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Abstract—Complex systems are subject to uncertainties that
may lead to suboptimal performance or even catastrophic failure
if unmanaged. Uncertainties may be managed through real op-
tions that provide a decision maker with the right, but not the
obligation, to exercise actions in the future. While real options
analysis has traditionally been used to quantify the value of such
flexibility, this paper is motivated by the need for a structured
approach to identify where real options are or can be embedded
for uncertainty management. We introduce a logical model-based
approach to identification of real option mechanisms and types,
where the mechanism is the enabler of the option, while the type
refers to the flexibility provided by the option. First, we extend the
classical design structure matrix and the more general multiple—
domain matrix (MDM), commonly used in modeling and analyz-
ing interdependencies in complex socio-technical systems, to the
more expressive Logical-MDM that supports the representation of
flexibility. Second, we show that, in addition to flexibility, two new
properties, namely, optionability and realizability, are relevant
to the identification of real options. We use the Logical-MDM
to estimate flexibility, optionability, and realizability metrics. Fi-
nally, we introduce the Real Options Identification (ROI) method
based on these metrics, where the identified options are valued
using standard real options valuation methods to support decision
making under uncertainty. The expressivity of the logic combined
with the structure of the dependency model allows the effective
representation and identification of mechanisms and types of real
options across multiple domains and lifecycle phases of a system.
We demonstrate this approach through a series of unmanned air
vehicle scenarios.

Index Terms—Complex systems, decision making under un-
certainty, design structure matrix (DSM) model, flexibility,
multiple-domain matrix (MDM), real options, unmanned air ve-
hicles (UAVs).

I. INTRODUCTION

ANY COMPLEX systems, such as swarms of un-

manned air vehicles (UAVs), robotic networks, space-
craft, and medical devices, are subject to uncertainties that may
lead to suboptimal performance, missed opportunities, or even
catastrophic failure if unmanaged. Designing systems that are
robust in the face of uncertainties has been a top priority. Much
research has been devoted to improving system design method-
ologies and developing tools for uncertainty management in
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complex systems design and operation. For instance, systems
engineering methods for design and analysis of complex, flex-
ible, and adaptable systems [1]-[8] are being devised, and
tools for automatically diagnosing and reconfiguring complex
systems are being developed [9], [10] as means of managing
uncertainties in complex systems.

Uncertainties can be managed through real options [11],
[12] that provide a decision maker with the right, but not the
obligation, to exercise actions at a later time. This paper is
based on the formulation of flexibility as a real option since
this formulation enables the use of quantitative real options
valuation techniques to value flexibility. Real options valuation
[13], [14] has previously been used to value flexibility in ap-
plications ranging from capital investment decisions to system
design. However, in an effort to actively manage uncertainties
through flexibility and to enable tradeoffs among alternative
forms of flexibility, the valuation step must be preceded by the
identification of where real options are or can be embedded.
Research into the state of real options practice has revealed that
qualitative real options identification is often cited as the key
benefit of real options [15]. This paper is motivated by the need
to systematically identify real options and specifically focuses
on the model-based identification of options.

In this paper, we frame the real options identification as two
related problems: 1) first is the identification of the types of
real options, i.e., the types of flexibility that can manage a
specified uncertainty, and 2) second is the identification of how
the real options are obtained. Real options valuation of strate-
gic decisions under uncertainty traditionally relies on ad hoc
identification of various types of flexibilities that are available,
without consideration to how these flexibilities are obtained.
For example, the flexibilities to abandon a project or to expand
a project in the future are two types of real options that must be
taken into account when valuing the project under uncertainty.
On the other hand, active management of uncertainty places
an emphasis on the identification and subsequent valuation of
sources of flexibility. For example, a modular product design is
often identified as a source of the flexibility to change the design
[16]. In order to support the identification of both sources and
types of flexibility in this paper, we characterize a real option
as a tuple (Mechanism, Type), defined as follows.

1) Mechanism: A mechanism is an enabler of a real option,
thereby constituting a source of flexibility. For example,
a modular payload bay for a UAV is a design mechanism
that enables the flexibility to switch the type of payload.
Cross-training of operators on multiple UAV platforms is

1083-4427/$26.00 © 2011 IEEE


https://core.ac.uk/display/4434316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

TABLE 1
COMPARISON OF MECHANISMS AND TYPES OF REAL OPTIONS

Mechanism Type
Purpose enable real option manage uncertainty
by exercising (or not)
a real option
Examples modularity, staging, expand, contract, defer,
buffering, redundancy abandon, switch
Analogy to

financial options buy option buy, sell stock

an organizational mechanism that enables the flexibility
to switch their mission assignments.

2) Type of real option: A real option type is an action that
a decision maker has the right, but not the obligation, to
exercise. Examples include the option to switch the UAV
payload, the option to abandon a project, and the option
to expand to a new market.

The real option to manage uncertainty in the required pay-
loads of future UAV missions can be represented by the tuple
(Modular payload bay, Switch to different payload). The deci-
sion to design a modular payload bay provides a UAV operator
the option to switch payloads, depending on the specific needs
of a future mission.

Various types of real options, such as the options to switch,
expand, contract, defer, and abandon, have been classified in
the literature [12]. It is also possible to classify various patterns
of mechanisms such as modularity, staging, buffering, and
redundancy, as shown in Table I. Mechanisms and types can
also be interpreted in the context of financial options. The
mechanism to obtain a financial option is to buy it, whereas the
type of financial option corresponds to actions that the option
owner has the right, but not obligation, to exercise, such as
buying or selling stock. Note that it is possible to have chains of
mechanisms and types of real options, where a type of option
serves as a mechanism that enables further types of options. For
example, a staged investment mechanism enables the option to
expand or abandon the investment. Expansion of the investment
is, in turn, a mechanism that enables further options to expand
or abandon and so forth. This is often referred to as a compound
option.

In this paper, we use the (Mechanism, Type) characteriza-
tion of a real option to support a structured identification of
both sources and types of flexibility to manage uncertainties
that impact complex systems. In complex systems that have
many interdependencies, an action taken in one part of the
system may affect another part of the system. Similarly, a real
option mechanism may result in a type of option in another
part, domain, or lifecycle phase of the system. For example,
implementing a mechanism in product design may provide a
real option in end user operations, as in the aforementioned
example of a modular UAV bay that enables a real option to
switch payloads. Therefore, the identification of mechanisms
and types of real options must encompass multiple domains and
phases of a system lifecycle. In modeling a system to identify
options, it is important to capture the interdependencies that
are most relevant to stakeholders while maintaining a holistic
representation of system behavior. Therefore, we build upon

the design structure matrix (DSM) [17] and the more general
multiple-domain matrix (MDM) [1], [18] that are commonly
used in modeling and analyzing complex systems. We introduce
the Logical-MDM, which is an extension of the DSM, to
enable modeling of flexible systems through the specification
of logical relations among dependencies. We devise the ROI
method that uses the Logical-MDM to identify mechanisms
and types of real options, which are then valued using real
options valuation. We present a series of examples relevant to
designing UAV systems to demonstrate the approach, without
loss of generality with respect to other application domains.
This paper is based on prior versions in [19] and [20].

II. PROBLEM OF IDENTIFYING REAL OPTIONS

In this section, we elaborate the requirements for model-
based identification of mechanisms and types of real options
and present some motivating UAV scenarios.

A. Requirements

For complex systems that involve numerous interactions and
dependencies, the identification of real options is challenging
since the possibilities may be unknown or too numerous to be
considered by a single analyst. Therefore, it is increasingly im-
portant to leverage system models to support the identification
of real options. We identify the following requirements for the
model-based identification method in this paper:

1) Requirement I: The method should encompass the iden-

tification of both mechanisms and types of real options.

2) Requirement 2: The method should be capable of identi-
fying mechanisms and types of real options across mul-
tiple lifecycle phases and domains relevant to a system.
A domain is defined here as a category of entities with
the same semantics, such as components, functions, ac-
tivities, and stakeholders.

3) Requirement 3: The method should support the identi-
fication of existing real options to manage a spectrum
of prespecified uncertainties that will be resolved in the
future.

