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Abstract—We propose a novel model order reduction technique
that is able to accurately reduce electrically large systems with
delay elements, which can be described by means of neutral de-
layed differential equations. It is based on an adaptive multipoint
expansion and model order reduction of equivalent first order
systems. The neutral delayed differential formulation is preserved
in the reduced model. Pertinent numerical results validate the
proposed model order reduction approach.

Index Terms—Delayed Partial Element Equivalent Circuit
method, reduced order systems, neutral delayed differential equa-
tions.

I. I NTRODUCTION

With the increase of operating frequencies, the accurate
modeling of high-speed components and modern integrated
circuits requires electromagnetic (EM)3-D methods [1], [2] as
necessary analysis and design tools. Large systems of equations
are usually generated by the use of these methods and model
order reduction (MOR) techniques are crucial to reduce the
complexity of EM models and the computational cost of the
simulations, while retaining the important physical features of
the original system [3], [4]. Among all EM methods, the Partial
Element Equivalent Circuit (PEEC) method [2] uses a circuit
interpretation of the Electric Field Integral Equation (EFIE) [5],
therefore it is especially suitable to problems involving both
electromagnetic fields and circuits [2], [6]. If we consider a
quasi-static PEEC formulation [2], which approximates the full-
wave PEEC approach [7], an equivalent RLC circuit is obtained,
since the time delays between the elements in the full-wave
PEEC formulation are neglected. Systems of ordinary differen-
tial equations (ODE) are obtained. Standard MOR techniques
for ODE systems can be used to reduce the size of a quasi-
static PEEC model [3], [4]. When signal waveform rise times
decrease and the corresponding frequency content increases
or the geometric dimensions become electrically large, time
delays must be taken into account and, therefore, included in
the modeling.

A PEEC formulation which include delay elements, called
τPEEC [8], becomes necessary and leads to systems of neu-
tral delayed differential equations (NDDE) [7]. While several
successful MOR methods for large ODE systems have been
proposed over the years, the reduction of large NDDE systems
is still a very challenging research topic, since standard MOR
techniques for ODE systems cannot be directly applied to
NDDE systems. Especially, the reduction of electrically large
structures where delays among coupled elements cannot be

neglected or easily approximated by rational basis functions
needs to be investigated and addressed.

Some techniques for the reduction of NDDE systems have
been proposed [9]–[12]. In [9] an equivalent first order system
is computed by means of a Taylor expansion, and then MOR
Krylov subspace methods [3], [4] are applied. The NDDE
formulation is not preserved in the reduction process. Mul-
tiple expansion points and the construction of rational local
approximations ofτPEEC systems are used in [10]. Then,
each rational local approximation is reduced by standard MOR
methods and portions of these reduced rational models are
combined to obtain a global reduced model for the frequency
range of interest. As in [9], the NDDE formulation is not
preserved in the reduction process. The approach in [11]
extracts exponential terms (primary phase factors) and then the
smoother remainders are expanded into a linear form and then
projected to obtain the reduced model. Hence, the extraction
of primary phase factors and the segregation of the system
into multiple remainder phase matrices, each corresponding to
a primary phase factor, are needed. In [12], an equivalent first
order system is computed by means of a single point Taylor
expansion [9] and a corresponding orthogonal projection matrix
is computed by means of a block Arnoldi algorithm [3]. Then,
an orthogonal projection matrix for the original NDDE system
is extracted and a reduced NDDE system is obtained.

This paper presents a novel MOR method forτPEEC models
that is able to accurately reduce electrically large structures
where delays among coupled elements cannot be neglected or
easily approximated by rational basis functions. It is based on
an adaptive multipoint expansion and MOR of equivalent first
order systems [12]. The NDDE formulation is preserved in the
reduced model.

The paper is organized as follows. Section II describes
the modified nodal analysis (MNA) equations of theτPEEC
method. Section III describes the proposed MOR method for
NDDE systems. Finally, a pertinent numerical example based
on the τPEEC method validates the proposed technique in
Section IV.

