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Abstract

We describe a simple and yet surprisingly powerful probabilistic technique which shows how to

find in a dense graph a large subset of vertices in which all (or almost all) small subsets have many

common neighbors. Recently this technique has had several striking applications to Extremal Graph

Theory, Ramsey Theory, Additive Combinatorics, and Combinatorial Geometry. In this survey we

discuss some of them.

1 Introduction

A vast number of problems in Ramsey Theory and Extremal Graph Theory deal with embedding a

small or sparse graph in a dense graph. To obtain such an embedding, it is sometimes convenient to

find in a dense graph a large vertex subset U which is rich in the sense that all (or almost all) small

subsets of U have many common neighbors. Then one can use this set U and greedily embed the

desired subgraph one vertex at a time. In this paper we discuss an approach to finding such a rich

subset.

This approach is based on a very simple yet surprisingly powerful technique known as dependent

random choice. Early versions of this technique were proved and applied by various researchers,

starting with Rödl, Gowers, Kostochka, and Sudakov (see [60], [49], [81]). The basic method, which is

an example of the celebrated Probabilistic Method (see, e.g., [7]), can be roughly described as follows.

Given a dense graph G, we pick a small subset T of vertices uniformly at random. Then the rich set

U is simply the set of common neighbors of T . Intuitively it is clear that if some subset of G has only

few common neighbors, it is unlikely that all the members of the random set T will be chosen among

these neighbors. Hence, we do not expect U to contain any such subset. Although this might sound

somewhat vague, we will make it more precise in the next section.

The last ten years have brought several striking applications of dependent random choice to Ex-

tremal Graph Theory, Ramsey Theory, Additive Combinatorics, and Combinatorial Geometry. There

are now a growing number of papers which use this approach and we think that the time has come

to give this topic a systematic treatment. This is the main goal of our survey. In this paper we will

attempt to describe most of the known variants of dependent random choice and illustrate how they

can be used to make progress on a variety of combinatorial problems. We will usually not give the

arguments which lead to the best known results or the sharpest possible bounds, but rather concen-

trate on explaining the main ideas which we believe have wide applicability. Throughout the paper,
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we systematically omit floor and ceiling signs whenever they are not crucial for the sake of clarity of

presentation. All logarithms are in base 2.

The choice of topics and examples described in this survey is inevitably biased and is not meant to

be comprehensive. We prove a basic lemma in the next section, and give several quick applications in

Section 3. In Section 4 we discuss an example, based on the isoperimetric inequality for binary cubes,

which shows certain limitations of dependent random choice. Next we present Gowers’ celebrated proof

of the Balogh-Szemerédi lemma, which is one of the earliest applications of this technique to additive

combinatorics. In Sections 6 and 7 we study Ramsey problems for sparse graphs and discuss recent

progress on some old conjectures of Burr and Erdős. Section 8 contains more variants of dependent

random choice which were needed to study embeddings of subdivisions of various graphs into dense

graphs. Another twist in the basic approach is presented in Section 9, where we discuss graphs whose

edges are in few triangles. The final section of the paper contains more applications of dependent

random choice and concluding remarks. These additional applications are discussed only very briefly,

since they do not require any new alterations of the basic technique.

2 Basic Lemma

For a vertex v in a graph G, let N(v) denote the set of neighbors of v in G. Given a subset U ⊂ G, the

common neighborhood N(U) of U is the set of all vertices of G that are adjacent to U , i.e., to every

vertex in U . Sometimes, we might write NG(v), NG(U) to stress that the underlying graph is G when

this is not entirely clear from the context.

The following lemma (see, e.g., [60, 81, 3]) is a typical result proved by dependent random choice.

It demonstrates that every dense graph contains a large vertex subset U such that all small subsets

of U have large common neighborhood. We discuss applications of this lemma in the next section.

Lemma 2.1 Let a, d,m, n, r be positive integers. Let G = (V,E) be a graph with |V | = n vertices and

average degree d = 2|E(G)|/n. If there is a positive integer t such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a,

then G contains a subset U of at least a vertices such that every r vertices in U have at least m

common neighbors.

Proof. Pick a set T of t vertices of V uniformly at random with repetition. Set A = N(T ), and let

X denote the cardinality of A. By linearity of expectation,

E[X] =
∑

v∈V (G)

(
|N(v)|

n

)t

= n−t
∑

v∈V (G)

|N(v)|t ≥ n1−t

(∑
v∈V (G) |N(v)|

n

)t

=
dt

nt−1
,

where the last inequality is by convexity of the function f(z) = zt.

Let Y denote the random variable counting the number of subsets S ⊂ A of size r with fewer than

m common neighbors. For a given such S, the probability that it is a subset of A equals
(
|N(S)|

n

)t
.

Since there are at most
(
n
r

)
subsets S of size r for which |N(S)| < m, it follows that

E[Y ] <

(
n

r

)(m
n

)t
.
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By linearity of expectation,

E[X − Y ] ≥ dt

nt−1
−
(
n

r

)(m
n

)t
≥ a.

Hence there exists a choice of T for which the corresponding set A = N(T ) satisfies X−Y ≥ a. Delete

one vertex from each subset S of A of size r with fewer than m common neighbors. We let U be the

remaining subset of A. The set U has at least X − Y ≥ a vertices and all subsets of size r have at

least m common neighbors. 2

3 A Few Quick Applications

In this section we present four results which illustrate the application of the basic lemma to various

extremal problems.

3.1 Turán numbers of bipartite graphs

For a graph H and positive integer n, the Turán number ex(n,H) denotes the maximum number of

edges of a graph with n vertices that does not contain H as a subgraph. A fundamental problem

in extremal graph theory is to determine or estimate ex(n,H). Turán [86] in 1941 determined these

numbers for complete graphs. Furthermore, the asymptotic behavior of Turán numbers for graphs of

chromatic number at least 3 is given by a well known result of Erdős, Stone, and Simonovits (see, e.g.,

[10]). For bipartite graphs H, however, the situation is considerably more complicated, and there are

relatively few nontrivial bipartite graphs H for which the order of magnitude of ex(n,H) is known.

The following result of Alon, Krivelevich, and Sudakov [3] is best possible for every fixed r , as shown

by the constructions in [56] and in [5]. Although, it can be derived also from an earlier result in [47],

the proof using dependent random choice is different and provides somewhat stronger estimates.

Theorem 3.1 If H = (A ∪ B,F ) is a bipartite graph in which all vertices in B have degree at most

r, then ex(n,H) ≤ cn2−1/r, where c = c(H) depends only on H.

Proof. Let a = |A|, b = |B|, m = a+ b, t = r, and c = max
(
a1/r, 3(a+b)

r

)
and suppose G is a graph

with n vertices, and at least cn2−1/r edges. Then the average degree d of G satisfies d ≥ 2cn1−1/r.

Using the definition of c and the fact that r! ≥ (r/e)r it is easy to check that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (2c)r − nr

r!

(
a+ b

n

)r

≥ (2c)r −
(
e(a+ b)

r

)r

≥ cr ≥ a.

Therefore we can use Lemma 2.1 (with the parameters a, d,m, n, r, t as above) to find a vertex subset

U of G with |U | = a such that all subsets of U of size r have at least m = a + b common neighbors.

Now the following embedding lemma completes the proof of the theorem.

Lemma 3.2 Let H = (A ∪ B,F ) be a bipartite graph in which |A| = a, |B| = b, and the vertices in

B have degree at most r. If G is a graph with a vertex subset U with |U | = a such that all subsets of

U of size r have at least a+ b common neighbors, then H is a subgraph of G.
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Proof. We find an embedding of H in G given by an injective function f : A ∪ B → V (G). Start

by defining an injection f : A → U arbitrarily. Label the vertices of B as v1, . . . , vb. We embed

the vertices of B in this order one vertex at a time. Suppose that the current vertex to embed is

vi ∈ B. Let Ni ⊂ A be those vertices of H adjacent to vi, so |Ni| ≤ r. Since f(Ni) is a subset of U of

cardinality at most r, there are at least a + b vertices adjacent to all vertices in f(Ni). As the total

number of vertices already embedded is less than a + b, there is a vertex w ∈ V (G) which is not yet

used in the embedding and is adjacent to all vertices in f(Ni). Set f(vi) = w. It is immediate from

the above description that f provides an embedding of H as a subgraph of G. 2

3.2 Embedding a 1-subdivision of a complete graph

A topological copy of a graph H is a graph formed by replacing edges of H by internally vertex disjoint

paths. This is an important notion in graph theory, e.g., the celebrated theorem of Kuratowski [66]

uses it to characterize planar graphs. In the special case in which each of the paths replacing the edges

of H has exactly t internal vertices, it is called a t-subdivision of H.

An old conjecture of Mader and Erdős-Hajnal which was proved in [14, 58] says that there is a

constant c such that every graph with n vertices and at least cp2n edges contains a topological copy of

Kp. This implies that any n-vertex graph with cn2 edges contains a a topological copy of a complete

graph on Ω(
√
n) vertices. An old question of Erdős [30] asks whether one can strengthen this statement

and find in every graph G on n vertices with c1n
2 edges a 1-subdivision of a complete graph with at

least c2
√
n vertices for some positive c2 depending on c1. A positive answer to this question was given

in [3]. Here we present a short proof from this paper, showing the existence of such a subdivision.

Theorem 3.3 If G is a graph with n vertices and ϵn2 edges, then G contains a 1-subdivision of a

complete graph with a = ϵ3/2n1/2 vertices.

Proof. The average degree d of G is 2ϵn. Let r = 2, t = logn
2 log 1/ϵ and let m be the number of vertices

of the 1-subdivision of the complete graph on a vertices. Since m =
(
a
2

)
+ a ≤ a2 and clearly ϵ ≤ 1/2,

it is easy to check that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (2ϵ)tn− n2

2
ϵ3t = 2tn1/2 − n1/2

2
≥ n1/2 ≥ a.

Therefore we can apply Lemma 2.1 with these parameters to find a vertex subset U of G with |U | = a

such that every pair of vertices in U have at least m common neighbors. Note that a 1-subdivision of

the complete graph on a vertices is a bipartite graph with parts of size a and b =
(
a
2

)
such that every

vertex in the larger part has degree two. Thus we can now complete the proof of this theorem using

Lemma 3.2. 2

One can improve this result using a more complicated argument. In [3] it was shown that the

graph G as above contains a 1-subdivision of a complete graph of order ϵn1/2/4. The power of ϵ in this

result cannot be improved. Also in [46] we extended this theorem to embedding the 1-subdivision of

any graph with O(n) edges. The proof of these results require some additional ideas and are discussed

in Section 8.
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3.3 Ramsey number of the cube

For a graph H, the Ramsey number r(H) is the minimum positive integer N such that every 2-coloring

of the edges of the complete graph on N vertices contains a monochromatic copy of H. Determining

or estimating Ramsey numbers is one of the central problems in combinatorics, see the book Ramsey

theory [53] for details. The r-cube Qr is the r-regular graph with 2r vertices whose vertex set consists

of all binary vectors {0, 1}r and two vertices are adjacent if they differ in exactly one coordinate. More

than thirty years ago, Burr and Erdős conjectured that r(Qr) is linear in the number of vertices of the

r-cube. Although this conjecture has drawn a lot of attention, it is still open. Beck [9] showed that

r(Qr) ≤ 2cr
2
. His result was improved by Graham et al. [51] who proved that r(Qr) ≤ 8(16r)r. Shi

[77], using ideas of Kostochka and Rödl [60], obtained the first polynomial bound for this problem,

showing that r(Qr) ≤ 2cr+o(r) for some c ≈ 2.618. A polynomial bound on r(Qr) follows easily from

the basic lemma in Section 2. Using a refined version of dependent random choice, we will later give

a general upper bound on the Ramsey number of bipartite graphs which improves the exponent to

22r+o(r).

