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Abstract Due to the vast and rapid increase in 

the size of data, data mining has been an 

increasingly important tool for the purpose of 

knowledge discovery to prevent the presence 

of rich data but poor knowledge. In this 

context, machine learning can be seen as a 

powerful approach to achieve intelligent data 

mining. In practice, machine learning is also an 

intelligent approach for predictive modelling. 

Rule learning methods, a special type of 

machine learning methods, can be used to 

build a rule based system as a special type of 

expert systems for both knowledge discovery 

and predictive modelling. A rule based system 

may be represented through different 

structures. The techniques for representing 

rules are known as rule representation, which 

is significant for knowledge discovery in 

relation to the interpretability of the model, as 

well as for predictive modelling with regard to 

efficiency in predicting unseen instances. This 

paper justifies the significance of rule 

representation and presents several existing 

representation techniques. Two types of novel 

networked topologies for rule representation 

are developed against existing techniques. This 

paper also includes complexity analysis of the 

networked topologies in order to show their 

advantages comparing with the existing 

techniques in terms of model interpretability 

and computational efficiency. 

Keywords: Rule Based Networks, Knowledge 

Discovery, Predictive Modelling, Rule 

Representation 

1 Introduction 
The daily increase in the size of data has led to 

the research of knowledge discovery in 

databases [1]. This is in order to prevent the 

presence of rich data but poor knowledge [2], 

which means that there would potentially be a 

large amount of knowledge that can be 

discovered from data. Data mining is 

commonly seen as an important tool for 

knowledge discovery [3]. Data mining can be 

done by subject experts through manual 

analysis of data or by machines through 

empirical analysis of data. Due to the presence 

of big data, it is necessary to employ more 

intelligent methods to achieve intelligent data 

mining. In this context, machine learning can 

be seen as a powerful approach that could 

serve for such data mining tasks. On the other 

hand, machine learning is also an intelligent 

approach for predictive modelling in a black 

box manner while knowledge discovery 

follows a white box approach, i.e. predictive 

modelling emphasizes on the mapping from 

inputs to outputs without interpreting the 

reasons whereas knowledge discovery needs to 

interpret the reasons for the mapping. The rest 

of this section focuses on the background on 
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data mining and machine learning as well as 

applications of rule based systems for the 

purpose of knowledge discovery and predictive 

modelling. 

Machine learning is a branch of artificial 

intelligence and involves two stages: training 

and testing [4]. Training aims to learn 

something from known properties by using 

learning algorithms and testing aims to make 

predictions on unknown properties by using 

the knowledge learned in the training stage. 

From this point of view, training and testing 

are also known as learning and prediction 

respectively. In practice, a machine learning 

task aims to build a model, which is further 

used to make predictions, through the use of 

learning algorithms. Therefore, this task is 

usually referred to as predictive modelling.  

Machine learning could be divided into two 

types: supervised learning and unsupervised 

learning, in accordance with the form of 

learning. Supervised learning means learning 

with a teacher because all instances from a 

training set are labelled. The aim of this type of 

learning is to build a model by learning from 

labelled data and then to make predictions on 

other unlabeled instances with regard to the 

value of a predicted attribute. The predicted 

value of an attribute could be either discrete or 

continuous. Therefore, supervised learning 

could be involved in both classification and 

regression tasks for categorical prediction and 

numerical prediction respectively.  

In contrast, unsupervised learning means 

learning without a teacher. This is because all 

instances from a training set are unlabeled. The 

aim of this type of learning is to find 

previously unknown patterns from data sets. It 

includes association, which aims to identify 

correlations between attributes, and clustering, 

which aims to group objects based on 

similarity measures. 

On the other hand, as mentioned earlier in this 

section, machine learning algorithms are 

popularly used in data mining tasks to discover 

some previously unknown pattern. Therefore, 

this task is usually referred to as knowledge 

discovery. From this point of view, data 

mining tasks also involve classification, 

regression, association and clustering. Both 

classification and regression can be used to 

reflect the correlation between multiple 

independent variables and a single dependent 

variable. The difference between classification 

and regression is that the former typically 

reflects the correlation in qualitative aspects 

whereas the latter reflects it in quantitative 

aspects. Association is used to reflect the 

correlation between multiple independent 

variables and multiple dependent variables in 

both qualitative and quantitative aspects. 

Clustering can be used to reflect patterns in 

relation to grouping of objects. 

One practical application of machine learning 

is the design of expert systems. A rule based 

system is a special type of expert systems, 

which typically consists of a set of if-then rules 

referred to as a rule set. Rule based systems 

could be designed by adopting rule learning 

methods that belong to a special type of 

machine learning methods and can serve for 

classification, regression and association. A 

unified framework for design of rule based 

classification systems has been recently 

developed in [5]. In this framework, rule 

representation is justified as a significant 

impact factor for the efficiency of rule based 

systems in predicting unseen instances. In 

addition, rule representation is also important 

for knowledge extraction due to the 

interpretability of a particular representation. 