4) Requirement 4: The modeling framework should support
the representation of flexibility and choices in order to
enable modeling and identification of real options.

B. UAV Scenarios

The FY2009-2034 Unmanned Systems Integrated Roadmap
[21] prioritizes the development of unmanned systems and
technologies for surveillance and reconnaissance missions. In
particular, the development and operation of UAVs to work
as sensor networks for coordinated surveillance is becoming
increasingly important. The dynamic nature of such missions
and uncertainty in emerging requirements motivates a series
of examples to demonstrate our approach to real options iden-
tification. We will identify types of real options that can be
provided to the mission operator by embedding real option
mechanisms in the system design. Whereas our approach is not
used for tactical mission planning, it does consider operational
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Fig. 1. Mission scenarios.

uncertainties that will drive the identification of operationally
relevant flexibilities which, in turn, will impact system de-
sign decisions. Some examples of uncertainties include the
following:

1) Uncertainty in the operational environment, such as en-
countering potential obstacles in the terrain;

2) Uncertainty in emerging needs, such as the duration
of future missions, which impacts the UAV endurance
requirement;

3) Uncertainty in mission requirements, such as the re-
quired rate of imaging targets in a multi-UAV coordinated
surveillance mission.

These uncertainties impact the mission scenarios shown in
Fig. 1. In one scenario, an iRobot PackBot [22] unmanned
ground vehicle (UGV) is used to navigate a terrain that includes
potential obstacles. Equipping the PackBot with a flight capa-
bility, as in the case of the Griffon hybrid UAV/UGV [23], is
an example of a real option mechanism in the system design
that enables an option to fly it upon encountering obstacles.
To manage uncertainty in desired mission duration in another
scenario, a UAV that accommodates an extra battery is a mech-
anism that enables the option to expand its endurance. Another
case that we will treat in more detail in Section VIII is that
of a UAV network for coordinated surveillance of targets. The
coordination requirement translates to a constraint to maintain
UAV-to-UAV communication among neighbors. This operation
is impacted by the uncertainty in the revisit rate of targets. We
will assume that a maximum of four UAVs with identical sensor
footprints can be deployed in pairs in a circular trajectory. In the
case of a low revisit rate (LRR) mission, Fig. 1 shows a pair of
UAVs deployed in a sparse configuration, whereas in the case
of a high revisit rate (HRR) mission, four UAVs are deployed
in a dense configuration. The communication range is shown to
be an enabling mechanism for the real option to deploy sparse
and dense swarms.

The four requirements in Section II-A can be interpreted in
the context of these scenarios: 1) the identification should en-
compass the (Mechanism, Type) tuples; 2) the mechanisms and
types may encompass multiple domains (components, func-
tions, and processes) and lifecycle phases (system design and
end user operations); 3) the real options existing in a deployed

system, such as the UAV with extensible endurance, should be
identified. Furthermore, real options that manage a spectrum of
uncertainties such as requirement and environmental uncertain-
ties, as listed previously, should be supported, assuming that
uncertainties have already been identified by other means; and
4) the modeling framework should support the representation of
these scenarios, including multiple domains ranging from the
system components, functions, activities, mission objectives,
and uncertainties, as well as the representation of embedded
real options. We use examples based on these UAV scenarios in
the rest of this paper to demonstrate our approach to modeling
and the model-based identification of real options that conform
to these requirements.

III. APPROACH

Our approach is to devise a modeling framework and as-
sociated method for identifying real options. The modeling
framework should be capable of representing multiple domains
that are relevant to a complex system in order to support Re-
quirement 2. It should also support the representation of flexible
systems and choice according to Requirement 4 (Section II-A).
We accomplish this by introducing the Logical-MDM, which
is a variant of the DSM and MDM models. Following a brief
background on the DSM and MDM models, we overview how
these models link to the identification of mechanisms and types
of real options.

A. Modeling Dependencies in Complex Systems

We leverage dependency models that provide a feasible
method of capturing a myriad of interactions in a complex
system. Prior work compared modeling frameworks for com-
plex systems based on several criteria, including the ability to
represent multiple domains [24]. DSM and MDM models were
found to be relatively well suited for modeling and analysis of
complex engineered systems, compared to other representation
frameworks such as the quality functional deployment [25], the
unified program planning [26], the axiomatic design [27], and
the Department of Defense Architecture Framework (DoDAF)
[28]. In particular, while the DoDAF incorporates dependency
models in the form of the N-square matrix, not all domain
dependencies are captured; for instance, there are limitations in
modeling social and environmental domains, including policy
and economic factors [24].

1) DSM: A DSM, also referred to as a dependency structure
matrix, is a dependency network representation in the form
of a matrix. It was first introduced by Steward [17] to map
design tasks to a network in order to leverage graph theory to
analyze task interactions. DSMs can represent series, parallel,
and coupled relationships among tasks. Contingencies were
identified as a fourth type of relationship in [29]. Although
DSMs have extensively been used to represent and analyze
product design activities [17], [30]-[32], they are not limited
to representing task relationships. In general, a DSM may
represent relationships among any single domain of entities,
such as product components [33] and teams [34], [35]. A survey
of various types of DSMs is presented in [29]. Dependencies



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Realizability
Option

Optionability

Fig. 2. Flexibility, optionability, realizability, and identification of mecha-
nisms and types of options in a dependency model.

may be represented either as a network graph or its equivalent
matrix (DSM). In this paper, we use the network representation
to graphically demonstrate our approach, whereas the matrix
representation is used to show how we extend the classic DSM.

2) MDM: Multidomain analysis using DSMs has been rec-
ognized to provide insight about patterns of interactions among
the process, product, and organization [36], [37]. A domain
mapping matrix (DMM) [38] is a rectangular matrix that was
introduced to map the interactions among two different do-
mains. An MDM [1], [18] is a larger scale coupled DSM that in-
corporates multiple DSMs corresponding to different domains,
as well as DMMs that map the relationships among elements
across these different DSMs. The diagonal of an MDM consists
of DSMs, while the off-diagonals correspond to DMMs. A
specific example of an MDM is the framework introduced in
[38], which covers five different domains for modeling product
development: goals, product, process, organization, and tools.
Another instance of MDM is the engineering systems matrix
(ESM) [24], which models the system drivers, stakeholders,
stakeholder objectives, system functions, objects, and activities.
More recently, an MDM model of demands, functions, com-
ponents, and processes was used within a demand-compliant
design method (DeCoDe) [39].

Classical DSM analysis techniques such as clustering and
sequencing are well understood and applied in various domains.
However, there is limited analysis that leverages the more
comprehensive MDM model. Furthermore, there is growing
interest in using DSM-based models for real options analysis. In
the following section, we overview our approach to real options
identification using DSM and MDM models.

B. DSM-Based Identification of Mechanisms and Types

How can one identify “where” the mechanisms and types
of options that manage a given uncertainty are located in a
DSM or MDM model? Fig. 2 shows an example of a network
representation of an MDM, where mechanisms and types of real
options that manage an uncertainty impacting the objective are
identified. The nodes represent entries in the rows and columns
of the MDM, and the edges represent dependencies.

We define three properties, also referred to as ilities (flexi-
bility, optionability, and realizability), that are relevant to the
DSM- and MDM-based options identification problem. The
relations between these ilities and the mechanisms and types
of real options are shown in Fig. 2.

1) Flexibility is the ability to exercise types of real options
to manage uncertainty, as indicated by the flexibility to
achieve the Objective in Fig. 2. An example of flexibility

TABLE 1I
COMPARISON OF THE ILITIES AND ASSOCIATED METRICS

Property Modeled Behavior Metric  Purpose of Metric

Flexibility precondition for Flex identification of types
achieving objective of options
under uncertainty

Optionability ~ postcondition of a Opt identification of mech-
mechanism anisms

Realizability ~ precondition of a Rz identification of mech-

anisms that enable a
specific type of option

real option type

is the ability to assign a UAV operator to control multiple
UAVs [40], which is useful in managing uncertainty in
future mission types and number of UAVs in demand.