Theorem 3.4 r(Qr) ≤ 23r.

Proof. In any two-coloring of the edges of the complete graph on N = 23r vertices, the denser of the

two colors has at least 1
2

(
N
2

)
≥ 2−7/3N2 edges. Let G be the graph of the densest color, so the average

degree d of G is at least 2−4/3N . Let t = 3
2r, m = 2r and a = 2r−1. We have

dt

N t−1
−
(
N

r

)(m
N

)t
≥ 2−

4
3
tN −N r−tmt/r! ≥ 2r − 1 ≥ 2r−1.

Therefore, applying Lemma 2.1 we find in G a subset U of size 2r−1 such that every set of r vertices

in U has at least 2r common neighbors. Since Qr is an r-regular bipartite graph with 2r vertices and

parts of size 2r−1, Lemma 3.2 demonstrates that Qr is a subgraph of G. 2

Note that this proof gives a stronger Turán-type result, showing that any subgraph of density 1/2

contains Qr.

3.4 Ramsey-Turán problem for K4-free graphs

Let RT(n,H, f(n)) be the maximum number of edges a graph G on n vertices can have which has

neither H as a subgraph nor an independent set of size f(n). The problem of determining these

numbers was motivated by the classical Ramsey and Turán theorems, and has attracted a lot of

attention over the last forty years, see e.g., the survey by Simonovits and Sós [80]. One of the most

celebrated results in this area states that

RT(n,K4, o(n)) = (1 + o(1))
n2

8
.

That is, every K4-free graph with n vertices and independence number o(n) has at most (1 + o(1))n
2

8

edges, and this bound is tight. The upper bound was proved by Szemerédi [85] and the lower bound

obtained by Bollobás and Erdős [12]. This result is surprising since it is more plausible to suspect

that a K4-free graph with independence number o(n) has o(n2) edges. One of the natural questions
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brought up in [38] and [80] is whether one can still find a K4-free graph with a quadratic number of

edges if the independence number o(n) is replaced by a smaller function, say O(n1−ϵ) for some small

but fixed ϵ > 0. The answer to this question was given by the second author in [81].

Theorem 3.5 Let f(n) = 2−ω
√
lognn, where ω = ω(n) is any function which tends to infinity arbi-

trarily slowly together with n. Then

RT(n,K4, f(n)) = o(n2).

Proof. Suppose for contradiction that there is a K4-free graph G on n vertices with at least

2−ω2/2n2 = o(n2) edges, and independence number less than a = f(n). The average degree d of

G satisfies d ≥ 2 · 2−ω2/2n. Let r = 2, m = a, and t = 2
ω

√
log n. We have

dt

nt−1
−
(
n

r

)(m
n

)t
≥
(
2 · 2−ω2/2

)t
n− n2

2
2−ωt

√
logn = 2t2−ω

√
lognn− 1/2 ≥ 2−ω

√
lognn = a.

Therefore, applying Lemma 2.1, we can find a subset U of size a such that every pair of vertices in

U has at least a common neighbors. Since G has independence number less than a, then U has a

pair of adjacent vertices {u, v}. These vertices have at least a common neighbors. No pair of common

neighbors of u and v is adjacent as otherwise G contains a K4. So the common neighbors of u and v

form an independent set of size at least a, a contradiction. 2

4 A dense graph without a rich subset of linear size

Lemma 2.1 shows that every sufficiently dense graph on n vertices contains a large set of vertices

U with the useful property that every small subset of U has many common neighbors. In many

applications it would be extremely helpful to have both the size of U and the number of common

neighbors be linear in n. Unfortunately, this is not possible, as is shown by the following construction

of Kostochka and Sudakov; see [63] for more details.

Proposition 4.1 For infinitely many n there is a graph G on n vertices with at least n(n − 2)/4

edges such that any subset of G of linear size contains a pair of vertices with at most o(n) common

neighbors.

Proof. Indeed, fix 0 < c < 1/2 and let m be a sufficiently large integer. Let G be the graph with

vertex set V = {0, 1}m in which two vertices x, y ∈ V are adjacent if the Hamming distance between

x and y, which is the number of coordinates in which they differ, is at most m/2. The number of

vertices of G is n = 2m and it is easy to check that every vertex in G has degree at least n/2 − 1.

Suppose for contradiction that there is U ⊂ V with |U | ≥ cn and every pair of vertices in U has at

least cn common neighbors. A classical result of Kleitman [55] states that if

|U | >
t∑

i=0

(
m

i

)
,
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then U contains two vertices u1, u2 of Hamming distance at least 2t + 1. We also need a standard

Chernoff estimate (see, e.g., Theorem A.4 in Appendix A of [7]) saying that∑
0≤i≤µ/2−λ

(
µ

i

)
=

∑
µ/2+λ≤i≤µ

(
µ

i

)
≤ 2µe−2λ2/µ. (1)

Since |U | ≥ cn, this inequality with µ = m, λ = m5/8 and the above result of Kleitman with t = m/2−λ

shows that there are two vertices u1, u2 ∈ U with distance at least m− 2λ = m− 2m5/8.

We next use the fact that u1 and u2 are nearly antipodal to show that they have less than cn

common neighbors, contradicting the assumption that all pairs of vertices in U have cn common

neighbors. First, for intuition, let us see that this holds if u1 and u2 are antipodal, i.e., have Hamming

distance m. In this case, a common neighbor of these two vertices has distance exactly m/2 from each

of them, and hence there are
(

m
m/2

)
= o(n) such common neighbors.

The analysis is only a little more complicated in the general case. Let m − k be the Hamming

distance of u1 and u2. Thus u1 and u2 agree on k ≤ 2m5/8 coordinates and without loss of generality

we assume that these are the first k coordinates. Let S denote the set of vertices which are adjacent

to u1 and u2. Let r = m3/8 and S1 denote the set of vertices which agree with u1 and u2 in at least

k/2 + r of the first k coordinates, and let S2 = S \ S1. The number of vertices in S1 is

2m−k
∑

i≥k/2+r

(
k

i

)
< 2m−k · 2ke−2r2/k = ne−2r2/k = o(n),

where the first inequality follows from estimate (1) and the last equality uses that k ≤ 2m5/8 and

r = m3/8.

The vertices in S2 have Hamming distance at most m/2 from both u1 and u2, and agree with u1
and u2 in less than k/2 + r of the first k coordinates. Therefore, on the remaining m− k coordinates,

the vertices in S2 must agree with u1 in more than m/2−k/2−r coordinates and with u2 in more than

m/2−k/2− r coordinates. Since u1 and u2 differ on these coordinates, we have that on the last m−k

coordinates the vertices in S2 should agree with u1 in i places for somem/2−k/2−r < i < m/2−k/2+r.

Therefore S2 is at most 2k times the sum of all binomial coefficients
(
m−k
i

)
with |m/2− k/2− i| < r.

There are at most 2r such binomial coefficients, and by Stirling’s formula the largest of them is at

most m−1/22m−k. Hence, |S2| ≤ 2k ·2r ·m−1/22m−k = 2rm−1/2n = o(n). Thus, the number of common

neighbors of u1 and u2 is |S| ≤ |S1|+ |S2| = o(n). 2

Note that this argument can also be used to show that the complement of G in this example also

does not have a vertex subset U of linear size in which each pair of vertices in U have linearly many

common neighbors.

Despite the above example, in the next section we present a variant of the basic technique which

shows that every dense graph has a linear size subset in which almost all pairs have a linear number

of common neighbors. This can be used to establish a very important result in additive combinatorics

known as the Balog-Szemerédi-Gowers theorem.

5 A variant of the basic lemma and additive combinatorics

Although we proved in the previous section that one can not guarantee in every dense graph a linear

subset in which every pair of vertices has a linear number of common neighbors, the following lemma
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shows how to find a linear subset in which almost every pair of vertices has this property. The result

is stated for bipartite graphs because in the next section we need this setting for an application to

additive combinatorics. This assumption is of course not essential as it is well known that every graph

contains a bipartite subgraph with at least half of its edges.

Lemma 5.1 Let G be a bipartite graph with parts A and B and e(G) = c|A||B| edges. Then for any

0 < ϵ < 1, there is a subset U ⊂ A such that |U | ≥ c|A|/2 and at least a (1− ϵ)-fraction of the ordered

pairs of vertices in U have at least ϵc2|B|/2 common neighbors in B.

Proof. Pick a vertex v ∈ B uniformly at random and let X denote the number of neighbors of v. By

the Cauchy-Schwarz inequality, we have

E[X2] ≥ E[X]2 =

(∑
a∈A

|N(a)|
|B|

)2

=
(
e(G)/|B|

)2
= c2|A|2.

Let T = (a1, a2) be an ordered pair of vertices in A. Call it bad if |N(T )| < ϵc2|B|/2. The probability

that T ⊂ N(v) is |N(T )|/|B|, and therefore for a bad pair it is less than ϵc2/2. Let Z denote the

number of bad pairs of vertices in N(v). By linearity of expectation, we have

E[Z] <
ϵc2

2
· |A|2 ≤ ϵE[X2]/2,

and therefore

E[X2 − Z/ϵ] = E[X2]− E[Z]/ϵ ≥ E[X2]/2 ≥ c2|A|2/2.

Hence, there is a choice of v such that X2 − Z/ϵ ≥ c2|A|2/2. Let U = N(v). Then Z ≤ ϵX2 =

ϵ|N(v)|2 = ϵ|U |2, i.e., at most an ϵ-fraction of the ordered pairs of vertices of U are bad. We also have

|N(v)|2 = X2 ≥ c2|A|2/2. Thus |U | = |N(v)| ≥ c|A|/2, completing the proof. 2

5.1 Balog-Szemerédi-Gowers theorem

An early application of dependent random choice appeared in Gowers’ proof [49] of Szemerédi’s theorem

on arithmetic progressions in dense subsets of the integers. One of the important innovations which

Gowers introduced in this work is a new approach which gives much better quantitative bounds for a

result of Balog and Szemerédi, which we discuss next. The Balog-Szemerédi-Gowers theorem has many

applications and is one of the most important tools in additive combinatorics and number theory.