II. D ELAYED PEEC FORMULATION

The PEEC method [2] stems from the integral equation form
of Maxwell’s equations. With respect to other EM methods,
it is worth pointing out its capability to provide a circuit
interpretation of the EFIE equation, thus allowing to handle
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complex problems involving both circuits and electromagnetic
fields.

In the standard approach, volumes and surfaces are dis-
cretized into elementary regions, hexahedra and patches re-
spectively [8] over which the current and charge densities are
expanded into a series of basis functions.

Following the standard Galerkin’s testing procedure, topo-
logical elements, namely nodes and branches are generated
and electrical lumped elements are identified modeling both
the magnetic and electric field coupling.

Conductors are modeled by their ohmic resistance, while
dielectrics require modeling the polarization charge due to the
dielectric polarization [13]. Magnetic and electric field coupling
are modeled by partial inductances and coefficients of potential,
respectively.

An example ofτPEEC circuit for a conductor elementary
cell is illustrated, in the Laplace domain, in Fig. 1 where
the current controlled voltage sourcessLp,ijIj and the charge
controlled current sourcessQi model the magnetic and electric
field couplings, respectively.
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Fig. 1. Illustration ofτPEEC circuit electrical quantities for a conductor
elementary cell.

Let us assume that the meshing process of conductors and
dielectrics has generatedni volume cells where currents flow
and nn surface cells where charge is located; the resultant
number of elementary cells of conductors and dielectrics is
nc and nd, respectively and that of electrical nodes isnn.
Furthermore, let us assume to be interested in generating an
admittance representationY(s) havingnp output currentsip(t)
under voltage excitationvp(t). If the MNA approach [14] is
used, the global number of unknowns isnu = ni+nd+nn+np

and an admittance representation of the PEEC circuit is ob-
tained

C (τ )
dx(t)

dt
= −G (τ ) x(t) + Bu(t) (1a)

ip(t) = LT x(t) (1b)

where x(t) ∈ <nu×1 and τ ∈ <nτ×1 contains all delays
τL, τC , which denote the center-to-center delay matrices for
the magnetic and electric field coupling. Since this is annp-port
formulation, whereby the only sources are the voltage sources
at thenp-port nodes,B = L whereB ∈ <nu×np . Each delayed

entry of matricesC (τ ) andG (τ ) act as a delay operator for
the corresponding entry of vectorx(t). Hence, (1) can be re-
written in the Laplace domain as:

sC(s)X(s) = −G(s)X(s) + BVp(s) (2)

Ip(s) = BT X(s) (3)

C(s) = C0 +
nτ∑

k=1

Cke−sτk (4)

G(s) = G0 +
nτ∑

k=1

Gke−sτk (5)

III. D ELAYED MODEL ORDER REDUCTION

In [12], an equivalent first order system is computed by
means of a single point Taylor expansion [9] and a correspond-
ing orthogonal projection matrix is computed by means of a
block Arnoldi algorithm [3]. Then, an orthogonal projection
matrix for the original NDDE system is extracted and a reduced
NDDE system is obtained. The NDDE formulation is preserved
in the reduction process. The proposed novel MOR algorithm is
based on an adaptive multipoint expansion and MOR of equiv-
alent first order systems. As in [12], the NDDE formulation is
preserved. The multipoint feature allows to reduce electrically
large structures with large delays (2πfreqmaxτmax > 10) [11]
that cannot be neglected or easily approximated by a single
point expansion and rational functions. The equivalent first
order system obtained after the single point Taylor expansion
of exponential terms has an order equal toqnu, where q is
the order of the Taylor expansion andnu the order of the
original NDDE system [12]. Since exponential terms with
large delays need many terms in the Taylor expansion to be
accurately approximated, the reduction of equivalent first order
systems becomes computationally expensive and sometimes not
feasible. The multipoint expansion [15] addresses this issue and
is able to accurately reduce NDDE systems with large delays,
since a small expansion Taylor order can be used for each
expansion point and the accuracy of the reduced model is in-
creased by adding new expansion points. An adaptive algorithm
is used to choose the expansion points, assuming that the order
of the Taylor expansion is fixed for each expansion point. It is
not described here due to the lack of space. At each expansion
point, the MOR algorithm described in [12] is applied and
the corresponding projection matrixQi, i = 1, . . . , npoints