In other words, poor representation would 

usually make a rule set become cumbersome 

and less readable. This paper presents two 

types of novel networked topologies for rule 

representation that are developed against 

existing techniques, such as decision trees and 

linear lists. The above types of novel 

networked topologies also show their 

superiority against these existing techniques in 

terms of model interpretability and 

computational efficiency. 

The rest of this paper is organized as follows. 

Section 2 outlines the significance of rule 

representation in both data mining and 

machine learning tasks. Section 3 describes the 

existing techniques of rule representation from 

a conceptual point of view and compares them 

in terms of their complexity. Section 4 

introduces some network topologies used as 

network based rule representation techniques. 

The techniques are validated through 

theoretical analysis in terms of computational 

complexity and structure complexity in 

comparison with existing techniques. Section 5 

summarises the completed work and highlights 

the contributions to research and development 

in data mining, machine learning and expert 

systems. Further directions of this research 

area are also suggested at the end of this paper. 



2 Significance of Rule 

Representation 
As mentioned in Section 1, rule representation 

is a significant impact factor that may affect 

both computational efficiency in the testing 

stage for machine learning tasks and 

knowledge interpretability for data mining 

tasks. This section focuses on justifying why 

rule representation is significant for knowledge 

discovery and predictive modelling. 

For the purpose of knowledge discovery, it is 

important that the knowledge is highly 

interpretable for people, which means the 

knowledge needs to be represented in such a 

way that makes it easier to read and 

understand. In the context of rule based 

systems, knowledge is actually represented in 

the form of if-then rules. Higgins justified in 

[6] why a rule based knowledge representation 

is necessary with the following arguments: 

· A network was conceived of in [7], which 

needs a number of nodes exponential in the 

number of attributes in order to restore the 

information on conditional probabilities of 

any combination of inputs. It is argued in 

[6] that the network restores a large 

amount of information that is mostly less 

valuable. 

· Another type of network known as 

Bayesian Networks introduced in [8] needs 

a number of nodes same as the number of 

attributes. However, the network only 

restores the information on joint 

probabilities based on the assumption that 

each of the input attributes is totally 

independent of the others. Therefore, it is 

argued in [6] that this network is unlikely 

to predict more complex relationships 

between attributes due to lack of 

information on correlational probabilities 

between attributes. 

· There are some other methods that fill the 

gaps in Bayesian Networks by deciding to 

only choose some higher-order conjunctive 

probabilities such as the first neural 

networks [9] and another method based on 

correlation/dependency measure [10]. 

However, it is argued in [6] that these 

methods still need to be based on the 

assumption that all attributes are 

independent of each other. 

On the basis of above arguments, Higgins 

recommended the use of rule based knowledge 

representation and stressed the advantage that 

rules have to interpret relationships between 

attributes in order to be able to provide 

explanations with regard to a decision of an 

expert system [6]. 

However, like data structures [11], rules can 

also be represented in different structures 

which may provide different levels of 

readability and interpretability. In this context, 

rules need to be represented in a way that 

makes it easier for people to read and 

understand the knowledge interpreted as rules. 

Therefore, the form of rule representation is 

significant in data mining tasks for knowledge 

discovery. 

For the purpose of predictive modelling, rule 

representation is also significant as mentioned 

in Section 1. This is because rules represented 

in different structures would usually lead to 

different levels of computational efficiency in 

the testing stage for machine learning tasks. In 

software engineering, different data structures 

usually lead to different levels of 

computational efficiency in some operations 

relating to data management such as insertion, 

update, deletion and search. As mentioned in 

[5, 12], the main objective in the prediction 

stage is to find the first firing rule by searching 

through a rule set. In this context, it indicates 

that predicting on unseen instances by a rule 

set is a search problem. As mentioned above, 

different data structures may lead to different 

levels of search efficiency. For example, a 

collection of items stored in a linear list can 

only be searched linearly if these items are not 

given indexes. However, if the same collection 

of items is stored in a tree, then it is achievable 

to have a divide and conquer search. The 

former way of search would be in linear time 

whereas the latter way is in logarithmic time. 

In this sense, efficiency in search of firing 

rules would also be affected by the structure of 

the rule set. It is also defined in [13] that one of 

the biases for rule learning methods is ‘search 

bias’, which refers to the strategy used for the 

hypothesis search. In general, what is expected 

is to make it unnecessary to examine the whole 

rule set, but as few rule terms as possible. 

More detailed justifications about this are 

given in Section 3 and 4. 