Let A and B be two sets of integers. Define the sumset A + B = {a + b : a ∈ A, b ∈ B}. For a

bipartite graph G with parts A and B and edge set E, define the partial sumset A +G B = {a + b :

a ∈ A, b ∈ B, (a, b) ∈ E}. In many applications in additive combinatorics, instead of knowing A + A

one only has access to a dense subset of this sum. For example, can we draw a useful conclusion from

the fact that A +G A is small for some dense graph G? It is not difficult to see that in such a case

A+A can still be very large. Indeed, take A to be a union of an arithmetic progression of length n/2

and n/2 random elements, and let G be the complete graph between the integers in the arithmetic

progression. In this case |A +G A| = O(n) while |A + A| = Ω(n2). However, in this case we are still

able to draw a useful conclusion thanks to the result of Balog and Szemerédi [8]. They proved that if

A and B are two sets of size n, G has at least cn2 edges and |A+GB| ≤ Cn, then one can find A′ ⊂ A

8



and B′ ⊂ B with |A′| ≥ c′n, |B′| ≥ c′n and |A′ +B′| ≤ C ′n, where c′ and C ′ depend on c and C but

not on n.

The original proof of Balog and Szemerédi used the regularity lemma and gave a tower-like de-

pendence between the parameters. Gowers’ approach gives a much better bound, showing that 1/c′

and C ′ can be bounded by a constant degree polynomial in 1/c and C. Our presentation of the proof

of the Balog-Szemerédi-Gowers theorem follows that from [84] and is somewhat different from the

original proof of Gowers [49]. The heart of the proof is the following graph-theoretic lemma, which is

of independent interest. It first appeared in [84], although a variant was already implicit in the work

of Gowers [49].

Lemma 5.2 Let G be a bipartite graph with parts A and B of size n and with cn2 edges. Then it

contains subsets A′ ⊂ A and B′ ⊂ B of size at least cn/8, such that there are at least 2−12c5n2 paths

of length three between every a ∈ A′ and b ∈ B′.

Note that the best result which one can prove for paths of length 1 is substantially weaker. Indeed,

a random bipartite graph with parts of size n with high probability has edge density roughly 1/2 and

does not contain a complete bipartite graph with parts of size 2 logn. Before proving Lemma 5.2, we

first show how to use it to obtain a quantitative version of the Balog-Szemerédi-Gowers theorem. Let

A and B be two sets of integers of cardinality n such that |A +G B| ≤ Cn and G has at least cn2

edges. We show next that there are subsets A′ ⊂ A and B′ ⊂ B each with size at least cn/8 such that

|A′ +B′| ≤ 212C3c−5n.

Let A′ ⊂ A and B′ ⊂ B satisfy the assertion of Lemma 5.2. For each a ∈ A′ and b ∈ B′, consider a

path (a, b′, a′, b) of length three from a to b. We have y = a+b = (a+b′)−(a′+b′)+(a′+b) = x−x′+x′′,

where x = a+ b′, x′ = a′ + b′, and x′′ = a′ + b are elements of X = A+G B since (a, b′), (a′, b′), and

(a′, b) are edges of G. Thus, every y ∈ A′ + B′ can be written as x − x′ + x′′ for at least 2−12c5n2

ordered triples (x, x′, x′′). On the other hand, |X| ≤ Cn, so there are at most C3n3 such triples. This

implies that the number of y is at most C3n3/(2−12c5n2) = 212C3c−5n and |A′ +B′| ≤ 212C3c−5n.

Lemma 5.1 is an essential ingredient in the proof of Lemma 5.2. Note that while Lemma 5.1 shows

that almost all pairs in the large subset U have many paths of length two between them, by allowing

paths of longer length, we obtain in Lemma 5.2 large subsets A′ and B′ such that every a ∈ A′ and

b ∈ B′ have many paths of length three between them.

Proof of Lemma 5.2. Let A1 denote the set of vertices in A of degree at least cn/2 and let

c1 =
e(A1,B)
|A1||B| be the edge density between A1 and B. There are less than (cn/2) · n = cn2/2 edges not

containing a vertex in A1 and therefore at least cn2/2 edges between A1 and B. Also c1 ≥ c, since

deleting vertices in A \ A1 increases the edge density of the remaining graph. In addition, we have

c1 ≥ cn2/2
|A1||B| =

cn
2|A1| . Applying Lemma 5.1 to the induced subgraph of G with parts A1 and B, with c

replaced by c1 and ϵ = c/16, we find a subset U ⊂ A1 with |U | ≥ c1|A1|/2 ≥ cn/4 such that at most

c|U |2/16 ordered pairs of vertices in U are bad, meaning they have less than ϵc21n/2 ≥ c3n/32 common

neighbors in B. Let A′ denote the set of all vertices a in U that are in at most c|U |/8 bad pairs (a, a′)

with a′ ∈ U . The number of bad pairs in U is at least
(
c|U |/8

)
· |U \A′| and at most c|U |2/16. Thus

|U \A′| ≤ |U |/2 and |A′| ≥ |U |/2 ≥ cn/8.

Let B′ be the set of vertices in B that have at least c|U |/4 neighbors in U . Recall that every vertex

in A1 and hence in U has degree at least cn/2, so there are at least (cn/2) · |U | edges between U and

9



B. Since the number of edges between B \B′ and U is less than
(
c|U |/4

)
·n, there are at least cn|U |/4

edges between U and B′. In particular, since each vertex in B′ can have at most |U | neighbors in U ,

we have |B′| ≥ cn/4.

Pick arbitrary a ∈ A′ and b ∈ B′. The number of neighbors of b in U is at least c|U |/4. By

construction of A′, a forms at most c|U |/8 bad pairs with other vertices a′ ∈ U . Hence, there are at least

c|U |/4−c|U |/8−1 ≥ c2n/32−1 neighbors a′ ̸= a of b such that a and a′ have at least c3n/32 common

neighbors b′ in B. At least c3n/32 − 1 of these b′ are not b. This gives
(
c2n/32− 1

) (
c3n/32− 1

)
≥

2−12c5n2 paths (a, b′, a′, b) of length three from a to b and completes the proof. 2

5.2 An application to an extremal problem

The ideas which we discussed earlier in this section can also be used to settle an open problem of

Duke, Erdős, and Rödl [26] on cycle-connected subgraphs. Let H be a collection of graphs. A graph G

is H-connected if every pair of edges of G are contained in a subgraph H of G, where H is a member

of H. For example, if H is the collection of all paths, then ignoring isolated vertices, H-connectedness

is equivalent to connectedness. If H consists of all paths of length at most d, then each H-connected

graph has diameter at most d, while every graph of diameter d isH-connected forH being the collection

of all paths of length at most d+ 2. So H-connectedness extends basic notions of connectedness.

The definition of H-connectedness was introduced and studied by Duke, Erdős, and Rödl in the

early 1980s. A graph is C2k-connected if it is H-connected, where H is the family of even cycles of

length at most 2k. Duke, Erdős, and Rödl studied the maximum number of edges of a C2k-connected

subgraph that one can find in every graph with n vertices and m edges. In 1984, they asked if there

are constants c, β0 > 0 such that every graph G with n vertices and n2−β edges with β < β0 contains

a subgraph G′ with at least cn2−2β edges in which every two edges lie together on a cycle of length

at most 8. In [42], we answered this question affirmatively, using a similar version of dependent

random choice as in the proof of the Balog-Szemerédi-Gowers theorem together with some additional

combinatorial ideas.

A graph is strongly C2k-connected if it is C2k-connected and every pair of edges sharing a vertex lie

together on a cycle of length at most 2k − 2. It is shown in [42] that for 0 < β < 1/5 and sufficiently

large n, every graph G on n vertices and at least n2−β edges has a strongly C8-connected subgraph G′

with at least 1
64n

2−2β edges. A disjoint union of nβ complete graphs each of size roughly n1−β shows

that this bound on the number of edges of G′ is best possible apart from the constant factor. Also

Duke Erdős, and Rödl [26] showed that the largest C6-connected subgraph which one can guarantee

has only cn2−3β edges.

The following result from [42] strengthens the key lemma (Lemma 5.2), used in the proof of

the Balog-Szemerédi-Gowers theorem. It shows that the paths of length three can be taken to lie

entirely within the subgraph G′ of G induced by A′ ∪ B′. The proof is very close to the proof of the

result on strongly C8-connected subgraphs, discussed above. We wonder if this result might have new

applications in additive combinatorics or elsewhere.

Proposition 5.3 Let G be a bipartite graph with parts A and B of large enough size n and with cn2

edges. Then it contains subsets A′ ⊂ A and B′ ⊂ B such that the subgraph G′ of G induced by A′ ∪B′

has at least 2−6c2n2 edges and at least 2−24c7n2 paths of length three between every a ∈ A′ and b ∈ B′.
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6 Ramsey numbers of bounded degree graphs

In the previous section we used dependent random choice to show that every dense graph contains a

linear set in which almost every pair has a linear number of common neighbors. Here we extend this

result from pairs to small subsets and prove a very simple and useful embedding lemma which shows

how to use this linear set to embed sparse bipartite graphs. To illustrate the power of the combination

of these two tools we give an upper bound on Ramsey numbers of sparse bipartite graphs. Another

application of this technique to Ramsey numbers of bounded degree hypergraphs will be discussed as

well.

Recall that for a graph H, the Ramsey number r(H) is the least positive integer N such that every

two-coloring of the edges of the complete graph KN on N vertices contains a monochromatic copy

of H. Classical results of Erdős and Szekeres [40] and Erdős [28] imply that 2k/2 ≤ r(Kk) ≤ 22k for

k ≥ 2. Despite extensive efforts by many researchers in the last 60 years, the constant factors in the

above exponents remain the same.

Besides the complete graph, probably the next most classical topic in this area concerns the

Ramsey numbers of sparse graphs, i.e., graphs with certain upper bound constraints on the degrees of

the vertices. The study of these numbers was initiated by Burr and Erdős [15] in 1975, and this topic

has since played a central role in graph Ramsey theory.

One of the main conjectures of Burr and Erdős states that for each positive integer ∆, there is a

constant c(∆) such that every graph H with n vertices and maximum degree ∆ satisfies r(H) ≤ c(∆)n.

This conjecture was proved by Chvatál et al. [17] using Szemerédi’s regularity lemma [57]. The use of

this lemma forces the upper bound on c(∆) to grow as a tower of 2s with height polynomial in ∆. Since

then, the problem of determining the correct order of magnitude of c(∆) has received considerable

attention from various researchers. Graham, Rödl, and Rucinski [51] gave the first linear upper bound

on Ramsey numbers of bounded degree graphs without using any form of the regularity lemma. Their

bound was recently improved by a log∆ factor in the exponent by Conlon and the authors [21] to

c(∆) < 2c∆log∆.

