if it does not con-
nect to an observed node or hidden nodes affecting ob-
served nodes. While these hidden nodes are still part
of the infinite DBN structure—and could have been
connected to other nodes later—keeping them instan-
tiated induced significant computational overhead.

Resampling transitions and observations. We
now turn to resampling the parameters of the tran-
sition and emission distributions, p(T |Pak, X, β) and
p(Ω|Pan, X, β, Y ), as well as the base transition dis-
tribution p(β|Pak, X). The base transition vector β
is infinite-dimensional; following Teh et al. (2006), we
store it as {β1, β2, . . . , βN , βu}, where each βn is the
base probability for some visited state n. The base
probability of visiting any of the (infinite) unvisited
states is βu. We resample β using the restaurant-
based sampler of Fox et al. (2010). Given the finite
representation of β and the hidden node sequence X,
resampling the transition distributions T is straight-
forward using Dirichlet-multinomial conjugacy; we can
similarly resample the emission distributions Ω given
the prior Hn and counts from the observed and hidden
nodes. In the iDBN setting, where each hidden node
can take on an infinite number of values, we obviously
cannot sample distributions for all parent settings of a
particular node. Instead, we only sample distributions
for which we have data; additional distributions are
instantiated on-demand as the sampler resamples the
hidden node sequence.

Resampling states. Finally, we must resample
the hidden node sequence p(X|Pan, Pak, β, T,Ω, Y ).
While exact inference in DBNs is generally computa-
tionally intractable, many approximation algorithms
exist for inference over the hidden nodes. We applied
the factored frontier algorithm (Murphy & Weiss,
2001), a form of loopy belief propagation with a
forward-backward message-passing schedule. By rep-
resenting the belief over states at every time step
as a product of node marginals, the factored fron-
tier adds one more approximation to our trun-
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Figure 3. Simple DBN with 2 hidden nodes.

cated representation of β that groups all unvisited
states into one extra node. However, we found
no empirical difference between this computationally-
efficient approximation and inference using a parti-
cle smoother (Doucet & Johansen, 2009) that did not
require such an approximation to perform inference
over the infinite-dimensional state space. We also
found that the inference over the state sequence is
required for structure-learning algorithms for finite
DBNs (e.g. (Ghahramani, 1998)) as well; in our ex-
periments almost 90% of the computational time was
spent in this step. Thus, the iDBN prior does not add
significant overhead to the inference.

5. Properties of the iDBN

We demonstrate various properties of using the iDBN
prior using the simple DBN with 2 hidden nodes and 4
observed nodes (see Fig. 3). Fig. 4 plots the negative
predictive log-likelihood of the finite DBN models and
the iDBN on held-out test data, where the predictive
likelihoods were computed by holding out 10% of the
data from a time-series with 250 time-steps. Error bars
show the standard error of the mean averaged from
five 50-iteration runs of the sampler. As expected,
increasing the number of hidden nodes helps initially
because the flat model cannot fully explain the data.
However, the larger finite models overfit the training
data and thus make larger errors on the held-out test
data. The iDBN prior infers a distribution over the
number of hidden nodes (right pane of Fig. 4) and
node values that generalizes to predict the held-out
data well.

Many explanations can exist for a given sequence of
observations: for example, suppose the “true” under-
lying model had 2 hidden nodes which took on 2 and
3 state values, respectively. While it would lose the
structure, the model could also be represented by a
flat model with a single hidden node with 6 state val-
ues. In Fig. 5, we show how adjusting the αDBN and
αHDP in the iDBN prior biases the posterior toward
more factors and more states, respectively. As ex-
pected, the number of hidden factors in the posterior
increases with αDBN , while the number of states the
hidden factors taken on increases with αHDP (though

0 1 2 3 4 5 6 7
75

80

85

90

95

100

105

110

115

Number of Factors

N
eg

at
iv

e 
T

es
t L

ik
el

ih
oo

d

Test Likelihoods for Finite Models

 

 

Finite Models

iDBN

0 5 10
0

2

4

6

8

10

12

14

Number of Factors

iDBN Factor Count Histogram
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Figure 5. Number of hidden factors and number of states
discovered by the iDBN; errorbars indicate one standard
error of the mean.

with less sensitivity). However, the number of unique
factor-state settings in the sequences’ posterior stayed
within a small range; changing the concentration pa-
rameters made biases for different structures but the
posterior still captured the core variations in the data.

Overall, we found that good test likelihoods could
be obtained over a variety of different concentration
parameters. Over the parameter settings, the inter-
quartile range for the test likelihoods was 21.8, sug-
gesting that the iDBN could find a variety of likely
models based on the biases given by the designer.
Moreover, when empirically tested, using the same
base distribution β for all of the transition distribu-
tions did not seem to be overly restrictive: the evi-
dence from the data was able to shape the individual
transition distributions to reasonable values.

