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Abstract: EWSR1 belongs to the FET family of RNA-binding proteins including also Fused in
Sarcoma (FUS), and TATA-box binding protein Associated Factor 15 (TAF15). As consequence of the
multifunctional role of EWSR1 leading to a high frequency of transcription of the chromosomal region
where the gene is located, EWSR1 is exposed to aberrations such as rearrangements. Consecutive
binding to other genes leads to chimeric proteins inducing oncogenesis. The other TET family
members are homologous. With the advent of widely used modern molecular techniques during
the last decades, it has become obvious that EWSR1 is involved in the development of diverse
benign and malignant tumors with mesenchymal, neuroectodermal, and epithelial/myoepithelial
features. As oncogenic transformation mediated by EWSR1-fusion proteins leads to such diverse
tumor types, there must be a selection on the multipotent stem cell level. In this review, we will
focus on the wide variety of soft tissue and bone entities, including benign and malignant lesions,
harboring EWSR1 rearrangement. Fusion gene analysis is the diagnostic gold standard in most
of these tumors. We present clinicopathologic, immunohistochemical, and molecular features and
discuss differential diagnoses.

Keywords: EWSR1; soft tissue tumors; bone tumors; pathology; molecular

1. Introduction

Ewing sarcoma was molecularly defined by Delattre et al. in 1992 upon the identifica-
tion of the Ewing sarcoma breakpoint region 1 (EWSR1) located on chromosome 22q12.2
and the term for this gene was coined [1]. EWSR1 is a multifunctional protein ubiquitously
expressed in most cell types, indicating diverse roles in physiological cellular processes,
including organ development and aging. Genetic and epigenetic pathways are modulated
by EWSR1 but the exact mechanisms are still poorly understood [2].

EWSR1 belongs to the FET (also known as TET) family of RNA-binding proteins that
also includes Fused in Sarcoma (FUS), and TATA-box binding protein Associated Factor
15 (TAF15) [2]. As a consequence of the multifunctional role of EWSR1 leading to a high
frequency of transcription of the chromosomal region where the gene is located, EWSR1 is
exposed to aberrations such as rearrangements. Consecutive binding to other genes leads
to chimeric proteins inducing oncogenesis. These various somatic genetic rearrangements
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involving EWSR1 result in a fusion of its N-terminal coding region to the C-terminal DNA
binding domain of one of several transcription factors. They are reported to act as aberrant
transcription factors with the N-terminal domain of EWSR1 as a strong transactivator.
The other TET family members are homologous and are involved in strikingly similar
translocation events giving rise to the production of structurally similar oncoproteins [3,4].

With the advent of widely used modern molecular techniques during the last decades,
it has become obvious that EWSR1 is involved in development of diverse benign and
malignant tumors with mesenchymal, neuroectodermal, and epithelial/myoepithelial
features [5]. As oncogenic transformation mediated by EWSR1-fusion proteins leads to
such diverse tumor types, there must be a selection on a multipotent stem cell level [2].

In this review, we will focus on the wide variety of soft tissue and bone entities, includ-
ing benign and malignant lesions, harboring EWSR1 rearrangement. Fusion gene analysis
is the diagnostic gold standard in most of these tumors. We present clinicopathologic,
immunohistochemical, and molecular features and discuss differential diagnoses.

2. Ewing Sarcoma

Arthur Purdy Stout and James Ewing were the first to describe this aggressive small,
blue round-cell entity in 1918 and 1921, respectively [6–8]. Later on, the chromosomal
translocation (11;22) was found by Aurias et al. and Turc-Carel et al. in 1983, the sec-
ond breakthrough of translocation/fusion-gene associated sarcomas following alveolar
rhabdomyosarcoma (ARMS) [9–11]. Subsequently, the fusion gene has been detected as
mentioned in the introduction [1], being the genetic hallmark by an otherwise aspecific
small blue, round-cell tumor.

Ewing sarcoma, the prototypic round-cell sarcoma, is relatively common in compari-
son to other small blue round-cell sarcomas. It arises in soft tissue and bone of children,
adolescents, and young adults. Exceptionally, older patients are affected. The mean age is
in the second to third decade. White males have the highest incidence and black females
the lowest due to ethnic genetic preposition differences. Tumors can originate anywhere
in the body, and around 80% of the neoplasms arise in the bone with preference sites in
decreasing order of frequency: lower extremities, pelvis, upper extremities, ribs, spine,
and craniofacial. Distribution in the soft tissue is extremities, chest wall, retroperitoneum,
paravertebral, pelvis, and head and neck. Visceral organs, skin, and epidural spaces are
rarely involved [12,13]. The origin of the peripheral nerve as reported by Stout in 1918 can
clinically be confused with malignant peripheral nerve sheath tumor [7].

Macroscopically, these infiltrative lesions are (multi)nodular), fleshy, and often necrotic.
A pseudocapsule can be present in soft tissue neoplasms. Post-therapy specimens show
fibrosis, necrosis, and hemorrhage, often without visible tumor [12,13].

Histologically, Ewing sarcoma is composed of cellular sheets of relatively featureless
small cells with round dark nuclei and inconspicuous cytoplasm (Figure 1). In some
cases, cells are larger displaying more nuclear variability. The cytoplasm can appear clear
due to retraction artefacts. Homer-Wright rosettes may be numerous in a subset of cases
initially called peripheral primitive neuroectodermal tumors [6,13]. Adamantinoma-like
Ewing sarcoma shows more cohesive sheets and nests of cells with peripheral palisading,
prominent desmoplastic stroma with production of hyaline membrane collagen, presence
of keratin pearl formation, and comedo-like necrosis. These lesions are predestinated for
misinterpretation as carcinoma, since keratins, including high molecular keratins, p40, and
p63, are commonly positive [6,14].

Immunohistochemically, CD99 is specific in its distinct staining pattern of the cell-
membrane. Nuclear FLI and ERG expression is commonly observed in the cases with cor-
responding fusion genes. Neuroendocrine markers may be expressed. Keratin-expression,
often dot-like, was found in 1/3 of the cases; it can be confused with small-cell carcinoma,
especially when combined with the expression of p40 and p63 [6,14]. This is of particular
importance in the head and neck area [14]. Expression of NKX2-2 in Ewing sarcoma seems
to be highly sensitive, with imperfect specificity in comparison to other small, blue round-
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cell tumors [15–19]. Expression of desmin is reported in a few cases, and can be confused
with ARMS or desmoplastic small round-cell tumor (DSRCT) [6,20].