The case of bounded degree bipartite graphs was studied by Graham, Rödl, and Rucinski more

thoroughly in [52], where they improved their upper bound, showing that r(H) ≤ 2∆log∆+O(∆)n for

every bipartite graph H with n vertices and maximum degree ∆. In the other direction, they proved

that there is a positive constant c such that, for every ∆ ≥ 2 and n ≥ ∆ + 1, there is a bipartite

graph H with n vertices and maximum degree ∆ satisfying r(H) ≥ 2c∆n. We present the proof from

[46] that the correct order of magnitude of the Ramsey number of bounded degree bipartite graphs is

essentially given by the lower bound. This is a consequence of the following more general density-type

theorem (proved in Section 6.2). A similar result with a slightly weaker bound was independently

proved by Conlon [18].

Theorem 6.1 Let H be a bipartite graph with n vertices and maximum degree ∆ ≥ 1. If ϵ > 0 and

G is a graph with N ≥ 8∆ϵ−∆n vertices and at least ϵ
(
N
2

)
edges, then H is a subgraph of G.

Taking ϵ = 1/2 together with the majority color in a 2-edge coloring of KN , we obtain a tight

(up to constant factor in the exponent) upper bound on Ramsey numbers of bounded degree bipartite

graphs. It also gives the best known upper bound for the Ramsey number of the d-cube.

Corollary 6.2 If H is bipartite, has n vertices and maximum degree ∆ ≥ 1, then r(H) ≤ ∆2∆+3n.

In particular, the Ramsey number of the d-cube Qd is at most d22d+3.
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6.1 Dependent random choice lemma

A d-set is a set of size d. The following extension of Lemma 5.1 shows that every dense graph contains

a large set U of vertices such that almost every d-set in U has many common neighbors.

Lemma 6.3 If ϵ > 0, d ≤ n are positive integers, and G = (V,E) is a graph with N > 4dϵ−dn vertices

and at least ϵN2/2 edges, then there is a vertex subset U with |U | > 2n such that the fraction of d-sets

S ⊂ U with |N(S)| < n is less than (2d)−d.

Proof. Let T be a subset of d random vertices, chosen uniformly with repetitions. Set U = N(T ),

and let X denote the cardinality of U . By linearity of expectation and by convexity of f(z) = zd,

E[X] =
∑
v∈V

(
|N(v)|
N

)d

= N−d
∑
v∈V

|N(v)|d ≥ N1−d

(∑
v∈V |N(v)|

N

)d

≥ ϵdN.

Let Y denote the random variable counting the number of d-sets in U with fewer than n common

neighbors. For a given d-set S, the probability that S is a subset of U is
(
|N(S)|

N

)d
. Therefore, we

have

E[Y ] ≤
(
N

d

)(
n− 1

N

)d

.

By convexity, E[Xd] ≥ E[X]d. Thus, using linearity of expectation, we obtain

E
[
Xd − E[X]d

2E[Y ]
Y − E[X]d

2

]
≥ 0.

Therefore, there is a choice of T for which this expression is nonnegative. Then

Xd ≥ 1

2
E[X]d ≥ 1

2
ϵd

2
Nd

and hence |U | = X ≥ ϵdN/2 > 2n. Also,

Y ≤ 2XdE[Y ]E[X]−d < 2|U |d
(
N

d

)( n

N

)d 1

ϵd2Nd
<

(
2n

ϵdN

)d(|U |
d

)
≤ (2d)−d

(
|U |
d

)
,

where we use that |U |d ≤ 2d−1d!
(|U |

d

)
which follows from |U | > 2n ≥ 2d. 2

6.2 Embedding lemma and the proof of Theorem 6.1

Next we show how to embed a sparse bipartite graph in a graph containing a large vertex set almost

all of whose small subsets have many common neighbors. This will be used to deduce Theorem 6.1.

Lemma 6.4 Let H be a bipartite graph on n vertices with maximum degree d. If a graph G contains

a subset U such that |U | > 2n and the fraction of d-sets in U with less than n common neighbors is

less than (2d)−d, then G contains a copy of H.

12



Proof. Call a subset S ⊂ U of size |S| ≤ d good if S is contained in more than
(
1− (2d)|S|−d

)( |U |
d−|S|

)
d-sets in U with at least n common neighbors. For a good set S with |S| < d and a vertex j ∈ U \ S,
call j bad with respect to S if S ∪{j} is not good. Let BS denote the set of vertices j ∈ U \S that are

bad with respect to S. The key observation is that if S is good with |S| < d, then |BS | ≤ |U |/(2d).
Indeed, suppose |BS | > |U |/(2d), then the number of d-sets containing S that have less than n common

neighbors in G is at least

|BS |
d− |S|

(2d)|S|+1−d

(
|U |

d− |S| − 1

)
> (2d)|S|−d

(
|U |

d− |S|

)
,

which contradicts the fact that S is good.

Let V1 and V2 denote the two parts of the bipartite graph H. Fix a labeling {v1, . . . , v|V1|} of the

vertices of V1. Let Li = {v1, . . . , vi}. Since the maximum degree of H is d, for every vertex vi, there

are at most d subsets S ⊂ Li containing vi such that S = N(w) ∩ Li for some vertex w ∈ V2. We use

induction on i to find an embedding f of V1 in U such that for each w ∈ V2, the set f(N(w) ∩ Li)

is good. Once we have found f , we then embed vertices in V2 one by one. Suppose that the current

vertex to embed is w ∈ V2. Then f(N(w)) = f(N(w)∩L|V1|) is good and hence f(N(w)) has at least

n common neighbors. Since less than n of them were so far occupied by other embedded vertices, we

still have an available vertex to embed w. We can thus complete the embedding of H in G.

It remains to construct the embedding f . By our definition, the empty set is good. Assume at

step i, for all w ∈ V2 the sets f(N(w) ∩ Li) are good. Note that if w is not adjacent to vi+1, then

N(w)∩Li+1 = N(w)∩Li and therefore f(N(w)∩Li) is good. There are at most d subsets S of Li+1

that are of the form S = N(w)∩Li+1 with w a neighbor of vi+1. By the induction hypothesis, for each

such subset S, the set f(S \ {vi+1}) is good and therefore there are at most |U |
2d bad vertices in U with

respect to it. In total this gives at most d |U |
2d = |U |/2 vertices. The remaining at least |U |/2 − i > 0

vertices in U \ f(Li) are good with respect to all the above sets f(S \ {vi+1}) and we can pick any of

them to be f(vi+1). Notice that this construction guarantees that f(N(w) ∩ Li+1) is good for every

w ∈ V2. In the end of the process, we obtain the desired mapping f and hence G contains H. 2

Proof of Theorem 6.1. Let G be a graph with N ≥ 8∆ϵ−∆n vertices and at least ϵ
(
N
2

)
= (1 −

1/N)ϵN2/2 edges. Let ϵ1 = (1 − 1/N)ϵ. Since (1 − 1/N)∆ > 1/2, the graph G has at least ϵ1N
2/2

edges and N ≥ 4∆ϵ−∆
1 n. Thus, by Lemma 6.3 (with d = ∆), it contains a subset U with |U | > 2n

such that the fraction of ∆-sets S ⊂ U with |N(S)| < n is less than (2∆)−∆. By Lemma 6.4 (with

d = ∆), G contains every bipartite graph H on n vertices with maximum degree at most ∆. 2

6.3 Ramsey numbers of sparse hypergraphs

A hypergraph H = (V,E) consists of a set V of vertices and a set E of subsets of V called edges. A

hypergraph is k-uniform if each edge has exactly k vertices. The Ramsey number r(H) of a k-uniform

hypergraph H is the smallest integer N such that any 2-coloring of the edges of the complete k-uniform

hypergraph K
(k)
N contains a monochromatic copy of H. To understand the growth of Ramsey numbers

for hypergraphs, it is useful to introduce the tower function ti(x), which is defined by t1(x) = x and

ti+1(x) = 2ti(x), i.e.,

ti+1(x) = 22
..
.2x

,
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where the number of 2s in the tower is i. Erdős, Hajnal, and Rado proved (see [53]), for H being

the complete k-uniform hypergraph K
(k)
l , that tk−1(cl

2) ≤ r(H) ≤ tk(c
′l), where the constants c, c′

depend on k.

One can naturally try to extend the sparse graph Ramsey results to hypergraphs. Kostochka and

Rödl [62] showed that for every ϵ > 0, the Ramsey number of any k-uniform hypergraph H with n

vertices and maximum degree ∆ satisfies r(H) ≤ c(∆, k, ϵ)n1+ϵ, where c(∆, k, ϵ) only depends on ∆, k,

and ϵ. Since the first proof of the sparse graph Ramsey theorem used Szemerédi’s regularity lemma, it

was therefore natural to expect that, given the recent advances in developing a hypergraph regularity

method, linear bounds might also be provable for hypergraphs. Such a program was recently pursued

by several authors [22, 23, 70], with the result that we now have the following theorem.

Theorem 6.5 For positive integers ∆ and k, there exists a constant c(∆, k) such that if H is a

k-uniform hypergraph with n vertices and maximum degree ∆, then r(H) ≤ c(∆, k)n.

In [19], the authors together with Conlon applied the tools developed in this section to give a

relatively short proof of the above theorem. From the new proof, it follows that for k ≥ 4 there

is a constant c depending only on k such that c(∆, k) ≤ tk(c∆). This significantly improves on the

Ackermann-type upper bound that arises from the regularity methods. Moreover, a construction given

in [19] shows that, at least in certain cases, this bound is not far from best possible.

7 Degenerate graphs

A graph is r-degenerate if every one of its subgraphs contains a vertex of degree at most r. In particular,

graphs with maximum degree r are r-degenerate. However, the star on r + 1 vertices is 1-degenerate

but has maximum degree r. This shows that even 1-degenerate graphs can have arbitrarily large

maximum degree. The above notion nicely captures the concept of sparse graphs as every t-vertex

subgraph of a r-degenerate graph has at most rt edges. To see this, remove from the subgraph a

vertex of minimum degree, and repeat this process in the remaining subgraph until it is empty. The

number of edges removed at each step is at most r, which gives in total at most rt edges.

In this section we discuss degenerate graphs and describe a very useful twist on the basic dependent

choice approach which is needed to handle embeddings of such graphs. We then present several

applications of this technique to classical extremal problems for degenerate graphs.

7.1 Embedding a degenerate bipartite graph in a dense graph

To discuss embeddings of degenerate graphs, we need first to establish a simple, but very useful,

property which these graphs have. For every r-degenerate n-vertex graph H there is an ordering of its

vertices v1, . . . , vn such that, for each 1 ≤ i ≤ n, the vertex vi has at most r neighbors vj with j < i.

