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Abstract

In the design of buildings, structural analysis is traditionally performed after the
aesthetic design has been determined and has little influence on the overall form.
This thesis presents methods to integrate architectural design and structural anal-
ysis. While existing tools focus on providing an analysis of the stress state, the
proposed methods focus on geometry and equilibrium to obtain forms that are more
structurally sound. The feasibility of masonry structures is modeled using a novel
penalty formulation, assuming a rigid-block behavior of masonry. Two methods were
developed that apply this model of feasibility to structural optimization.

In the first approach, structural feasibility is introduced into procedural modeling
of buildings. A set of designated free parameters are automatically tuned to achieve
structural feasibility constraints. It is demonstrated how this allows for more realistic
structural models that can be interacted with in physical simulations.

In the second approach, a closed form derivation of structural gradients is pre-
sented that measures the change in stability of a building with respect to geome-
try modifications. The method computes the gradient of structural feasibility con-
straints, parameterized by vertex modifications. The gradients are visualized as in-
teraction tools, giving user-guidance for effectively modifying a structural design.
User-controlled constraints, formulated as penalty functions, are incorporated so that
the user can explore variations of structurally feasible designs.
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Chapter 1

Introduction

1.1 Motivation

Design informed by stability is the notion behind such structural landmarks as Kings

College Chapel (Figure 1-1) or the work of Catalan architect Antoni Gaudi (1852-

1926). These buildings are feats of engineering in the spans and heights they were

able to achieve, and the elegant vaulted and arched forms were designed through an

understanding of structural properties. The connection between shape and structure

is illustrated in Figure 1-1(b): an unstable semi-circular arch is shown alongside its

collapse mechanism. The second catenary-shaped arch, while having the same span

and thickness, is structurally stable due to a better choice of shape. In this case,

stability is a function of the geometry rather than failure of the material. This thesis

is an investigation of the relationship between form and feasibility, with the goal of

using computational techniques to find structurally stable forms.

While computer graphics and computer-aided-design (CAD) have dramatically

broadened the range of shapes available for architectural design, structural consider-

ations have often been ignored. Structural analysis of a building is usually performed

after the aesthetic design has been determined and has little influence on the over-

all form. An architect designs the shape, which is passed to structural engineers to

make the building stable, typically using support structures of steel and reinforced

concrete. Existing structural analysis software, such as finite element analysis, is a
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(a)

semi-circular arch 
and collapse mechanism

feasible catenary arch

(b)

Figure 1-1: (a) King’s College Chapel, Cambridge University, UK. (b) Compari-
son of arch structures where shape determines the feasibility rather than material
strength. The semicircular arch is infeasible with a collapse mechanism as shown
[web.mit.edu/masonry]. The modified catenary arch is feasible.

powerful method for analyzing a given structure, but does not directly suggest ways

for the designer to improve the geometry in order to reduce the internal forces and

required material. Designers may not have intuition about the mechanics that gov-

ern structural stability, and determining the precise dimensions of a structure that

guarantee stability can be a tedious task.

This thesis focuses on masonry materials, comprising stone and brick structures.

Masonry is the traditional material for historic architecture such as cathedrals and

mosques, and is also used in modern architecture such as the museum in Mapungubwe,

South Africa (Figure 1-2) where local soil was used to manufacture the bricks. In

contrast to contemporary steel or reinforced concrete, traditional masonry relies on

forms which are inherently stable, because the material resists only axial compressive

15



Figure 1-2: Example of modern masonry ar-
chitecture: Interpretation Center, Mapun-
gubwe, South Africa [Peter Rich Architects,
Photo source: www.cretique.com].

forces. The structural quality of a building is derived from its shape. Though we

focus on the case of masonry, our approach can be used to minimize non-axial forces

in general. Even with materials that resist tension, such as reinforced concrete or steel,

a good structural form with reduced non-axial force requires less material, leading to

cheaper, more environmentally-friendly, and robust buildings.

Outside of architecture, there are motivations for physical models of buildings in

computer graphics applications. Content creation for virtual environments has be-

come a bottleneck – geometric models are required to have high visual realism and

also be suitable for use in physical simulations. Structurally stable models enhance

realism in virtual environments by allowing characters to interact with the built sur-

roundings, whereas models which are not consistent with mechanics might collapse

under their own weight.

1.2 Problem Statement and Contributions

We seek to bring consideration of structural stability to computer-aided design for

architecture. We term this problem inverse statics : starting from an infeasible design,

the goal is to determine shape modifications that will satisfy structural stability con-

straints. In contrast to a forward analysis method that determines the force state for

a set geometry, our approach generates new geometry that improves feasibility. This

thesis makes three primary contributions toward this goal in the areas of masonry

analysis and modeling of structurally feasible architectural geometry:

16



1. Measure of Infeasibility We present a measure of infeasibility that determines

how close a model is to being structurally sound. We introduce a penalty

formulation to represent the presence of tension in rigid block assemblages. It

is enabled by a quadratic programming formulation and agrees closely with

previous theoretical results.

2. Procedural Modeling We generate structurally feasible procedural models

of buildings through automatic parameter selection. We use the measure of

infeasibility as an energy function, and apply gradient-based optimization to

select rule parameters that satisfy structural stability constraints. We show

examples of procedural models of buildings with both internal and external

structure that are consistent with mechanics.

3. Free-Form Modeling We extend our structural optimization to handle free-

form shapes by parameterizing the geometry at a vertex level. We provide a

closed form derivation for the gradient of the measure of infeasibility with re-

spect to geometry modification. The performance enhancement offered by the

analytic formulation enables a variety of interactive tools. We present proto-

type design tools for improving the stability of a model based on user-provided

constraints and objectives. We demonstrate that our technique can lead to a

variety of designs given the same input shape, based on the user’s decisions.

1.3 Overview

As stated in §1.2, our three key contributions consist of a masonry analysis method, an

optimization approach to structural design using procedural modeling, and an exten-

sion to structural design for free-form structures. The contributions and supporting

discussions are organized as follows.

Chapter 2 reviews previous research in structural engineering, architecture, and

optimization to explain the groundwork that this thesis builds upon.

Chapter 3 focuses on a new forward analysis tool to assess the soundness of a

17



masonry structure. The method is based on stability of the geometric configura-

tion and whether it is in static equilibrium. We extend an approach introduced by

Livesley [1978], and we present a new forward structural analysis method based on

optimization under linear constraints. We model the stress state by dividing the struc-

ture into rigid elements and computing force resultants on inter-element boundaries.

We formulate the stability problem as a quadratic program, where each element is

subject to static equilibrium constraints. We extend the analysis to return a measure

of infeasibility when the quadratic program fails, by minimizing violation of failure

criteria at the joints. This allows us to define an energy function and use nonlinear

optimization to find the appropriate parameters.

Chapter 4 introduces physical constraints into procedural modeling methods. We

apply the forward analysis from chapter 3 to search for parameters of our procedural

model that yield a stable building. We solve an inverse statics problem: given a set of

physical constraints and a building topology, we determine an appropriate shape. The

user provides a set of production rules that describes the desired architectural style,

along with a small set of free parameters. The relationship between rule parameters

and internal forces in the structure is nonlinear. Using gradient-based nonlinear

optimization, our method searches over the parameter space for a stable configuration.

The method automatically “snaps” to feasible dimensions, while leaving control in

the designer’s hands for deciding which aspects of the model are variable.

Chapter 5 presents a method to compute the gradient of stability for masonry

structures, and demonstrates how the gradient can be a powerful guide in the design

of stable structures. We describe a design interface that is parameterized directly on

the vertex positions which gives complete freedom to the user for designing free-form

shapes. Building upon the instability metric introduced in chapter 3, we provide a

closed form derivation of the gradient with respect to geometry modification. Further,

user-defined constraints and objectives are incorporated to allow the user to explore

a variety of solutions and designs based on preference.

Finally in chapter 6 we discuss conclusions of the thesis and outline avenues for

future work.
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Chapter 2

Literature Review

2.1 Introduction

The contributions presented in this thesis are highly interdisciplinary, touching on a

wide range of topics in structural engineering, masonry mechanics, shape optimiza-

tion and architectural modeling. In this chapter, we focus on select literature directly

relevant to our work. For a more general presentation, we recommend classical text-

books such as Heyman [1995] for masonry mechanics, Cook [1995] for finite element

methods, and LaPorte and Le Tallec [2003] for shape optimization. The review is

organized under the two main themes of analysis and design: section 2.2 discusses

techniques in masonry analysis, focusing on the subtopics of strength versus stability

methods. Section 2.3 reviews previous work in structural design methods.

2.2 Masonry Analysis

Masonry analysis can be broadly grouped into methods that consider material strength

and those based solely on geometry. Strength methods assess structures according

to material properties: the relationship between stress and strain, and the limits of

compressive and tensile strength. Structural failure is determined by identifying sites

of material damage where these limits are surpassed. In contrast, stability methods

consider only the geometry of the structure. Feasibility is assessed based on condi-
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tions of equilibrium and material failure is not considered. A comprehensive review

of analysis techniques for historic masonry structures is given by Lourenco [2002].

2.2.1 Strength Methods

Finite element (FE) modeling is the predominant method used for structural analysis

in many fields of engineering. FE methods work by dividing a structure into a system

of discrete elements connected by nodes. Given a discretization, material properties

and load conditions, FE analysis calculates nodal displacements, which are used to

calculate strain and stress values of the structure. The accuracy of the analysis

depends on a discretization that represents how stresses will be distributed in the

structure and how it will deform. Further, shape functions with appropriate degrees

of freedom must be assigned to the nodes [Zienkiewicz 1971; Cook 1995; Bathe 2006].

Given a discretization, the steps in carrying out a FE analysis are as follows:

• Generate the stiffness matrix k for each element, which describes the force-

displacement relationship. The general formula for stiffness is k =
∫
BTEB dV ,

where B is the strain-displacement matrix, E is the constitutive matrix of the

material relating stress and strain, and V is volume.

• Connect the elements by assembling the k element matrices into the global K

stiffness matrix.

• Construct the matrix of loads R.

• Finally, solve the global equations KD = R for the unknown displacements D.

The strains and stresses in the structure are computed directly from D.

The advantage of FE analysis is that it is a general approach which can be applied

to complex geometries that would be difficult or impossible to analyze using direct

methods of structural mechanics (e.g. elementary formulas for beams or columns). As

such, it is natural to attempt to apply FE analysis to the complex vaulted geometry

of typical masonry structures. However there are a number of reasons linear elastic

FE analysis has difficulty obtaining accurate and efficient results [DeJong 2009]:
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• FE methods are tailored for a continuum, whereas masonry is inherently a

discontinuous material: the joints between blocks are free to move, and failure

within blocks is brittle fracture.

• Stresses are low in comparison to the compressive strength of masonry and

elastic deformations are very small.

As an illustrative example, Figure 2-1 shows side-by-side results of a FE analysis

for two arches with different thickness. The arches are modeled as a linear elastic

continuum on fixed supports and are subject to self-weight only. In both cases tensile

stresses are predicted, equivalent to bending moments at the supports [Block et al.

2006; Cook 1995]. In comparison, a static equilibrium analysis of the arches easily

reveals that the thicker arch has a compression-only solution and is therefore feasible,

while the thin arch will not stand unless the material resists significant tensile stress.

Conventional linear-elastic analysis does not predict the infeasibility of the thinner

arch.

(a) Thin arch: infeasible (b) Thick arch: feasible

Figure 2-1: Linear elastic FE analysis fails to differentiate between (a) an infeasi-
ble arch and (b) a feasible arch. Tension stresses appear in both analyses (green-
purple) despite there being a compression-only equilibrium solution for the thicker
arch. Reprinted from Block et al. [2006].

Further, FE methods do not reflect the hyperstatic properties – masonry structures

are indeterminate, meaning an infinite number of equilibrium solutions exist. In FE

analysis a single stress state is determined which may not be representative of the

actual stresses in the structure.
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Two examples of finite element methods applied to analysis of masonry vaults

are Mark et al. [1973] and Milani et al. [2008]. In Mark et al., their physical test

structure is constructed from epoxy which has a low modulus of elasticity and is a

continuous shell. This differs from traditional masonry construction which is com-

posed of discrete blocks and has a rigid block assumption (no elasticity). Beyond

material differences, Mark et al. describe challenges in specifying boundary condi-

tions and mesh parameterization in the finite element analysis. Indeed, FE results

diverge from test results in regions close to the rib joints. Milani et al. [2008] use a

homogenization technique that treats brick, mortar and block as a continuum, then

introduce a novel triangular curved finite element for vault analysis.