Figure 1. Classical morphology of Ewing sarcoma (HE; 40× magnification).

Ewing sarcoma is genetically characterized by binding of EWSR1 or other members of
the TET/FET family to members of the ETS family [5]. Approximately 85–90% of the Ew-
ing’s sarcomas display the translocation t(11;22)(q24;q12) resulting in the EWS/FLI1 fusion
gene, and approximately 5–10% harbor a EWSR1-ERG fusion gene [6]. The remaining cases
show rare gene partners, such as ETV1, ETV4, and FEV, and EWSR1 can be substituted by
FUS [21].

Although prognosis has improved markedly for patients with primary disease (5-year
survival rate around 65%), presence of metastatic disease at time of diagnosis or early
relapse leads to an adverse prognosis (5-year survival rate around 25–30%), with adequate
surgical resection, aggressive multimodal chemotherapy, and adjuvant local radiotherapy
being the optimal treatments.

Differential diagnoses are listed in Table 1.

Table 1. Differential diagnoses of Ewing sarcoma.

Entity Morphology IHC Common Genetic Alterations

CIC-sarcoma

Sheets of undifferentiated
round/spindle/epitheloid cells;

mild nuclear pleomorphism;
and necrosis

CD99 (mostly patchy), WT1,
ETV4, DUX4, and NUT

(CIC-NUTM1)

CIC-
DUX4/FOXO4/LEUTX/NUTM1/2A

fusions

BCOR-sarcoma

Sheets/nests/short fascicles of
uniform; bland

round-oval-spindle cells; rich
capillary network; and myxoid

matrix (variable)

BCOR, SATB2, cyclin D1, TLE1,
CCNB3 (BCOR-CCNB3), and

CD99 (50%)

BCOR-CCNB3/MAML3/ZC3H7B,
KMT2D); BCOR ITD*; and

YWHAE-NUTM2B; *ITD, internal
tandem duplication

EWSR1-nonETS
round-cell sarcomas

Cords/nests/pseudoacinar
pattern of round-spindle cells;

bland-pleomorphic spectrum; and
fibro-/myxohyaline stroma

CD99, NKX2.2, and CKAE1/3
(focal, dot-like) EWSR1/FUS-NFATc2

Diverse morphology:
round-spindle cells;

fibrous stroma

Co-expression of
myogenic markers

(desmin/myogenin/MyoD1),
neurogenic markers

(S100/SOX10/MITF/GFAP) and
keratins (AE1/3)

EWSR1-PATZ1 or EWSR1-VEZF1

Desmoplastic small
round-cell tumor

Sheets/nests/cords of uniform;
bland round cells; and
desmoplastic stroma

Desmin (dot-like), keratin, EMA,
and WT1 (C-terminus) EWSR1-WT1
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Table 1. Cont.

Entity Morphology IHC Common Genetic Alterations

Lymphoblastic lymphoma Small-medium blastoid cells;
minimal cytoplasm

CD99, TdT, CD45, CD34, CD1a,
and B- and T-cel markers Diverse

Small-cell carcinoma

Small-medium round-oval cells;
salt and pepper chromatin;

indistinct nucleoli; molding;
and apoptosis

Keratins,
CD56, synaptophysin,

chromogranin, and TTF1

Diverse; TP53, PTEN mutations;
RB1, 3p loss; and MYC

amplification

NUT carcinoma

Poorly cohesive sheets of
primitive/basaloid cells; abrupt

keratinization; and
coagulative necrosis

CK5/6, P40, P63, and NUT
NUT-

BRD3/BRD4/NSD3/CIC/BCORL1/
MGA/MXD4

Myoepithelial carcinoma

Solid sheets/nests of cell with
high nuclear grade or

undifferentiated round-cell
morphology; facultatively

glandular component; necrosis;
and high mitotic count

Pankeratins, S100, EMA, GFAP,
SOX10, P63, SMA, calponin,

desmin (focal); and INI1
loss (subset)

EWSR1 rearrangements (various
fusion partners); PLAG1

rearrangements (mixed tumors)

ARMS

Nests with central
discohesion-solid nests;

monomorphic primitive round
cells; and multinucleated

wreath-like giant cells

Desmin, myogenin (strong,
diffuse), MyoD1, keratin,

neuro-endocrine markers (CD56,
synaptophysin,

and chromogranin)

PAX3/PAX7-FOXO1

Sinonasal glomangiopericytoma

Solid-fascicular pattern;
spindle-round cells with minimal
atypia; arranged around staghorn

vessels; and
perivascular hyalinization

Beta-catenin (nuclear), SMA CTNNB1 mutations

Glomus tumor

Solid-nested pattern; small,
uniform round cells with round
nucleus, amphophilic-slightly

eosinophilic cytoplasm and
sharply defined cell borders; and

variable vascular pattern

SMA with membranous
accentuation, caldesmon, and

collagen IV
MIR143-NOTCH1/2/3, and

BRAF/KRAS mutations

Rhabdoid tumor

Solid pattern; rounded-polygonal
cells with vesicular nuclei and

prominent nucleoli; and
eosinophil hyaline-like
cytoplasmic inclusions

Diverse; keratins, EMA, CD99,
synaptophysin, SALL4,

glypican-3, and INI1 loss

SMARCB1 biallelic loss,
SMARCB1 or SMARCA4

(germline) mutations

Mesenchymal chondrosarcoma
Biphasic: poorly differentiated

round cells and islands of hyaline
cartilage; staghorn-like vessels

S100, CD99, SOX9, EMA, desmin,
myogenin, and MyoD1 HEY1-NCOA2

Synovial sarcoma with
round-cell features

Fascicles or sheets of small round
hyperchromatic cells; high N/C
ratio; staghorn vessels; necrosis;

and thin fibrovascular septa

CD99, BCL2, CD56, TLE1, S100
(focal), EMA, and keratins

(variable)
SS18-SSX1/2/4

3. Round-Cell Sarcomas with EWSR1-Non-ETS Fusions
3.1. NFATc2-Rearranged Sarcoma

NFATc2-rearranged sarcoma was first described in 2009 by Szuhai et al. [22]. It
is another, apparently very rare, primitive round-cell tumor with a methylation profile
distinct from Ewing sarcoma, probably due to the non-ETS fusion gene [23]. Therefore,
it belongs in the current WHO classification to the category of “round-cell sarcoma with
EWSR1-non-ETS fusions” [5,24].