Indeed, this ordering can be constructed as follows. Let vn be a vertex of degree at most r. Once we

have picked vn, . . . , vn−h+1, let vn−h be a vertex of degree at most r in the subgraph of H induced by

the not yet labeled vertices. It is easy to see that this ordering of the vertices has the desired property.

To simplify the presentation we consider only bipartite degenerate graphs. To embed these graphs

into a graph G, we find in G two vertex subsets such that every small set in one of them has many

common neighbors in the other and vice versa.
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Lemma 7.1 Let G be a graph with vertex subsets U1 and U2 such that, for k = 1, 2, every subset of at

most r vertices in Uk have at least n common neighbors in U3−k. Then G contains every r-degenerate

bipartite graph H with n vertices.

Proof. Let v1, . . . , vn be an ordering of the vertices of H such that, for 1 ≤ i ≤ n, vertex vi has

at most r neighbors vj with j < i. Let A1 and A2 be the two parts of H. We find an embedding

f : V (H) → V (G) of H in G such that the image of the vertices in Ak belongs to Uk for k = 1, 2. We

embed the vertices of H one by one, in the above order. Without loss of generality, suppose that the

vertex vi we want to embed is in A1. Consider the set {f(vj) : j < i, (vj , vi) ∈ E(H)} of images of

neighbors of vi which are already embedded. Note that this set belongs to U2, has cardinality at most

r and therefore has at least n common neighbors in U1. All these neighbors can be used to embed vi
and at least one of them is yet not occupied, since so far we embedded less than n vertices. Pick such

a neighbor w and set f(vi) = w. 2

To find a pair of subsets with the above property, we use a variant of dependent random choice

which was first suggested by Kostochka and Sudakov [63]. Our adaptation of this method is chosen

with particular applications in mind.

Lemma 7.2 Let r, s ≥ 2 and let G be a graph with N vertices and at least N2−1/(s3r) edges. Then G

contains two subsets U1 and U2 such that, for k = 1, 2, every r-tuple in Uk has at least m = N1−1.8/s

common neighbors in U3−k.

Proof. Let q = 7
4rs. Apply Lemma 2.1 with a = N1−1/s, d = 2e(G)/N ≥ 2N1−1/(s3r), n replaced by

N , r replaced by q, and t = s2r. We can apply this lemma since q = 1.75rs < 1.8t/s = 1.8rs and

dt

N t−1
−
(
N

q

)(m
N

)t
≥ 2tN1−t/(s3r) − N q

q!
N−1.8t/s ≥ 2tN1−1/s − 1/q! ≥ N1−1/s.

We obtain a set U1 of size at least N
1−1/s such that every subset of U1 of size q has at least m common

neighbors in G.

Choose a random subset T ⊂ U1 consisting of q − r (not necessarily distinct) uniformly chosen

vertices of U1. Since s ≥ 2 we have that q−r = 7
4rs−r ≥ 5

4rs. Let U2 be the set of common neighbors

of T . The probability that U2 contains a subset of size r with at most m common neighbors in U1 is

at most (
N

r

)(
m

|U1|

)q−r

≤ N r

r!
N−0.8(q−r)/s ≤ 1/r! < 1,

where we used that m = N1−1.8/s and |U1| ≥ N1−1/s.

Therefore there is a choice of T such that every subset of U2 of size r has at least m common

neighbors in U1. Consider now an arbitrary subset S of U1 of size at most r. Since S ∪ T is a subset

of U1 of size at most q, this set has at least m common neighbors in G. Observe, crucially, that by

definition of U2 all common neighbors of T in G lie in U2. Thus it follows that N(S∪T ) ⊂ N(T ) ⊂ U2.

Hence S has at least m common neighbors in U2 and the statement is proved. 2

From the above two lemmas, we get immediately the following corollary.

Corollary 7.3 If r, s ≥ 2 and G is a graph with N vertices and at least N2−1/(s3r) edges, then G

contains every r-degenerate bipartite graph with at most N1−1.8/s vertices.
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7.2 Applications

We present three quick applications of Corollary 7.3 to extremal problems for degenerate graphs.

Ramsey numbers of degenerate graphs

As we already mentioned, Ramsey numbers of sparse graphs play a central role in graph Ramsey theory.

In 1975 Burr and Erdős [15] conjectured that for each r, there is a constant c(r) such that r(H) ≤ c(r)n

for every r-degenerate graph H on n vertices. This conjecture is a substantial generalization of the

bounded degree case which we discussed in detail in Section 6. It is a well-known and difficult problem

and progress on this question has only been made recently.

In addition to bounded degree graphs, the Burr-Erdős conjecture has also been settled for several

special cases where the maximum degree is unbounded. Chen and Schelp [16] proved a result which

implies that planar graphs have linear Ramsey numbers. This was extended by Rödl and Thomas [74]

to graphs with no Kr-subdivision. Random graphs provide another interesting and large collection of

degenerate graphs. Let G(n, p) denote the random graph on n vertices in which each edge appears

with probability p independently of all the other edges. It is easy to show that the random graph

G(n, p) with p = d/n and constant d with high probability (w.h.p.) has bounded degeneracy and

maximum degree Θ(log n/ log logn). Recently, the authors [44] showed that w.h.p. such graphs also

have linear Ramsey number. In some sense this result says that the Burr-Erdős conjecture holds for

typical degenerate graphs.

Kostochka and Rödl [61] were the first to prove a polynomial upper bound on the Ramsey numbers

of general r-degenerate graphs. They showed that r(H) ≤ crn
2 for every r-degenerate graph H with

n vertices. A nearly linear bound r(H) ≤ crn
1+ϵ for any fixed ϵ > 0 was obtained by Kostochka and

Sudakov [63]. The best currently known bound for this problem was obtained in [44] where it was

proved that r(H) ≤ 2cr
√
lognn.

Here we prove a nearly linear upper bound for degenerate bipartite graphs.

Theorem 7.4 The Ramsey number of every r-degenerate bipartite graph H with n vertices, n suffi-

ciently large, satisfies

r(H) ≤ 28r
1/3(logn)2/3n.

Proof. In every 2-coloring of the edges of the complete graph KN , one of the color classes contains at

least half of the edges. Let N = 28r
1/3(log n)2/3n and let s = 1

2(r
−1 log n)1/3. Then N2−1/(s3r) ≤ 1

2

(
N
2

)
and N1−1.8/s ≥ n. By Corollary 7.3, the majority color contains a copy of H. 2

Turán numbers of degenerate bipartite graphs

Recall that the Turán number ex(n,H) is the maximum number of edges in a graph on n vertices

that contains no copy of H. The asymptotic behavior of these numbers is well known for graphs of

chromatic number at least 3. For bipartite graphs, the situation is considerably more complicated.

There are relatively few bipartite graphs H for which the order of magnitude of ex(n,H) is known. It

is not even clear what parameter of a bipartite graph H should determine the asymptotic behavior of

ex(n,H). Erdős [29] conjectured in 1967 that ex(n,H) = O(n2−1/r) for every r-degenerate bipartite

graph H. The only progress on this conjecture was made recently by Alon, Krivelevich, and Sudakov

[3], who proved that ex(n,H) ≤ h1/2rn2−4/r for graph H with h vertices. Substituting s = 2 in

Corollary 7.3 gives the following, slightly weaker bound.
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Theorem 7.5 Let H be an r-degenerate bipartite graph on h vertices and let n > h10. Then

ex(n,H) < n2− 1
8r .

Ramsey numbers of graphs with few edges

One of the basic results in Ramsey theory, mentioned at the beginning of Section 6, says that r(H) ≤
2O(

√
m) for the complete graph H with m edges. Erdős [32] conjectured in the early 80’s that a similar

bound holds for every graph H with m edges and no isolated vertices. Alon, Krivelevich, and Sudakov

[3] verified this conjecture for bipartite graphs and also showed that r(H) ≤ 2O(
√
m logm) for every

graph H with m edges. Recently, Sudakov [83] proved the conjecture. Here we present the short proof

of the result for bipartite graphs.

Theorem 7.6 Let H be a bipartite graph with m edges and no isolated vertices. Then r(H) ≤
216

√
m+1.

Proof. First we prove that H is
√
m-degenerate. If not, H has a subgraph H ′ with minimum degree

larger than
√
m. Let (U,W ) be the bipartition of H ′. Then the size of U is larger than

√
m since

every vertex in W has has more than
√
m neighbors in U . Therefore the number of edges in H ′ (and

hence in H) is at least
∑

v∈U d(v) >
√
m|U | > m, a contradiction.

Let N = 216
√
m+1 and consider a 2-coloring of the edges of KN . Clearly, at least 1

2

(
N
2

)
≥ N

2− 1
8
√

m

edges have the same color. These edges form a monochromatic graph which satisfies Corollary 7.3

with r =
√
m and s = 2. Thus this graph contains every

√
m-degenerate bipartite graph on at most

N1/10 > 21.6
√
m > 2m vertices. In particular, it contains H which has at most m edges and therefore

at most 2m vertices. 2

8 Embedding 1-subdivided graphs

Recall that a 1-subdivision of a graph H is a graph formed by replacing edges of H with internally

vertex disjoint paths of length 2. This is a special case of a more general notion of topological copy

of a graph, which plays an important role in graph theory. In Section 3.2, we discussed a proof of the

old conjecture of Erdős that for each ϵ > 0 there is δ > 0 such that every graph with n vertices and

at least ϵn2 edges contains the 1-subdivision of a complete graph of order δn1/2. In this section, we

describe two extensions of this result, each requiring a new variation of the basic dependent random

choice approach.

The first extension gives the right dependence of δ on ϵ for the conjecture of Erdős. The proof in

Section 3.2 shows that we may take δ = ϵ3/2. We present the proof of Alon, Krivelevich, and Sudakov

[3] that this can be improved to δ = ϵ. On the other hand, the following simple probabilistic argument

shows that the power of ϵ in this results cannot be further improved. Suppose that we can prove

δ = ϵ1−1/t for some t > 0 and consider a random graph G(n, p) with p = n−1/2−1/(2t). With high

probability this graph has Ω(n3/2−1/(2t)) edges and contains no 1-subdivision of the clique of order

2t + 2. Indeed, such a subdivision has v = (2t + 3)(t + 1) vertices and e = (2t + 2)(2t + 1) edges.

Therefore, the expected number of copies of such a subdivision is at most nvpe = o(1). Then it is easy

to check that taking ϵ to be of order n−1/2−1/(2t) gives a contradiction. Note that a clique of order
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O(n1/2) has O(n) edges. So one can naturally ask whether under the same conditions one can find a

1-subdivision of every graph with at most δn edges, not just of a clique. In [46] we show that this is

indeed the case and for each ϵ > 0 there is a δ > 0 such that every graph with n vertices and at least

ϵn2 edges contains the 1-subdivision of every graph Γ with at most δn edges and vertices.

8.1 A tight bound for 1-subdivisions of complete graphs

The goal of this subsection is to prove the following result.