6. Experiments

We first show that the iDBN prior generalizes well on
several synthetic datasets from the literature. Next,
we demonstrate how the iDBN produces interesting
structure that can provide insights into the causality
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patterns of time-series data. For all of the experiments,
we set αDBN = 1, αHDP = 1, and γ = 3. The base
emission distribution HN was set to a uniform dis-
tribution with concentration 2. All three approaches
compared—the iDBN, the iFHMM, and the DBN—
were run using the same base software with various
flags to constrain the numbers of factors and states.
A full suite of repeated runs took between 1-4 hours
depending on the size of the dataset.

Comparisons on Synthetic Datasets We applied
the iDBN prior to several datasets from Wingate et al.
(2009). The three network datasets consist of binary
observations indicating whether various computers are
up or down. Computers crash randomly, and crashes
can propagate through the (unknown) network. Each
dataset contains an unobserved node which affects
the topology of the network. The jungle data set is
a synthetic dataset containing a timeseries of noises
in a jungle soundscape (where certain animal sounds
cause other animals to also make sounds). Finally, the
spike train dataset was derived from recordings of hip-
pocampal place cells in a rat while running through
a linear track. The data consisted of spike counts;
we applied the IBP to reduce its dimensionality. The
statistics of the datasets are summarized in table 2;
however note that there are always ways of explaining
the data with different numbers of factors or states.

Table 2. Description of Datasets

Domain Factors States Length
Jungle 6 2 52
Spike Train 1 45 179
NW-Ring 4 2 1000
NW-Star 5 2 1000
NW-Tree 7 2 1000

We compared the iDBN prior (αDBN = 1, αHDP = 1)
to a finite DBN initialized with the actual number of
hidden factors and states from table 2 as well as an in-
finite factorial HMM (iFHMM) that assumed binary
hidden factors. We chose these models as compar-
isons because, like the iDBN, they modeled stationary
(non-changing with time) distributions over the hidden
states and had somewhat complementary constraints:
the DBN fixed the number of nodes but allowed non-
binary-valued states, while the iFHMM fixed the num-
ber of states per node. The connections for the DBN
and the iFHMMwere initialized each hidden node with
only itself as its parent and connecting to all observed
nodes. In the case of the iFHMM, the number of hid-
den nodes was initially set to the number of observa-
tions. To speed up burnin, the iDBN was initialized
with the final iFHMM model; completely random ini-
tializations tended to get caught in local optima.

As in section 5, we randomly held out different subsets
of 10% of the observed data for 5 runs of the sampler.
Each run consisted of 100 iterations, with more com-
plex models initialized from less complex ones. The
predictive test-likelihood of each approach was com-
puted over the last 10 iterations of each runs. Table 1
summarizes the results: we see that the nonparamet-
ric models always outperform the finite model; in all
cases the models proposed by the iDBN score either
better or comparably to the iFHMM. The DBN—even
though it has the “correct” number of states—does
less well with limited data due to overfitting. We also
emphasize that the structures found by the iDBN are
designed to predict the provided data well, not find the
“correct”—or even an interpretable—structure: in-
deed, especially with limited data, there will be many
structures that describe the data well. The results
show that even though the iDBN is a more flexible
prior, it generalizes to unobserved data by finding
structure in the model. By allowing for connections
between hidden nodes, it can also model structures
such as the network topologies better than the more
constrained iFHMM.

6.1. Application: Weather Modeling

For this test, we downloaded historical weather data
from the US Historical Climate Network2. In the first
test, we used daily precipitation values for 5 different
weather stations (one each in Rhode Island, Connecti-
cut, New Jersey, Delaware and California) for 10 years
between 1980-1989, resulting in 3,287 timepoints. Ob-
servations were evenly discretized into 7 values.

Fig. 6 shows the results on this small time-series: on
the left is the learned DBN, which identified two in-
dependent weather systems for New England and Cal-
ifornia. This interpretation was stable across many
samples from the posterior, as shown in the right hand
side. An entry (i, j) in the matrix represents the per-
centage of samples in which there was a causal con-
nection from parent j to child i (the model occasion-
ally inferred one extra connection [square 2,3] which
did not connect to any observation). Here we see the
iDBN naturally picking out the independently evolving
latent factors that the iFHMM is designed to model.

Fig. 7 shows the results of the iDBN applied on a time-
series of 500 weather stations across the United States.
As before, the algorithm does not have access to the
weather station locations; it only sees a time-series of
discretized precipitation data. The data can therefore
be represented as a matrix with 500 rows (represent-
ing stations) and 3,287 columns (representing days).
Fig. 7 shows the results. Not only does the iDBN

2From ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/daily/
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Table 1. Comparison of iDBN approach to other algorithms. Intervals represent the standard error of the mean.