In order to model discontinuity of masonry, some work has been done using micro-

modeling, where separate finite elements are assigned to the masonry block elements

and interface (mortar) elements [Bicanic et al. 2003]. However, micro-modeling leads

to a large number of variables as well as a very stiff numerical system due to the vast

difference in rigidity of stone versus joints. In this case convergence and performance

become problematic [Molins and Roca 1998]. Further, FE methods show extreme

sensitivity to support conditions and displacements in geometry. In a study by Loo

and Yang [1991], they applied nonlinear stress-strain properties to models of arch

bridges and found high sensitivity to small movements in the supports.

2.2.2 Stability Methods

Fundamentals Heyman’s The Stone Skeleton [1966; 1995] is a foundational publi-

cation on behavior of masonry structures. Aside from offering an intuitive description

of the structural actions of masonry, it provides analysis and collapse mechanisms for

common structural elements (e.g. arches, vaults, domes, spires, and flying buttresses)

which are used as test cases for verification of research results. The three basic as-

sumptions of masonry behavior introduced by Heyman [1966] are:

1. Masonry has no tensile strength.

2. Stresses are so low that masonry effectively has unlimited compressive strength.
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3. Sliding failure does not occur.

Intuitively, this means there is no ‘glue’ that holds blocks together under a pulling

force, and that blocks can be considered infinitely rigid. These simplifying assump-

tions allow us to treat masonry as stacked rigid blocks. Stability depends only on the

geometric arrangement, namely whether the blocks can stand in static equilibrium.

The stability approach is commonly referred to as limit analysis, and it can be carried

out with a variety of equilibrium approaches.

Analysis Methods Traditionally, as early as the 1700s, stability methods were

applied to masonry analysis using graphical techniques called graphic statics [Huerta

2004]. Engineers solved for equilibrium conditions using geometric relationships be-

tween force vectors. Block et al. [2006] enabled interactive analysis of masonry struc-

tures by implementing graphic statics in the parametric geometry software Cabri Ge-

ometry (www.cabri.com). However, the analyses are constructed manually for each

structure, whereas our analysis applies to arbitrary geometry. Moreover, graphic

statics is mainly practical for two-dimensional slices of buildings.

Livesley [1978] set the foundation for a computational implementation of limit

analysis of 2D masonry structures, with further work on a small class of 3D structures

[Livesley 1992]. Livesley formulated the limit analysis problem (determining the

collapse load) as a linear system, such that it could be solved with linear programming.

Similar to our approach, the structure is divided into rigid block elements. The

equilibrium conditions are expressed in terms of concentrated force resultants at inter-

element boundaries, which are statically equivalent to the actual boundary stresses.

While Livesley’s method provides a yes/no answer on whether a structure is feasible,

we extend this technique to provide a metric for infeasibility that can be useful as

a cost function in structural optimization problems. In practice, the RING software

applies limit state analysis to 2D masonry bridges [Gilbert 2001].

Continuing work on limit analysis for masonry structures, Harvey [1991] applies

the rigidity assumption and equilibrium approach, but incorporates a zone of thrust to

accommodate uncertainties in material properties and second order effects. Gilbert et
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al. [1994; 2006] focus on friction behavior for rigid block structures and consider only

two-dimensional problems. Similarly to Livesley, authors Boothby and Brown [1992]

formulate their analysis using mathematical programming with the simplifying as-

sumptions of masonry stated above. In contrast, their objective function is to min-

imize total potential energy under kinematic constraints rather than solving for the

limit load. Zessin et al. [2010] study collapse conditions for masonry domes consider-

ing movement in the supports. They apply a quasi-2D thrustline analysis to assess the

stability of 3D hemispherical domes and validate collapse predictions experimentally

on scale models.

2.3 Design and Optimization Methods

In this section we review methods in design of architectural geometry, and assess

progress in integrating structural objectives into the design process.

2.3.1 Architectural Modeling

There is a large body of work on Computer-Aided-Design (CAD) for Architecture,

with applications such as AutoCAD, Rhino, and CATIA among the most sophisti-

cated and widely used 3D design software. Other methods proposed for modeling

architecture include data-driven techniques [Merrell et al. 2010] and procedural mod-

eling [Parish and Müller 2001; Wonka et al. 2003; Müller et al. 2006; Müller et al.

2007; Talton et al. 2011] where grammars are used to produce variations of build-

ing designs. Structural considerations do not apply in these applications. Attar et

al. [2009; 2010] have visited the use of physics in design with user-set constraints.

However physics was used as an interaction and modeling tool rather than to create

structurally feasible forms, for example, designing a surface using cloth simulations

combined with collision objects or torsional forces. In Chapter 4 we revisit procedural

modeling as a parameterization for creating structurally-sound buildings.
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2.3.2 Shape Optimization

General Framework Delfour and Zolésio [2001] and Laporte and Le Tallec [2003]

lay down the mathematical foundations for optimization problems where the control

variable is a geometric domain. The optimization problem is formulated in abstract,

mathematical terms as finding an optimal shape Ω∗ such that:

y(Ω∗) = minΩ y(Ω, fΩ)

s.t. S(Ω) ≤ ε0

Ω denotes the unknown shape to be optimized. S(Ω) is the set of geometric constraints

imposed on the shape Ω. In our case this could be the thickness of a column or height

of a ceiling. fΩ is a state variable, in our problem formulation this refers to the state

of forces at the shape Ω. Function y(Ω, fΩ) is the objective which must be minimized

and depends both on the shape Ω and the solution of the state variable fΩ. The

problem is reduced to a standard form of mathematical programming by defining a

discretization of Ω into a finite number of control parameters. In this dissertation, we

express the stability of a building in this general framework and adapt it to address

nontrivial issues specific to architectural modeling, masonry, and interaction with

users.

Interactive Design Within a shape design context, optimization frequently ap-

pears as the underlying formulation. Welch and Witkin [1992] solve a constrained

variational optimization for interactive modeling of free-form surfaces. Similar to our

approach they formulate the surface energy as a quadratic program, and incorpo-

rate user-controlled constraints such as fixed points. In architectural applications,

optimization has been used for modeling free-form surfaces that meet fabrication cri-

teria [Pottmann et al. 2008; Pottmann et al. 2007; Liu et al. 2006]. More broadly,

Harada et al. [1995] optimize constrained layout designs with physically based user in-

teraction. However, these examples do not consider structural feasibility constraints.
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2.3.3 Structural Design

Structural design refers to shape optimization driven by mechanical objectives and

constraints. The predominant concern is to satisfy the laws of mechanics (e.g. sup-

porting applied loads), while other objectives may be efficient material use (cost), or

fabrication constraints. We review a few articles that represent progress in this area

relevant to our approach.

Allaire et al. [2004] describe structural optimization combining shape derivatives

with a level-set method. For a predefined topology, they are able to find the optimal

material distribution under various boundary conditions such as a cantilever beam

or anchor points with uniform loading. Contrary to our approach their method is

based on properties of elasticity in the design material. Smith et al. [2002] developed

a technique for automatic optimization of truss structures with user input on support

conditions, applied loads and bounding volumes. Similar to our work, they con-

sider static equilibrium analysis, however in trusses only axial forces are considered.

Further, Smith et al. have a smaller solution space to search given that trusses are

typically restricted to two levels of joints, compared to the arbitrary stacking of blocks

in masonry architecture. Due to the restricted variables, they are able to consider

topological variations by initiating their optimization with all possible beam connec-

tions in place, and merging unnecessary elements as the optimization progresses. The

EifForm application [Shea 2000] is an example of integrating FEM with generative

structural design methods. EifForm differs from our technique by use of a simulated

annealing algorithm whereas we apply gradient-based optimization.

Many CAD modeling systems, such as CATIA (www.3ds.com/products/catia)

and Revit (usa.autodesk.com/revit-architecture), integrate finite element analysis

into the modeling package to shorten the pipeline between model creation and struc-

tural analysis. Visual feedback from FE analysis is provided which indicates the

current state of stress. Although this allows designers to iterate through design op-

tions and quickly assess structural output, there is no guidance to the user on how

to modify designs specifically for improving stability. Manual model adjustment is
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required which can be ineffective for designers lacking intuition in mechanics.

Allen and Zalewski [2009] promote the use of graphic statics for generation of

good structural form, and demonstrate several real-world constructions that employed

graphical techniques. Block and Ochsendorf [2007] developed the Thrust Network

Analysis method that extends graphic statics to 3D structures for interactive design

of masonry shell structures and exploration of design variations. Similar to our ap-

proach, they use a stability method that finds a compression-only structure from an

input mesh and boundary constraints. They consider equilibrium of resultant axial

forces at block interfaces, and use the concept of dual force polygons to determine

the thrust network. Their approach is specific to shell structures with topologies that

can be projected onto a 2D plane, while we support arbitrary topology.

Computer Graphics Applications Outside of architecture, stability analysis has

been applied to a wide range of model subjects in computer graphics applications with

the notion that physical realism translates to a more realistic appearance. For exam-

ple, Shi et al. [2007] use static equilibrium as a constraint for determining plausible

character poses. They solve for minimum deformation of an input pose that positions

the center of mass over the ground supports. In plant modeling, static analysis has

been used to balance the weight of branches for creating realistic tree structures [Hart

et al. 2003]. Their work solves a similar problem to our approach in chapter 4 of gen-

erating model geometry through procedural rules and determining parameters that

satisfy structural constraints. However, the problem in Hart et al. [2003] is limited to

a single variable for each branch specifying base diameter. More importantly, due to

the tree hierarchy the dependence of each branch element on the rest of the structure

is non-cyclical – each branch supports only its child branches – while in our structures

elements are highly interdependent.
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2.4 Summary

Analysis methods for masonry are well-suited to a rigid block assumption under equi-

librium constraints. These assumptions remove a dependence on material strength,

which is appropriate for masonry construction, where observed stresses are far lower

than the compressive strength and deformation under stress is negligible. Our main

contribution over previous analysis methods is that we define a continuous metric of

infeasibility for structures that are not stable, whereas past work has offered only the

binary information of whether a structure is feasible or not under stability constraints.

Within shape optimization of structures, generating structural forms that sat-

isfy stability and efficiency objectives is a widely studied area. However, previous

approaches are specific to certain classes of structures, such as trusses or elastic ma-

terials. There is still need for a shape optimization method that operates on general

3D masonry structures. The following chapters will describe our contributions in this

area.
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Chapter 3

Infeasibility Metric for 3D Static

Equilibrium Analysis

3.1 Introduction

In order to impose structural feasibility on a building design, a forward analysis

method is required to assess the soundness of a structure. Although many modern

engineering analysis tools are readily available, they are predominantly based on fi-

nite element methods and elasticity theory [Zienkiewicz 1971]. Our analysis method

focuses on masonry structures, which can be assumed to behave as rigid blocks [Hey-

man 1995]. As discussed in §2.2.1, finite element methods are not appropriate in this

context because they focus on material failure and stress, where the high stiffness of

stone results in poorly conditioned numerical systems. In contrast, the critical factor

in masonry structures is the geometric configuration and whether it is in static equi-

librium. For this reason, we extend an approach introduced by Livesley [1978], and

we present a new forward structural analysis method based on optimization under

linear constraints.
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3.2 Overview

The analysis method solves a forward statics problem: given the geometry of a struc-

ture, the stress state is modelled by dividing the structure into rigid elements and

computing force resultants on inter-element boundaries. We formulate the stability

problem as a quadratic program, where each element is subjected to linear static

equilibrium constraints. We extend the analysis to return a measure of infeasibility

by minimizing violation of failure criteria at the joints. This chapter first reviews

the feasibility conditions for a structurally sound model. Next, for structures that do

not satisfy these conditions, we introduce a measure of infeasibility that determines

how far a structure is from a stable configuration. This will be put to use later as an

objective function in Chapters 4 and 5.

3.3 Background: Static Analysis

To be physically feasible, the forces in a structure must satisfy static equilibrium,

friction constraints, and additional constraints dependent on the material.

3.3.1 Contact Forces

We model structures as an assemblage of rigid blocks, and analyze the force distribu-

tions at the interfaces between adjacent elements. Figure 3-1 illustrates the contact

surface discretization. A three-dimensional force fi is positioned at each vertex of

the interface, modeling a linear force distribution across the surface. Although three

contact points could model the force distribution, we chose this representation for

simpler constraint specification.

We represent fi in the local coordinate system of the interface: one axial compo-

nent f in perpendicular to the face, and two orthogonal in-plane friction components,

f iu and f iv. The direction of in-plane friction forces is determined independently at

each block interface, with u aligned to an (arbitrary) edge of the block face. Friction

forces on shared faces have opposite orientation.
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Figure 3-1: Model of contact forces at interfaces between blocks.

3.3.2 Static Equilibrium

Static equilibrium conditions require that net force and net torque for each block

equal zero, accounting for self weight of the structure and external applied loads.

Combining equilibrium constraints for each block gives a linear system of equations

[Livesley 1978]:

Aeq · f + w = 0 (3.1)

where w is a vector containing the weights of each block, f is the vector of interface

forces, and Aeq is the matrix of coefficients for the equilibrium equations (see §A.1).