Theorem 8.1 If G is a graph with n vertices and ϵn2 edges, then G contains the 1-subdivision of the

complete graph with ϵn1/2 vertices.

This theorem follows immediately from the lemma below. This lemma uses dependent random

choice to find a large set U of vertices such that for each i, 1 ≤ i ≤
(|U |

2

)
, there are less than i pairs

of vertices in U with fewer than i common neighbors outside U . Indeed, suppose we have found, in

the graph G, a vertex subset U with |U | = k such that for each i, 1 ≤ i ≤
(
k
2

)
, there are less than i

pairs of vertices in U with fewer than i common neighbors in G \ U . Label all the pairs S1, . . . , S(k2)
of vertices of U in non-decreasing order of the size of |N(Si) \ U |. Note that for all i we have by our

assumption that |N(Si)\U | ≥ i. We find distinct vertices v1, . . . , v(k2)
such that vi ∈ N(Si)\U . These

vertices together with U form a copy of the 1-subdivision of the complete graph of order k in G, where

U corresponds to the vertices of the complete graph, and each pair Si is connected by path of length

2 through vi. We construct the sequence v1, . . . , v(k2)
of vertices one by one. Suppose we have found

v1, . . . , vi−1, we can let vi be any vertex in N(Si) \ U other than v1, . . . , vi−1. Such a vertex vi exists

since |N(Si) \ U | ≥ i. Thus to finish the proof of Theorem 8.1 we only need to prove the following.

Lemma 8.2 Let G = (V,E) be a graph with n vertices and ϵn2 edges, and let k = ϵn1/2. Then G

contains a subset U ⊂ V with |U | = k such that for each i, 1 ≤ i ≤
(
k
2

)
, there are less than i pairs of

vertices in U with fewer than i common neighbors in G \ U .

Proof. Partition V = V1 ∪ V2 such that |V1| = |V2| = n/2 such that at least half of the edges of G

cross V1 and V2. Let G1 be the bipartite subgraph of G consisting of those edges that cross V1 and

V2. Without loss of generality, assume that
∑

v∈V1
|NG1(v)|2 ≤

∑
v∈V2

|NG1(v)|2.
Pick a pair T of vertices of V1 uniformly at random with repetition. Set A = NG1(T ) ⊆ V2, and

let X denote the cardinality of A. By linearity of expectation,

E[X] =
∑
v∈V2

(
|NG1(v)|

n/2

)2

= 4n−2
∑
v∈V2

|NG1(v)|2 ≥ 2n−1

(∑
v∈V2

|NG1(v)|
n/2

)2

≥ 2ϵ2n,

where the first inequality is by convexity of the function f(z) = z2.

Define the weight w(S) of a subset S ⊂ V2 by w(S) = 1
|NG1

(S)| . Let Y be the random variable

which sums the weight of all pairs S of vertices in A. We have

E[Y ] =
∑

S⊂V2,|S|=2

w(S)P(S ⊂ A) =
∑

S⊂V2,|S|=2

w(S)

(
|NG1(S)|

n/2

)2

= 4n−2
∑

S⊂V2,|S|=2

|NG1(S)|

= 4n−2
∑
v∈V1

(
|NG1(v)|

2

)
< 2n−2

∑
v∈V1

|NG1(v)|2 ≤ 2n−2
∑
v∈V2

|NG1(v)|2 = E[X]/2
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This inequality with linearity of expectation implies E[X − E[X]/2− Y ] > 0. Hence, there is a choice

of T such that the corresponding set A satisfies X > E[X]/2 ≥ ϵ2n and X > Y .

Let U be a random subset of A of size exactly k and Y1 be the random variable which sums the

weight of all pairs S of vertices in U . We have

E[Y1] =
(
k
2

)(
X
2

)Y < (k/X)2X = k2/X < 1.

This implies that there is a particular subset U of size k such that Y1 < 1. In the bipartite graph G1,

for each i, 1 ≤ i ≤
(
k
2

)
, there are less than i pairs of vertices in U with fewer than i common neighbors.

Indeed, otherwise Y1 =
∑

S⊂U,|S|=2
1

|NG1
(S)| is at least i

1
i = 1. Hence, in G, there are less than i pairs

of vertices in U with fewer than i common neighbors in G \ U . 2

8.2 1-subdivision of a general graph

We prove the following result on embedding the 1-subdivision of a general graph in a dense graph.

Theorem 8.3 Let Γ be a graph with at most n edges and vertices and let G be a graph with N vertices

and ϵN2 edges such that N ≥ 128ϵ−3n. Then G contains the 1-subdivision of Γ.

The proof uses repeated application of dependent random choice to find a sequence of nested subsets

A0 ⊃ A1 ⊃ . . . such that Ai is sufficiently large and the fraction of pairs in Ai with small common

neighborhood drops significantly with i. This will be enough to embed the 1-subdivision of Γ. Note

that the 1-subdivision of a graph Γ is a bipartite graph whose first part contains the vertices of Γ and

whose second part contains the vertices which were used to subdivide the edges of Γ. Furthermore,

the vertices in the second part have degree two. Therefore, Theorem 8.3 follows from Theorem 8.5

below. The codegree of a pair of vertices in a graph is the number of their common neighbors.

Lemma 8.4 If G is a graph with N ≥ 128ϵ−3n vertices and V1 is the set of vertices with degree at least

ϵN/2, then there are nested vertex subsets V1 = A0 ⊃ A1 ⊃ . . . such that, for all i ≥ 0, |Ai+1| ≥ ϵ
8 |Ai|

and each vertex in Ai has codegree at least n with all but at most (ϵ/8)i|Ai| vertices in Ai.

Proof. Having already picked A0, . . . , Ai−1 satisfying the desired properties, we show how to pick

Ai. Let w be a vertex chosen uniformly at random. Let A denote the set of neighbors of w in Ai−1,

and X be the random variable denoting the cardinality of A. Since every vertex in V1 has degree at

least ϵN/2,

E[X] =
∑

v∈Ai−1

|N(v)|
N

≥ ϵ

2
|Ai−1|.

Let Y be the random variable counting the number of pairs in A with fewer than n common

neighbors. Notice that the probability that a pair R of vertices of Ai−1 is in A is |N(R)|
N . Let ci = (ϵ/8)i.

Recall that Ei−1 is the set of all pairsR inAi−1 with |N(R)| < n and |Ei−1| ≤ ci−1|Ai−1|2/2. Therefore,

E[Y ] <
n

N
|Ei−1| ≤

n

N

ci−1

2
|Ai−1|2.
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By convexity, E[X2] ≥ E[X]2. Thus, using linearity of expectation, we obtain

E
[
X2 − E[X]2

2E[Y ]
Y − E[X]2/2

]
≥ 0.

Therefore, there is a choice of w such that this expression is nonnegative. Then

X2 ≥ 1

2
E[X]2 ≥ ϵ2

8
|Ai−1|2

and since N ≥ 128ϵ−3n,

Y ≤ 2
X2

E[X]2
E[Y ] ≤ 4ϵ−2ci−1

n

N
X2 ≤ ϵ

16
ci−1

X2

2
.

From the first inequality, we have |A| = X ≥ ϵ
4 |Ai−1| and the second inequality states that the number

of pairs of vertices in A with codegree less than n is at most ϵ
16ci−1

|A|2
2 . If A contains a vertex that

has codegree less than n with more than ϵci−1|A|/16 other vertices of A, then delete it, and continue

this process until there is no remaining vertex with codegree less than n with more than ϵci−1|A|/16
other remaining vertices. Let Ai denote the set of remaining vertices. The number of deleted vertices

is at most
(

ϵ
16ci−1

|A|2
2

)
/ (ϵci−1|A|/16) = |A|/2. Hence, |Ai| ≥ |A|/2 ≥ ϵ

8 |Ai−1| and every vertex in

Ai has codegree at least n with all but at most ϵci−1|A|/16 ≤ ϵci−1|Ai|/8 = ci|Ai| vertices of Ai. By

induction on i, this completes the proof. 2

Theorem 8.5 If G is a graph with N ≥ 128ϵ−3n vertices and ϵN2 edges, then G contains every

bipartite graph H = (U1, U2;F ) with n vertices such that every vertex in U2 has degree 2.

Proof. The set V1 of vertices of G of degree at least ϵN/2 satisfies |V1| > ϵ1/2N . Indeed, the number

of edges of G containing a vertex not in V1 is at most N · ϵN/2. Hence, the number of edges with both

vertices in V1 is at least ϵN2/2 and at most
(|V1|

2

)
, and it follows |V1| > ϵ1/2N . Applying Lemma 8.4,

there are nested vertex subsets V1 = A0 ⊃ A1 ⊃ . . . such that for all i ≥ 0, |Ai+1| ≥ ϵ
8 |Ai| and each

vertex in Ai has codegree at least n with all but at most (ϵ/8)i|Ai| vertices in Ai.

Let H ′ be the graph with vertex set U1 such that two vertices in U1 are adjacent in H ′ if they have

a common neighbor in U2 in graph H. If we find an embedding f : U1 → V1 such that for each edge

(v, w) of H ′, f(v) and f(w) have codegree at least n in G, then we can extend f to an embedding of

H as a subgraph of G. To see this, we embed the vertices of U2 one by one. If the current vertex to

embed is u ∈ U2, and (v, w) is the pair of neighbors of u in U1, then (v, w) is an edge of H ′ and hence

f(v) and f(w) have at least n common neighbors. As the total number of vertices of H embedded so

far is less than n, one of the common neighbors of f(v) and f(w) is still unoccupied and can be used

to embed u. Thus it is enough to find an embedding f : U1 → V1 with the desired property.

Label the vertices {v1, . . . , v|U1|} of H ′ in non-increasing order of their degree. Since H ′ has at

most n edges, the degree of vi is at most 2n/i. We will embed the vertices of H ′ in the order of their

index i. Let cj = ( ϵ8)
j . The vertex vi will be embedded in Aj where j is the least positive integer such

that cj ≤ i
4n . Note that, by definition, cj−1 = ( ϵ8)

−1cj ≥ i
4n . Since N ≥ 128ϵ−3n, then

|Aj | ≥ cj |A0| ≥ cj ϵ
1/2N ≥ ϵ

8

i

4n
ϵ1/2N ≥ 2i.
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Assume we have already embedded all vertices vk with k < i and we want to embed vi. Let N−(vi)

be the set of vertices vk with k < i that are adjacent to vi in H ′. Each vertex in Aj has codegree at

least n with all but at most cj |Aj | ≤ i
4n |Aj | other vertices in Aj . Since vi has degree at most 2n

i in

H ′, at least |Aj | − 2n
i · i

4n |Aj | = |Aj |/2 vertices of Aj have codegree at least n with every vertex in

f(N−(vi)). Since also |Aj |/2 ≥ i, there is a vertex in Aj \ f({v1, . . . , vi−1}) that has codegree at least

n with every vertex in f(N−(vi)). Use this vertex to embed vi and continue. This gives the desired

embedding f , completing the proof. 2

9 Graphs whose edges are in few triangles

In this section, we discuss an application of dependent random choice to dense graphs in which each

pair of adjacent vertices has few common neighbors. It was shown in [82] that every such graph G

contains a large induced subgraph which is sparse. This follows from the simple observation that the

expected cardinality of the common neighborhood U of a small random subset of vertices of G is large,

while, since every edge is in few triangles, the expected number of edges in U is small. We also use

this lemma to establish two Ramsey-type results.