On the basis of above descriptions, rule 

representation is considered highly significant 

in both data mining and machine learning 

tasks, which means that a rule set is expected 

to have a high level of interpretability for 

knowledge discovery as well as to demonstrate 



a low level of computational complexity for 

predictive modelling. 

3 Existing Rule 

Representations 
As mentioned in Section 2, rule representation 

is significant for both knowledge discovery 

and predictive modelling. This section 

describes two existing techniques of rule 

representation, namely decision trees and 

linear lists, and compares them with respect to 

their computational complexity and 

interpretability.  

3.1 Decision Trees 

Decision Tree is an automatic representation 

for classification rules that are generated 

through using a ‘divide and conquer’ approach 

[14]. This indicates that if a rule learning 

method that follows the above-named 

approach is adopted to generate rules, then the 

rules are automatically represented in a tree 

structure. However, decision tree 

representation is criticized by Cendrowska and 

identified as a major cause of overfitting in 

[15] due to the replicated sub-tree problem as 

illustrated in Fig.1. 

 

 
 

Figure 1: Cendrowska’s replicated subtree 

example [21]. 

 

It can be seen from the Fig.1 that the four sub-

trees which have node C as their roots are 

identical. Cendrowska justified in [15] that 

those rules which have no common attributes 

would not be able to fit in a tree structure and 

that the replicated sub-tree problem would 

arise if such rules are forced to fit in a tree 

structure. It is also argued in [15, 16] that it is 

required to examine the entire tree in order to 

extract rules about a single classification in the 

worst case. This drawback on representation 

makes it difficult to manipulate for expert 

systems and thus seriously lowers the 

computational efficiency in predicting unseen 

instances. For the purpose of predictive 

modelling, as mentioned in Section 2, 

computational efficiency in the testing stage is 

significant especially when the expert systems 

to be designed are time critical [17]. 

On the other hand, decision trees are often 

quite complex and difficult to understand [13]. 

Even if decision trees are simplified by using 

pruning algorithms, it is still difficult to avoid 

that the decision trees become too 

cumbersome, complex and inscrutable to 

provide insight into a domain for knowledge 

usage [13, 14]. This undoubtedly lowers the 

interpretability of decision trees and is thus a 

serious drawback for the purpose of knowledge 

discovery. 

All of the limitations mentioned above 

motivate the direct use of ‘if-then’ rules 

represented by a linear list structure. Mode 

details about linear lists are introduced in the 

Section 3.2. 

3.2 Linear Lists 

As mentioned in Section 3.1, decision tree 

representation has serious limitations for 

knowledge discovery and predictive modelling 

and thus the direct use of if-then rules is 

recommended. In comparison with decision 

trees, linear lists do not need to constrain that 

all rules must have common attributes and thus 

reduces the presence of redundant terms in a 

rule set. However, as if-then rules are 

represented in a linear list structure, predicting 

unseen instances in this representation is 

demonstrated in linear search with the time 

complexity of O(n) where the total number of 

rule terms is used as the input size (n). This is 

because the linear list representation follows a 

linear search by going through the whole rule 

set rule by rule in an outer loop; and by going 

through term by term for each rule in an inner 

loop. The process of linear search can be 

illustrated by using the example rule set below: 

 
Rule 1: if x1=0 and x2=0 then y=0; 
Rule 2: if x1=0 and x2=1 then y=0; 
Rule 3: if x1=1 and x2=0 then y=0; 
Rule 4: if x1=1 and x2=1 then y=1; 

On the basis of the above rule set, if an 

instance with two inputs (x1=1 and x2=1), then 

it needs to first go through Rule 1 checking the 



values of x1 and x2 and then move onto Rule 2 

taking the same check again until Rule 4 is 

checked and found firing. 

The above description implies that it may have 

to go through the whole rule set to find the first 

rule firing in the worst case. This would lead to 

huge computational costs when the 

representation is used to represent a rule set 

generated by learning from large training data. 

As mentioned in Section 2, a rule 

representation technique is expected to identify 

the firing rules without the need to go through 

the whole rule set. Therefore, for the purpose 

of predictive modelling, linear lists still cannot 

fulfil the goal with regard to efficient search of 

firing rules. In this sense, it is necessary to 

develop another technique of rule 

representation which demonstrates a level of 

computational efficiency higher than linear 

time. 

In addition, when a training set is large, there 

would be a large number of complex rules 

generated. In this case, the set of rules 

represented in a linear list structure would 

become very cumbersome and difficult to 

interpret for knowledge usage. In other words, 

a large number of complex rules represented in 

a linear list is quite like a large number of long 

paragraphs in an article, which would be very 

difficult for people to read and understand. 

Instead, people prefer to look at diagrams to 

gain information. In this sense, graphical 

representation of rules would be expected to 

improve the interpretability of knowledge 

discovered from data. 