2) Optionability is the ability of a mechanism to enable
types of real options, as indicated by Mechanism N in
Fig. 2. An example of optionability is the ability of cross-
training UAV operators on multiple UAV platforms to
enable the real option to assign them to multiple types
of missions.

3) Realizability is the ability of mechanisms to enable a
given type of real option, as indicated by Option Type
A in Fig. 2. An example of realizability is the ability to
enable the real option to assign a UAV operator to control
multiple UAVs by either a cross-training mechanism on
multiple UAVSs or an increase in the level of UAV auton-
omy to allow ease of control.

As reflected in the definitions, the ilities are not associated
with the entire system, i.e., they are not treated as aggregate
properties of a system. Any aspect of the system can be flexible
or optionable with respect to a given uncertainty. This is an
important motivation for using a dependency model such as
the MDM, where the nodes explicitly model relevant aspects
of the system, thereby supporting the identification of specific
mechanisms and types of real options rather than probing
generally flexible systems.

Our approach is to devise metrics for flexibility, option-
ability, and realizability to serve as heuristics that guide the
identification of the real option mechanisms and types. Table II
provides a comparative summary of the three properties, along
with the purpose of associated metrics in the context of MDM-
based identification of real options. Flexibility is a precondition
property of achieving an objective under uncertainty. A flex-
ibility metric devised for an objective node will support the
identification of the types of real options. Optionability is a
postcondition property of a mechanism. An optionability metric
will support the identification of mechanisms. Realizability is
a precondition property of a type of real option. A realizability
metric will support the identification of mechanisms that enable
a specific option.

In devising MDM-based ility metrics, a challenge is that
the MDM is a structural model of dependencies rather than
behavioral. Whereas a structural model specifies the topology
of interactions, i.e., what interactions can occur among nodes, a
behavioral model also specifies how the interactions can occur.
For example, suppose that either activity A or B must precede
activity C in a DSM. A structural model will show a relationship
from activities A and B to activity C since both of them impact
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Fig. 3. Dependency model versus a state machine model.

activity C. However, a behavioral model is needed to specify
how these activities may interact. Activity C may be executed
following activity A under one circumstance, and it may be
executed following activity B under another circumstance. The
specification of the logic of the interactions is referred to as a
behavioral model here. We introduce the Logical-MDM model
in Section V to support an explicit representation of both
structure and logical behavior. Based on the Logical-MDM, we
devise metrics for flexibility, optionability, and realizability in
Section VI and use them to identify mechanisms and types of
options in Section VII.

IV. MODEL-BASED ESTIMATION OF FLEXIBILITY

In order to elaborate the challenge of devising MDM-based
metrics for the ilities introduced earlier, we compare the seman-
tics of a dependency model to that of a state model that has
been used in prior work to estimate aggregate flexibility in the
context of system design [41], [42].

A. Semantics of the System Model

As discussed earlier, an MDM is equivalent to a dependency
network where the nodes may represent various entities such as
stakeholders, strategies, processes, and subsystems. The edges
in a dependency model represent dependencies or influences
among nodes. In Fig. 3, a dependency network is shown on
the left. The dependency network is interpreted as node A
affecting nodes B and C, and nodes B and C being affected by
A. Therefore, the dependency model semantics is interpreted as
a logical AND relationship. In a state machine model, shown
on the right of Fig. 3, the nodes represent states. A state
here represents the entire set of variables used to model the
system rather than a single entity within the system. In the
state machine model, the edges represent transitions among
states. Therefore, the state machine in Fig. 3 is interpreted as
state A having the potential to transition to state B or C and
state B having the potential to transition to states D, E, and F.
In this case, the transition model is a logical OR relationship,
representing a choice among various transitions.

Note that the transition arcs in Fig. 3 can be associated
with probabilities and transition conditions. Similarly, depen-
dencies within the DSM and MDM models can have associated
probabilities. These can be compared to other models that
explicitly represent uncertainty, such as Bayesian networks that
are most appropriate for inference and learning problems [43].

endurance

Fig. 4. Example of a dependency model.

The quantification of uncertainty in our approach occurs during
valuation once the real options have been identified. Influence
diagrams [44] are generalizations of Bayesian networks that can
handle decision problems under uncertainty and have been used
for real options valuation.

B. Flexibility Metric in MDM Versus a State Model

Prior work has proposed metrics for estimating flexibility of
system designs from state-based models. For instance, flexi-
bility has been defined in terms of filtered outdegree (where
outdegree is the number of outgoing edges from a node) in
the context of a dynamic multiattribute tradespace exploration
[41], [42]. In the tradespace network formulation for concep-
tual system design, the nodes represent system designs, and
transitions among the various designs may be possible. The
flexibility of a system design is then defined as its ability to
switch to other designs, filtering the transitions that have a high
switching cost. Another approach that has been used to analyze
flexibility in design is the time-expanded decision networks
[45], which models the switching costs among states and finds
the configurations that minimize lifecycle cost under various
scenarios.

A representative metric (Flex_state) for aggregate flexibil-
ity in the context of a state-based model is the number of
outgoing edges from a node (outdegree). For example, state
A in Fig. 3 may transition to either state B or C. Therefore,
Flex_state(A) = 2 in this case for state A, and Flex_state(B) =
3. Note that Flex_state = 0 (Flex_state < 1 if the base case is
modeled) indicates a nonflexible state.

However, this flexibility metric is not valid for an MDM
because the dependency model semantics is not interpreted as
a logical OR. A classical MDM (or DSM) model does not
allow representation of the case where F depends on either
B or C. Once there is a potential for either node B or C to
impact node F, both dependencies are modeled in the MDM.
Therefore, the MDM dependency model does not have the
inherent expressivity to model choice, and hence, it is not
compatible with modeling flexibility.

1) Example: Consider the dependency model shown in
Fig. 4 that models the impact of battery usage on the endurance
objective of a UAV. This network representation corresponds
to an MDM with three domains. The nodes “battery 1” and
“battery 2” represent nodes within a component-based or prod-
uct DSM. The activities “insert battery 1,” “insert battery 2,”
and “remove battery 2” represent nodes within a task-based or
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Fig. 5. Isolating AND versus OR relationships in a dependency model.
process DSM modeling end user operations. The “endurance”
represents a node within an objective DSM. The mapping
between each of the product, process, and objective DSMs
corresponds to domain mapping in a DMM.

The modeled activities in Fig. 4 affect the endurance of the
UAV. The dependency model is interpreted as having an AND
semantics, i.e., all three actions impact endurance. Therefore,
the flexibility metric (“Flex”) for the endurance node, which
represents the flexibility of achieving the endurance objective,
is less than the count of incoming edges.

In order to estimate the flexibility for achieving the en-
durance objective under uncertainty in the desired mission dura-
tion, it is necessary to identify and isolate the OR relationships
in the model. This translates to identifying mutual exclusions
in this example. As shown in Fig. 5, inserting both batteries 1
and 2 will provide enhanced endurance. Therefore, there is no
flexibility in achieving enhanced endurance as inserting both
batteries is the only possible way to achieve it. Similarly, there
is no flexibility in achieving normal endurance. The overall
endurance objective can be achieved by the enhanced or normal
modes. Therefore, the flexibility of the endurance objective may
be estimated based on the number of choices in the OR relation
and not by the AND relations. A construct for alternative activity
modes that achieve the same objective has been introduced in
[46] in the context of an activity DSM. This construct can be
generalized to an MDM that includes other domains. As such,
the enhanced and normal endurance modes in Fig. 5 can be
considered as a generalization of activity modes to objective
modes in the MDM.

The aforementioned example shows that the MDM does not
distinguish between ANDs and ORs in specifying dependencies,
yet that is essential to support an MDM-based flexibility metric.
The specification and isolation of OR and AND relations are
shown explicitly in Fig. 5 by the addition of two nodes in the
model (enhanced and normal endurance modes), although the
addition of the nodes is not essential. This will be achieved
through the Logical-MDM.