Negative Test Likelihood Factors Discovered
DBN iFHMM iDBN DBN iFHMM iDBN

NW Star 174.0± 8.2 165.2± 3.0 156.2± 3.0 5 12.8± 0.2 2.4± 0.2
NW Tree 255.6± 7.1 286.5± 2.9 216.2± 10.0 7 12.0± 0.0 4.0± 0.4
NW Ring 181.7± 16.0 154.3± 1.6 151.4± 2.8 4 9.0± 1.2 4.2± 1.0
Spike Train 142.4± 2.7 133.1± 2.1 136.0± 2.8 1 15.9± 0.1 18.1± 6.2
Jungle 14.8± 1.4 13.9± 1.5 14.2± 1.6 6 3.1± 0.1 29.5± 3.6
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Figure 6. Results on the weather dataset. On the left: the
weather stations. Middle: the inferred DBN. On the right:
the expected causal connections between latent factors.

find geographically-localized clusterings of the obser-
vations, the west-to-east causal links are consistent
with U.S. weather patterns (due to the jet stream).
Fig. 8 shows that the iDBN finds models with lower
training and test likelihoods than the iHMM, iFHMM
or a flat HMM with up to 100 states.

Figure 7. Sample network inferred by the iDBN based on
500 weather stations across the United States.

6.2. Application: Discovery of Neural

Information Flow Networks

For our final application, we applied the iDBN to ana-
lyze neural activity recordings from the auditory path-
way of zebra finches. First analyzed in Smith et al.
(2006), the dataset corresponds to (possibly mis-
placed) electrodes put in the cerebral auditory regions
of zebra finches. Raw data was discretized into three
observations per electrode. The goal of the analysis
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Figure 8. Training and test likelihoods for the iDBN,
iHMM, iFHMM, and HMM models on the full weather
data. Dashed line represents random guessing with the
marginal empirical distribution.

was to infer functional connectivity between different
brain regions given only a timeseries of electrode mea-
surements. We expected factors to correspond to func-
tional regions of the brain and causal connections to
represent information or processing pathways.

We analyzed data for two birds (Black747 and
LtGr841). We first tested the iDBN on temporally-
scrambled versions of the datasets. It reliably inferred
that no causal connections existed between the hid-
den factors, suggesting that the temporal connections
found in the unscrambled dataset were not a product
of chance. Fig. 9(B) shows clusterings found in the un-
scrambled time-series: each entry (i, j) in the square
represents the frequency with which observation di-
mensions i and j were connected to the same par-
ent. Over many runs of the iDBN, several observation
factors were collapsed into a single state variable—
implying that more often than not, the differences be-
tween some observations were not significant enough
to justify their own factors.

The groupings are anatomically plausible: for exam-
ple, in the LtGr841 block, we find that L2 and L3 were
often grouped together into a single state variable; sim-
ilarly, in Black747, we see that CMM and L2 were of-
ten grouped together. These observational clusterings
correlate strongly with the inferred functional connec-
tivity graphs from the original paper (Fig. 9(A)); the
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Figure 9. Results on the finch dataset. (A) Inferred func-
tional connectivity from (Smith et al., 2006). (B) the
iDBN’s inferred observation clusterings (figure (A) cour-
tesy of V. Anne Smith).

fully-observed-DBN approach of Smith et al. (2006)
cannot infer the same collapsing of variables.

7. Discussion and Future Work

We presented the infinite DBN, a nonparametric prior
over dynamic Bayesian networks that posits that the
world contains an infinite number of hidden nodes as
well as observed nodes; however, only a finite number
of hidden nodes are needed to explain a finite number
of observed nodes. By using the iDBN as a prior over
hidden nodes, we automatically infer the number of
hidden factors—and the number of state values they
take on—to explain the observations. Adjusting con-
centration parameters lets us tune the models to the
type of structures we prefer to find. On a variety of
datasets, the iDBN finds reasonable structure, ranging
from independent chains to highly connected subsets
of latent factors. Importantly, this flexibility does not
compromise the likelihood of the data, which is on par
or better than more structurally constrained models.

The iDBN provides a very flexible way to model latent
structure in observed time-series, and it also raises sev-
eral interesting questions in non-parametric time-series
modeling. For example, the nonparametric process
that ensures that each child only has a finite number
of parents also results in several popular parent fac-
tors that influence many parts of the network. While
reasonable for many scenarios, one could also imagine
a complementary model in which a few popular child

nodes were affected by many other nodes in the net-
work. One could also imagine models in which the
expected number of hidden nodes needed to model a
time-series grows with the length of the time-series,
rather than the number of observed nodes. We chose
the form of the iDBN prior as a balance between flex-
ibility and tractable inference; developing other non-
parametric time-series models—including those that
can model non-stationary and relational data—and ac-
companying inference techniques for specific applica-
tions remains an interesting area for future work.
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