The system has six rows per building block: three for the x, y, z components of the net

force, and three for the net torque. In general, structures have a sparse Aeq matrix

due to the small number of interactions between blocks – each force in f affects only

the two blocks adjacent to that interface, and a column of Aeq only has two non-zero

coefficients.

3.3.3 Compression Constraint

The compressive stresses in traditional structures are typically low relative to the

strength of masonry and the material can be treated as rigid. Second, according to

limit analysis of masonry, the material can be assumed to have zero tensile strength.

Although mortar is used to fill interstices, it is relatively weak and is not assumed to

add significant tensile strength to the construction. This condition is expressed as a
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non-negativity constraint on the axial forces:

f in ≥ 0, ∀ i ∈ interface vertices (3.2)

3.3.4 Friction Constraints

A friction constraint is applied at all vertices of the block interfaces. For each triplet

of forces {f in, f iu, f iv} the two in-plane forces are constrained within the friction cone

of the normal force fn. To linearize, we approximate as a friction pyramid:

|f iu|, |f iv| ≤ αf in, ∀ i ∈ interface vertices (3.3)

where α is the coefficient of static friction with a typical value of 0.7. As long as

the per vertex friction forces satisfy the friction cone constraint, the resultant friction

force over the interface is guaranteed to satisfy the constraint. The approximation

is made conservative by using a reduced friction coefficient (1/
√

2) such that the

cone circumscribes the pyramid. Alternatively, one could use an octagonal pyramid

that more closely approximates the cone; however this would double the number of

constraints which increases computation time.

Combining friction constraints over the entire assemblage of blocks in the structure

gives a sparse linear system of inequalities:

Afr · f ≤ 0

The friction constraint may not ensure feasibility in all cases, see the limitations

section for details.

In summary, for a structure to stand in equilibrium, a force solution f must exist

that satisfies the described linear constraints:
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Aeq · f = −w \\equilibrium

Afr · f ≤ 0 \\friction

f in ≥ 0, ∀ i ∈ interface vertices \\compression-only

(3.4)

3.4 Measure of Infeasibility

We introduce a new formulation to analyze a model’s geometry and measure its

closeness to a feasible structure. The core problem we solve is that the constraints in

(3.4) provide only a yes/no answer on stability. The unknowns, f, can be solved using

linear programming [Livesley 1978], provided that a feasible solution exists. However,

if the structure is infeasible, no solution exists and no information is given on how

far the structure is from a stable configuration.

We introduce a method to measure a structure’s infeasibility by translating (3.4)

into a penalty form. Our penalty formulation softens the compression constraint,

which allows tension forces to act as “glue” at block interfaces to hold the structure

together. We penalize the tension forces, and use their magnitude to measure the

distance to a feasible solution. The first step is to express axial forces in terms of

compression and tension using a variable transformation. The axial force at each ver-

tex is written as the difference of two nonnegative variables [Bertsimas and Tsitsiklis

1997]:

f in = f i+n − f i−n (3.5)

f i+n , f i−n ≥ 0

where f i+n , f i−n are the positive and negative parts of f in. The force f in can take on

any real value by choosing appropriate values for f i+n and f i−n . f i−n represent tension

forces, and f i+n compression. Our penalty formulation of (3.4) is then a quadratic
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program:

min
f

n∑
i=0

(f i−n )2 (3.6)

s.t. Aeq · f = −w

Afr · f ≤ 0

f i+n , f i−n ≥ 0, ∀i

where the objective function is the squared norm of the tensile forces, and y(θ) is

the measure of distance to a feasible structure. We choose a quadratic objective for

smoothness of the resulting energy landscape when we vary the parameters of the

procedural model in the structure optimization.

From a structural mechanics viewpoint, the constraints in (3.6) describe a stati-

cally indeterminate structure. Static equilibrium conditions do not specify a unique

set of forces, rather, there are many possible solutions. We make the system well-

posed by searching for the solution that is closest to satisfying material compression

constraints.

3.5 Robustness

The constraints in (3.6) describe the minimum requirements for a structure to support

its own weight. In order to give the structure robustness to external perturbations,

we incorporate a geometric factor of safety using the concept of the kern. The kern is

the central portion of the interface where, if the resultant axial force lies within this

region, the entire interface will act in compression. For rectangular sections the kern

is the middle third [Heyman 1995]. When the resultant force lies outside of the kern,

the compressive force is concentrated over a smaller effective interface. The structure

forms a hinge when the resultant force reaches the boundary of the interface. We

incorporate the kern limit by shrinking the boundaries of the contact polygon (Figure

3-2), and applying the interface forces at the modified vertex positions, which provides

a margin of safety.
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resultant force

infeasible

feasible

feasible 
+ safe

==

==

==
vertex forces

Figure 3-2: (Left) 2-block structure with self-weight acting at the centroid (black
arrow). (Center) Interface vertex forces acting on the top block are displayed. (Right)
The resultant force has the equivalent net force and torque contribution to all vertex
forces. For compression-only solutions the resultant must lie inside the interface
boundaries. The geometric factor of safety shrinks the effective interface (orange) to
tighten the compression constraint.

Another criterion for robustness is to incorporate live loads, which are typically

more critical for bridges which support heavy traffic, but less important for large

buildings such as cathedrals where the self-weight governs stability. The live load

criterion is straightforward to use in our approach by modifying the external forces

at any block of the building, which simply translates to adding the load to w in eq.

(3.1).

3.6 Results

3.6.1 Validation

We compared our results from the quadratic program to known feasibility limits for

semi-circular masonry arches. As shown by Milankovitch [1907], the minimum feasi-

ble thickness of an arch is 0.1075 of the average (centerline) radius. Our results were

consistent giving a minimum thickness/radius ratio of 0.10746. We used a 100-block

tessellation to approximate a continuous arch. A second validation test measured

the maximum angle of ground tilt before a rigid-block arch becomes infeasible. For
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hemispherical arches with 0.20 thickness/radius ratio, the critical tilt angle is 15.84

degrees [Ochsendorf 2002]. Our results match this value exactly for a 100-block

arch. Arches at varying thicknesses were tested with similar accuracy. Note, how-

ever, that their results were obtained using 2D analysis while our method handles

fully three-dimensional structures.

hinge
locations

θtilt angle

Figure 3-3: (Left) Published values on min-thickness semicircular arches was used for
validation. Locations where the thrustline touches the block edges are where hinges
will form in a collapse mechanism. (Center) Maximum tilt angle before collapse
was a second validation. (Right) 30-block semicircular arch slightly thinner than the
minimum thickness, demonstrating that tension forces appear in the expected hinge
locations (blue interfaces) using our method.

3.6.2 Examples

The result of the infeasibility metric is shown for a selection of example models.

In Figure 3-4 a 2-block T structure is modeled in both a feasible and infeasible

configuration. In Figure 3-4(a) the structure is feasible since the center of mass (black

arrow) of the top block is positioned over the base block. The resulting force vectors

show that, accordingly, only compression forces are present at the joint between

the two blocks (green arrows) and at the ground (red arrows). In Figure 3-4(b),

tension forces appear in the infeasible arrangement (blue arrows). See Appendix B

for numerical data of this model including vertex coordinates and force values.

The groin vault pictured in Figure 3-5 is infeasible. Tension forces (blue) indicate

where potential hinge mechanisms might form during collapse.
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(a) Forces in feasible model (b) Forces in infeasible model

Figure 3-4: (a) A feasible model where only compression forces (green arrows, red
at ground) are present to balance the self-weight of the blocks (black arrows). (b)
An infeasible model displaying the location of tension forces (blue arrows) where a
potential hinge mechanism would form at collapse.

Figure 3-5: (Left) An infeasibly thin groin vault. (Right) Result of the quadratic
program. The minimum tension solution places tension forces (blue arrows) around
the base of the vault to counteract the outward push from accumulated weight of the
blocks.

3.6.3 Limitations

Friction Our method for measuring infeasibility considers failure of the structure

by the presence of tension forces at joints between blocks. Physically this is mani-

fested as a hinging mechanism between blocks. We do not consider the “sawtooth”

friction case described by Gilbert et al. [2006]; we assume idealized interfaces where

only tangential displacement would occur. Our method identifies structures where

a feasible equilibrium solution exists. However, the resulting structure may still be

unstable if alternative equilibrium states exist where friction constraints are violated.

Further investigation is required for incorporating potential friction failure into the

model of stability for masonry analysis.
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Alternate Metrics We quantify infeasibility based on the magnitude of tension

forces. Although tension is an indication of failure, using force magnitudes alone can

lead to scenarios which falsely consider one structure more feasible than another. For

example, consider the T-model in Figure 3-4(b): if the tension vertices of the bottom

block were translated to the right (thickening the bottom block), an updated static

analysis would show that the tension forces decrease in magnitude. This is due to the

increased torque arm – less force is needed to balance the applied load from the top

block. However, if we consider a different metric, such as distance of the resultant

force from the face boundary (Fig. 3-2), we see that the resultant force does not move

and change in feasibility is zero. Consideration of alternative definitions for feasibility

is an area of future work.

3.7 Discussion

We have introduced a measure of infeasibility as a key objective for assessing the

structural soundness of masonry buildings. To achieve this, we have addressed the

limitations of current engineering analysis tools based on elastic theory and have

instead relied on a quadratic programming formulation of the equilibrium equations.

Comparisons with previous theoretical results validate the accuracy of the technique.

We have introduced a penalty form that allows us to measure the degree of infeasibility

of a structure. This metric can be used in a search procedure to yield a stable building

which will be demonstrated in Chapters 4 and 5.
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Chapter 4

Procedural Modeling of

Structurally-Sound Buildings

4.1 Introduction

Procedural modeling has emerged as a powerful technique for generating architectural

geometry [Parish and Müller 2001; Wonka et al. 2003; Müller et al. 2006; Müller

et al. 2007; Talton et al. 2011]. These systems use grammars to produce variations

of building designs, and are adaptations of the seminal work on shape grammars

introduced by Stiny [1975; 1980]. Designs can be generated through random or user-

selected parameter adjustment. However, existing techniques focus on visual realism

and detail in the building façade, and do not account for the structural validity of the

results. Users may not have intuitions about the mechanics that govern structural

stability, or knowledge of traditional proportions used in building design. Determining

the precise dimensions of a structure that result in stability can be a tedious task.

In this chapter we present a method to automatically “snap” to feasible dimensions,

while leaving control in the designer’s hands to decide which aspects of the model are

variable.

Our contribution is to introduce physical constraints into procedural modeling

methods. We solve an inverse statics problem: given a set of physical constraints and

a building topology, we determine an appropriate shape. The user provides a set of

39



production rules that describes the desired architectural style, along with a small set

of free parameters. The relationship between rule parameters and internal forces in

the structure is nonlinear. Using gradient-based nonlinear optimization, our method

searches over the parameter space for a stable configuration.

We build on the forward analysis method described in Chapter 3 to search for

parameters of our procedural model that yield a stable building. In particular, we

use the measure of infeasibility to define an energy function and use non-linear opti-

mization to find the appropriate parameters.

Figure 4-1: Our method generates models of masonry buildings that are structurally
stable. In this building based on Cluny Abbey in France, parameters controlling the
flying buttresses, columns, and window sizes have been automatically optimized to
support a stone barrel-vaulted ceiling. The right image shows reaction forces at the
ground plane. We solve for forces at all block interfaces, and apply a compression-only
constraint for masonry materials.

4.2 Overview

Our approach allows users to generate architectural models using procedural model-

ing, and then automatically tweak a set of designated design variables to make the

model structurally sound. We propose an iterative algorithm that loops over three

main steps. First, we construct a model given a grammar and a set of fixed parame-

ters. Then, we estimate the stability of the obtained structure. Finally, if the model

is not stable, we modify the parameter values to reduce the instability and start a

new iteration.
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The pipeline is shown in Figure 4.2. The input is a set of grammatical rules, a

selection of free parameters, θ, and their associated upper and lower bounds. The

information computed at each step of the optimization loop is as follows:

• Standard procedural modeling rules (e.g. repeat, split, transform) are used to

generate the geometry of buildings. The output is a mass model representing

the blocks of the structure, including the interfaces between all adjacent blocks.

• The analysis stage computes interaction forces at each interface using quadratic

programming, and outputs a measure of distance to a feasible structure, y(θi).

• At each iteration of the parameter search a new set of values, θi, is chosen for

the free parameters.

• The optimization terminates when a feasible structure is found (y(θ∗) = 0), or

when a local minimum is reached.

4.3 Procedural Model

To create the geometry of our structures, we use procedural modeling methods as

described by Müller et al. [2006]. Beginning with a coarse volumetric model, produc-

tion rules iteratively refine the geometry with internal structure and façade details.