V. LoGicAL-MDM

We introduce the Logical-MDM to support the representation
of flexibility and the other ilities introduced in Section III-B.
A Logical-MDM is an MDM model augmented with the speci-
fication of logical dependency structures. In particular, for each
node ¢ within a DSM or MDM, a logical dependency structure

TABLE III
VALUES (T = TRUE AND F =FALSE) THAT SATISFY FORMULA (2)

insert batteryl insert battery2 remove battery2
T T F
T F T

is added to specify the logical relationship among the nodes that
influence 7. For example, the endurance node in the dependency
model shown in Fig. 4 is augmented with the following logical
dependency structure:

(insert battery 1) A (insert battery 2V remove battery 2)
ey

where the operator A represents conjunction and operator V
represents disjunction. Such a specification augments the con-
ventional MDM model by specifying the logical way in which
the dependencies combine. Note, however, that the logical for-
mula (1) does not model a mutual exclusion, which is exclusive
OR. Insert battery 2 and remove battery 2 are actions that cannot
be executed simultaneously (cannot be both true). The unary
operator — that represents negation is used to model this

(insert battery 1)
/\ [(insert battery 2 A —remove battery 2)

V(remove battery 2 A — insert battery 2)]. (2)

The use of the negation operator — is not the same as not
having a dependency in the MDM. The operators —, A, and V
are the basic connectives of propositional logic that are used
to construct logical formulas to model the behavior among
multiple variables that influence each node ¢ (endurance in this
case). Recall that a logical formula is satisfiable if there is a
combination of values assigned to its variables such that the
logical formula evaluates to frue. The combinations that satisfy
the logical formula (2) are listed in Table III and represent how
the endurance objective can be achieved.

The Logical-MDM is a more expressive variant of the DSM
and MDM, which allows explicit modeling of flexibility. We
will use the Logical-MDM in the following sections for the
model-based identification of real options. We start by devising
MDM-based ility metrics.

VI. METRICS FOR FLEXIBILITY, OPTIONABILITY, AND
REALIZABILITY IN A LOGICAL-MDM MODEL

We use the Logical-MDM to devise metrics for flexibil-
ity, optionability, and realizability that were introduced in
Section III-B to support the identification of mechanisms and
types of real options. A flexibility metric is devised to indicate
the existence of options for achieving an objective. An option-
ability metric is devised as an indicator of the options enabled
by the implementation of a mechanism. A realizability metric
is devised as an indicator of alternative mechanisms that enable
a type of option.
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A. Flexibility Metric

Our approach is to transform the logical dependency struc-
ture into disjunctive normal form (DNF).

Definition: DNF is a logical formula consisting of disjunc-
tion of conjunctions where no conjunction contains a disjunc-
tion [47]. Mathematically, a formula F' is in DNF iff

n my

F=|\ /\ZLM- (3)

i=1 \j=1

where L; ; is a literal. A literal is a variable p (called a positive
literal) or the negation of a variable —p (called a negative
literal). The logical formula (2) is expressed as the following
DNF formula:

(insert battery 1 Ainsert battery 2

A —remove battery 2)
\/(insert battery 1 A\ remove battery 2

A —insert battery 2). 4)

Expressing the logical formula as DNF effectively isolates
the ORs from the ANDs in the dependency model and enables
devising a flexibility metric as follows:

¢ flexibility metric (Flex) for a node :: number of conjunc-

tive clauses in the DNF of the logical formula associated
with node .

A conjunctive clause (also called a product term) refers to
the conjunctive portions of the DNF. In the aforementioned
example, the flexibility of achieving the endurance objective
can be estimated as the number of DNF clauses, which is two.

Although it is possible to use this metric to estimate the
flexibility of each node in the MDM, of particular interest in this
paper is to estimate flexibility with respect to an objective and a
specific uncertainty (see Table II). Therefore, the uncertainty
that impacts node ¢ must be captured in the logical formula
for node ¢. For example, the endurance objective shown in
Fig. 4 may be impacted by the uncertainty in the desired
mission duration. We define an uncertainty literal as a literal
representing an uncertain variable that should be managed.
For example, “long-duration mission” is an uncertainty literal
that models as a source of uncertainty whether a long-duration
mission is desired. A logical formula in DNF that reflects the
impact of this uncertainty is as follows:

(insert battery 1 A insert battery 2 A\ —remove battery 2
A long duration mission)
V (insert battery 1 A remove battery 2

A-insert battery 2 A —long duration mission). (5)

The flexibility metric is two in this case, indicating the
presence of options to manage the uncertainty in the desired
mission duration.

Consider another scenario where there is a choice to execute
any two of the three available actions, namely, A, B, and C, to

manage an uncertain event U. Whereas, in a classical MDM,
A, B, C, and U will be shown to impact an objective node,
the Logical-MDM will augment this by specifying choices. The
DNF formula of this scenario can be modeled as

(ANBA-CAUWNAAN-BANCANU)V(AANBACAU)

(6)
leading to a flexibility estimate of three to manage this un-
certainty. This is equal to the number of combinations of
size k (k=2 actions in this case) from a set of size n
(total number of actions = 3 in this case), given by

(:) = e >

which evaluates to three.

Note that, in arriving at the number of conjunctive clauses
in the DNF, a convention can be established on whether to use
a full DNF or prime implicants of the DNF. A full DNF is a
DNF formula where each of its variables appears exactly once
in every clause, as the aforementioned examples show. In this
case, the model must be constructed carefully so as to avoid
the introduction of irrelevant variables that artificially increase
the number of clauses. Any conjunctive clause C in a DNF
is an implicant since it implies the DNF formula F' (C' = F),
which is equivalent to ~C'V F). It is also possible to reduce
the DNF to a disjunction of prime implicants, where a prime
implicant is an implicant that cannot be combined with another
conjunctive clause to eliminate a literal. For more complex
logical expressions, it is possible to use software to generate the
prime implicants of the logical formula. Algorithms that gener-
ate prime implicants have been used for a variety of applications
ranging from circuit design to automated diagnosis [48], model-
based planning [9], image processing [49], machine learning
[50], and detection of deadlocks and traps in networks [51].
Since it is often tedious to maintain a full DNF of logical
formulas, prime-implicant-based DNF will be best for dense
matrices with a large number of node dependencies that result
in many literals within a logical formula.

Example: Consider the Logical-MDM example shown in
Fig. 6. The model represents a hybrid ground and air vehicle
such as the Griffon UGV/UAV [22], [23], which is to be used
in reaching a destination (objective) through functions (roll,
turn left, turn right, and fly) provided by various subsystems
(wheel, steering wheel, and wing). For example, the Griffon
prototype is based on an iRobot PackBot that provides ground
mobility and is equipped with a parafoil wing that enables flight
capability. The objective from which value is derived (reaching
the destination) is affected by the uncertainty of encountering
potential obstacles. In Fig. 6, the nodes model multiple domains
that encompass the objective, functions, subsystems, and envi-
ronmental uncertainty.

The “reach destination” objective is associated with a logical
formula in DNF. This formula specifies the behavior that, if
there is no obstacle, the roll function will be used to achieve the
objective. If there is an obstacle, then the roll function, along
with turn left and right, or alternatively the fly function can
be used to achieve the objective. The flexibility metric for the
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Fig. 6.  Example of network representation of a Logical-MDM.

(uncertainty)

potential obstacle O\
Roll
Wheel ( ) Q

Turn left O‘
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wheel n right
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Win Q_‘_x,g /\ —TurnLeft A ~TurnRight n —Fly A ﬁObslac[e) v
9 oll A TurnLeft A TurnRight (A —Fly A Ob.\‘lacle) v

—Roll A ~TurnLeft A ~TurnRight A /\ Obstacle

Flex=3

Reach destination
(value)

Fig. 7. Identification of the types of options as highlighted by the shaded box.
Subsets of clauses are represented by the boxes in the DNF formula.

objective node is estimated as the number of clauses in the DNF
formula, which is three in this case.