NFATc2-rearranged sarcoma affects males and females with predominance of males at
least in the first studies. There is a broad age range from childhood to the elderly with a
median age in the late third decade of life [24–26].

As Ewing sarcomas, these neoplasms originate mainly in the bone with predilection
for the long bones, particularly femur and humerus. A few cases were reported to be
localized in soft tissue and intraabdominally [25,27].
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Histology demonstrates sheets, lobules, cords, and trabeculae of small, blue, round
cells or less commonly spindle cells with slightly irregular nuclei. Nuclear pleomorphism
is described in some lesions. There is a variable stromal reaction, being sclerotic, hyaline,
myxoid, myxohyaline, and chondromyxoid. Cartilaginous or osteoid-like areas are rarely
described [27].

Immunohistochemistry shows reaction for CD99; for AGGRECAN; and inconsistently
for panCK AE, S100, BCOR, WT1, ERG, and ETV-4. Desmin, NKX3-1, and SATB2 are
negative [27].

Amplification of the EWSR1-NFATC fusion gene is typical and can support the diag-
nosis when present [22,23,25,27].

In a few cases, rearranged EWSR1 is substituted by FUS [26,27]. However, such
cases show a different transcriptomic profile. While EWSR1-NFATC tumors were strongly
enriched in genes associated with inflammatory response, the FUS-NFATC2 tumors showed
a signature of proliferation and drug resistance [26].

The outcome of patients is uncertain, since response to chemotherapy in unclear.
Histological response to multimodal therapy seen in the resection-specimens was poor [27].
Patient studies until now have been too small to draw definitive conclusions for prognosis.
Favorable outcome is reported in few cases with long-term follow-up, mostly after complete
resection. No data on radiotherapy effect are available [25].

Differential diagnoses are listed in Table 2.

Table 2. Differential diagnoses of EWSR1—non-ETS (NFATC2 and PATZ) fusions.

Diagnosis Morphology IHC Common Genetic Alterations

Solitary fibrous tumor

Patternless pattern of spindle cells
or round cells; hyalinized stroma;

collagen bundles; staghorn vessels;
and possibly fat component

CD34, BCL2, CD99, and STAT6 NAB2-STAT6

Myoepithelial tumor

Divers spectrum;
reticular/trabecular pattern;

variable spin-
dle/epithelioid/plasmocytoid/clear

cells; rarely ductal component
(mixed tumors); and

myxoid stroma

Pankeratins, S100, SOX10, EMA,
GFAP, P63, SMA, calponin, and

desmin (focal)

EWSR1 rearrangements (various
fusion partners); PLAG1

rearrangements (mixed tumors)

DSRCT
Sheets/nests/cords of uniform,

bland, round cells; and
desmoplastic stroma

Desmin (dot-like), keratin, EMA,
and WT1 (C-terminus) EWSR1-WT1

CIC-sarcoma

Sheets of undifferentiated
round/spindle/epitheloid cells;

mild nuclear pleomorphism;
and necrosis

CD99 (mostly patchy), WT1, ETV4,
DUX4, and NUT (CIC-NUTM1)

CIC-
DUX4/FOXO4/LEUTX/NUTM1/2A

BCOR-sarcoma

Sheets/nests/short fascicles of
uniform, bland round-oval-spindle

cells; rich capillary network; and
myxoid matrix (variable)

BCOR, SATB2, cyclin D1, TLE1,
CCNB3 (BCOR-CCNB3), and CD99

(50%)

BCOR-CCNB3/MAML3/ZC3H7B,
KMT2D); BCOR ITD; and

YWHAE-NUTM2B

ARMS

Nests/sheets with central
discohesion (pseudoalveolar) or

solid nests; monomorphic,
primitive round cells; and

multinucleated wreath-like
giant cells

Desmin, myogenin (strong, diffuse),
MyoD1, keratin, and

neuro-endocrine markers (CD56,
synaptophysin, chromogranin)

PAX3/PAX7-FOXO1

Malignant peripheral nerve sheath
tumor/Triton

Fascicles of spindle cells and/or
sheets epithelioid cells with

perivascular accentuation and
alternating cellularity; staghorn

vessels; geographic necrosis; and
heterologous differentiation

(rhabdomyoblasts, glandular
structures)

S100, SOX10 (focally), and loss of
H3K27me3

Inactivating mutations of NF1,
CDKN2A/B, EED, and SUZ2

Synovial sarcoma

Sheets-fascicles; cellular,
monomorphic spindle cells; high

N/C ratio; variable epithelial
differentiation; staghorn vessels;

variable amount of collagen; mast
cells; and calcification/ossification;

poorly differentiated areas may
show round-epithelioid cells

CD99, BCL2, CD56, TLE1, S100
(focal), EMA, and keratins

(variable)
SS18-SSX1/2/4
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3.2. EWSR1-PATZ and EWSR1-VEZF1 Rearranged Sarcoma

EWSR1-PATZ-rearranged sarcomas were first reported by Mastrangelo et al. in
2000 [28]. Recently, more knowledge was gained based on advanced molecular tech-
nologies. EWSR1-PATZ-rearranged sarcoma seems to be a separate entity with a wide
clinicopathological spectrum [26,29]. VEZF1 is considered a paralogue of PATZ, and the
few cases described with EWSR1-VEZF1 are similar to the PATZ-rearranged cases in terms
of morphology and immunoprofile [29–31].

The age ranges from early childhood to the elderly, with an average age in the fourth
decade. The anatomic sites vary, with lesions being located superficially and deep, mainly
in the trunk (thorax, including lung; abdomen), and rarely in the head and neck and
extremities [29]. Intracranial localization is also reported [29,32].

Grossly, tumors are either well-circumscribed or infiltrating showing on the cut-surface
a tan-yellow or grey-white color.

Histology is striking variable ranging from small blue round-cell morphology
(Figures 2 and 3) to lesions showing a mixture of spindled, epithelioid, rhabdoid, ovoid,
and round cells in varying fractions. The cells are commonly bland-looking with monomor-
phic nuclei and a low mitotic rate. They can be arranged in sheets, nests, and/or fascicles.
Glandular structures as seen in synovial sarcoma, and pseudocystic spaces may be present.
The stromal reaction is diverse and can be colleagenous, hyaline, or myxoid. There are
often thick bands of collagen. Hyalinization of vessel walls are other possible features.
Necrosis may occur but is mostly not prominent [29,33–35].