The procedural system carries semantic information including architectural labels

(e.g. arch, wall, column) and rule parameters (e.g. column diameter). An example

construction is shown in Figure 4-3.

A difference in our approach to procedural geometry is our use of mass modeling.

Müller et al. [2006] consider the building volume as a single solid object with no

interior. In contrast, we model solid objects as interior columns, walls, and other

support structures.
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starting shape repeat on horizontal axis,
split on vertical axis

split middle section into
capped arch and wall

symmetrically split wall
into two columns, scale

Figure 4-3: Procedural generation of a wall with four windows.

4.3.1 Free Parameters

The key feature of our approach is that we automatically choose parameter values

according to physical constraints. For a given set of production rules, the user des-

ignates free parameters which will be optimized to reach a stable structure. Typical

examples may be the wall thickness or the width of a window element. The user can

also place bounds on the parameter values. The user’s selection of free parameters

and associated limits defines the family of possible design variations.

4.3.2 Library of Primitives

In generating procedural models, we use a set of basic shapes that emphasize internal

structure. In addition to the primitives proposed by Müller et al. [2006], we add

a set of template objects that are typical to historic masonry architecture (Fig.4-

4). These include flying buttresses, domes, arches, groin vaults, and capped arches,

in both gothic and romanesque styles (pointed arch versus circular profile). All of

these shapes can be manipulated with a set of mesh parameters: {tessellation, radial

thickness} in addition to the scope parameters. Our method generalizes to any shapes

composed of blocks. Accordingly, alternative libraries of primitives could be used to

accomplish different styles.

We chose interface orientations to mimic typical masonry construction. For ex-

ample, the blocks in walls and columns are laid in horizontal courses, while the blocks

in arches and flying buttresses are cut radially (the cutting patterns that determine

block geometry is termed stereotomy). A poorly-chosen interface orientation can re-

sult in an unstable structure. The effect of interface orientation on the solution space
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arch (romanesque) arch (gothic) �ying buttress

groin vault dome capped arch

Figure 4-4: Template shapes specific to masonry architecture. Each has parameters
to alter tessellation and block thickness.

is an open area for future research. The vertex-level technique in Chapter 5 proposes

one way of improving interface orientations.

4.3.3 Nonstructural Shapes

Procedural modeling methods have the capability to tag shapes with different ma-

terial properties and appearance. We extend this capability to tag shapes as “non-

structural.” For example, the roof of a cathedral is often constructed from wood

frames which have little mass compared to the density of stone. We exclude these

shapes from the analysis stage. This allows for decorative elements without adding

unnecessary complexity to the constraint equations.

4.3.4 Adjacencies

Once the geometry of the building model has been generated, we compute contact

surfaces between adjacent blocks as shown in Figure 4.2. These interfaces are used

later in the analysis step. We assume neighboring blocks have coplanar faces and do

not interpenetrate. We apply simple spatial acceleration for computing adjacencies

based on bounding boxes.
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4.4 Parameter Search

The parameter search determines parameter adjustments that reduce the instability

of the building. We apply an iterative optimization technique, with progress measured

by the energy y(θ) from the previous analysis step.

There can be a nonlinear relationship between the free rule parameters θ, and

the measure of infeasibility. In order to search over the parameter space we use

gradient-based nonlinear optimization in conventional form:

argmin
θ

y(θ) (4.1)

s.t. lb ≤ θ ≤ ub

where y(θ) is the infeasibility metric from expression (3.6). The energy function is

C1 continuous due to the quadratic objective function, but may have a discontinuity

of the second derivative when penalty forces, f i−n , become inactive.

Initial parameter values θ0 are input by the user. At each iteration i of the opti-

mization, the geometry of the procedural model is updated according to parameter

values θi, we then use forward analysis to measure progress towards a feasible struc-

ture as described in §3.4, expression (3.6). In contrast to forward statics where forces

are determined based on fixed geometry, our optimization procedure determines new

geometry that satisfies constraints on the forces.

Figure 4-5 shows the energy landscape for a two-parameter structure and the cor-

responding optimization path. The example structure consists of a semi-circular arch

with free thickness, supported on two columns with free width. The edge of the fea-

sible region along the column width axis illustrates that for arbitrarily large columns

(effectively acting as ground), the arch has local feasibility limits on thickness.
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arch
thickness

column
widthcolumn widtharch thickness

y(θ)

Figure 4-5: Energy landscape for a two-parameter structure: circular arch supported
on columns. The feasible region is the zero plane highlighted in red.

4.5 Results

4.5.1 Implementation

We use the BPMPD interior point solver for quadratic programming [Mészáros 1996].

For nonlinear optimization, we use Matlab’s active-set algorithm, based on a sequen-

tial quadratic programming method [Gill et al. 1981]. Gradients are estimated using

forward finite differences.

4.5.2 Modeling stable buildings

Figure 4-1 depicts a building model inspired by Cluny Abbey in France. The user

has set up a grammar describing the placement of structural elements, and overall

look of the building. The user then selects a set of free parameters, including the wall

and buttress thickness, and the width of the windows. Our approach automatically

finds the parameter values that satisfy structural stability constraints. The user

controls which parameters are free variables and can affect the structural trade-offs

that yield a sound shape. The optimization in Figure 4-6(c) automatically adjusts

4 parameters (column dimensions) and reduces the overall height of the building to

reach stability. In comparison, the 10-parameter optimization (Figure 4-6(d)) finds a

feasible solution at the original building height in exchange for smaller windows and

thicker walls. Figure 4-7 shows a variety of structural models achieved by making
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(a) initial parameter values (b) tension forces before optimization

(c) 4-parameter optimization (d) 10-parameter optimization

Figure 4-6: In this model inspired by the Sainte Chapelle in Paris, France, four
parameters were optimized in (c) for column depth, corner thickness of the main hall
and entranceway, and overall height of the building. By freeing additional parameters
(d), a feasible model is possible without decreasing the height.
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Figure 4-7: (Left-top) Model of a mosque generated with procedural rules, and opti-
mized for feasibility; (left-bottom) generated by extending the grammar. (Right-top)
Radial flying buttresses are optimized; (right-bottom) smaller windows are required
when the buttresses are removed from the grammar.

modifications to the grammar. The optimized model in Figure 4-7(d) has small

windows to support the domed ceiling. Extending the grammar to include flying

buttresses (Figure 4-7(b)) transfers the load away from the walls, allowing for larger

windows for increased natural light in the interior.

The tower in Figure 4-8 is an example structure where it may be difficult to

judge stability by intuition alone. A feasible structure was generated with a 32-

parameter optimization: the horizontal position of each of the 16 levels is controlled

independently by two free parameters for translation in x and y directions.

In Figure 4-9 the shape of the arches is optimized. We use a cubic Bezier curve:

the first and last control points are fixed at the base, while the two inner control points
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(red dots) are variable. The z-coordinate of the arch is scaled to maintain a constant

height and to maintain contact between adjacent shapes. The free parameters control

the horizontal position of the two inner control points. In the original configuration

(Figure 4-9, left) the arches are too thin to stand. The parameter search generates

arches resembling catenaries (Figure 4-9, right) which provides feasibility without

increasing block thicknesses. Note that the two lower arches are slightly skewed to

account for outward forces transferred from the top arch.

(a) original
     stacking

(b) 32-parameter
     optimization

(c) 25% factor
     of safety

(d) modified
      grammar

Figure 4-8: From the original tower input (a), 32 parameters were optimized to
create a feasible stacking arrangement (b). The position of each level was controlled
by two separate parameters for translations in x and y. Variations can be found using
different initial positions. In (c) the interfaces were shrunk by 25% along each edge
as a geometric factor of safety (§3.5). In (d), modifying the grammar provides further
variation.

4.5.3 Performance

Table 4.1 shows performance and convergence results for a few representative ex-

amples. The most expensive step in the pipeline is the quadratic program which

evaluates the energy function. The total cost is nitnθ complexity(BPMPD solver),
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(a) infeasible input (b) feasible output

Figure 4-9: The arch profiles are defined using Bezier curves. A 6-parameter opti-
mization controls the horizontal position of the two inner control points (red dots)
for each arch. (a) In the initial configuration the circular shape is infeasible. (b) The
feasible result. The bottom arches are slightly asymmetrical to account for horizontal
forces transferred from the top arch.

where nit is the number of iterations in the parameter search, and nθ is the number

of free parameters. The linearity in the number of parameters is due to our use of

finite differences for gradient computations.

Model Blocks Parameters Iterations Time/Iter.

Cluny (Fig. 4-1) 986 4 10 45.7 s
5 5 57.3 s
7 4 70.0 s
9 9 106.6 s

arch (Fig. 4-5) 10 2 6 0.1 s
Sainte Chapelle (Fig. 4-6) 486 3 4 12.5 s

5 9 26.5 s
7 6 29.3 s
10 8 40.1 s

tower (Fig. 4-8) 96 32 6 12.5 s
barrel vault (Fig. 4-10) 140 1 8 0.6 s

Table 4.1: Performance results for parameter search.

4.5.4 Editing Parameters

Interactive editing of parameters is another valuable usage scenario when speed per-

mits. The user may edit a model by manually changing a parameter value, while our

system automatically updates the free parameters to maintain structural feasibility.

For example, in Figure 4-10, as the user increases the span of the vaulted ceiling,
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the angle of the buttresses is modified to account for increasing horizontal forces. In

our prototype, the result updates in under five seconds for this model. Changes in

a design can alter the loads on many other parts of the structure, and traditionally,

a change in one element requires tweaks to many other dependent elements of the

model. We simplify the task of exploring design variations by automatically updating

free design parameters.

Figure 4-10: Interactive editing of parameters. As the user increases the span of the
barrel vault roof, our system automatically selects the angle of the flying buttresses
required to maintain stability. Red lines highlight the original structure.

4.5.5 Dynamic simulations

Physically feasible models make it possible to run dynamic simulations in interactive

environments. Under no external forces, feasible models will stand in static equilib-

rium. Users may then apply effects such as earthquakes and collisions and the model

will exhibit realistic dynamic behavior. As a proof of concept for dynamics appli-

cations, we generated simulations using the Bullet open-source rigid-body dynamics

library [Coumans 2008]. Figure 4-11(top sequence) shows a structure reacting to per-

turbations of the ground plane. The perturbation was generated by applying a lateral

impulse to the centroid of the ground plane, causing a change in ground velocity of

4 m/s over a time step of 1/60 s. The model is approximately 10m wide. In Bullet,

the restitution value (bounciness) was set to the default value of 0.0, and the friction

coefficient was set to 0.895.
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Figure 4-11: Structurally sound models can be manipulated in physically simulated
environments. (Top) The Cluny model collapses after a ground shake is applied;
(Bottom) the Sainte Chapelle model collapses after a central column is broken.

4.5.6 Limitations

Friction Cone Approximation To test the effect of the friction pyramid param-

eterization on feasibility, we performed parameter searches on the Sainte Chapelle

model (Figure 4-6) with the friction pyramid rotated 45 degrees. In a 3-parameter

search we found that the corner columns of the main hall were 10.5% thinner than

with original friction pyramid. In a 4-parameter search, the thickness of the arches

in the windows was 4.3% smaller with the 45 degree rotated pyramid. Alternatively,

the columns underneath the windows were only 1% thinner.

Local Minima MATLAB’s active-set algorithm does not guarantee convergence to

the global minimum. If local minima exist, it is possible a local minimum will be the

result of the parameter search. We have not encountered this problem in the provided

examples – all models converged to a global minimum (zero tension) solution without
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any aids, e.g. multiple starting points. We tested the tower model in Figure 4-8

by running the 32-parameter search from randomly generated starting points and all

converged to a zero-tension solution.

Existence of a Solution A feasible structure does not always exist within the

given set of rules and free parameters. Under these circumstances, we return the

structure within minimum infeasibility, and the user is required to manually add new

structural elements. For experienced users, visualization of the tension forces provides

guidance for altering the design specifications.

Our approach applies to masonry buildings which are rigid block compression-

only structures. We can trivially handle structures where pairs of blocks interact in

tension-only by flipping the sign of the compression constraint.

4.6 Discussion

We have introduced structural soundness as a key objective in procedural modeling

of buildings. To achieve this, we rely on the quadratic programming formulation of

the equilibrium equations introduced in Chapter 3. The penalty form allows us to

measure the degree of infeasibility of a structure, which is used in a search procedure

to yield a stable building. A variety of stable structures can be created and the user

can decide which parameters are fixed in order to control the structural trade-offs.