3.3 Discussion 

On the basis of the above description about 

limitations of tree and list representations in 

terms of computational efficiency, the 

development of a new representation of 

classification rules is needed, which should 

have a level of efficiency higher than linear 

time in time complexity. This new 

representation is described in Section 4. 

On the other hand, in addition to the time 

complexity limitation, the two existing 

representations have the limitation of poor 

interpretability, especially when large data sets 

are involved. Higgins has developed a 

representation called rule based network in [6], 

which can improve the interpretability of 

knowledge representation in the context of 

probabilistic logic. Section 4 introduces more 

details about this as well as the generalization 

of rule based network representation. 

4. Network Based Rule 

Representation 
Section 3 identified the limitations of decision 

tree and linear list representations and outlined 

the need to develop new techniques for rule 

representation. This is in order to achieve a 

more efficient search of firing rules than linear 

search as well as to deliver a more 

interpretable representation of knowledge than 

decision trees and linear lists do. In addition, 

predictions can be made based on different 

types of logic such as deterministic, 

probabilistic and fuzzy logic. Therefore, this 

section introduces the three types of logic and 

a special type of rule based network 

representation developed by Higgins [6]. This 

section also introduces other modified versions 

of the network based rule representation, 

which includes a unified network topology for 

generalized representation in order to fulfil the 

topology being based on all of the three types 

of logic mentioned above. 

4.1 Computational Logic 

Ross stated in [18] that logic is a small part of 

human capability for reasoning, which is used 

to assist people in making decisions or 

judgments. As mentioned in [19], in the 

context of Boolean logic, each variable is only 

assigned a binary truth value: 0 (false) or 1 

(true). It indicates that reasoning and judgment 

are made under certainty leading to 

deterministic outcomes. From this point of 

view, this type of logic is also referred to as 

deterministic logic. However, in reality, people 

usually can only make decisions, judgment and 

reasoning under uncertainty. Therefore, the 

other two types of logic, namely probabilistic 

logic and fuzzy logic, are used more widely, 

both of which can be seen as an extension of 

deterministic logic. The main difference 

between the two is that the truth value is not 

binary but continuous between 0 and 1. The 

truth value implies a probability of truth 

between true and false in probabilistic logic 

and a degree of that in fuzzy logic. 

Deterministic logic deals with any events 

under certainty. For example, a crisp set has all 

its elements fully belong to it without 



uncertainty, i.e. each element certainly has a 

full membership to the set. 

Probabilistic logic deals with any events under 

probabilistic uncertainty. For example, an 

element may be randomly allocated to one of 

five sets with normal distribution of 

probability. Once the element has eventually 

been allocated to a particular set, then it has a 

full membership to the set. 

Fuzzy logic deals with any events under non-

probabilistic uncertainty. In the context of set 

theory, each set is referred to as a fuzzy set. 

This is because each element may not have a 

full membership to the set, i.e. the element 

belongs to the fuzzy set to an extent. 

In the context of rule based systems, a 

deterministic rule based system would have 

each rule either fire or not. If it fires, the 

consequence would be deterministic. A 

probabilistic rule based system would have a 

firing probability for each rule. The 

consequence would be probabilistic depending 

on its posterior probability given specific 

antecedents. A fuzzy rule based system would 

have a firing strength for each rule. The 

consequence would be weighted depending on 

the fuzzy truth value of the most likely 

outcome. In addition, fuzzy rule based systems 

deal with continuous attributes by mapping the 

numerical values to a number of linguistic 

terms according to the fuzzy membership 

functions defined. 

4.2 Attribute Oriented Rule Based 

Network 

As mentioned in Section 3, Higgins has 

developed a representation called rule based 

network as illustrated in Fig.2, which is based 

on the relationship between input attributes and 

class labels. It is thus referred to as attribute 

oriented rule based network. 

In this network, as explained in [6], each node 

in the input layer represents an input attribute. 

Each node in the middle layer represents a 

rule. The connections between the nodes in the 

input layer and the nodes in the conjunctive 

layer indicate which rules relate to which 

attributes. In the output layer, each node 

represents a class label. The connections 

between the nodes in the conjunctive layer and 

the nodes in the output layer reflect the 

mapping relationships between rule 

antecedents and classifications (consequents). 

Each of the connections is also weighted as 

denoted by wmk, where m is the index of the 

rule and k is the index of the class. The weight 

reflects the confidence of the rule for 

predicting the class given the antecedent of the 

rule. In this way, each class is assigned a 

weight, which is derived from the confidence 

of the rules having the class as their 

consequents. The final classification is 

predicted by weighted majority voting, which 

is known as ‘Winner-Take-All strategy’ as 

illustrated in Fig.2 [6]. 