Identifying the Types of Options: Since flexibility is the pre-
condition property of achieving the objective under uncertainty,
the types of options are identified as subsets of the conjunctive
clauses in the DNF formula of an objective node with Flex > 1.
Recall that uncertainty literals model sources of uncertainty and
may be either positive or negative literals. The subset of each
conjunctive clause that excludes all uncertainty literals and neg-
ative literals and consists of the positive literals in that clause
is identified. Positive literals are chosen because they represent
the alternative actions that should be executed, i.e., they must be
true, to satisfy the objective, thereby representing real options
for achieving the objective under uncertainty. Furthermore, if a
positive literal appears in every subset, then it can be identified
as necessary to achieve the objective, and thereby, it is an
“obligation” rather than a type of option. This includes the case
of Flex = 1, which corresponds to a single conjunctive clause.
This single clause can be identified as necessary to achieve the
objective and, hence, the condition Flex > 1 in identifying the
types of options.

For the example in Fig. 7, the flexibilities are identi-
fied from the DNF formula as “Roll,” “Roll N TurnLeft A
TurnRight,” and “Fly.” Fig. 7 shows the nodes in the MDM
model that constitute the identified types of options.

As another example, recall the endurance objective under
uncertainty presented earlier in this section. The dependency
model and DNF formula for the endurance objective are shown
in Fig. 8. In identifying the types of options for this example,
the subsets that exclude the negative literals and uncertainty
literals are formed: “insert battery 1 A insert battery 2” and
“insert battery 1 A removebattery 2.” The positive literal

Long duration

obligation

Insert
battery 1

Insert
battery 2

endurance

4

..

remove
battery 2

insert batteryl|n insert battery2 A ]
v

— remove battery2 A long duration mission

insert batteryl|n remove battery2 A )

types of options

— insert battery2 n — long duration mission

Fig. 8. Identification of the types of options versus “obligations.”

insertbattery 1 appears in all of the clauses of the DNF.
Therefore, it is necessary to achieve the objective, and it can be
identified as an “obligation” rather than an option with respect
to achieving the objective under uncertainty. The types of op-
tions are identified as insert battery 2 and remove battery 2.

B. Optionability Metric

Optionability is the ability of a mechanism to enable types
of options. We devise an optionability metric Opt to identify
mechanisms in the MDM.

First, we identify a subset of the MDM nodes as candidate
mechanisms by using the DNF formulas of the objective nodes
in the MDM. For each node N in the model that appears as
a positive literal and is not an uncertainty literal in the DNF
formula of an objective node, we backtrack in the dependency
model from node N to identify the set of nodes that have a link
to N. The elements in this set are candidate mechanisms.

The proposed algorithm for estimating an optionability met-
ric for a candidate mechanism C is as follows.

1) Initially, set the optionability metric Opt = 0 for C.

2) Group outgoing nodes from C into a set S.

3) Opt of candidate mechanism C = Number of conjunctive
clauses in the DNF formulas of all objective nodes that
contain any positive literal that appears in S, except if the
literal appears in all clause(s) of a single DNF (i.e., do not
count cases that enable “obligations”).

Example: The steps of the algorithm are demonstrated by
the example in Fig. 9. Recall that the DNF of this example
models the behavior of the hybrid ground/air vehicle, which
is to roll forward if there are no obstacles. If an obstacle is
encountered, the vehicle either turns to avoid it or flies above
the obstacle. The DNF does not specify a preference among
rolling and turning or flying in the latter case.

First, the candidate mechanisms are identified as the nodes
Wheel, Steering wheel, and Wing by backtracking from the
nodes Roll, Turn left, Turn right, and Fly, where each of which
appears as a positive literal in the DNF formula of the “Reach
destination” objective. Opt is initially set to zero for each
candidate mechanism C. Second, the outgoing nodes from each
candidate mechanism C are grouped, as shown in Fig. 9. Third,
the Opt metric is updated for each C. Opt = 2 for the wheel
since the positive literal Roll is contained in two distinct clauses



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

MIKAELIAN et al.: LOGICAL APPROACH TO REAL OPTIONS IDENTIFICATION

(uncertainty)
potential obstacle

2
et O—=ON
Opt=2
Turn Ieft@l RE——
eacl estination
Steering <£|ght (value)
wheel G
apte] DNF:
Wing By A —TurnLeft A —TurnRight A —Fly n ﬁObsmcle) v
Opt=1 4| (Roll A Funle T~ n Obstacte) v
—Roll A —TurnLeft n ~TurnRight n|Fly|A Obstacl
FrRE—— oll A —TurnLeft A —TurnRig /\/\ stac e)
(Opt > 0)

Fig. 9. Result of the algorithm for estimating Opt.

of the DNF for “Reach destination,” as shown by the boxes in
the DNF formula in Fig. 9. For the steering wheel, the outgoing
nodes are grouped, forming the set that contains the Turn left
and Turn right functions. Since the literals Turn Left and Turn
Right are both contained in only a single clause within the
DNF for “Reach destination,” Opt = 1 for the steering wheel.
Similarly, Opt = 1 for the wing since the positive literal Fly
appears in a single clause in the DNF formula. The wheels
provide more optionability compared to the steering wheel
and wings in this example because they enable more options
(rolling forward when there is no obstacle and turning when
there is an obstacle). Note that the metrics being presented
do not reflect the costs, benefits, or values of the options. Opt
identifies which entities enable the most options, i.e., the most
enabling mechanisms, which can subsequently be valued using
real options valuation by incorporating costs and benefits.

Identifying the Mechanisms: Mechanisms that enable op-
tions are identified as the nodes in the MDM that have Opt > 0.
Intuitively, the Opt metric represents the extent to which a
given node is optionable, i.e., the extent to which it enables
real options. If Opt = 0, then the candidate mechanism does
not directly contribute to enabling any option. In the aforemen-
tioned example (Fig. 9), the mechanisms are identified as the
Wheel, Steering wheel, and Wing. Furthermore, the wheel is
identified as the most optionable mechanism since it enables the
option to roll, which contributes to multiple ways of reaching
the destination under uncertainty, whereas the steering wheel
and wing each contribute to enabling a single option. This
example assumed that a single mechanism enables an option.
Later, we discuss other scenarios, including the case of multiple
mechanisms that enable a single option (see Fig. 11).

As a second example, mechanism identification is shown for
the endurance scenario in Fig. 10. The candidate mechanisms
are identified by backtracking from the insert battery 1, insert
battery 2, and remove battery 2 nodes since they all appear in
the DNF formula of the objective. The optionability is initial-
ized to zero, and the outgoing nodes from each candidate mech-
anism are grouped. Since the literal insert battery 1 appears
in both clauses of the DNF, it does not count toward the op-
tionability of battery 1. On the other hand, the optionability of
battery 2 is two since insert battery 2 and remove battery 2
appear in distinct clauses of the DNF formula.

Recall from Fig. 8 that insert battery 1 was identified as
an obligation rather than a real option. The distinction among

Long duration

battery 1
Opt=0
Insert endurance
I /7' battery 2
Opt=2
remove /\ insert battery2 n
Mechanism battery 2 . 5o ¥
(Opt > 0) 2 — remove battery2 A long duration mission
A remove battery2 n
— insert battery2 A — long duration mission
Fig. 10. Identification of mechanism in the endurance example.

obligations and real options was made to identify the types of
real options based on the definition in Section I. Since we also
defined a mechanism as an enabler of a real option, the option-
ability metric omits counting the ability of a node to enable
obligatory actions. Nodes with Opt = 0 that enable obligatory
actions may be referred to as required entities. However, these
required or obligatory nodes may provide a platform for other
mechanisms, thereby indirectly enabling types of real options.
For example, battery 1 is a required component that provides
the base functionality, but it is also the basic platform that
enables battery 2 to exist, thereby indirectly enabling the real
options to insert or remove battery 2. The identification of
required entities that also indirectly enable a real option will
require an explicit modeling of this dependency in the MDM.
For example, a link from battery 1 to insert battery 2 may
signify that inserting battery 2 is dependent on that of battery 1.
Backtracking will then also allow the identification of battery 1
as a mechanism that enables the option to insert battery 2.
Unless these dependencies are modeled, our approach will
identify mechanisms assuming that entities that provide a basic
functionality exist independently rather than for the purpose
of enabling the real option. If this assumption changes, the
MDM model will also be modified to reflect the unavailability
of a required component. For example, removing the battery 1
node and its associated portions of the DSM will result in the
identification of a different set of mechanisms and types.