Feasible models are valuable for virtual environments to allow users to interact

physically with built surroundings, and simulate realistic dynamics such as collapse

under collision or earthquakes. These interactions are not possible unless a structure

is capable of standing under self-weight. Our method makes it easy for users to create

feasible buildings, letting the optimization take care of the complex equilibrium con-

ditions. We believe that inverse statics techniques such as the one we developed have

tremendous potential in architectural design, in designing interactive virtual environ-

ments, and for applications in historical structures education. Procedural grammars

can encapsulate families of buildings, such as the Romanesque churches of a particular
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region, creating a useful interface for analyzing existing historic architecture. Fur-

thermore, our approach can be applied to designing buildings with other materials,

as shapes which act predominantly in axial stress rather than bending are less prone

to deformation.
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Chapter 5

Gradient-Based Structural Design

with Constraint Authoring

5.1 Introduction

The goal of this section is to offer interactive tools that modify a current form with

guarantees on improving stability while respecting constraints and objectives set by

the designer. We describe a design interface that is parameterized directly on the

vertex positions which gives complete freedom to the user for designing free-form

shapes. Further, the flexibility of the constraints and objectives allows the user to

explore a variety of solutions and designs based on their style and context. For

example, Figure 5-10 shows how structural gradients can be used to modify the shape

of an unstable shell to make a feasible, self-supporting design. As in chapters 3 and 4,

we base our model of stability on static analysis [Livesley 1992], and seek to minimize

an instability metric by modifying the geometry.

The heart of our approach is to compute the gradient of the stability metric with

respect to geometry modification. We then visualize this gradient to inform the

architect, or use it directly to derive a number of interactive tools that modify the

shape to improve stability. Whereas the previous method in Chapter 4 aimed for a

mostly automatic solution to find a stable structure, the approach described in this

chapter gives the user fine-grained control over the produced structure and freedom
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to explore design variations.

The designer starts with an initial model represented as an assemblage of solid

blocks, and performs modifications to the geometry, informed by our structural gra-

dient. We provide visualizations that suggest the directions in which vertices should

move to improve stability. More importantly, we provide geometry modification tools

that leverage the gradient of stability. Each tool relies on a number of user-specified

constraints and objectives, such as the preservation of vertical or horizontal directions

or the minimization of material usage. Using a graphical interface, the user selects

parts of the geometry to modify, the constraints and the objective, as well as the

magnitude of the modification. The geometry is updated interactively, enabling a

fluid creative exploration.

5.1.1 Contributions

The following contributions are presented:

• We provide a closed form derivation of the gradient of a measure of stability

with respect to geometry modification.

• We enable visualization of structural information based on the gradient.

• We supply a variety of interactive tools that enable the improvement of stability

based on user-provided constraints and objectives.

We demonstrate that our technique can lead to a variety of designs given the same

input shape, based on the user’s decisions.

5.2 Analytic Structural Gradient

5.2.1 Overview

Given an infeasible model, we demonstrate how to compute structural gradients

∇y(Ω) that inform how the feasibility changes as the geometry is modified. As de-
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Figure 5-1: (a) Yellow arrows indicate the gradient of feasibility, parameterized on
the model vertices pi. (b) The set of gradient vectors for an infeasible T-model. In
the modified geometry the overall improvement in feasibility ≈

∑
i
∂y
∂pi

∆pi

picted in Figure 5-1, the value of the gradient is that it provides the direction of vertex

displacements that maximally improve the structure’s feasibility. The gradient also

provides a way to estimate the change in energy for any change in vertex positions

∆p using a Taylor series expansion: the gradient can be projected onto the actual

change in geometry. This is a useful property since the designer may often apply

edits to the geometry that do not follow the gradient exactly. Our method has the

following steps:

• We derive a closed form expression for the infeasibility metric y(Ω), where y(Ω)

is a quadratic program that we solve locally for a given geometry Ω. The closed

form expression is derived by transforming active constraints into equalities at

this local solution.

• Using the closed form expression for y(Ω), we derive an analytic gradient∇y(Ω).

This is done by computing the Jacobian of the constraint matrix.

• We then describe our specific parameterization for geometry manipulation ω to

detail the components of ∇y(Ω).

5.2.2 Closed Form Energy

The infeasibility metric of the structure Ω is formulated as a quadratic program. Let

the force vector f∗ be the global minimizer for the infeasibility metric g(f), as given
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in Expression (3.6) and repeated here:

min
f

g(f) = 1
2
fTHf (5.1)

s.t. Aeq · f = −w

Afr · f ≤ 0

f i+n , f i−n ≥ 0, ∀i

The set of active constraints is the set of constraints that are satisfied as equalities

at f∗. The active friction constraints are denoted by Ãfr · f = 0, where Ãfr contains

the rows of Afr = { i | rowi(Afr) · f∗ = 0}. The active lower bounds are denoted by

Ĩlb · f∗ = 0, where Ĩlb contains the rows of the identity matrix = { i | f ∗i = 0}.

The active constraints are identified using the Lagrange multipliers returned by

the QP solver. We then combine the active constraints into a new set of equalities

C · f = b, which is a concatenation of the static equilibrium constraints and the active

inequality constraints.

C =


Aeq

Ãfr

Ĩlb

 , b =


−w

0

0


Given the active constraints at f∗, we can reformulate y(Ω) as:

y(Ω) = minf g(f) =
1

2
fTHf (5.2)

s.t. C · f = b

which takes the form of an equality-constrained quadratic program. Recall that g(f)

is a quadratic weighting function for the force vector, where H is a diagonal matrix

containing non-zero weights. In contrast to (3.6), which weighted only tension forces,

this formulation places weights on all forces: H is a full-rank diagonal matrix with

large penalty weight on the tension forces and low weight on the remaining forces

(compression and friction). This is an intuitive method to account for the indeter-
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minacy of structures – while many possible solutions of f may exist that satisfy the

constraints, our formulation searches within that space for a solution that simultane-

ously minimizes tension and keeps overall force values low. An additional benefit of

adding weights to all forces is that H becomes positive definite, which is necessary

when deriving the analytic gradients for y.

By introducing the variable transformation z = H1/2f, the new equality con-

strained QP in expression 5.2 can be re-written as finding the minimum norm solution

to a linear system [Bertsekas 1995] (§2.1.1):

y(Ω) = minz
1

2
‖z‖2 (5.3)

s.t. (CH−1/2)z = b

The solution of this problem is obtained through the Moore-Penrose pseudoinverse:

z∗ = (CH−1/2)+b

where G+ = GT (GGT )−1 is the pseudoinverse for matrix G with full row rank. And

through the transformation f∗ = H−1/2z∗, the optimal solution in closed form is:

f∗Ω = H−1CT (CH−1CT )−1b (5.4)

It can be seen that f∗Ω as given above satisfies Cf = b as required. Note that H

must be positive definite, and the rows of C must be linearly independent [Bertsekas

1995]. Since we know the structure of the constraint matrices Aeq and Afr, we remove

linearly dependent rows from C.

5.2.3 Energy Derivatives

We make the assumption that the set of active constraints stays fixed for small dis-

placements of the model geometry Ω. The expression for the derivative of f∗ is then
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obtained by differentiating expression (5.4):

∂f∗Ω
∂ω

= H−1

(
∂CT

∂ω
E−1b + CTE−1

(
∂b

∂ω
− ∂E

∂ω
E−1b

))

where E = CH−1CT . The expression for the derivative of y(Ω) is then given by:

∂y(Ω)

∂ω
=

1

2
f∗TH

∂f∗Ω
∂ω

(5.5)

=
1

2
f∗T
(
∂CT

∂ω
E−1b + CTE−1

(
∂b

∂ω
− ∂E

∂ω
E−1b

))

where ω is a parameterization of the structure’s geometry Ω, for example, the position

of individual vertices on each block face. Our chosen parameterization is described in

Section 5.3. H is the weighting matrix for the objective function and is held constant.

The derivative of E is ∂E/∂ω = ∂C/∂ω H−1CT + C H−1∂CT/∂ω by application of

the chain rule.

The terms ∂C/∂ω and ∂b/∂ω describe how the constraints change as the geometry

changes according to parameterization ω. These will be computed next.

5.2.4 Constraint Derivatives

The constraint matrix C is a concatenation of the matrix Aeq (static equilibrium),

the active friction-cone inequalities of the matrix Afr, and the active lower bounds

on f. The friction constraints and lower bound constraints are not dependent on block

geometry, giving ∂Ãfr/∂ω = 0 and ∂Ĩlb/∂ω = 0.

∂C

∂ω
=


∂Aeq/∂ω

0

0

 , ∂b∂ω =


−∂w/∂ω

0

0

 (5.6)

The derivation of ∂Aeq/∂ω and ∂w/∂ω can be obtained by applying the chain rule.

We detail the derivation in Appendix A.2.
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5.2.5 Weighted Energy Function

In any structure of reasonable complexity there will be a large range in the magnitude

of forces observed. For example, blocks at the base of a structure carry the weight

of the entire building, while in comparison, blocks surrounding the highest level of

windows will have negligible forces acting on them. The energy function stated as

(5.2) places weight on all forces: compression, tension and friction.

g(f) =
1

2

∑
i

h1

(
f i−n
)2

+ h2

(
f i+n

2
+ f iu

2
+ f iv

2
)

, vertices i

However, under this formulation, very large compression forces could overpower small

tension forces (h1 (f i−n )
2 � h2 (f j+n )

2
) and undermine the intention of the gradient

to reduce overall tension in the structure. For this reason, it is crucial to weight the

energy function y(Ω) according to expected magnitudes.

g(f) =
1

2

∑
i

h1

(
f i−n
)2

+ αih2

(
f i+n

2
+ f iu

2
+ f iv

2
)

where αi is proportional to (compression force)−1 acting on the incident face. The

magnitude of the compression force is estimated using forces values f∗ from the pre-

vious iteration. The first iteration is run with the default uniform weights (α0
i = 1).

5.3 Parameterization

For computing the gradient of infeasibility ∇y(Ω) we parameterize Ω using a basis of

vertex modifications. The fundamental constraint in choosing the parameterization

is to maintain planarity of the block faces. Although contact surfaces between blocks

could be represented as a triangular mesh with no planarity constraints, this would

break assumptions in structural behavior. Non-planar joint geometry would eliminate

the smooth friction surfaces and result in interlocking block faces which are rare in

masonry construction.

We use the following parameterization which accounts for five degrees of freedom:

61



two degrees of freedom for in-plane vertex translation and three for orientation of the

face plane (See Figure 5-2).

ueu

vev

nen

θeu

Figure 5-2: Gradient parameterization. (Left) In-plane vertex translation. (Center)
Face translation along normal. (Right) Face rotation by way of rotation of the normal
vector.

5.3.1 In-plane Vertex Translation

The two in-plane orthogonal vectors, êu and êv, are the basis for translation on the

face plane. Partial derivatives ∂y
∂u

and ∂y
∂v

are computed for each vertex in the structure,

where the derivatives of vertex position, p, are

∂p/∂u = êu, ∂p/∂v = êv (5.7)

Derivatives of the face coordinate system are zero since the face plane is unchanged:

∂êi/∂ω = 0 for ω = u, v and i = n, u, v. That is, the êu, êv and ên vectors are not

modified when the vertex coordinates change. The component of the gradient ∇y(Ω)

for in-plane translations are

∇uy(Ω) =
[
∂y
∂u1
· · · ∂y

∂um

]T
, ∇vy(Ω) =

[
∂y
∂v1
· · · ∂y

∂vm

]T
(5.8)

where m is the number of vertices in the structure.

5.3.2 Normal translation

The gradient is computed w.r.t. translation of a single block face along the face normal

ên. The gradient ∂y
∂n

is computed for each block face in the structure. The derivatives
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of vertex position, p, are

∂p/∂n = ên (5.9)

Again, derivatives of the face coordinate system are zero since the face normal is

constant: ∂êi/∂n = 0 for i = n, u, v. The vectors êu, êv and ên vectors are not

modified. The component of the gradient ∇y(Ω) for normal translations is

∇ny(Ω) =
[
∂y
∂n1
· · · ∂y

∂n`

]T
(5.10)

where ` is the number of faces in the structure.

(a) Face gradients for
translation along
normal

(b) Improved geometry (c) Vertex gradients for
in-plane translation

(d) Improved
geometry

Figure 5-3: Parameterized gradients for an asymmetrical T-model. Instability arises
from unbalanced torque caused by the left overhanging portion of the T. (a,c) Gra-
dients point in the direction of improved stability. (b,d) Stable output produced by
moving the vertices along the gradient.

5.3.3 Normal Rotation

Two angle parameters, θ and φ, are the basis for rotation of the face plane normal.