 

 
Figure 2: Higgins’s non-deterministic rule 

based network for classification [6]. 

 

The network topology illustrated in Fig.2 could 

be seen as a special type of rule based network 

representation based on the relationship 

between input attributes and class labels. This 

is because of the possibility that there are two 

or more rules that fire with different 

classifications as rule consequents. This issue 

needs to be resolved by conflict resolution 

strategies as introduced in [20]. Higgins’s 

network topology actually takes into account 

this conflict and deals with it by the ‘Winner-

Take-All strategy’ [6]. Therefore, the network 

topology could be seen as a type of non-

deterministic rule based network with certain 

inputs but uncertain outputs. However, the 

conflict of classification mentioned above 

would never arise with the rule sets that are 

generated by using the divide and conquer 

approach. In this context, if the rule generation 

is based on deterministic logic, both inputs and 

outputs would be deterministic. As it is, the 

networked topology is modified to become a 

deterministic rule based network that is 

illustrated by Fig.3. 

In general, this is a three layer network. In the 

first layer, each node represents an input 

attribute and this layer is referred to as input 

layer. The number of nodes in this layer is 

dependent on the number of attributes in a data 



set. In the middle layer, each node represents a 

rule to make the conjunction among inputs and 

provide outputs for the node in the last layer 

and thus the middle layer is referred to as 

conjunction layer. The number of nodes in this 

layer is dependent on the number of rules 

generated. The only node in the last layer 

represents the class output and thus this layer is 

referred to as output layer. In addition, the 

nodes in the input layer usually have 

connections to other nodes in the conjunction 

layer. Each of the connections represents a 

condition judgment which is explained further 

using specific examples. However, a node in 

the input layer may not necessarily have 

connections to other nodes in the conjunction 

layer. This is due to a special case that an 

attribute may be totally irrelevant to making a 

classification. In other words, this attribute is 

not involved in any rules in the form of rule 

terms. From this point of view, this version of 

rule based network representation can help 

identify the relevance of attributes for feature 

selection tasks, which is listed in Table 1 and 

discussed further in this section. 

 

 
Figure 3: Determinstic Rule Based Network 

version 1 [21]. 

 

Table 1 Comparison in Interpretability [22] 
Criteria  DT LL RBN 

correlation between 
attributes and classes  

poor implicit explicit 

relationship between 
attributes and rules 

implicit implicit explicit 

ranking of attributes poor poor explicit 

ranking of rules poor explicit explicit 

attribute relevance poor poor explicit 

overall low medium high 

NB: DT= Decision Tree, LL= Linear List and RBN= Rule Based 
Network 

 

On the other hand, this type of networked 

representation is based on the relationship 

between attributes and class labels as 

mentioned earlier in this subsection. Therefore, 

this representation can be used to reflect 

correlations between input attributes and class 

labels, i.e. it enables the identification of the 

input attributes that have the highest impact on 

determining each of the class labels.  

 

 
Figure 4: Determinstic Rule Based Network 

Example Version 1  [21]. 

 

The example rule set that is used in Section 3 

and represented by this network topology is 

illustrated in Fig.4. In this diagram, both input 

values are supposed to be 1 (shown as green) 

and each node in the input layer represents an 

input attribute; each node in the middle layer 

represents a rule and the layer is referred to as 

conjunction layer due to the fact that each rule 

actually reflects the mapping between inputs 

and outputs and that the output values strongly 

depend on the conjunction of input values; 

finally, the node in the output layer represents 

the class attribute. On the other hand, each of 

the connections between the input layer and 

the conjunction layer represents a condition 

judgment. If the condition is met, then the 

connection is colored by green. Otherwise, it is 

colored by red. In addition, each of the 

connections between the conjunction layer and 

the output layer represents an output value 

from the corresponding rule. In other words, if 

all of the conditions in a rule are met, then the 

corresponding node in the conjunction layer 

becomes green. Otherwise, the corresponding 

node becomes red. The former case would 

result in that a node representing a rule 

becomes green and that the output value from 

the rule is assigned to the class attribute in the 

output layer. In the meantime, the connection 

between the node representing the rule and 

another node representing the class attribute 

becomes green, which means that the class 



attribute would be assigned the output value 

from the rule. In contrast, the latter case would 

result in that the node in the conjunction layer 

becomes red and that the output value from the 

corresponding rule cannot be assigned to the 

class attribute. 

As illustrated in Table 1, this type of 

networked rule representation also shows the 

relationship between attributes and rules 

explicitly as shown connections between nodes 

in the input layer and nodes in the conjunction 

layer. In addition, the networked representation 

also introduces a ranking for both input 

attributes and rules based on their importance. 