Figure 2. EWSR1-PATZ sarcoma with small blue round-cell morphology (HE; 20× magnification).

Figure 3. Higher magnification shows more irregular nuclei of the EWSR1-PATZ sarcoma in compar-
ison to Ewing sarcoma (HE; 40× magnification).
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Michal et al. divided the tumors into two subgroups:

1. Low-grade appearing tumors: the spindled, epithelioid, ovoid, and round cells are
set in a hyaline stroma reminiscent of solitary fibrous tumors and myoepithelioma.

2. Intermediate and high-grade appearing neoplasms have a round and/or ovoid mor-
phology with few spindle cells and slight stromal component. The tumors of this
second subgroup resemble other small, blue round-cell tumors, e.g., ARMS, BCOR-,
and CIC-rearranged sarcoma.

Whether a transition may occur from low-grade to high-grade morphology as seen in
myxoid/round-cell liposarcoma amongst others is yet unknown [29].

There is a polytypic immunophenotype with variable expression of neural, skeletal
muscle, and epithelial markers. OLIG2 is also positive [29].

In contrast to NGS (or RT-PCR), FISH is not the method of choice for confirming the
presence of the fusion gene due to the close proximity of the gene loci of PATZ and EWSR1
on chromosome 22q12 [29,34].

Based on whole transcriptome sequencing, EWSR1-PATZ rearranged sarcomas are
different from other EWSR1-related sarcomas [26].

Lesions can be aggressive or follow a more favorable course [29,33–35]. It is unclear
if the above-mentioned morphological grading is prognostic for outcome. In addition,
deletions of CDKN2A/B and MDM2 gene amplification were associated with fatal outcome
in one study and may therefore be a negative predictor of outcome [33].

3.3. Small Blue Round-Cell Tumor with EWSR1-SMARCA5 Rearrangement

A single case has been described in a 5-year-old female with a mass in the lum-
bosacral spinal canal with small blue round-cell histology and an immunoprofile like
Ewing sarcoma. Cytogenetics showed a t(4;22) (q31;q22) as sole abnormality resulting in
an EWSR1-SMARCA5 fusion [36]. More cases are necessary for definitive categorization.

3.4. Desmoplastic Small Round-Cell Tumor (DSCRT)

The first description has been done by Gerald et al. in 1991, and one year later, the
consistent translocation t(11;22)(p13;q12) was found by Sawyer et al. [37–39]. Ladanyi
et al. detected the corresponding fusion gene EWSR1-WT1 [40]. WT1, a suppressor of
transcription, is expressed in primitive, developing mesothelium [41]. It is therefore
not surprising that DSRCTs are classically located in the abdominal cavity with growth
along the mesothelial membrane, often with multifocal spread at diagnosis. Origin in
the small pelvis with ovary, or spermatic cord/paratesticular (tunica vaginalis), thoracic
cavity/pleura, head and neck region, cranium/intracerebral, cauda equina, and extrem-
ities is rarely reported. Mostly adolescents and young adult males with a mean age
in the second decade of life are affected, whereas females and older patients are rarely
involved [21,38,41–43].

Grossly, this tumor is firm and shows a multinodular growth pattern with infiltration
into adjacent structures and organs (e.g., liver). It has a solid and gray-white appearance
with possible necrotic areas and hemorrhage [38,41].

Histologically, DSRCT is composed of irregular sheets, nests, trabecula, and cords
of small cells with hyperchromatic nuclei and inconspicuous cytoplasm surrounded by
a prominent desmoplastic stroma, which is a hallmark (Figure 4). When absent, other
small round (or spindle) cell tumors could be superior in the differential diagnosis. Cells
may vary in shape and size. The nuclei are round, ovoid, or spindly. In some cases, a
rhabdoid/eosinophil or clear cytoplasm was noticed. The latter could be due to retraction
during fixation process. Glandular/tubular or rosette-like structures have been identified
in some cases. Mitotic figures may be numerous. Necrosis, possibly with calcification,
can be present. The cells show immunohistochemically a polyphenotypic profile with
expression of epithelial (EMA, broad-spectrum keratins (sometimes dot-like), myogenic
(desmin, SMA in few cases), and neural markers (CD57, NSE) [21,38,41,43–45]. However,
when this polyphenotype is incomplete, as sometimes seen, other small, blue round-cell
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tumors are conceivable, at least without the classical clinical context [46]. WT1 is only of
diagnostic value when an antibody toward the carboxy terminus is used showing a nuclear
staining pattern [21,43,47]. The presence of EWSR1-WT1 confirms the diagnosis in >95% of
the cases [41,43]. Multiple copies of the fusion gene have also been found [48].

Figure 4. Small, blue, round cells situated in a desmoplastic stroma is characteristic for DSRCT (HE;
20× magnification).

The differential diagnoses besides other small blue round-cell sarcomas (Tables 1 and 2)
can be carcinoids and small-cell carcinoma, including Merkel cell carcinoma because of the
desmoplastic stroma reaction [38,41]. Neuroblastoma, lymphoma, and blastemic Wilms
tumor are probably less relevant in the differential-diagnostic spectrum [41] (see Table 3).

Table 3. Differential diagnoses of DSRCT (except small blue round-cell sarcoma; see Ewing).

Diagnosis Morphology IHC Common Genetic
Alterations

Neuroblastoma Primitive cells; rosettes;
neuropil; and ganglion cells

CD56, synaptophysin, and
chromogranin

nMYC amplification; ATRK,
ALK mutations; and

chromosomal aberrations (1p,
17q, and 11q)

Lymphoma

Variably sized
hyperchromatic-blastoid cells

with variable atypia;
minimal cytoplasm

CD45, B/T-cell markers Diverse

Blastemic Wilms Primitive, undifferentiated
round-to-spindled cells WT1 (N-terminus), CD56 WT1, TP53 mutations;

11p15.5 deletion

Small cell/neuroendocrine
carcinoma

Small-medium round-oval
cells; salt and pepper

chromatin; indistinct nucleoli;
molding; and apoptosis

Keratins
CD56, synaptophysin,

chromogranin, and TTF1

Diverse; TP53, PTEN
mutations; RB1, 3p loss; and

MYC amplification

Metastatic Merkel
cell carcinoma

Round-oval nuclei; high
N/C-ratio; salt and pepper

chromatin; indistinct nucleoli;
molding; and apoptosis

Broad spectrum keratins;
CK20 (dot-like), CD56,

chromogranin, and
synaptophysin

Diverse; depends on
polyomavirus (PyV) status;