C. Realizability Metric

Realizability is a precondition property of a type of option,
reflecting the ability of mechanisms to enable that option
(Section III-B). We define a realizability metric (Rz) as the
number of different ways that a type of option can be enabled.
Realizability may be considered an instance of flexibility as
applied to types of options, i.e., the flexibility to enable the
type of option. However, realizability is distinguished from
flexibility here because it concerns the specifics of enabling a
type of option. The calculation of the realizability metric (Rz)
is analogous to that of the flexibility metric since the ORs should
be isolated in order to identify the different means of enabling
each type of option. The specification of a logical dependency
model in DNF for each type of option is used to estimate
realizability:
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Fig. 11. Realizability estimated by the number of clauses in the DNF formula.

* realizability metric (Rz) for a type of option 7": number
of conjunctive clauses in the DNF of the logical formula
associated with node 7'.

Fig. 11 shows a case where the realizability of the option to
fly is two since either engine can be used to fly, as specified
by the DNF formula of the node Fly. The Rz metric is not
necessarily equal to the count of incoming edges since it is
estimated based on the logical relations among the mechanisms.

VII. ROI: METHOD FOR IDENTIFYING MECHANISMS AND
TYPES OF OPTIONS

In this section, we introduce the ROI method for identify-
ing mechanisms and types of options based on the Logical-
MDM model. ROI is shown in Fig. 12. The inputs are a
Logical-MDM model and sources of uncertainty. The outputs
are (Mechanism, Type) candidates, if any are identified. ROI
is based on the estimation of the flexibility, optionability, and
realizability metrics.

The identification of sources of uncertainty that are input to
the method has been treated elsewhere in the literature. For
example, scenario analysis [52] is a qualitative approach to the
identification of uncertainties and possible futures. An approach
that combines scenario analysis with real options is proposed
in [53], where various types of real options are mapped to
uncertainties identified using scenario analysis. However, that
approach focuses on the mapping of real options to uncertain-
ties and does not address how the real options are identified.
Other approaches, such as a taxonomy-based risk identification
method [54], are described in the risk management literature.

In ROI, the flexibility metric is always estimated in the
context of an objective under uncertainty. While a generic
logical model cast in DNF may be constructed for each node
in the MDM, not all “flexibilities” reflected in this DNF may be
relevant in managing a specific uncertainty. Therefore, the DNF
must be tailored to a specific uncertainty being considered. Note
that the types of options and mechanisms can be identified if
Flex > 1 and Opt > 0, respectively. This is because Flex < 1
means that there is, at most, one way to achieve an objective,
which is considered to be an “obligation” rather than an option.
Also, Opt =0 for a node means that there is no type of

Inputs
1. Logical MDM model
2. Uncertainties specified in the Logical MDM model
Method
1. For each uncertainty U
1.1 Identify objectives/value metrics V
that are affected by U
2. For each V
2.1 Construct DNF formula of dependencies
relevant to each U
2.2 Estimate the flexibility metric Flex
for V with respect to each U
2.3 If Flex > 1, identify the types
of options T that manage U
3. For each T
3.1 Construct DNF of dependencies to identify
alternative ways to achieve T
3.2 Estimate the realizability metric Rz for T
3.3 If Rz > 1, there are alternative
mechanisms that enable T
3.4 Identify candidate mechanisms C using
the DNF formula of each V
4. For each C
4.1 Estimate the optionability metric Opt
4.2 It Opt > 0, identify C as a mechanism M
Output
<M, T> candidates (if any)

mechanisms  and
T = type of option,

Fig. 12. Method for identifying option
U = uncertainty, V = objective (value),
candidate mechanism, and M = mechanism.

types.
C=

option that depends on that node; therefore, the node is not a
mechanism. The following section demonstrates the application
of ROL

VIII. APPLICATION TO UAV SURVEILLANCE SCENARIO

We apply the Logical-MDM modeling framework and the
ROI method to the UAV swarm surveillance scenario intro-
duced in Section II-B. The objective of the UAV swarm is the
surveillance of targets, impacted by uncertain requirement in
the revisit rate of the targets to be observed. There is a constraint
to maintain UAV-to-UAV communication among immediate
neighbors in the swarm (recall Fig. 1). Our goal is to identify
alternative mechanisms and types of real options for managing
the revisit rate uncertainty. Real options valuation will then be
applied to the identified (Mechanism, Type) tuples to decide
which alternative is the most valuable means of managing
the uncertainty. The following simplifying assumptions are
made: 1) four UAVs can be deployed in pairs equidistantly in
fixed circular loop over targets; 2) UAVs have identical sensor
footprints; and 3) the revisit rate is identical for all targets.
We model discrete outcomes of the uncertain revisit rate for
the surveillance targets as low revisit rate (LRR) and high
revisit rate (HRR) missions. In the case of the sparse swarm,
a long-range UAV-to-UAV communication will be necessary to
maintain the network connectivity (Fig. 1).

A. Logical-MDM Model

The Logical-MDM for the example is shown in Fig. 13.
In this case, the MDM domains include the UAV product
configurations, operational processes, and mission goals. Note
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Fig. 13. Logical-MDM of the UAV scenario. Entries in the last column refer
to the DNF formulas in the text of this paper.

TABLE 1V
VALUES (T = TRUE AND F = FALSE) THAT SATISFY FORMULA (8)

LRR  Deploy Dense Swarm  Deploy Sparse Swarm
T T F

T F T
F T F

that the process DSM here models end user operations not
design or development processes where most DSM applications
have been made. Alternative swarms consisting of four UAVs
are modeled: 1) four UAVs with a short-range communication
system (4 SR); 2) four UAVs with a long-range communication
system (4 LR); and 3) heterogeneous swarm consisting of two
short-range and two long-range UAVs (2SR + 2LR). The oper-
ational processes involve deploying sparse and dense swarms.
The mission requirement in this case is the target revisit rate
which is uncertain (LRR and HRR).

The last column in Fig. 13 refers to the logical formulas
in DNF that we present in the following discussion. The en-
tries in each row represent the dependencies from which the
logical formula is constructed. For example, consider the row
for “Maintain surveillance of targets.” This row depends on
“Deploy Sparse Swarm,” “Deploy Dense Swarm,” “LRR,” and
“HRR.” The logical formula (8) for this row is constructed
based on these dependencies and represents the alternative ways
of achieving the surveillance objective by either deploying a
dense swarm or deploying a sparse swarm during an LRR
mission

(LRRADeploy Sparse SwarmA—Deploy Dense Swarm)

\/(Deploy Dense SwarmA—Deploy Sparse Swarm). (8)

Each logical formula can also be represented as a truth table
that lists the allowed combinations of logical values that satisfy
the formula. The combinations of values that satisfy formula (8)
are listed in Table IV.

The node “Deploy Sparse Swarm” depends on having an
LRR mission and UAVs with LR communication or alterna-

HRR e
eploy (4LR A - 2SR +2LR) impacts
gparse (LRR & [v (2SR+2LR A= 4LR)D
warm
4SR
Maintain
Surveillance
4LR Objective

(LRR A Deploy Sparse Swarm A —Deploy Dense Swarm)v
(Deploy Dense Swarm A —Deploy Sparse Swarm)

Deploy

Dense (45R A~ 4LR A — 2SR +2LR) v

Swarm [ EMR A—4SR A 28R + 2LR;VD
HRR A

2SR+2LR

2SR +2LR A = 4SR A — 4LR
Fig. 14. Network representation equivalent to the Logical-MDM.

tively having an LRR mission and a heterogeneous set of UAVs.
This is modeled as the logical formula

(LRR AALR A —~2LR + 2SR)
V(LRRA2LR + 2SR A —~4LR). (9)

Deploying a dense swarm depends on having any of the
swarm configurations, but the LR and heterogeneous swarms
are deployed in a dense swarm only in case of an HRR mission.
This is modeled as the logical formula

(4SRA—-4LR AN —-2LR + 2SR)
\/(HRR NALR N ~ASR A —2LR + 2SR)

\/(HRR A2LR + 2SR A -4SR A -4LR). (10)

Note that it is also possible to model logical relations among
edges outgoing from a node. This is equivalent to constructing
a logical formula for each column in the MDM. Future work
may extend the analysis to further leverage these relations.