The importance of an input attribute is 

measured by the weighted average of ranks for 

those rules that relate to the input attribute. For 

example, an attribute A relates to two rules 

namely rule 1 and rule 2. If the ranks for rule 1 

and rule 2 are 4 and 8 respectively, then the 

average of ranks would be 6= ((4+8)/2). In real 

applications, this characteristic about ranking 

of attributes may significantly contribute to 

both knowledge discovery and feature 

selection with respect to feature importance. 

Besides, the strength of the representations 

also lies in the strong interpretability on the 

mapping relationship between inputs and 

outputs, which is significantly useful for 

knowledge discovery. On the basis of the 

above descriptions, the rule based network 

illustrated in Fig.3 is thus a practically 

significant technique in data mining tasks. 

As mentioned above, a rule set may have some 

or all rules non-deterministic in terms of the 

relationships between rule antecedents and 

consequents due to the presence of uncertainty 

in datasets. In this context, the rule set would 

be used to predict classes based on 

probabilistic or fuzzy logic. Therefore, a 

unified topology for rule based networks, 

which could fulfil being based on different 

types of logic such as deterministic, 

probabilistic and fuzzy logic, is developed and 

illustrated in Fig.5. 

In this network topology, the modifications are 

made to the one illustrated in Fig.3 by adding a 

new layer called disjunction and assigning a 

weight to each of the connections between 

nodes. The disjunction layer is similar to the 

output layer in Higgins’s network topology 

illustrated in Fig.2. In this layer, each node 

represents a class label and the number of 

nodes is dependent on the number of classes. 

However, the final prediction is not necessarily 

made by choosing the most common class 

which has the highest posteriori probability in 

total. In contrast to Fig.2 and Fig.3, the 

topology also allows representing inconsistent 

rules, which means that the same rule 

antecedent could be mapped to different 

classes (consequents). For example, the first 

node in the conjunction layer is mapped to 

both the first and the second nodes in the 

disjunction layer as illustrated in Fig.5. With 

regard to the weights assigned to the 

connections between nodes, they would 

represent the truth values if the computation is 

based on deterministic or fuzzy logic. The truth 

value would be crisp (0 or 1) for deterministic 

logic whereas it would be continuous (between 

0 and 1) for fuzzy logic. If the computation is 

based on probabilistic logic, the weights would 

represent the probabilities of the corresponding 

cases. 

 

 
Figure 5: Unified Rule Based Network [21]. 

 

In the context of deterministic logic, each of 

the connections between the nodes in the input 

layer and the nodes in the conjunction layer 

would be labelled 1 for its weight, i.e. tij= 1 

where i is the index of the attribute and j is the 

index of the rule, if the corresponding 

condition as part of the rule antecedent is met. 

A rule would have its antecedent satisfied if 

and only if all of the conditions are met. In this 

case, the rule is firing to indicate its 

consequent (as the class predicted) which is 

represented by a node in the disjunction layer. 

If the rule is consistent, the corresponding node 

should have a single connection to another 

node in the disjunction layer. The connection 

would be labelled 1 as its weight denoted by 

wjk, where k is the index of the class. In this 

case, if there is only one rule firing or more 

rules firing without conflict of classification, 

then the output would be deterministic. This is 

because there is only one node in the 



disjunction layer providing a weight greater 

than or equal to 1 for its connection to the node 

in the output layer. For all other nodes, the 

weight provided for the corresponding 

connection would be equal to 0. 

However, as mentioned earlier, a rule may be 

inconsistent, which means that the same rule 

antecedent may be mapped to different classes 

as its consequent. In this case, the 

corresponding node would have multiple 

connections to different nodes in the 

disjunction layer. For each of the connections, 

the weight would be equal to a value between 

0 and 1. Nevertheless, the sum of weights for 

the connections would be equal to 1. With 

regard to each of classes, it may be mapped 

from different rule antecedents. Therefore, 

each class would have a summative weight 

denoted by ck, which is equal to the sum of the 

weights for the rule antecedents mapped to the 

class. Finally, the node in the output layer 

makes the weighted majority voting for the 

final prediction. 

In the context of probabilistic logic, the tij 

would be equal to a value between 0 and 1 as a 

conditional probability. Similar to 

deterministic logic, a rule is firing if and only 

if all of the conditions are met. However, the 

rule antecedent would be assigned a firing 

probability computed in the corresponding 

node in the conjunction layer. The firing 

probability is simply equal to the product of 

the conditional probabilities for the rule terms 

(if corresponding attributes are independent) 

and also to the posterior probability of the rule 

consequent given the rule antecedent. If the 

rule is inconsistent, the sum of posterior 

probabilities for the possible classes (wjk) 

would also be equal to the firing probability 

above. This is because the rule consequent is 

the disjunction of the output terms, each of 

which has a different class as the output value. 