PyV- tumors: Rb1,
TP53 mutations

Small cell mesothelioma

Solid nests; high N/C-ratio;
well defined membrane; fine

chromatin; and
indistinct nucleoli

Calretinin, CK5/6, WT1
(N-terminus), and D2-40

Diverse; P16 loss; BAP1
mutation; NF2 deletion; and

ALK/EWSR1/FUS
rearrangments
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Treatment is challenging, and survival is low despite initial response to multimodal
chemotherapy. Debulking is usually the surgical procedure, and tumor-free margins can
often not be achieved when extended surgery is performed. For local control, several
different additions have been tried with varying effects, such as total abdominal irradia-
tion or surgery in combination with HIPEC. However, most patients relapse with locally
disseminated disease not responsive to further treatment. Distant metastases may occur
with involvement of lungs, liver, lymph nodes, bone, kidney, pancreas, spleen, adrenal
gland, and small pelvis [41,43,44,49]. An indolent clinical course is reported in some mainly
unusual cases [50,51].

3.5. Myxoid Liposarcoma (MLS)

MLS is the only translocation-associated liposarcoma-subtype recapitulating more or
less normal lipogenesis with maturation arrest [5,52–54]. Limon et al. detected the most
common translocation (12;16) in 1986 [55]. The specific fusion genes FUS-DDIT3 (ca 90%
of the cases) and, more rarely, EWSR1-DDIT3 (in up to 10% of cases) are the result of the
t(12;16)(q13;p11) and t(12;22)(q13;q12), respectively [56,57]. DDIT is an enhancer binding
family of transcription factor involved in erythropoiesis and adipogenesis [58,59].

MLS is the most common liposarcoma arising in children, adolescents, and young
adults [60–63]. It comprises up to 35% of all liposarcomas and has, in 1/3 of cases, the ten-
dency to metastasize to other soft tissue sites, including mediastinum and retroperitoneum,
and also to bone, lung, and liver, with a consecutive fatal outcome. The classical primary
localization (2/3 of the cases) is the deep soft tissues commonly of the thigh [60,64]. Cases
of the retroperitoneum are almost exclusively metastases, with some exceptions [65,66]. At
distal sites of the extremities, this tumor is exceedingly rare [54].

Macroscopically, the lesion is multinodular and gelatinous on cut surface. High grade
areas are firm and grey-white in appearance.

Histology depicts a nodular growth pattern of relatively low cellularity with enhance-
ment of cells at the periphery of the nodules. There is a proliferation of uniform bland,
round-to-oval-shaped primitive cells intermingled with a variable amount of lipoblasts
of different stages in an abundant myxoid stroma. Slightly pleomorphic nuclei are of-
ten associated with multivacuolated cytoplasm (Figure 5). In addition to the classical
features, a nested pattern or islands of primitive cells, areas of extensive maturation, pseu-
doacini, or a cord-like growth pattern can be obvious. The very characteristic delicate
plexiform (‘chicken-wire’) capillary vasculature is less obvious in cellular areas. When
present, hemangiopericytoma-like vessels can be confused with solitary fibrous tumor,
especially the lipomatous variant. Stromal hyalinization is rarely reported, which can be
misleading if prominent. Hypercellular morphology with more large round cells with
increased nuclear/cytoplasmic ratio, distinct nucleoli, and a small amount of intervening
myxoid stroma is called round-cell liposarcoma and is associated with an inferior prognosis
when more than 5% of the neoplasm is affected [5].

Immunohistochemistry shows variable expression of S100, which is of little
value [21,54,62]. The determination of the fusion gene is therefore an important con-
firmation that has consequences therapeutically. Recently, nuclear expression of DDIT3 as
an appropriate immunohistochemical surrogate marker has been reported [67–69].

In the differential diagnosis is lipoblastoma, which rarely occurs in adults, at least in
its primitive form, and myxoid pleomorphic liposarcoma when slight pleomorphism is
present. Chondroid lipoma can be considered because of lipoblastic differentiation, and
soft tissue angiofibroma shows some similarities in terms of the branching capillaries,
which do not have such a delicate appearance in the latter. Small, blue round-cell tumors
can be pondered when round-cell morphology without obvious lipoblasts is observed [54]
(see Tables 1, 2 and 4).
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Figure 5. Myxoid liposarcoma showing different stages of primitive fat cells. There is slight pleomor-
phism. The myxoid matrix contains variable collagen (HE; 20× magnification).

Table 4. Differential diagnoses of MLS.

Diagnosis Morphology IHC Common Genetic
Alterations

Lipoblastoma

Lobulated architecture with
fibrous septa with often
prominent vasculature;

possibly myxoid stroma with
possibly plexiform

vasculature; resembling fetal
fat with prelipoblasts,

lipoblasts, and mature fat in
variable portions

Not specific PLAG1 rearrangements
(various fusion partners)

Myxoid pleomorphic
liposarcoma

Progressive transition
between areas resembling
myxoid liposarcoma and
pleomorphic liposarcoma;

pleomorphic cells; and
myxoid matrix

Not specific RB1 deletion, TP53 mutations

Chondroid lipoma

Myxohyaline chondroid
matrix; lipoblasts

intermingled with mature
adipocytes and chondroid

cells; and vascularized septa

S100 (mature adipocytes and
lipoblasts); keratins (rare) C110r95-MRTFB

Soft tissue angiofibroma

Myxoid-collagenous stroma;
prominent, branching
vasculature; and bland

spindle cells,
possibly adipocytes

CD34, EMA, desmine
(dendritic cells)

NCOA2 rearrangements
(various fusion partners)

Small, blue round-cell tumors
(when round-cell

liposarcoma)

Cells with small
round-oval-spindle cells with

little cytoplasm

See Table Ewing and
Ewing-like sarcomas

See Table Ewing and
Ewing-like sarcomas

Neo-adjuvant radiotherapy leading to a good response with maturation and hyalin-
ization, followed by resection, is the optimal treatment [70]. Recurrences are less frequent.
When metastasized (up to 1/3 of the patients), the outcome is poor; however, a slow
progression may be observed.
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4. Tumors with EWSR1/FUS Fused to the CREB-Family

ATF1, CREB1, and CREM are members of the CREB-family of transcription factors
playing a pivotal role in diverse physiological processes [71,72]. They act as fusion partners
of EWSR1 or alternating FUS in several benign, intermediate, and fully malignant tumors,
and the growing list includes mesenchymal, neuroectodermal, and epithelial neoplasms.
Secondary genetic and/or epigenetic events seem to be mandatory for the specific oncoge-
nesis. Whereas EWSR1-ATF1 and EWSR1-CREB are the two most characterized fusions,
EWSR1-CREM is less well studied [72]. Whether or not AFH (including its myxoid vari-
ant), PPMS, so-called mesothelioma, and EWSR1-CREM undifferentiated sarcoma are a
spectrum of one tumor type will yield further studies in the future.