Lemma 9.1 Let t ≥ 2 and G = (V,E) be a graph with n vertices and average degree d such that every

pair of adjacent vertices of G has at most a common neighbors. Then G contains an induced subgraph

with at least dt

2nt−1 vertices and average degree at most 2at

dt−1 .

Proof. Let T be a subset of t random vertices, chosen uniformly with repetitions. Set U = N(T ),

and let X denote the cardinality of U . By linearity of expectation and by convexity of f(z) = zt,

E[X] =
∑
v∈V

(
|N(v)|

n

)t

= n−t
∑
v∈V

|N(v)|t ≥ n1−t

(∑
v∈V |N(v)|

N

)t

= dtn1−t.

Let Y denote the random variable counting the number of edges in U . Since, for every edge e,

its vertices have at most a common neighbors, the probability that e belongs to U is at most (a/n)t.

Therefore,

E[Y ] ≤ |E|(a/n)t = (dn/2)(a/n)t = datn1−t/2.

In particular, since Y is nonnegative, in the case a = 0 we get Y is identically 0.

In the case a = 0, there is a choice of T such that |U | = X ≥ E[X] = dtn1−t and the number Y of

edges in U is 0. Otherwise, let Z = X− dt−1

at Y − dt

2nt−1 . By linearity of expectation, E[Z] ≥ 0 and thus

there is a choice of T such that Z ≥ 0. This implies X ≥ dt

2nt−1 and X ≥ dt−1

at Y . Hence the subgraph

of G induced by the set U has X ≥ dt

2nt−1 vertices and average degree 2Y/X ≤ 2at

dt−1 . 2

9.1 Applications

We present two quick applications of Lemma 9.1 to Ramsey-type problems. The Ramsey number

r(G,H) is the minimum N such that every red-blue edge-coloring of the complete graph KN contains

a red copy of G or a blue copy of H. The classical Ramsey numbers of the complete graphs are denoted

by r(s, t) = r(Ks,Kt).
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Kk-free subgraphs of Ks-free graphs

A more general function than r(s, t) was first considered almost fifty years ago in two papers of Erdős

with Gallai [34] and with Rogers [39]. For a graph G, let fk(G) be the maximum cardinality of a

subset of vertices of G that contains no Kk. For 2 ≤ k < s ≤ n, let fk,s(n) denote the minimum of

fk(G) over all Ks-free graphs G on n vertices. Note that the Ramsey number r(s, t) is the minimum n

such that f2,s(n) ≥ t. Thus, the problem of determining fk,s(n) extends that of determining Ramsey

numbers.

Erdős and Rogers [39] started the investigation of this function for fixed s, k = s−1 and n tending

to infinity. They proved that there is ϵ(s) > 0 such that fs−1,s(n) ≤ n1−ϵ(s). About 30 years later,

Bollobás and Hind improved the upper bound and gave the first lower bound, fk,s(n) ≥ n1/(s−k+1).

The upper bound on fk,s(n) was subsequently improved by Krivelevich [64] and most recently by

Dudek and Rödl [25]. Alon and Krivelevich [2] gave explicit constructions of Ks-free graphs without

large Kk-free subgraphs. The best known lower bound for this problem was obtained in [82], using

Lemma 9.1. To illustrate this application, we present a simplified proof of a slightly weaker bound in

the case k = 3 and s = 5.

First we need to recall the following well known bound on the largest independent set in uniform

hypergraphs. An independent set of a hypergraph is a subset of vertices containing no edges. For a

hypergraph H, the independence number α(H) is the size of the largest independent set in H. Let

H be an r-uniform hypergraphs with n vertices and m ≥ n/2 edges. Let W be a random subset of

H obtained by choosing each vertex with probability p = (n/(rm))1/(r−1). Deleting one vertex from

every edge in W , gives an independent set with expected size pn − prm = r−1
rr/(r−1)

n
(m/n)1/(r−1) . For

graphs (r = 2) this shows that α(H) ≥ n
2(2m/n) and for 3-uniform hypegraphs it gives the lower bound

of 2√
27

n
(m/n)1/2

on the size of the largest independent set in H.

Theorem 9.2 Every K5-free graph G = (V,E) on n vertices contains a triangle-free induced subgraph

on at least n5/12/2 vertices.

Proof. Let a = n5/12/2. If G contains a pair of adjacent vertices with at least a common neighbors,

then this set of common neighbors is triangle-free and we are done. So we may assume that each pair

of adjacent vertices in G has less than a common neighbors.

Let d denote the average degree of G. If d ≥ n3/4, then by Lemma 9.1 with t = 2 we have that

G contains an induced subgraph on at least d2/2n ≥ n1/2/2 vertices with average degree at most

2a2/d ≤ n1/12/2. By the above discussion, this induced subgraph of G contains an independent set of

size at least
n1/2/2

2 · n1/12/2
= n5/12/2.

So we may suppose d < n3/4. Let H be the 3-uniform hypergraph with vertex set V whose edges

are the triangles in G. Since each edge of G is in less than a triangles, then the number m of triangles

of G (and hence the number of edges of H) is less than 1
3 |E|a = 1

3(dn/2)a < n13/6/12. Again by the

above discussion, there is an independent set in H of size at least

2

33/2
n

(m/n)1/2
> n5/12.
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This independent set in H is the vertex set of a triangle-free induced subgraph of G of the desired

size, which completes the proof. 2

Book-complete graph Ramsey numbers

The book with n pages is the graph Bn consisting of n triangles sharing one edge. Ramsey problems

involving books and their generalizations have been studied extensively by various researchers (see,

e.g., [67] and its references). One of the problems, which was investigated by Li and Rousseau is

the Ramsey number r(Bn,Kn). They show that there are constants c, c′ such that cn3/ log2 n ≤
r(Bn,Kn) ≤ c′n3/ log n, thus determining this Ramsey number up to a logarithmic factor. Here,

following [82], we show how this upper bound can be improved by a log1/2 n factor by using Lemma

9.1. We will need the following well known result ([11], Lemma 12.16).

Proposition 9.3 Let G be a graph on n vertices with average degree at most d and let m be the number

of triangles of G. Then G contains an independent set of size at least 2n
39d (log d− 1/2 log(m/n)).

Theorem 9.4 For all sufficiently large n, we have r(Bn,Kn) ≤ 800n3/ log3/2 n.

Proof. Let G be a graph of order N = 800n3/ log3/2 n not containing Bn. Denote by d the average

degree of G. By definition, every edge of G is contained in less than n triangles. Therefore, the total

number m of triangles is less than 1
3 |E(G)|n = 1

3(dN/2)n < dnN . If d ≤ 20n2

log1/2 n
, then, by Proposition

9.3, G contains an independent set of size

2N

39d
(log d− 1/2 log(m/N)) ≥ N

39d
log(d/n) ≥ (40/39 + o(1))n > n.

We may therefore assume d > 20n2

log1/2 n
. By Lemma 9.1 with t = 2, G contains an induced subgraph

with at least d2

2N > 1
4n log1/2 n vertices and average degree at most 2n2/d < 1

10 log
1/2 n. As it was

mentioned earlier, this induced subgraph of G contains an independent set with at least
1
4
n log1/2 n

2· 1
10

log1/2 n
> n

vertices. 2

10 More applications and concluding remarks

The results which we discussed so far were chosen mainly to illustrate different variations of the

basic technique. There are many more applications of dependent random choice. Here we mention

very briefly a few additional results whose proofs use this approach. For more details about these

applications we refer the interested reader to the original papers.

Unavoidable patterns: Ramsey’s theorem guarantees a large monochromatic clique in any 2-edge-

coloring of a sufficiently large complete graph. If we are interested in finding in such a coloring a

subgraph that is not monochromatic, we must assume that each color is sufficiently represented, e.g.,

that each color class has at least ϵ
(
n
2

)
edges. Let Fk denote the family of 2-edge-colored complete

graphs on 2k vertices in which one color forms either a clique of order k or two disjoint cliques of

order k. Consider a 2-edge-coloring of Kn with n even in which one color forms a clique of order n/2

or two disjoint cliques of order n/2. Clearly, these colorings have at least roughly 1/4 of the edges in
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each color, and nevertheless they basically do not contain any colored patterns except those in Fk.

This shows that the 2-edge-colorings in Fk are essentially the only types of patterns that are possibly

unavoidable in 2-edge-colorings that are far from being monochromatic.

Generalizing the classical Ramsey problem, Bollobás conjectured that for each ϵ > 0 and k there

is n(k, ϵ) such that every 2-edge-coloring of Kn with n ≥ n(k, ϵ) which has at least ϵ
(
n
2

)
edges in

each color contains a member of Fk. This conjecture was confirmed by Cutler and Montagh [24] who

proved that n(k, ϵ) < 4k/ϵ. Using a simple application of dependent random choice, in [43] the authors

improved this bound and extended the result to tournaments. They showed that n(k, ϵ) < (16/ϵ)2k+1,

which is tight up to a constant factor in the exponent for all k and ϵ.

Almost monochromatic K4: The multicolor Ramsey number r(t; k) is the minimum n such that

every k-edge-coloring of Kn contains a monochromatic Kt. Schur in 1916 showed that r(3; k) is at

least exponential in k and at most a constant times k!. Despite many efforts over the past century,

determining whether there is a constant c such that r(3; k) ≤ ck for all k remains a major open problem

(see, e.g., the monograph [53]). In 1981, Erdős [31] proposed to study the following generalization

of the classical Ramsey problem. Let p and q be integers with 2 ≤ q ≤
(
p
2

)
. A (p, q)-coloring of

Kn is an edge-coloring such that every copy of Kp receives at least q colors. Let f(n, p, q) be the

minimum number of colors in a (p, q)-coloring of Kn. Determining the numbers f(n, p, 2) is the same

as determining the Ramsey numbers r(p; k). Indeed, since a (p, 2)-coloring contains no monochromatic

Kp, we have that f(n, p, 2) ≤ k if and only if r(p; k) > n.

Erdős and Gyárfás [35] pointed out that f(n, 4, 3) is one of the most intriguing open questions

among all small cases. This problem can be rephrased in terms of another more convenient function.