Fig. 14 shows an equivalent network representation of the
Logical-MDM. The nodes LRR and HRR are highlighted since
they represent sources of uncertainty in this scenario. In Fig. 14,
the logical formulas are not in DNF. The Logical-MDM should
model or convert such formulas to DNF as in Fig. 13 to support
the estimation of ility metrics.

B. Identification of the Mechanisms and Types of Real Options

We apply ROI to identify the mechanisms and types of
options (Fig. 12). In addition to the Logical-MDM, inputs to
the method are sources of uncertainty that may be identified
using uncertainty or risk identification approaches, as discussed
earlier in Section VII [52]-[54]. In the example scenario,
we assume that the source of uncertainty is the revisit rate
requirement of the mission (LRR and HRR). Fig. 15 shows
the result of the application of ROI, which involves estimation
of the metrics for flexibility, optionability, and realizability, as
recorded along the diagonal. The sources of uncertainty are
noted in the Logical-MDM by a “U” on the diagonal. The
objectives that are affected by the uncertainties are identified by
tracing the dependencies in the MDM. “Maintain surveillance
of targets” is identified as the only node in the goal DSM to
be affected by the sources of uncertainty, as shown by the
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p— T — RELATIVE COSTS, BENEFITS, AND VALUES PER MISSION
ssr || 4w || 2meair | suvenames | trR [ HRR g:::i [[))ZZIZZ l:-;grl\';alla Swarm | Benefit/LRR  BenefittHRR  Cost | Value
Wi Swarmi| Swarm SR 1.00 2.00 022 | 5.11

sr o |Opt=t LR 175 175 024 | 695
P doi=2 SR+LR 138 1.88 023 | 6.05
i 2SR+2LR Qpt=2 o .

deploying a dense or a sparse swarm may be a source of

Maintain . . . .

Sunveilance Flex=2| 1 [ 1 | 1 1 (8) uncertainty that impacts another objective node such as UAV
3 z::ge{s 0 operator assignment. In the case of deploying a sparse swarm, a
Ir single operator may be able to control the vehicles, but more

HRR U -— . .

R operators will be required to operate a denser swarm. UAV
gl |pes| |1 1 1 Rz=2 (9) operators may be modeled in a team-based or stakeholder DSM
g Deploy within the MDM.

o U1 | 1 1 Rz=3| (10)

Fig. 15. Identification of mechanisms and types of options.

highlighted objective row that intersects the columns that model
the impact of uncertainties in Fig. 15. The estimation of metrics
and the subsequent identification of the mechanisms and types
of real options are with respect to managing the identified
objective under uncertainty.

Flexibility in maintaining the surveillance objective is found
to be two because there are two distinct clauses in the logical
DNF formula (8). Note that the convention in this example is
to use the prime implicant clause count rather than the full
DNF (see discussion in Section VI-A). Flex > 1 indicates the
presence of option(s). The types of options are identified as
the flexibility to deploy a sparse swarm and to deploy a dense
swarm. The realizability of deploying a sparse swarm is two
[number of terms in formula (9)], while the realizability of
deploying a dense swarm is three [number of terms in formula
(10)]. This means that there are more mechanisms that enable
deploying a dense swarm relative to a sparse swarm. The
optionability metric Opt is greater than zero for each of the
candidate mechanisms—in this case, the four SR, four LR, or
heterogeneous swarm. The optionability of the UAV swarm
with short-range communication is one since it enables the
option to deploy a dense swarm, which participates in a single
clause in formula (8). The optionability of purchasing the four
LR UAVs or the heterogeneous UAVs is two. This is because
these mechanisms both enable deploying sparse and dense
swarms, where each of which participates in a single clause in
formula (8).

The output of the method is the (Mechanism, Type) can-
didates, shown superimposed on the MDM in Fig. 15. Each
mechanism is shown to enable one or two types of options, as
represented by an arrow. In the example case, the most option-
able mechanisms are the swarm configurations with long-range
communications (4 LR) and heterogeneous communications
(2SR + 2LR) since each of these enables two types of real
options for uncertainty management.

While, within the scope of this example, we focused on
maintaining the surveillance objective given the revisit rate
requirement as the source of uncertainty, it is possible to model
multiple objectives and to identify other nodes in the MDM
as sources of uncertainty. For example, in another scenario,

C. Valuation of the Identified Tuples

The calculation of the ility metrics reveals “where” the
mechanisms and types of options are embedded (see Fig. 15).
Once the mechanisms and types of real options are identified,
they can be valued under uncertainty using real options analysis
by taking into account the flexibility to exercise available real
options, along with associated costs and benefits. Table V lists
the assumed normalized costs and benefits per mission for the
example scenario, as well as the results of the real options
valuation.

These results are obtained by using the binomial lattice pric-
ing model [14], [55] commonly used for real options valuation,
with the following assumptions. The uncertainty is quantified
as the percentage of HRR missions and its evolving distribution
over time, assuming that the initial percentage of HRR missions
is 30%, the growth rate of the HRR missions is zero, and volatil-
ity is modeled by a standard deviation of 30%. The relative
benefits and costs of the swarm configurations are important
for comparative valuation of real options. Therefore, costs and
benefits have been normalized on the same scale and have been
used to compute the real option values listed in Table V.

The cost per mission is the amortized cost of the UAVs,
taking into account that the LR communication system is more
costly than the SR system. The cost includes operational costs,
which are assumed to be the same in each case because a total
of four UAVs are operated. In the case of a sparse swarm,
the UAVs are utilized for two simultaneous missions. The
number of images taken by each swarm configuration under the
different scenarios is used as a metric to quantify benefits.
The number of images is proportional to the number of UAVs
in the swarm, the threshold number of images beyond which
benefit is not derived, the revisit rate of targets, and the duration
of the mission. More benefit is associated with more imagery
from which benefit is derived. It is assumed that a mission
duration is 200 min, and exceeding 200 images for an LRR
mission will not result in additional benefit. Therefore, 200
images per mission are chosen as the base case around which
benefits and costs are normalized. For the SR UAV swarm in an
HRR mission, assuming that two images are taken every minute
and the duration of the entire mission is 200 min, 400 images
will be taken. In the case of the LRR mission, deploying a dense
swarm is not ideal because it exceeds the required number of
imagery. Therefore, for the SR swarm, the benefit is modeled as
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200 images per mission. For the swarms that include UAVs with
LR communication, the flight time is reduced due to increased
power consumption, resulting in shorter period of operation and
less imagery. However, in the case of exercising the option to
deploy a sparse swarm, the overall benefit is higher due to the
opportunity to run a simultaneous mission with the extra pair of
UAVs.

The results indicate that the four UAVs with LR communi-
cation enable the most valuable option. The LR and SR + LR
mechanisms that had the greatest optionability have higher
values compared to the less optionable SR mechanism. In the
case of the four LR UAVs, the added value of the flexibility
to deploy either sparse or dense swarm is 6.95 — 5.11 = 1.84,
whereas the value of flexibility with the heterogeneous UAVs is
6.05 — 5.11 = 0.94. The recommended strategy for managing
operational uncertainty in this scenario is the homogeneous
swarm of UAVs with a long-range communication capability.
While a heterogeneous swarm may seem more flexible to a
system designer, this example shows that designing a homoge-
neous swarm with long-range communication is the mechanism
that enables the most valuable type of flexibility with respect
to managing the revisit rate uncertainty. ROI leverages the
Logical-MDM to systematically identify (Mechanism, Type)
tuples that are amenable to real options valuation in order to
identify and create systems with added value through flexibility.