4.1. Angiomatoid Fibrous Histiocytoma (AFH)

This lesion was firstly recognized by Enzinger in 1979 with the main characteristics
being reported in his seminal paper [73]. In 2000, the first genetic report was published
showing FUS-ATF1 as the result of t(12;16) (q13;p11) [74]. Later on, it became apparent that
EWSR1/FUS-CREB/ATF1/CREM are the alternating candidates for the gene fusion, with
EWSR1-CREB1 being the most common in soft tissue lesions [21,75,76]. EWSR1-CREM
positive cases are recently reported [72]. Multiple copy numbers of the fusion gene seem to
be associated with pleomorphism [76].

AFH affect mainly children, adolescents, and young adults. However, the age range
is broad. When located in superficial soft tissue, clinical presentation is often a palpable,
slowly growing indolent nodus imposing as hemangioma or lymph node [21,73,77,78].
Rarely accompanied systemic symptoms such as malaise, pyrexia, and anemia are doc-
umented [21,78–80]. Classically, AFH arises subcutaneously in the extremities followed
by the trunk and head and neck [21,73,77]. Involvement of deep soft tissues and visceral
sites is increasingly reported due to higher diagnostic standards (including molecular
diagnostics). They include mediastinum, retroperitoneum, intraabdominal, lung, brain,
bone, and ovary [78,80–83].

Grossly, the neoplasm is circumscribed, (multi)nodular or (multi)cystic, grayish-
yellow, and hemorrhagic, and can be as large as 10 cm [73,80].

Histologically, these circumscribed (multi)nodular and/or multicystic lesions possess
a fibrous pseudocapsule that is surrounded by a prominent often lymph node-like mixed
lymphocytic infiltrate with variable germinal center formation and presence of plasma
cells. The inflammatory component may also be intermixed with tumor. The tumor
cells are arranged in sheets, nodules/whorls, aggregates, short fascicles (storiform), and
reticular formations (when myxoid). The cells are histiocytoid with a syncytial aspect
showing an ovoid, epithelioid, or spindled appearance and bland-looking nuclei with fine
chromatin and moderate amount of ill-defined eosinophilic cytoplasm (Figure 6). Centrally,
a cannonball arrangement can be seen. Unusual characteristics are scattered large cells,
nuclear grooving, and bizarre and irregularly folded nuclei. Rhabdoid, clear cells, or
osteoclast-like giant cells and Ewing-like areas may be present. Nuclear palisading as
seen in schwannomas has been rarely observed. Mitotic rate is usually low, but atypical
mitoses are not a worrisome sign. Hemorrhage and blood-filled spaces are, when present,
a hallmark of this lesion often associated with hemosiderin deposition [21,73,77–82,84].
The stroma can be unremarkable, sclerotic, “desmoplastic”, or myxoid. Edema can be
prominent, and a slit-like pseudovascular pattern may be seen. Additionally, perivascular
hyalinization is a possible sign [80,82,84].

Immunohistochemistry shows expression of ALK in almost all cases and desmin in
approximately 50% of the cases. EMA, CD99, and CD68 are variably expressed. Other
smooth muscle markers such as SMA and caldesmon are sometimes positive. CD21 may
be positive in some cells. Myogenin and MYOD1 are consistently absent [21,77,79,80].

Intracranial myxoid mesenchymal tumors are suggested to be a variant of AFH [83,85].
This meets the observations of peripherally located AFHs with myxoid changes [72,84,86].
Differential diagnoses are listed in Table 5.
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Figure 6. Angiomatoid fibrous histiocytoma showing sheets and short fascicles of histiocytoid cells
with monomorphic nuclei. Note the lymphocytic reaction (HE; 20× magnification).

Table 5. Differential diagnoses of AFH.

Diagnosis Morphology IHC Common Genetic
Alterations

Histiocytic lesions Diverse; histiocytes; and
multinucleated giant cells

Diverse (depending on entity);
CD68, CD163, and FXIIIA

Diverse (depending on entity);
activating MAPK signaling

mutations (BRAF, NRAS,
KRAS, ARAF, and MAP2K1)

Follicular dentritic sarcoma

Fascicles/whorls/storiform
pattern; oval-spindle cells
with small nucleoli and

syncytial borders; nuclear
pseudoinclusions; binucleate
(often) or multinucleate (rare)

forms; and admixed
lymphocytic infiltrate with

perivascular
lymphocytic cuffs

CD21, CD23, CD35, and D2-40 Highly diverse
mutational profile

Small, blue round-cell tumors
See Tables 1 and 2

Cells with small
round-oval-spindle cells with

scant cytoplasm
Diverse (depending on entity) Diverse (depending on entity)

Epithelioid fibrous
histiocytoma

Polypoid; epidermal collarette;
epithelioid cells with vesicular

nuclei, small nucleoli, and
amphophilic cytoplasm

FXIIIA, EMA, and ALK ALK rearrangements (various
fusion partners)

Aneurysmatic fibrous
histiocytoma

Epidermal hyperplasia and
basal layer pigmentation;

circumscribed, dermal based
proliferation; haphazard

arrangement of ovoid spindle
cells; admixed foam and giant
cell; central blood-filled cystic

space; and abundant
hemosiderin deposition

FXIIIA, SMA Not specific

Rhabdomyosarcoma

Monomorphic primitive
round cells with variable

rhabdomyoblastic
differentiation (depending

on subtype)

Desmin, myogenin,
and MyoD1

Diverse (depending on
subtype); PAX3/PAX7-FOXO1
fusions (ARMS); alterations of

RAS signaling pathway
(embryonal RMS)
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Table 5. Cont.