We set the center of rotation at the centroid, c, of the block face. Gradients ∂y
∂θ

and

∂y
∂φ

are computed for each block face in the structure. The derivatives of the normal

vector and vertex positions are

∂p/∂θ = êv × (p− c) (5.11)

∂p/∂φ = êu × (p− c)
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∂ên/∂θ = êu, ∂êu/∂θ = ên, ∂êv/∂θ = 0

∂ên/∂φ = êv, ∂êu/∂φ = 0, ∂êv/∂φ = ên

The components of the gradient ∇y(Ω) for normal rotations are

∇θy(Ω) =
[
∂y
∂θ1
· · · ∂y

∂θ`

]T
, ∇φy(Ω) =

[
∂y
∂φ1
· · · ∂y

∂φ`

]T
(5.12)

(a) Vertex
gradients for
face rotation

(b) Improved
geometry

Figure 5-4: Gradients computed w.r.t. face plane rotation show how the orientation
of interfaces between blocks affects the stability. In this 2-block example, rotating
the interface toward a horizontal orientation reduces the infeasibility due to friction
failure.

5.3.4 Gradient w.r.t. Vertex Position

At vertex pi, the partial derivative of the energy y with respect to the vertex position

is expressed as the sum:

∂y

∂pi
=
∑
k

(
∂y

∂uk,i

∂uk,i
∂pi

+
∂y

∂vk,i

∂vk,i
∂pi

+
∂y

∂nk

∂nk
∂pi

+
∂y

∂θk

∂θk
∂pi

+
∂y

∂φk

∂φk
∂pi

)
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over all block faces k that contain vertex i. The partial derivatives of the parameters

with respect to vertex position are:

∂uk,i
∂pi

= êuk ,
∂vk,i
∂pi

= êvk ,
∂nk
∂pi

=
ênk

#vertsface k[
∂θk
∂pi
· · · ∂θk

∂pi+nk

]
=

[
∂pi
∂θk
· · ·

∂pi+nk

∂θk

]−1

[
∂φk
∂pi
· · · ∂φk

∂pi+nk

]
=

[
∂pi
∂φk
· · ·

∂pi+nk

∂φk

]−1

To summarize, the gradient of the infeasibility metric ∇y(Ω) is a vector of length

N , where N = (#block faces)× (3 + 2×#vertices on each face).

To illustrate the parameterization, Figure 5-3 shows the gradient for normal and

in-plane translations on an unstable two-block T structure, and Figure 5-4 shows the

gradient for normal rotation on a 2-block structure with an inclined interface. Our

gradient computation takes into account two properties:

1. Mass: the top block reduces imbalanced torque by widening vertices on the

right, and thinning vertices on the left.

2. Joint Geometry: Increasing the width of the bottom block decreases the over-

hang of the top block, thus decreasing instability. This works because joint ver-

tices (i.e. contact polygon between adjacent blocks) have a positional derivative

that is computed along with the block vertex derivatives. Joint vertices define

where the contact forces are applied.

5.3.5 Geometric Implementation

Partial derivatives are computed for each block face. A basic assumption is that

topology remains consistent under a differential change in the block geometry: ad-

jacent blocks will remain in contact, disconnected blocks remain disconnected, and

the number of vertices in each contact polygon will remain the same. These assump-

tions are necessary to ensure the number of variables is constant (recall that the size

of the system force vector is proportional to the number of vertices over all contact
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polygons), which is required for the quadratic program y(Ω) to be differentiable.

in-plane translation normal translation normal rotation

}block j

face k

Figure 5-5: Geometric interpretation of the partial derivatives for each parameter-
ization, illustrated in 2D. Only the tetrahedrons incident to the modified face are
affected.

For example, in computing the derivative of the equilibrium matrix ∂Aeq/∂nk,

only the rows associated with block j are non-zero (any adjacent blocks are unaf-

fected). Likewise, for any block face ` 6= k, the local coordinate frame (ên`
, êu` , êv`)

and joint vertices remain constant. Derivatives of block weight and centroid position

are computed for the quadrilateral pyramid connecting the four vertices of face k to

the original centroid position (Fig. 5-5).

5.4 Modes of Interaction

Given the gradients of infeasibility w.r.t. the chosen parameterizations, we now show

how the user can apply the gradients as a guide for improving the stability of a struc-

ture while preserving properties of its design. We frame the task as an optimization

problem that steps towards a more structurally feasible design while allowing the user

to specify constraints on the desired shapes and range of acceptable changes.

Our approach to user control contrasts significantly with other shape design and

optimization methods. Comparisons can be broadly grouped into three categories:

1. Only Analysis: Gradients are not provided, instead it is up to the user to

determine how a shape can be modified to improve on the design objective.

This is the typical approach for structural analysis software – e.g. finite element

analysis software returns a stress profile of the input shape, but in order to

reduce stress, the user must modify the geometry by trial and error.
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2. Black-box Optimization: An optimization runs according to the optimal strat-

egy, such as steepest descent gradient-based methods. User control is limited

to inputs at the initiation of the optimization. This was the approach taken in

chapter 4.

3. Guided Optimization: Our approach in this chapter is to let the user guide

the path of the optimization in numerous ways. They may apply a new set

of constraints at any point in the optimization, modify the step size at each

iteration, or terminate the optimization early if an appealing design has been

reached.

5.4.1 Snapping To Gradient

The first type of interaction is to modify vertex positions in the direction of the

computed gradient. At each vertex in the structure, we compute a displacement

vector ∆p that combines all contributions from in-plane movement, face translation

and face rotation. We define an optimization that solves for vertex positions best

matching the desired gradient vector while maintaining planarity constraints of the

block faces and coincidence constraints of contiguous blocks.

p∗ = argmin
p

‖p− p0 + ∆p‖2

s.t. faces remain planar

block interfaces remain coincident

Under the assumption of quad-faced blocks, we adopt a planarity constraint that

enforces the angles of each face to sum to 2π [Liu et al. 2006]:

fplanar(p) =
∑
F

‖φ1
F + . . .+ φ4

F − 2π‖2
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Our coincidence constraint ensures that each pair of coincident faces (F,G) ∈ C

between two adjoining blocks remains connected:

fcoin(p) =
∑

(F,G)∈C

∑
j∈1...4

‖n̂F (pjG − p
1
F )‖2

Due to the nonlinearity of these constraints, we enforce them using a penalty function

technique.

p∗ = argmin
p
‖p− p0 + ∆p‖2 + λ1fplanar(p) + λ2fcoin(p)

We use a Gauss-Newton iteration approach to solve for the best vertex positions

satisfying our constraints. Characteristic to penalty techniques, the constraints are

satisfied within a set tolerance. In practice we set this tolerance to 5e-3, which can

be modified with trade-offs between accuracy and performance.

5.4.2 User Control

While the full gradient provides useful information on how a structure can be op-

timally modified to improve feasibility, a user may be interested in incorporating

constraints that express design intent. Our system features a set of UI controls for

setting high-level constraints, such as block thickness or floor orientation, which al-

low the user to explore a range of designs. We describe how these controls can be

implemented by modifying the gradient with low-level constraints on point positions

and face normals.

Fix block thickness This is achieved by constraining the distance between two

opposing faces (F,G) of a block to be constant.

fthickness(p) =
∑
(F,G)

∑
j=1...4

∥∥∥th(F,G, j,p)− th(F,G, j,p0)
∥∥∥2
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(a) unconstrained (b) constrain thickness

(c) constrain vertices (d) constrain vertices
+ orientation

stable results

unstable input

Figure 5-6: The user may explore possible designs with improved stability by modify-
ing constraints on the gradient. The initial arch is unstable, arrows indicate gradients
for improving feasibility. The initial gradient is shown (∇y0). (a) Feasible uncon-
strained result. (b) Feasible output with constrained thickness, total #iterations =
3. (c) The arch blocks are fixed resulting in slightly tapered column blocks. (d) In
addition to constrained arch vertices, the column blocks have fixed orientation.

where th(F,G, j,p) = n̂F · (pjF − pjG). In Figure 5-6(b) the arch has constrained

thickness, resulting in a catenary-like output.

Fix vertices This is implemented by setting gradients of unaffected vertices to zero

and pinning them to a specific location in the optimization. Alternatively, we can

remove these vertices from the optimization altogether. In Figure 5-6(c) the arches

are kept constant, only column vertices are modified.

fpoint(p) =
∑

(i,p′)

∥∥∥pi − p′
∥∥∥2

Fix face orientation We fix horizontal floors and vertical walls by zeroing rota-

tional gradients and constraining a face to have a specific normal vector. For example,
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in Figure 5-6(d) all column block faces are orientation-constrained to maintain vertical

faces.

fnormal(p) =
∑

(F,n̂)

∑
j=2...4

∣∣∣∣∣n̂ · pjF − p1
F

‖pjF − p1
F‖

∣∣∣∣∣
2

Fix block volume To constrain volume, we divide each block i into five tetrahe-

drons Ti,j and constrain the sum of the volumes of the five tets to remain constant.

fvolume(p) =
∑
i

∥∥∥ ∑
j=1...5

vTi,j(p)− vTi,j(p0)
∥∥∥2

where vT (p) is the volume of the tetrahedron T given vertex positions p.

Additionally, we can achieve other design constraints through combination of the

penalty functions. For example, restricting a block to rigid translation (Figure 5-9(b))

involves applying a thickness and orientation constraint to each pair of opposing faces.

5.4.3 User Objective Functions

In addition to constraints on the gradient direction, the user may incorporate other

design criteria by setting custom objective functions. We demonstrate this capability

with a volume minimization example. The new multi-objective function becomes a

weighted combination of the infeasibility metric g and the total volume v.

∇y(Ω) = ∇g(Ω) + γ∇v(Ω)

where γ is a weighting on the volume minimization. The derivative of v w.r.t. each

parameterization is identical to that used for weight in the w vector without the

constant term for density (see §A.2). Figure 5-8 shows an example of this objective

applied to a structure of stacked blocks.

70



(a) Infeasible input with
constraints

(b) Infeasible input
displaying resultant
forces

(c) Infeasible input displaying
tension faces (blue)

(d) Feasible output constrained
to rigid translation

(e) Feasible output
displaying resultant
forces

(f) Alternate feasible output
with 5% factor of safety

(g) Unstable input falls after release

Figure 5-7: (a-c) Input: unstable stack of 8 identical blocks. The base and over-
hanging vertices are fixed (red) and the remaining blocks are constrained to rigid
translation. The ghost geometry (blue) displays the first iteration along the gradient.
(d,e) A stable structure after multiple iterations. All resultant forces lie inside the
block interfaces. (f) An alternate solution with a small safety factor by shrinking
interfaces 5%. (g) A physical model of the unstable input stacking. The hinge point
at failure corresponds to the interface with greatest tension (intensity of blue shading
in (c)).
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(a) Input (b) without volume
minimization

(c) with volume minimization

Figure 5-8: Variations based on volume minimization. In both cases the constraints
are face orientation and vertical thickness (horizontal stretching is permitted): (a)
Infeasible input, weight = 160 units. (b) Feasible output without volume minimiza-
tion, weight = 174 units. (c) Stable output with volume minimization, weight = 127
units, initial γ0 = 0.5.

5.5 Results

5.5.1 Implementation

We use the IBM CPLEX quadratic program solver. Intel MKL is used for nonlinear

optimization of block planarity under user constraints.

Numerical Stability In section 5.2.3 it is known that solving the normal equa-

tions x = AT (AAT )−1b explicitly is prone to numerical errors [Trefethen and Bau

1997]. For improved numerical stability we use QR decomposition to compute the

inverse E−1 = (CH−1CT )−1. The decomposition is QR = (CH−1/2)T where Q

has orthonormal columns and R is upper triangular. It can be shown that E =

(CH−1/2)(CH−1/2)T = RTR, so that E−1 can be solved by forward and back substi-

tution of R rather than explicitly forming E and its inverse. The pseudoinverse can

be computed as (CH−1/2)+ = QRT−1
with Q and R in reduced form [Trefethen and

Bau 1997].

Matrix Multiplication Performance depends heavily on the order of matrix mul-

tiplications when computing the energy derivatives in §5.2.3. In practice, operations

are ordered to favor matrix-vector multiplications, and so that matrix inverses are
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solved for vector variables.

5.5.2 Modeling Stable Structures

We show example structures with visualizations of the computed infeasibility gradi-

ents, and various ways in which the user might modify the structure.

Figure 5-6 shows a variety of outputs for an infeasible model of an arch balanced

on two columns. We compare results from unconstrained optimization, constant

thickness and fixing the arch vertices.

Figures 5-7 and 5-8 show various results for an unstable stack of blocks. In 5-7

the constraints include rigid translation using a combination of thickness and orien-

tation constraints. We show visualizations of the resultant forces at each interface,

illustrating that resultants lie within the joints for the feasible result. We also apply

a small factor of safety by shrinking the effective interfaces between blocks. Figure

5-8 applies only orientation constraints and vertical thickness, so that the blocks can

stretch horizontally. An alternative design using volume minimization is provided.