In the disjunction layer, each class is assigned 

a weight which is equal to the sum of its 

posterior probabilities given different rule 

antecedents. The final prediction is made by 

weighted majority voting in the same way as 

based on deterministic logic. 

In the context of fuzzy logic, in contrast to 

probabilistic logic, in the conjunction layer, the 

tij would be equal to a value between 0 and 1 as 

a fuzzy truth value for each corresponding 

condition. Similar to the other two types of 

logic, a rule is firing if and only if all of the 

conditions are met. However, the rule 

antecedent would be assigned a firing strength 

computed in the corresponding node in the 

conjunction layer. The firing strength is simply 

computed by choosing the minimum among 

the fuzzy truth values of the conditions (that 

are assumed independent). The fuzzy truth 

value for the rule consequent is equal to the 

firing strength. If the rule is inconsistent, the 

fuzzy truth value (wjk) for having each possible 

class as the consequent would be derived by 

getting the minimum between the firing 

strength and the original fuzzy truth value 

assigned to this class for this rule. In the 

disjunction layer, the weight for each class is 

computed by getting the maximum among the 

fuzzy truth values (wjk) of the rules having the 

class as the consequents. The final prediction is 

made by weighted majority voting in the same 

way as the above two types of logic. 

Overall, the unified rule based network 

representation does not only show which input 

attributes are most significant for each class 

label in terms of determining the class label of 

a test instance, but also measures the 

corresponding degree of likelihood. It is 

important especially for fuzzy rule based 

networks required to have a weight assigned to 

each of the connections between nodes. This is 

because each of the connections is only 

involved in one rule in this representation. In 

contrast, decision tree representation may have 

the same connection shared by different rules 

with the need that different weights are 

assigned to the same connection for different 

rules, which results in confusions. In addition, 

if a linear list representation has each single 

rule term assigned a weight, it is likely to make 

the rules less readable. All above demonstrates 

a significant strength of using the unified 

network topology for knowledge discovery in 

real applications due to the presence of 

uncertainty. 

4.3 Attribute-Value Oriented Rule 

Based Network 

Section 4.2 illustrated attribute oriented rule 

based network topologies which demonstrate 

advantages in terms of model interpretability. 

However, as mentioned in Section 2, rule 

based systems are also popularly used for 

predictive modelling, which needs to 

demonstrate a high level of computational 

efficiency in predicting unseen instances. The 

rest of this subsection presents attribute-value 



oriented rule based network topololgies 

towards improvement in terms of 

computational efficiency without loss of model 

interpretability. 

In the context of deterministic logic, the rule 

based network topology illustrated in Fig.3 is 

modified by adding another layer referred to as 

input values after the input layer and changing 

the output layer as illustrated in Fig.6. 

 

 
Figure 6: Determinstic Rule Based Network 

version 2. 

 

The network topology illustrated in Fig.6 can 

be seen as a special type of rule based network 

representation based on the relationship 

between attribute values and class labels. In 

this diagram, each node in the input values 

layer represents a value of an input attribute 

and is connected to only one node in the input 

layer. In other words, each node in the input 

layer corresponding to an input attribute should 

be connected to any nodes in the input values 

layer, each of which is corresponding to one of 

the values of the input attribute. In addition, 

each node in the output layer represents a class 

label which is also used as the consequent of a 

particular rule. 

The example rule set that is used in Section 3 

and represented by this network topology is 

illustrated in Fig.7. 

 

 
Figure 7: Determinstic Rule Based Network 

Example version 2. 

As can be seen from the above example, when 

x1 and x2 both equal to 1, the two connections 

between node x1 and node v12 and between 

node x2 and node v22 respectively become 

green, which means that these two paths can be 

passed through. Then there are four 

connections (13, 14, 22, and 24) between the 

nodes in the second layer and the nodes in the 

third layer becoming green as shown in Fig.7. 

In the meantime, due to the interactions 

between the nodes in these two layers, node r4 

is activated, which means that the 

corresponding rule fires, and output 1 is 

derived. In other words, node r4 can be viewed 

as an action listener, and will become green 

once it receives the signal that both of the two 

connections (14 and 24) have become green. 

On the basis of the above description, the rule 

based network illustrated in Fig.10 

demonstrates a divide and conquer search for 

the rules that fire. Therefore, the computational 

complexity is O (log (n)), where n is the total 

number of rule terms in a rule set. As reported 

in [21], two other techniques of rule 

representation, i.e. decision tree and linear list, 

both demonstrate a search less efficient than 

the above divide and conquer search. In 

particular, the computational complexity by 

linear list is O(n), where the n is the same as 

used in the rule based network. In addition, the 

computational complexity by decision tree is 

O(log(n)), but the n is likely to be higher than 

that in the other two representations as 

analysed in [21]. This is due to the replicated 

subtree problem [15] by means of the presence 

of redundant rule terms. A detailed analysis 

can be seen in Table 2. 