Let g(k) be the largest n for which there is a k-edge-coloring of Kn such that every K4 receives at least

3 colors, i.e., for which f(g(k), 4, 3) ≤ k. After several results by Erdős [31] and Erdős and Gyárfás

[35], the best known lower bound for this function was obtained by Mubayi [69], who showed that

g(k) ≥ 2c log
2 k for some absolute positive constant c. Until recently, the only known upper bound

was g(k) < kck, which follows trivially from the multicolor Ramsey number for K4. Using dependent

random choice, Kostochka and Mubayi [59] improved this estimate to g(k) < (log k)ck. Extending

their approach further, the authors in [45] obtained the first exponential upper bound g(k) < 2ck.

There is still a very large gap between the lower and upper bound for this problem, and we think the

correct growth is likely to be subexponential in k.

Disjoint edges in topological graphs: A topological graph is a graph drawn in the plane with

vertices as points and edges as curves connecting its endpoints and passing through no other vertex.

It is simple if any two edges have at most one point in common. A thrackle is a simple topological

graph in which every two edges intersect. More than 40 years ago, Conway conjectured that every

n-vertex thrackle has at most n edges. Although, Lovász, Pach, and Szegedy [68] proved a linear

upper bound on the number of edges of a thrackle, this conjecture remains open. On the other hand,

Pach and Tóth [73] constructed drawings of the complete graph in the plane in which each pair of

edges intersect at least once and at most twice, showing that simplicity condition is essential.

For dense simple topological graphs, one might expect to obtain a much stronger conclusion than

in the thrackle conjecture. Indeed, in [46], we show that for each ϵ > 0 there is a δ > 0 such that every

simple topological graph with ϵn2 edges contains two disjoint edge subsets E1, E2, each of cardinality

at least δn2, such that every edge in E1 is disjoint from every edge in E2. In the case of straight-line

drawings, this result was established earlier by Pach and Solymosi [72]. The proof uses dependent
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random choice together with some geometric and combinatorial tools. As a corollary, it was also shown

that there is an absolute constant α > 0 such that any complete simple topological graph on n vertices

has Ω
(
log1+α n

)
pairwise disjoint edges, improving the earlier bound of Ω(logn/ log log n) proved by

Pach and Tóth [73]. Still, the correct bound is likely to be Ω(nα), and there is no known sublinear

upper bound.

Sidorenko’s conjecture: A beautiful conjecture of Erdős-Simonovits [79] and Sidorenko [78] states

that if H is a bipartite graph, then the random graph with edge density p has in expectation asymp-

totically the minimum number of copies of H over all graphs of the same order and edge density. This

is known to be true only in several special cases, e.g., for complete bipartite graphs, trees, even cycles

and, recently, for cubes. The original formulation of the conjecture by Sidorenko is in terms of graph

homomorphisms. A homomorphism from a graph H to a graph G is a mapping f : V (H) → V (G)

such that, for each edge (u, v) of H, (f(u), f(v)) is an edge of G. Let hH(G) denote the number

of homomorphisms from H to G. The normalized function tH(G) = hH(G)/|G||H| is the fraction of

mappings f : V (H) → V (G) which are homomorphisms. Sidorenko’s conjecture states that for every

bipartite graph H with m edges and every graph G,

tH(G) ≥ tK2(G)m.

This inequality has an equivalent analytic form which involves integrals known as Feynman integrals

in quantum field theory, and has connections with Markov chains, graph limits, and Schatten-von

Neumann norms.

Recently, Conlon and the authors [20] proved that Sidorenko’s conjecture holds for every bipartite

graph H which has a vertex complete to the other part. It is notable that dependent random choice

was vital to the proof of this tight inequality. From this result, we may easily deduce an approximate

version of Sidorenko’s conjecture for all bipartite graphs. Define the width of a bipartite graph H to

be the minimum number of edges needed to be added to H to obtain a bipartite graph with a vertex

complete to the other part. The width of a bipartite graph with n vertices is at most n/2. As a simple

corollary, if H is a bipartite graph with m edges and width w, then tH(G) ≥ tK2(G)m+w holds for

every graph G.

Testing subgraph in directed graphs: Following Rubinfield and Sudan [75] who introduced the

notion of property testing, Goldreich, Goldwasser, and Ron [48] started the investigation of property

testers for combinatorial objects. A property P is a family of digraphs closed under isomorphism. A

directed graph (digraph) G with n vertices is ϵ-far from satisfying P if one must add or delete at

least ϵn2 edges in order to turn G into a digraph satisfying P. An ϵ-tester for P is a randomized

algorithm, which given n and the ability to check whether there is an edge between given pair of

vertices, distinguishes with probability at least 2/3 between the case G satisfies P and G is ϵ-far from

satisfying P. Such an ϵ-tester is one-sided if, whenever G satisfies P, the ϵ-tester determines this is

with probability 1.

Let H be a fixed directed graph on h vertices. Alon and Shapira [6], using a directed version of

Szemerédi’s regularity lemma, proved that that there is a one-sided property tester for testing the

property PH of not containing H as a subgraph whose query complexity is bounded by a function

of ϵ only. As is common with applications of the regularity lemma, the function depending only on

ϵ is extremely fast growing. It is therefore interesting to determine the digraphs H for which PH is

testable in time polynomial in 1/ϵ. A function ϕ mapping the vertices of a digraph H to the vertices
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of a digraph K is a homomorphism if (ϕ(u), ϕ(v)) is an edge of K whenever (u, v) is an edge of H.

The core K of H is the subgraph K of H with the smallest number of edges for which there is a

homomorphism from H to K. Alon and Shapira prove that there is a one-sided property tester for

PH whose query complexity is bounded by a polynomial in 1/ϵ if and only if the core of H is a 2-cycle

or an oriented tree. The proof when the core of H is an oriented tree uses dependent random choice.

Ramsey properties and forbidden induced subgraphs: A graph is H-free if it does not contain

H as an induced subgraph. A basic property of large random graphs is that they almost surely contain

any fixed graph H as an induced subgraph. Conversely, there is a general belief that H-free graphs are

highly structured. For example, Erdős and Hajnal [36] proved that every H-free graph on N vertices

contains a homogeneous subset (i.e., clique or independent set) of size at least 2cH
√
logN . This is in

striking contrast with the general case where one cannot guarantee a homogeneous subset of size larger

than logarithmic in N . Erdős and Hajnal further conjectured that this bound can be improved to

N cH . This famous conjecture has only been solved for few specific graphs H.

An interesting partial result for the general case was obtained by Erdős, Hajnal, and Pach [37].

They show that every H-free graph G with N vertices or its complement Ḡ contains a complete

bipartite graph with parts of size N cH . A strengthening of this result which brings it closer to the

Erdős-Hajnal conjecture was obtained in [46], where the authors proved that any H-free graph on

N vertices contains a complete bipartite graph with parts of size N cH or an independent set of size

N cH . To get a better understanding of the properties of H-free graphs, it is also natural to ask for

an asymmetric version of the Erdős-Hajnal result. Although it is not clear how to obtain such results

from the original proof of Erdős and Hajnal, in [46] we show that there exists c = cH > 0 such that for

any H-free graph G on N vertices and n1, n2 satisfying (log n1)(log n2) ≤ c logN , G contains a clique

of size n1 or an independent set of size n2. The proof of both of the above mentioned results from [46]

use dependent random choice together with an embedding lemma similar to the proof of Theorem 6.1.

On a problem of Gowers: For a prime p, let Zp denote the set of integers mod p and A be a subset

of size ⌊p/2⌋. For a random element x ∈ Zp, the expected size of A∩ (A+ x) is |A|2/p ≈ p/4. Gowers

asked whether there must be an x ∈ Zp such that A∩(A+x) has approximately this size? This question

was answered affirmatively by Green and Konyagin [54]. The best current bound is due to Sanders

[76], who showed that there is x ∈ Zp such that ||A∩(A+x)|−p/4| = O(p/ log1/3 p). Both these results

used Fourier analysis. The first purely combinatorial proof was recently given by Gowers [50] using a

new graph regularity lemma. This new regularity lemma is weaker than Szemeredi’s regularity lemma,

but gives much better bounds. The proof of this new regularity lemma relies heavily on dependent

random choice.

Induced subgraphs of prescribed size: There are a number of interesting problems like the

Erdős-Hajnal conjecture (mentioned above) which indicate that every graph G which contains no

large homogeneous set is random-like. Let q(G) denote the size of the largest homogeneous set in

G and u(G) denote the maximum integer u such that G contains for every integer 0 ≤ y ≤ u(G),

an induced subgraph with y edges. Erdős and McKay [33] conjectured that for every C there is a

δ = δ(C) > 0 such that every graph G on n vertices and q(G) ≤ C log n satisfies u(G) ≥ δn2. They

only prove the much weaker estimate u(G) ≥ δ log2 n.

Alon, Krivelevich, and Sudakov [4] improved this bound considerably to u(G) ≥ nδ. Moreover,

they conjecture that even if q(G) ≤ n/4 (is rather large), still u(G) = Ω(|E(G)|). This would imply

the conjecture of Erdős and McKay as it was shown by Erdős and Szemerédi [41] that any graph G
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on n vertices with q(G) = O(log n) has Θ(n2) edges. In [4] the authors make some progress on this

new conjecture, proving that as long as q(G) ≤ n/14, then u(G) ≥ ec logn. The proofs of both these

results use dependent random choice.

Concluding remarks: In this survey, we made an effort to provide a systematic coverage of variants

and applications of dependent random choice and we hope that the reader will find it helpful in

mastering this powerful technique. Naturally due to space limitation, some additional applications of

dependent random choice were left out of this paper (see, e.g., [27, 65, 71, 87]). Undoubtedly many

more such results will appear in the future and will make this fascinating tool even more diverse and

appealing.

Unfortunately, the current versions of dependent random choice can not be used for very sparse

graphs. Indeed, there are graphs with n vertices and Θ(n3/2) edges which have no cycles of length 4.

Every pair of vertices in such a graph has at most one common neighbor. One plausible way to adapt

this technique to sparse graphs is, instead of picking the common neighborhood of a small random

set of vertices, to pick the set of vertices which are close to all vertices in the small random set. One

may try to show that such a set is not small, and deduce other properties of this set in order to prove

results about sparse graphs.

In Lemma 2.1, and in other versions of dependent random choice, we pick a set of t random

vertices, and show that with positive probability the common neighborhood of this random set has

certain desired properties. This explains why we assume t is an integer. However, it seems likely that

the assertion of Lemma 2.1 also remains valid for non-integer values of t. Such a result would be useful

for some applications. Unfortunately, it is not clear how to extend the current techniques to prove

this.
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[25] A. Dudek and V. Rödl, On Ks-free subgraphs in Ks+k-free graphs and vertex Folkman numbers,

Combinatorica, to appear.

28
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[28] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.
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[40] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935),

463–470.
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[51] R. Graham, V. Rödl, and A. Ruciński, On graphs with linear Ramsey numbers, J. Graph Theory

35 (2000), 176–192.
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