(a) Unstable input (b) Feasible output (rigid
base columns)

Figure 5-9: (a) An infeasible building is shown with columns supporting a system of
slabs (y0 = 7.65e5). (b) Stable output with fixed floors and rigidity constraints on
the base columns (y∗ = 8.6e-7).

In Figure 5-9, the clearly unstable input model consists of three slabs and a series

of columns. The result in Figure 5-9(b) had constraints on slabs orientation, and

rigid translation of the base columns. There is noticeable thinning and shortening of
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the slabs to reduce weight. Columns on the over-hanging portion are thinned while

the left-hand column is thickened for counter-balance. The slabs and columns were

fixed part-way through the design when a minimum preferred thickness was reached.

The base columns are translated to the center of the floorplan so that the resultant

load of the upper levels falls within their support region.

(a) Infeasible input (b) Feasible output
(unconstrained)

(c) Feasible output with
thickness constraints

Figure 5-10: Various modification starting from a shell that bulges over the supports
(a) The infeasible input (y0 = 25.8). (b) Unconstrained feasible output (y∗ = 1.4e-4).
(c) Feasible output with all blocks constrained to constant thickness (y∗ = 1.5e-4).

In Figure 5-10(a) the shell is infeasible due to a bulging shape over the support

region. Result 5-10(b) shows an output from unconstrained optimization where the

profile is significantly thickened. In 5-10(c), the thickness of the shell is constrained,

resulting in a modified shape closer to a traditional arch. In Figure 5-11 the shell is

extended to a partial torus as a surface of revolution.

The starting shape in Figure 5-12 is an extruded arch profile with varying floor

span. The unconstrained result significantly thickens the blocks. Adding a constraint

to maintain the volume of all blocks results in a feasible structure by stretching the

profile toward a catenary shape. Also visible in the side view is that the height of

the feasible structure undulates slightly along its length. Both feasible results were

generated with a single gradient step.
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(a) (b) (c)

Figure 5-11: (a) An infeasible model consisting of a bezier curve surface of revolu-
tion. (b) Yellow arrows represent the gradient. (c) The feasible result thickens the
base blocks supporting the overhanging outer curve. Red blocks were constrained in
thickness.

(a) Infeasible input (b) Output: unconstrained (c) Output: constrained volume

Figure 5-12: A semi-circular arch profile with varying span (front and side views). (a)
The infeasible input model. (b) Feasible output unconstrained. (c) Feasible output
with each block constrained to constant volume.

5.5.3 Performance

Our formulation for analytic gradients provides a significant performance improve-

ment over finite differencing techniques, which is necessary for interactive applica-

tions. See Table 5.1 for results and comparison. Performance times for finite differ-

encing are equivalent to the time for solving the quadratic program (§3.4) multiplied

by the number of components in the gradient vector ∇y. Times for analytic gradi-

ents include the time for computing partial derivatives (§5.2) added to the time for

computing planar vertex offsets (§5.4.1). While computing the analytic derivatives

takes some time, it is orders of magnitude faster than running the quadratic program

solver multiple times as in the finite differencing approach.

75



Model Blocks length(∇y) Analytic gradient Finite diff.

arch (Fig. 5-6) 12 792 0.95 s 127 s
block stack (Fig. 5-7) 8 528 0.75 s 84.5 s

shell (Fig. 5-10) 24 1584 1.55 s 269 s
cut torus (Fig. 5-11) 108 7128 14.8 s 1920 s

Table 5.1: Performance results for computing the analytic structural gradient.

The plot in Figure 5-13 shows the progress of the infeasibility metric for an sample

optimization. The structure being modified is the unconstrained arch from Figure 5-6.

At each iteration the value of infeasibility decreases, and converges toward y(Ω) = 0

(feasibility condition) after a small number of gradient steps.
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Figure 5-13: Plot of Infeasibility vs. Iteration for the unconstrained arch (Fig. 5-6(a)).
Infeasibility values: y0 = 740, yfinal = 1.5e-4.

5.5.4 Validation

We tested the accuracy of the analytic gradient by comparing results from finite

differencing. In the 2-block T model of Figure 5-3, we applied a small delta to select

vertices, and compared the change in constraint matrices ∆Aeq and ∆w with the

analytic result (∆Aeq)analytic = Σi(dAeq/dpi) ·∆pi over selected vertices i. Varying

groups of vertices were tested with shifts along x, y, z axes. In all cases the error was

below 1%, with error measured as:

% error = ‖(∆Aeq)findiff − (∆Aeq)analytic‖/‖(∆Aeq)findiff ‖
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In the 2-block model of Figure 5-4, we measured the energy change from a small

shift in the angle of the interface. The result of a forward finite difference was accurate

to 2.3% of the analytic value for ∇y.

5.5.5 Limitations

Planarity and user constraints may compete with the displacement vector ∆p and in

some cases may have the effect of pushing vertices away from the gradient direction.

In this case ∆p may decrease the feasibility of the structure.

Also notable is that the gradient ∇y(Ω) is dependent on the choice of active

constraints by the QP solver. Recall the assumption that active constraints remain

active in the neighborhood of the current solution for fΩ. As a consequence, if the

normal force at a vertex i is zero (i.e. lower bounds on f i+n , f i−n are both active), then

the partial derivatives ∂f i−n /∂ω and ∂f i+n /∂ω will also be zero.

5.6 Discussion

We introduce a technique that can lead to a variety of feasible designs given the

same geometric input, based on the user’s decisions. We provide a suite of user-

controlled constraints that guide the optimization of a structure according to aesthetic

preferences.

Our method is general – the gradient operates on arbitrarily shaped structures

composed of quad-faced blocks. We require no higher-level parameterization of the

model. This allows a greater flexibility for the variety of input models, compared to

the procedural modeling technique in Chapter 4. Moreover, our analytic formulation

for gradients improves performance significantly over finite differencing techniques,

which enables interactive applications.
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Chapter 6

Conclusion

6.1 Contributions

This thesis has introduced consideration of structural stability in computer-aided

design for architecture. Three primary contributions were presented in the areas of

masonry analysis and modeling of structurally feasible architectural geometry:

• Measure of Infeasibility We presented a measure of infeasibility that de-

termines how close a model is to being structurally sound. We introduced a

penalty formulation to represent the presence of tension in rigid block assem-

blages. The new metric is enabled by a quadratic programming formulation

and agrees closely with available theoretical results.

Based on this new method for quantifying infeasibility, two approaches were intro-

duced applying the metric to structural design:

• Procedural Modeling We introduced the idea of generating structurally feasi-

ble procedural models of buildings through automatic parameter selection. The

measure of infeasibility was used as an energy function, and gradient-based op-

timization was applied to select rule parameters that satisfy structural stability

constraints. We showed examples of procedural models of buildings with both

internal and external structure that are consistent with mechanics.
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• Analytic Gradient We provided a closed form derivation for the gradient of

the measure of infeasibility with respect to geometry modification. The geome-

try is parameterized at a vertex level, removing the dependence on procedurally

specified geometry. The performance enhancement offered by the analytic for-

mulation over finite differencing enables a variety of efficient interactive tools.

We presented prototype design tools for improving the stability of a model based

on user-provided constraints and objectives. We demonstrated that our tech-

nique can lead to a variety of structurally-sound designs given the same input

shape, based on the user’s decisions.

6.2 Future Work

This thesis has contributed new methods for incorporating structural analysis into

the design of architectural models. A few examples of remaining open questions in

structural design and masonry analysis are as follows:

6.2.1 Analysis of Laser Scan Data

In order to make analysis and design tools more widely applicable, it would be valuable

to integrate them with automated processes for modeling existing structures. Laser

range scan technology is capable of capturing accurate geometry for cathedrals and

other complex structures. However, there are several key challenges in applying our

methods to the captured geometry:

• Point cloud model formats make no distinction between materials to indicate

non-structural components (e.g. glass windows) versus structural elements (e.g.

solid stone wall).

• Assumptions may have to be made about the thickness of vaults, ribs, or other

structural details where portions of the bounding surfaces are not visible to the

scanner. For example, it is common for gaps to exist between a vaulted ceiling
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and the roof, such that no sight lines exist to the extrados of the ceiling from

either the interior or the exterior of the building.

• There is a lack of texture data to indicate interfaces between individual blocks.

Texture-mapped models are sometimes available, but the image resolution may

not be fine enough to discern block edges, and image registration with the model

may be inaccurate.

• Laser scans also suffer from imperfect conditions for data acquisition. Occlu-

sions cause gaps in the mesh (shadows in Fig.6-1), and proximal objects such

as scaffolding are sometimes included in the scans.

Figure 6-1: Detail of a laser range scan of Bourges Cathedral. [Source: A. Tallon,
Vassar College].

6.2.2 Stability under Displacements

In historic structures, the capacity for displacements is important in addition to

load capacity. While most engineering analysis measures safety by the fraction of

additional load that can be applied before failure, for historic masonry structures it

is necessary to understand the effect of movement on the stability of the structure

since large displacements are common. For example, settlements in foundations and

consolidation of materials occur over time. An important direction of future work

would be to characterize the range of possible movements and the effects of those

displacements in a mathematical programming framework.
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6.2.3 Intuitive Design Interfaces

Further work could be done on parameterizations that contain information about

important features of a building design, without requiring tedious input from the user.

For example, Igarashi and Hughes [2001] developed 3D drawing tools enabling users

to manipulate designs with symmetries and repeated substructures. Lipp et al. [2008]

visualized editable parameters in procedural models, and provided the capability to

directly manipulate parameters for more intuitive design exploration. It would be

valuable to combine the manipulation and visualization of these two methodologies

with the structural design approaches presented in this thesis.

6.2.4 Friction Failure

The lower bound theorem [Drucker 1954] states that if a static equilibrium solution

exists to support a structure under loads w, then the structure is safe and w is a lower

bound for the collapse load. However, this theorem applies only to hinging failure

under tension. Further investigation is necessary to determine safety under friction

failure.

6.2.5 Discretization

Using a coarse discretization (large blocks representing many smaller units) may

over-estimate the stability of the final structure. Our method analyses structures by

finding force values at the boundaries of blocks. This is an approximation to the force

distribution within a structure, and it is possible for tension forces to develop as the

discretization is refined. We tested the Sainte Chapelle model (Figure 4-6) by choosing

parameters that were “just stable” (small variations make the structure unstable),

then varied the number of blocks. The chapel remained feasible when we increased

the block count from 486 to 876 by subdividing the columns, arched windows, and

circular window. The chapel became infeasible when we further subdivided the groin

vaulted ceiling. The trade-off between accuracy and computation speed is an area for

future investigation.
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6.2.6 Alternative Energy Functions

In chapter 3 we proposed a method for quantifying infeasibility of masonry structures

based on the magnitude of tension forces. Although tension is an indication of infeasi-

bility, it would be valuable to consider other measures of infeasibility. One possibility

is to measure distance of each resultant force from the boundary of its incident block

face, as depicted in Figure 3-2. However, difficulty arises with pure tension faces

since the resultant force is negative and the position remains inside the face despite

being infeasible. A second possibility is to measure torque contributions from tension

forces, however this is relevant only when hinging is the failure mechanism. Further

investigation is needed to determine the effectiveness of alternative energies.
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Appendix A

Static Equilibrium Constraints

A.1 Matrix Structure

We detail the matrix equation for static equilibrium (3.1). We use an example con-

struction for an arch consisting of n blocks. Note that the f vector has n+ 1 contact

surfaces because there are n−1 shared interfaces between blocks in the arch, and two

interfaces in contact with the ground plane.

Aeq · f + w = 0


A0,0 A0,1

A1,1 A1,2

. . .

An−1,n−1 An−1,n





r0

...

rn


+


w0

...

wn−1

 = 0

wj: 6×1 vector containing the 3D weight and net torque for block j. Typically the

only non-zero element is the z-component of weight. For any external loads acting

on block j, the force and torque contributions are added here.

rk: Contains the unknown force vectors fi, for vertices i on interface k. height(rk)

is 3vk, where vk is the number of vertices on interface k and each vertex contributes
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a 3D force. Note that after decomposing the axial forces into positive and negative

parts (eq. 3.5), the dimension of fi increases to 4×1 which changes the height(rk) to

4vk.

Aj,k: Submatrices Aj,k contain coefficients for net force and net torque contributions

from interface k acting on block j. Each Aj,k has dimension 6×height(rk). Rows 1-3

are coefficients for net force contributions in x, y, z and rows 4-6 are coefficients for

net torque contributions about the x, y, z axes.

Aj,krk =

 Fk Fk . . .

Ti,j,k Ti+1,j,k . . .




fi

fi+1

...