is computed. The final projection matrixQ is based on the
orthogonalization of the stack column collection of all single
expansion point projection matrices. The computation ofQ in
the case of multipoint expansion is explained in the flowchart
in Fig. 2. The MOR algorithm described in [12] is called
One point DMOR in Fig. 2, wherenr = qnp represents
the reduced order for each expansion point.

OnceQ is computed, it is applied to the original NDDE system
(2)-(3) and a reduced NDDE system



Algorithm 1: MULTIPOINT(NDDEorig, {sk}npoints

k=1 , nr, q)

comment:Multipoint computation of basisQ



Q1 = One point DMOR(NDDEorig, s1, nr, q);
Q = Q1;
for k ← 2 to npoints

do
{

Qk = One point DMOR(NDDEorig, sk, nr, q);
Q = ([Q, Qk]);

Q = orth(Q);

Fig. 2. Pseudocode for computing the orthogonal basisQ in the multipoint
expansion case.

sCr(s)χ(s) = −Gr(s)χ(s) + BrVp(s) (6)

Ip(s) = BT
r χ(s) (7)

Cr(s) = Cr,0 +
nτ∑

k=1

Cr,ke−sτk (8)

Gr(s) = Gr,0 +
nτ∑

k=1

Gr,ke−sτk (9)

is obtained, where the following congruence transformations
are used

Cr,i = QT CiQ, i = 0, . . . , nτ (10a)

Gr,i = QT GiQ, i = 0, . . . , nτ (10b)

Br = QT B (10c)

Lr = QT L (10d)

IV. N UMERICAL RESULTS

Concerning the error criterion, let us define the weighted
RMS-error as

Err =

=

√√√√
∑(np)2

i=1

∑Ks

k=1

∣∣∣wYi(sk)
(
Yr,i(sk)− Yi(sk

)∣∣∣
2

(np)2Ks
(11)

with

wYi(s) = |(Yi(s)−1| (12)

It is used to assess the accuracy of reduced order models over
the bandwidth of interest, which is sampled overKs samples.

A. Multiconductor system

A multiconductor system composed of four coplanar conduc-
tors with a length̀ = 10 cm, a widthW = 1 mm, a thickness
t = 1 mm and an horizontal spacingSx = 3 mm has been
modeled in this example. Fig. 3 shows its cross section. The
system is analyzed on the frequency range[0.0001, 10] GHz.
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Fig. 3. Cross section of the multiconductor system.

The six ports of the system are defined between successive
conductors.

The order of the originalτPEEC model is equal tonu =
2390, the number of delays is equal to632 and the largest delay
gives 2πfreqmaxτmax = 21. Table I shows some parameters
of the proposed MOR method.

TABLE I
MOR PARAMETERS.

Parameter Adaptive method
Taylor terms 2
Expansion points 7
Reduced order 84
Weighted RMS-error reduced model 0.025

Figs. 4-7 compare the magnitude and phase of the original
and reduced NDDE model ofY33(s) and Y36(s). As clearly
seen, the presented MOR method can reduce a large NDDE
system with large delay terms, while accurately preserving the
behavior of the original system.
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Fig. 4. Magnitude ofY33.

V. CONCLUSIONS

We have presented a new MOR technique for large NDDE
systems, which is applicable toτPEEC models. It is able
to accurately reduce electrically large structures where de-
lays among coupled elements cannot be neglected or easily
approximated by rational basis functions. It is based on an
adaptive multipoint expansion and MOR of equivalent first
order systems. The NDDE formulation is preserved in the
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Fig. 5. Phase ofY33.
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Fig. 6. Magnitude ofY36.
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Fig. 7. Phase ofY36.

reduced model. Numerical results based on theτPEEC method

have validated the proposed MOR approach.
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