Diagnosis Morphology IHC Common Genetic
Alterations

Rhabdoid tumor

Solid pattern;
rounded-polygonal cells with

vesicular nuclei and
prominent nucleoli; and
eosinophil hyaline-like
cytoplasmic inclusions

Diverse; keratins, EMA, CD99,
synaptophysin, SALL4,

glypican-3, and INI1 loss
SMARCB1 biallelic loss

Inflammatory myofibroblastic
tumor

Fascicular pattern (variable);
plump-spindle cells with
vesicular nuclei and small

nucleoli; amphophilic
cytoplasm;

oedematous-myxoid-fibrous
stroma; and mixed

inflammatory infiltrate

SMA, calponin, desmin,
keratin (focal), ALK, and

ROS1

ALK rearrangements (various
fusion partners); ROS1,

NTRK3, RET, or PDGFRB
rearrangements

Carcinoma

Sheets/nests/trabecula;
round-oval-epithelioid cells

with nuclear atypia and
variable amount of cytoplasm

Pankeratins, lineage specific
markers (depending on site of

origine)

Diverse (depending on site of
origin)

Meningeoma

Highly diverse (according to
subtype and grade): lobulated;

whorled, fascicular pattern;
spindle or plump syncytial

cells; intranuclear
pseudoinclusions; and

psammoma bodies

EMA, S100, and PR Monosomy 22; NF2 deletions

Extraskeletal myxoid
chondrosarcoma

Multinodular;
lace-like/reticular pattern;

round-spindle monomorphic
cells; eosinophilic cytoplasm;

and myxoid matrix

Non-specific; S100 (focal) NR4A3-EWSR1-
/TAF15/TCF12/TFG

Myoepithelioma (syncytial)

Cutaneous; poorly
marginated; syncytial growth;

sheets of uniform
ovoid-histiocytoid-epithelioid

cells; and minimal stroma

S100, EMA, GFAP, SMA,
and calponin EWSR1-PBX3

Myxoid liposarcoma

Lobulated; primitive uniform
round-ovoid cells; variable

number of lipoblasts; myxoid
stroma; and plexiform

vasculature (chicken wire)

DDIT3 FUS/EWSR1-DDIT3

AFH has a low to intermediate biologic potential, with most cases behaving benign.
Recurrence is reported in up to 15% of the cases, especially when marginally excised.
Metastases have been reported in up to 5%, most frequently in the regional lymph nodes
and exceptionally in the lungs, liver, and brain. Pleomorphism and increased mitotic
activity are not associated with worse outcome [21,77,82].

4.2. Primary Pulmonary Myxoid Sarcoma (PPMS)

PPMS, an entity rendered by Thway et al. in 2011, is an EWSR1-CREB1 fusion gene
associated neoplasm of the lung. It predominantly arises intrabronchially and involves the
pulmonary parenchyma. It affects young to middle-aged adults, mainly women [21,87].

Morphologically, lesions are (multi)nodular with a pale and glistening cut surface
on macroscopy. Microscopically, round-to-ovoid or spindle cells are situated in a myxoid
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matrix arranged in cords with possible reticular growth, as seen in extraskeletal myxoid
chondrosarcoma (see there), nests, and sheets. Cells are relatively bland looking with at
most slight nuclear pleomorphism (Figure 7). There is a low mitotic index and possibly
focal necrosis. An inflammatory component is often obvious with presence of lymph
follicles, either marginal or intralesional. Immunohistochemistry is of little value, with a
faint reaction for EMA, but helps to exclude other lesions [21,87].

Figure 7. Primary pulmonary myxoid sarcoma: relatively uniform spindle cells arranged in loose
fascicles in a myxoid matrix (HE; 20× magnification).

Lesions may be benign or malignant (with described metastases in kidney and
brain) [21,87].

To what extent AFH and PPMS are related needs to be further explored. A close
relationship is conceivable. Differential diagnoses are listed in Table 6.

Table 6. Differential diagnoses of PPMS.

Diagnosis Morphology IHC Common Genetic Alterations

Salivary gland
myoepithelial tumors

Strands/nests/ductular
structures of

epithelial/myoepithelial cells; and
chondromyxoid/hyalinised

stroma

Epithelial cells: EMA,
cytokeratins; Myoepithelial cells:

GFAP, S100, SOX10, p40, p63,
and SMA

PLAG1 or HMGA2 fusions

Angiomatoid fibrous histiocytoma

Syncytial/whorling pattern
(classic AFH); reticular/lace-like
pattern (myxoid AFH); uniform

histiocytoid cells; blood-filled
pseudocysts; and

inflammatory/lymphocytic
reaction (lymph node-like)

Desmin, EMA, and ALK EWSR1-ATF1 or EWSR1-CREB1

Extraskeletal myxoid
chondrosarcoma

Multinodular; lace-like/reticular
pattern; round-spindle

monomorphic cells with
eosinophilic cytoplasm; and

myxoid stroma

Non-specific; S100 (focal) NR4A3-
EWSR1/TAF15/TCF12/TFG

4.3. EWSR1-CREM Undifferentiated Sarcoma

Currently, these tumors are still relatively unexplored.
One aggressive intraabdominal tumor in an adolescent was described consisting of

swirls of uniform spindle cells with intercellular delicate collagen. Immunohistochemistry
shows expression of vimentin, cytokeratin AE1/3, and CD56. EMA, CD34, ALK, synapto-
physin, and DOG1 were focally positive. INI1 and H3K27me3 were retained. Negative
were desmin, myogenin, S100, SOX10, NUT, CD31, and smooth muscle markers [72].
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The other tumor was that of a 63-year-old woman with localization in the chest
wall and a sclerosing epitheloid fibrosarcoma-like morphology with MUC4 and synap-
tophysin expression. The stroma was more fibrillary than sclerotic. After 17 months,
there was no evidence of disease [72]. A comparable case was included in the study by
Arbajian et al. 2017 [88,89]. Sequencing techniques should be applied in the right context
to detect this rearrangement.

4.4. Clear-Cell Sarcoma (CCS)

Enzinger was the first to describe CCSs systematically in 1965 [90] (Enzinger 1965),
also called melanoma of soft parts, because of overlapping morphological and immunohis-
tochemical features with melanoma [91]. In the years 1990, 1991, and 1992, the translocation
(12;22)(q13;q12) was found [92–94], one year after the EWSR1-ATF1 gene fusion by Zucman
et al. 1993 [95]. Later on, it became apparent that CREB1 and CREM are substituents of
ATF1 involving a smaller subset of cases [72,96,97].