 =



akx akx . . .

aky aky . . .

akz akz . . .

bi,j,kx bi+1,j,kx . . .

bi,j,ky bi+1,j,ky . . .

bi,j,kz bi+1,j,kz . . .




fi

fi+1

...



where fi = [f in f
i
u f

i
v]
T , akx = [ênkx

êukx êvkx ] and bi,j,kx = [(ênk
× vi,j)x (êuk ×

vi,j)x (êvk × vi,j)x]. Unit vectors ênk
, êuk and êvk are the normal vector and friction

basis vectors for face k (see Figure A-1). The subscript x refers to the x-component

of the vector.

The number of submatrices Aj,k in row j of Aeq is equal to the number of neighbors

incident on block j. There are two submatrices in each column k, since rk represents

the interaction between surfaces of two adjacent blocks.

Size Complexity The sizes of the constraint matrices for static equilibrium and

friction are as follows:

f: length =
∑

k vk(#forces per vertex ), over all interfaces k in the structure. vk is the

number of vertices on interface k.

Aeq: size = 6(#blocks)×length(f). The number of non-zero elements in Aeq is 12 per

column, since there are 6 equilibrium equations and 2 interacting blocks per interface.
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f  i enk
^
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evk
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^
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interface k

}block j

vertex i

Figure A-1: Indexing for equations of static equilibrium. Vector ênk
is the unit normal

for interface k, and êuk and êvk are the directions of in-plane friction forces. Vector
vi,j is the relative position of vertex i w.r.t. the centroid of block j. wj is the 3D
weight vector for block j.

The number of non-zero elements in each row j is
∑

k vk(#forces per vertex ), over all

interfaces k on block j.

Afr: square with dimension = length(f). The number of non-zero elements in Afr is∑
k 8vk over all interfaces k in the structure, assuming a 4-sided friction pyramid.

A.2 Partial Derivatives

The partial derivatives of coefficients for net force equilibrium, Fk, on face k are:

∂Fk

∂ω
=
∂[ên êu êv]k

∂ω

where ω is a parameter from the set {ui,k, vi,k, nk, θk, φk} as described in §5.3. The

partial derivatives of coefficients for net torque equilibrium, Tk, on face k are:

∂Ti,j,k

∂ω
=

∂[(ên × vi,j) (êu × vi,j) (êv × vi,j)]k
∂ω

∂(ên × vi,j)k
∂ω

= ên ×
∂vi,j
∂ω

+
∂ên
∂ω
× vi,j

= ên ×
(
∂pi,j
∂ω
− ∂cj
∂ω

)
+
∂ên
∂ω
× vi,j
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The derivative of the centroid position cj for block j is:

∂cj
∂ω

=
∂

∂ω

(∑
vTi,jcTi,j∑
vTi,j

)

where vTi,j is the volume of tetrahedron i on block j and cTi,j is the centroid of

tetrahedron i.

∂vTi,j
∂ω

=
1

6
sign(a0 · (a1 × a2))

∂

∂ω
(a0 · (a1 × a2))

∂cTi,j
∂ω

=
1

4

∂

∂ω
(a0 + a1 + a2)

where coordinates a0, a1, a2 are three corners of tetrahedron i, offset such that the

fourth coordinate lies at the origin (0, 0, 0).

The derivative of the weight vector ∂w/∂ω for block j is given by:

∂wj

∂ω
= ρ

∂vj
∂ω

ĝ = ρ

(∑
i

∂vTi,j
∂ω

)
ĝ (A.1)

where ρ is the block density and ĝ is the direction of gravity, and vj is the volume of

block j.
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Appendix B

Data: Static Analysis

For comparison in future implementations and experiments, we provide analysis re-

sults for the 2-block T model in Figure 3-4. The geometry is specified in obj format,

and following we provide force values for all block interfaces.

T model geometry (obj format):

v 0.0000000000 0.0000000000 2.0000000000

v 2.0000000000 0.0000000000 2.0000000000

v 2.0000000000 0.0000000000 -2.0000000000

v 0.0000000000 0.0000000000 -2.0000000000

v 0.0000000000 7.0000000000 2.0000000000

v 2.0000000000 7.0000000000 2.0000000000

v 2.0000000000 7.0000000000 -2.0000000000

v 0.0000000000 7.0000000000 -2.0000000000

v -7.0000000000 7.0000000000 2.0000000000

v 5.0000000000 7.0000000000 2.0000000000

v 5.0000000000 7.0000000000 -2.0000000000

v -7.0000000000 7.0000000000 -2.0000000000

v -7.0000000000 10.0000000000 2.0000000000

v 5.0000000000 10.0000000000 2.0000000000

v 5.0000000000 10.0000000000 -2.0000000000

v -7.0000000000 10.0000000000 -2.0000000000

g baseblock

f 0 1 2 3

f 4 7 6 5
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f 0 4 5 1

f 7 4 0 3

f 1 5 6 2

f 2 6 7 3

g topblock

f 8 9 10 11

f 12 15 14 13

f 8 12 13 9

f 15 12 8 11

f 9 13 14 10

f 10 14 15 11

Block weights:

baseblock: weight = [0.0 -560.0 0.0]

topblock: weight = [0.0 -1440.0 0.0]

Block interfaces:

interface 0 {

v 0.0000000000 0.0000000000 2.0000000000 // interface vertices

v 2.0000000000 0.0000000000 2.0000000000

v 2.0000000000 0.0000000000 -2.0000000000

v 0.0000000000 0.0000000000 -2.0000000000

g baseblock // adjacent block and incident face

f 0 1 2 3

g ground

}

interface 1 {

v 0.0000000000 7.0000000000 2.0000000000 // interface vertices

v 0.0000000000 7.0000000000 -2.0000000000

v 2.0000000000 7.0000000000 -2.0000000000

v 2.0000000000 7.0000000000 2.0000000000

g baseblock // adjacent block and incident face

f 4 7 6 5

g topblock

f 8 9 10 11

}
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Values of forces at block interfaces (vector structure as described in §A.1):

f =

1.0e+003 *

[1.2200

0.0000

0.0000

-0.2200

0.0000

0.0000

-0.2200

0.0000

0.0000

1.2200

0.0000

0.0000

1.0800

0.0000

0.0000

1.0800

0.0000

0.0000

-0.3600

0.0000

0.0000

-0.3600

0.0000

0.0000]
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Appendix C

Data: Optimization Parameters

We provide the rule set for the 10-parameter chapel model in Figure 4-6. Free pa-

rameters are indicated in the rules as ∗θi∗. Note that several parameters are defined

as a functions of free parameters. Following the rules we provide input and output

values for θ. No safety factor was used in the optimization.

Starting Shape:

hall S(10, 5.5, 13) T(0, 0, 0) R(0, 0, 0)

Production Rules:

1. hall --> {roof}: Replace Faces {5} with thickness 3

2. roof --> {roof}: Symmetric split across axis Y

3. roof --> {roof}: Replace with S(1r, 1.1r, 1r) T(0, 0, 0) R(0, 0, 0)

4. roof --> {roofside}: Replace Faces {0, 1} with thickness 0.2

5. roofside --> {roofside}: Replace with S(1r, 1r, 1.1r) T(0, 0, 0) R(0, 0, 0)

6. hall --> {wall}: Replace Faces {0} with thickness *θ0*

7. hall --> {wall4}: Replace Faces {1} with thickness *θ1*

8. wall --> {wall5 | flattoparch(0.4)}: Subdivide along axis Z with params {0.55,

0.45}

9. flattoparch --> {flattoparch(0.42)}: Symmetric split across axis Z

10. hall --> {column100}: Replace Edges {8, 9, 10, 11} with thickness *θ2*
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11. hall --> {bay}: Repeat along axis X with absolute size 2.5

12. bay --> {bay | groinvault(0.46)}: Subdivide along axis Z with params {0.8, 0.2}

13. groinvault --> {flattoparch(*θ3*)}: Replace Faces {2, 3} with thickness *θ4*

14. bay --> {wall2}: Replace Faces {2, 3} with thickness 0.2

15. wall2 --> {wall2}: Symmetric split across axis Y

16. wall2 --> {wall | column}: Subdivide along axis Y with params {*θ5*, *1−θ5*}

17. column --> {column}: Replace with S(3.1r, 1r, 1r) T(1r, 1r, 0) R(0, 0, 180)

18. column --> {column}: Replace with S(*θ6*r, 1r, 1r) T(1r, 1r, 0) R(0, 0, 180)

19. column --> {column}: Repeat along axis Z with absolute size 3

20. wall --> {wall}: Replace with S(1r, 1r, 0.4r) T(-2r, 0r, 0) R(0, 0, 0)

21. wall5 --> {hall}: Replace Faces {1} with thickness 2.5

22. hall --> {hall}: Replace with S(1r, 0.9r, 1r) T(0, 0.05r, 0) R(0, 0, 0)

23. hall --> {wall6}: Replace Faces {2, 3} with thickness 0.2

24. wall6 --> {wall | wall6}: Subdivide along axis Y with params {*(θ2−0.15)/2.5*,

*1− (θ2 − 0.15)/2.5*}

25. hall --> {wall5}: Replace Faces {1} with thickness 0.2

26. wall5 --> {wall6 | wall6 | wall6}: Subdivide along axis Y with params {0.25, 0.5,

0.25}

27. wall6 --> {wall5 | wall5}: Subdivide along axis Z with params {0.5, 0.5}

28. wall5 --> {wall5 | flattoparch(*θ7*)}: Subdivide along axis Z with params {0.5,

0.5}

29. wall5 --> {wall5}: Symmetric split across axis Y

30. wall5 --> {wall5}: Replace with S(1r, *θ8*r, 1r) T(1r, 1r, 0) R(0, 0, 180)

31. hall --> {wall10}: Replace Faces {5} with thickness 0.2

32. wall10 --> {wall10}: Replace with S(1.1r, 1.1r, 1r) T(0r, -0.05r, 0) R(0, 0, 0)

33. hall --> {column100}: Replace Edges {9, 10} with thickness *θ9*

34. column100 --> {column}: Repeat along axis Z with absolute size 3
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Input parameters θ0 with bounds [lb, ub]:

θ0: 0.20 [0.20, 1.00]

θ1: 0.20 [0.20, 1.00]

θ2: 0.20 [0.20, 2.00]

θ3: 0.46 [0.10, 0.49]

θ4: 0.20 [0.20, 1.00]

θ5: 0.85 [0.20, 0.90]

θ6: 1.00 [1.00, 4.00]

θ7: 0.45 [0.10, 0.49]

θ8: 0.20 [0.10, 1.00]

θ9: 0.20 [0.20, 2.00]

Output parameters θ∗:

θ0: 0.3324

θ1: 0.2276

θ2: 0.4598

θ3: 0.4649

θ4: 0.3454

θ5: 0.7331

θ6: 1.0941

θ7: 0.4660

θ8: 0.1637

θ9: 0.4778
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Appendix D

Data: Structural Gradient

We provide values for the gradient vectors of the 2-block T model in Figure 5-1. See

Appendix B for the geometry in obj format.

∇uy,∇vy: In-plane vertex translation (length = # block faces × # verts per face)

∇ny: Normal translation (length = # block faces)

∇θy,∇φy: Normal rotation (length = # block faces)

[∇uy ∇vy ∇ny ∇θy ∇φy] =

1.0e+005 *

-1.3556 0.0095 0.0000 0.0000 0.0000

0.2882 0.0160 0.0292 0.0000 0.0000

0.2882 -0.0160 0.0510 0.0000 0.0000

-1.3556 -0.0095 -0.0528 0.0000 0.0000

-0.0095 1.9560 0.2570 0.0000 0.0000

0.0095 1.9560 0.0510 0.0000 0.0000

0.0160 -0.6948 -0.4695 0.0000 0.0000

-0.0160 -0.6948 -0.4695 0.0000 0.0000

-0.0054 0.0062 -0.3521 0.0000 0.0000

0.0054 0.0062 -1.1655 0.0000 0.0000

0.0091 -0.0449 0.9308 0.0000 0.0000

-0.0091 -0.0449 -0.3521 0.0000 0.0000

-0.0031 0.0018
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0.0031 0.0018

0.0031 -0.0018

-0.0031 -0.0018

-0.0128 0.0224

0.0128 0.0224

0.0128 -0.0224

-0.0128 -0.0224

-0.0091 0.0449

0.0091 0.0449

0.0054 -0.0062

-0.0054 -0.0062

0.1604 -0.2191

0.1017 0.0430

0.1017 -0.0430

0.1604 0.2191

0.2191 -0.1604

-0.2191 -0.1604

0.0430 -0.1017

-0.0430 -0.1017

0.2921 -0.1604

-0.2921 -0.1604

0.0573 -0.1017

-0.0573 -0.1017

0.4811 -0.6415

-0.4811 -0.6415

-0.4811 0.6415

0.4811 0.6415

-0.4067 0.3050

0.4067 0.3050

0.4067 -0.3050

-0.4067 -0.3050

-0.0573 0.1017

0.0573 0.1017

-0.2921 0.1604

0.2921 0.1604
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