IX. DISCUSSION

We discuss how our approach satisfies the requirements
identified in Section II-A in comparison to prior related work.

A. Requirements I and 2

Prior work on real options identification using DSMs is
focused on analysis of flexibility enabled by the technical
system design (such as real options in design [56]-[60] and
modular architectures [4], [61], [62]). There are two associated
limitations.

First, the use of DSMs to identify alternative types of flexibil-
ities to manage a given uncertainty is undertreated. An inherent
assumption often made in prior work is that the type of flexibil-
ity involves changing the design. However, it may be possible
to manage uncertainty, such as changing requirements, through
flexibility elsewhere. For example, we used the Logical-MDM
to model end user operations and to identify types of real
options in the operational phase. The options to deploy sparse
and dense swarms are examples of flexibility in the end user
operations. By identifying both mechanisms and types of real
options using DSMs as specified in Requirement 1, we enable
a more holistic consideration and valuation of alternatives.

Second, it may be possible to enable flexibility through
mechanisms beyond the technical design phase. For example,
deploying a dense swarm may, in turn, be a process mechanism
that will enable the flexibility to reconfigure the swarm to
manage potential failure of a UAV (see discussion of chain of
mechanisms and types in Section I). Therefore, our approach
is not inherently restricted to identifying mechanisms in system
design, and furthermore, it is not restricted to a type of real
option in the design domain, as specified in Requirement 2.

B. Requirement 3

Prior work has proposed DSM-based methods for identifica-
tion of new opportunities to embed flexibility. For example, the
DSM has been used as the basis for change propagation analysis
based on interviews to identify the impact of a contextual
change on system components, thereby constructing change
matrices. Change matrices are used to categorize components
as change multipliers, carriers, absorbers, or constants [7] using
a change propagation index [63] and variants [64]. Change
multipliers are then recommended as potential places to embed
flexibility in design. An ESM-based method has also been
proposed in analyzing hot and cold spots in a system, where hot
spots are expected to frequently change and cold spots are not
expected to change [24]. The hot spots are identified as places
to insert options.

The previously described methods specifically focus on man-
aging change propagation triggered by a design change uncer-
tainty and do not identify existing or potential options for man-
aging more general uncertainties that are resolved in the future.
We handle the case of more general uncertainties that are not
necessarily a design change and may be external to the system.
Examples include uncertainty in end user requirements such as
whether a UAV is to be used for day or night missions and
uncertainty in policy such as the potential operation of UAVs in
the national airspace. Furthermore, our approach can be used in
the analysis of new scenarios or legacy systems. If the Logical-
MDM is used to model a legacy system, existing mechanisms
and types of real options can be identified. The results can be
used to analyze uncertainty management strategies and to guide
the addition or removal of options. The Logical-MDM may also
be altered to probe the impact of potential changes on the ility
metrics and real options for uncertainty management.

C. Requirement 4

The capability to represent choices and alternatives is a
crucial aspect of a complex system model in the context of
real options analysis. In the system design literature, there is
an acknowledged need to more explicitly represent flexibility
or choice in a DSM model.

For example, contingencies have been identified in [29] as
a fourth type of relationship in addition to the parallel, series,
and coupled relationships. Contingency relations have recently
been applied to model an adaptive product development process
using a task-based DSM [46]. Adaptivity is modeled through
contingent versions of a single activity, referred to as activity
modes, which are akin to real options that may be exercised
in the future. A unique symbol has been used to represent
contingent dependencies in the DSM [29], [46]. While the use
of a unique symbol to represent choice within the DSM works
well for cases when the logical relations use homogeneous
connectives, it will necessitate the introduction of extra nodes
into the matrix to model more complex logical relations with
heterogeneous relationships involving both conjunction and
disjunction.

An approach that distinguishes between OR and exclusive
OR relationships among design activities was used in [65]. In
that approach, the logic is not explicitly modeled in the DSM.
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Instead, multiple DSMs are generated, where each of which
corresponds to a possible interpretation of the logical choices.
In this paper, we introduce an expressive logical version of the
DSM and more generally the MDM by explicitly modeling the
logic using the Boolean connectives for conjunction, disjunc-
tion, and negation.

D. Summary of Requirements

The aforementioned discussion validates that the Logical-
MDM and the ROI method for identifying mechanisms and
types of real options satisfy the previously unmet Requirements
1-4 of Section II-A. The application of ROI during the concep-
tual phase of the design process enables early identification of
valuable flexibility to embed in the design. ROI also supports
the analysis of legacy designs by identifying existing flexibili-
ties for uncertainty management.

Couplings within the MDM were not treated as a special case
in this paper in order to allow the identification of mechanisms
and types of real options within coupled portions of the MDM.
For example, consider the case where reaching a destination
is enabled by the option to insert an extra battery in a UAV,
which, in turn, is enabled by a charged battery 2 mechanism.
However, reaching the destination will allow charging battery
2, thereby maintaining a charged battery 2 as a mechanism.
The mechanism, type of option, and objective are coupled in
a loop within the MDM in this case, yet mechanisms and types
of options can be identified within this cluster. Prior work
on DSM-based identification of real options has specifically
focused on the identification of modular designs by clustering
a DSM into modules, since modularity is an enabler of real
options. However, not all real options stem from modularity.
Furthermore, as the aforementioned example shows, mech-
anisms and types of real options may be embedded within
modules. Therefore, ROI is complementary to other approaches
that leverage DSM clustering algorithms, although ROI may
be applied to clustered DSMs within the MDM by specifying
logical relations among the clusters.

E. Limitations and Future Work

The sensitivity of the metrics and identified options to the
level of abstraction in the MDM model should be considered
since abstraction is a common means of managing the scalabil-
ity of the MDM. Therefore, the MDM-based metrics introduced
in this paper are to be interpreted in a relative, not an absolute,
sense. If too much detail is abstracted, some options may be
missed. There is an art to the modeling effort, and future work
should explore the ideal level of abstraction for analysis. One
remedy may be to apply the approach at different levels of
abstraction using models with varying levels of fidelity during
the product development lifecycle. DSM and MDM models are
often developed to support product design and development
activities and may be extended to the Logical-MDM as the basis
for ROL

We assumed that a model of the system being analyzed is
specified by domain experts and reflects an accurate represen-
tation of the structure and behavior of the system. An issue with

both DSM and MDM models and their variants is that they
can be incomplete. It is often difficult to identify all elements,
relationships, and courses of action. Iterative development and
verification of the model will ensure a more complete model
for subsequent analysis. In applying ROI, metrics should be
interpreted as heuristics rather than exact measures that reflect
all necessary and sufficient conditions. Fuzzy or probabilistic
modeling can be considered as a remedy to this issue. Machine
learning algorithms to automatically learn model structure and
parameters when training data are available may also be con-
sidered to construct complex models.

The enhanced expressivity of the Logical-MDM opens the
door to future work on analysis methods. For instance, classical
DSM analysis methods such as clustering and sequencing do
not take into account existing flexibilities in the system or
process being analyzed. However, dependencies may involve
logical OR relations, and a highly coupled cluster may be due
to the existence of flexibility. Future work may investigate
new analysis methods based on logical DSMs that support
modeling of flexibility. For real options identification based on
the Logical-MDM, future work may probe the use of automated
logic analysis techniques such as logic minimization tools,
constraint and Boolean satisfiability solvers. These tools can
support the simulation of uncertainties and the identification of
mechanisms and types of real options by generating solutions
that satisfy the constraints in the Logical-MDM and simulated
uncertainties.

X. SUMMARY

We have addressed the problem of identifying real options
for uncertainty management using a variant of DSM-based
MDM models that are appropriate for modeling complex sys-
tems encompassing multiple domains. Our approach identifies
both enablers and types of real options to manage uncertainties
based on a (Mechanism, Type) characterization of a real op-
tion. We have introduced the Logical-MDM that supports the
explicit representation of logical behaviors in addition to the
structural dependencies. We have introduced ROI that leverages
the Logical-MDM to identify (Mechanism, Type) tuples that
are amenable to real options valuation. We have demonstrated
our approach through a series of UAV scenarios.
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