 

Table 2 Comparison in Efficiency 
Decision Tree Linear List Rule Based 

Network 

O(log(n)), which 

indicates it is not 

required to 

examine a whole 

tree but the n is 

likely to be higher 

due to the 

presence of more 

redundant terms. 

O(n), which 

indicates it is 

required to 

examine a 

whole list in 

the worst 

case. 

O(log(n)), 

which 

indicates it is 

not required 

to examine a 

whole 

network. 

 

On the other hand, in terms of model 

interpretability, as reported in Section 4.2, the 

attribute oriented rule based network topology, 

illustrated in Fig.3, is capable of interpreting 

explicitly the following characteristics: 



correlation between attributes and classes, 

relationship between attributes and rules, 

ranking of attributes, ranking of rules and 

attribute relevance. However, in addition to the 

above characteristics, the attribute-value 

oriented rule based network topology, 

illustrated in Fig.6, can also explicitly interpret 

the correlation between attribute values and 

classes as well as the relationship between 

attribute values and rules due to adding the 

layer of input values. In addition, the ranking 

of attribute values can also be interpreted 

explicitly through looking at the newly added 

layer of the rule based network topology 

illustrated in Fig.6. 

 

In order to fulfil the attribute-value oriented 

rule based network topolgoy being based on 

any types of computational logic such as 

deterministic, probabilistic and fuzzy logic, a 

new topology, which is a modified version on 

the basis of the topologies illustrated in Fig. 5 

and 6 respectively, is developed and illustrated 

in Fig.8. 

 

 
Figure 8: Unified Rule Based Network 

(Attribute-Value Oriented Version) 

 

This is a five layer network and the main 

difference to the one illustrated in Fig.6 is that 

a new layer referred to as output layer is added 

as the last layer of the network topology and 

the previous output layer is renamed to as 

disjunction layer. On the other hand, in 

comparison with the topology illustrated in 

Fig.5, the input values layer is newly added 

and each node in this layer has connections to 

the nodes in the conjunction layer. As 

described earlier, each node in the input values 

layer represents a value of an input attribute. 

For those nodes in the input values layer, if 

their corresponding input values are for the 

same input attribute, then each node in the 

conjunction layer can be connected to only one 

of these nodes in the input values layer as 

mentioned above. This is due to the constraint 

that the same input attribute can only be 

selected once with one of its values as an 

attribute-value pair to appear on the left hand 

side of any rules. In addition, all these weights, 

which are generally denoted as tij, wjk and ck 

respectively as illustrated in Fig.8, are used in 

the same way as they are used in the topology 

illustrated in Fig.5. The weight for each of the 

connections between the nodes in the input 

layer and the nodes in the input values layer is 

binary (eigher 0 or 1). In predictive modelling 

tasks, the weight for each of the connections 

mentioned above is dependent on whether the 

corresponding input value is actually equal to 

the one assigned to the corresponding input 

attribute for an unseen instance. 

5 Conclusion 
This paper introduces newly developed 

techniques of rule representation which are 

network based. The variants of the network 

representations contribute to improvement on 

model interpretability for knowledge discovery 

(as illustrated in Table 1) as well as 

computational efficiency for predictive 

modelling (as illustrated in Table 2) in 

comparison with decision tree and linear list 

representations. In addition, this paper also 

introduces two generalized network topologies 

for rule based systems that can be based on any 

types of computational logic, as well as two 

specialized topologies for deterministic rule 

based systems. In particular, the topologies, 

which are illustrated in Fig.3, 4 and 5 

respectively, can demonstrate advances in 

model interpretability as shown in Table 1. The 

topolgies, which are illustrated in Fig.6, 7 and 

8 respectively, can demonstrate advances in 

both model interpretability and computational 

efficiency as shown in Table 2 and discussed 

in Section 4.3. In addition, in terms of model 

interpretability, in comparison with the 

attribute oriented rule based network topology, 

the attribute-value oriented rule based network 

topolgoy can even demonstrate a deeper 

interpretation of mapping relationships 

between inputs and outputs due to adding the 

input values layer as discussed in Section 4.2. 

On the other hand, the network topologies, 

which are illustrated in Fig.5 and Fig.8 

respectively, apply to any types of 

computational networks such as a neural 

network, which has perceptron layers instead 

of conjunction and disjunction layers and each 



node represent a perceptron. The network 

topology can also represent a digital circuit, 

which has a number of computational layers 

and each node represent a logic gate such as 

AND, OR and NOT. Therefore, the network 

topology provides a general framework in 

computational intelligence and philosophical 

perspectives in complex systems and networks. 
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