Young adults (30–40 years) with equal sex distribution are the main group of patients.
However, there is a broad age range from children to the elderly [90–92,97–102]. Addi-
tionally, there is a race distribution with the overwhelming majority of patients being
Caucasian, whereas black people and Asians are uncommonly afflicted [101].

The deep soft tissue of the extremities is for the most part involved. Superficial
soft tissue and skin localization does not exclude diagnosis. Extension into bone can be
seen. Unusual tumor sites include the trunk, e.g., breast, anus, mediastinum, pleura,
retroperitoneum, and the head and neck area. Symptoms depend on site and are non-
specific. Tumors can be large (up to 15 cm) [90–92,97,98,101–104].

Grossly, tumors are firm and roughly spherical, with a smooth, nodular, or coarsely
lobular surface. Most are well defined and surrounded by a fibrous pseudocapsule. Ill-
defined lesions are less frequently reported. The cut surface is usually gray to white. Brown
areas and gelatinous foci are observed [90,102].

Microscopically, the classical pattern is that of a well delineated tumor with extension
into adjacent structures consisting of nests or short fascicles of monomorphic round-to
spindled cells with ample clear to eosinophilic cytoplasm, vesicular nuclei, and prominent
nucleoli (Figure 8). Mitotic activity is variable but rarely brisk. Cells are separated by
delicate fibrous septa. Typical are multinucleated giant cells with wreath-shaped nuclei. A
diffuse growth pattern and pleomorphism are seen in some instances. Also reported are
rhabdoid cells, an alveolar growth pattern, a seminoma-like appearance with a lymphocyte-
rich fibrovascular stroma, and a dominant stromal reaction. Melanin pigment may be
present, and necrosis can be found [90–92,97–99,102,104].

Figure 8. Clear-cell sarcoma comprises of nests of epithelioid cells separated by fibrous septa. There
are uniform round nuclei and eosinophilic to clear cytoplasm (HE; 20× magnification).
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Melanoma markers are expressed using immunohistochemistry [97–99,104].
Melanoma is the most important differential diagnosis. It has to be discriminate from

CCS because of the therapeutic consequences [105]. Other differential diagnoses are listed
in Table 7.

Table 7. Differential diagnoses of CCS.

Diagnosis Morphology IHC Common Genetic
Alterations

Melanoma

Diverse growth patterns;
large, atypical

spindle-epithelioid-bizarre cells
with vesicular nuclei and

prominent, eosinophilic nucleoli;
nuclear pseudo-inclusions;

abundant eosinophilic-clear
cytoplasm; and melanin pigment

S100, SOX10, Melan-A,
HMB45, and MITF

Diverse: ARID2, BAP1, BRAF,
GNAQ, HRAS, KIT, NF1,

NRAS, PTEN mutations; and
chromosomal gains/losses

Epithelioid Schwannoma

Multilobulated growth;
encapsulated; nests or single cells;

variableschwannoma
epithelioid cells; and

myxoid-hyalinized stroma

S100, SOX10, Loss of
INI1 (~40%) Loss of SMARCB1 (~40%)

Myoepithelial tumors

Divers spectrum;
reticular/trabecular

pattern; variable
spindle/epithelioid/clear/

plasmocytoid/rhabdoid cells;
rarely ductal component (mixed

tumors); fibromyxoid stroma; and
hyalinization

Pankeratins, S100, SOX10,
EMA, GFAP, P63, SMA,

calponin, and desmin (focal)

EWSR1 rearrangements
(various fusion partners);
PLAG1 rearrangements

(mixed tumors)

Excision is the treatment of choice. In a large epidemiological study, radiotherapy
and chemotherapy were applied in 34% and 20%, respectively [101]. Whether this con-
fers any survival advantage is unclear. At least some tumors are reported to be chemo-
sensitive [99]. Local recurrences and in-transit metastases are reported in around 20%
of the cases [99]. Sites of metastases are the lung (most commonly) and lymph nodes.
The propensity to metastasize to lymph nodes is typical in comparison to most other
sarcoma types. Overall, estimated 5- and 10-year survival is approximately 50% and 38%,
respectively [98,99,101,102].

4.5. Clear-Cell Sarcoma-Like Tumor of the Gastrointestinal Tract (Osteoclastrich Tumor of the
Gastrointestinal Tract or Malignant Gastrointestinal Neuroectodermal Tumor)

In 1993, Ekfors et al. described the first case of a clear-cell sarcoma in the duode-
num [106]. However, a similar case was already reported in 1985 under the term malignant
neuroendocrine tumor of the jejunum with osteoclast-like giant cells [107]. In 1998, it
became apparent that these tumors share the same genetic characteristics [108], with most
tumors harboring an EWSR1-CREB1 fusion and less often an EWSR1-ATF1 fusion [109].
Since then, there has been discussion whether these tumors are CCSs or a separate entity
as they have morphological and genetic similarities [21,110–112].

Tumors arise in the gastrointestinal tract (small bowel, stomach, colon, and esophagus)
of predominantly young adults and children. However, the age range is broad, including
the elderly. An abdominal mass with pain and intestinal obstruction are the main clinical
features. Lesions may be large, up to 15 cm. The appear macroscopically firm, solid, and
tan-white. Microscopy shows primary involvement of submucosa and muscularis propria,
occasionally with mucosal involvement [21,110–112]. Cytomorphology resembles CSS.
However, tumors show, besides the nested pattern, arrangement in sheets. Pseudoalveolar,
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pseudopapillary, microcystic, fascicular, and cord-like patterns, and rosette-like structures,
are also reported. Mitotic activity is variable. Osteoclast-like giant cells are often numer-
ous [21,110–112]. Immunohistochemistry shows expression of S100 and SOX10. Other
melanocytic markers (Melan A, HMB45) are in contrast to CSS commonly absent. Neural
and neuroendocrine markers, including synaptophysin, NSE, and CD56, are inconsistently
expressed. Rarely dot-like keratin-expression can be observed [21,110–112]. Although there
are some differences compared to CCS with regard to morphology and immunophenotype,
lack of melanin pigment does not exclude CCS [109]. Another important differential diag-
nosis regards melanoma. Although molecular alterations can often resolve this matter, not
all melanomas harbor a BRAF mutation and not all clear-cell sarcoma-like tumors of the
gastrointestinal tract have EWSR1 rearrangements.

These tumors show aggressive behavior with metastases to lymph nodes and the
liver [21,110–112].

5. Mesothelioma

In 2013 a (14;22)(q32;q12) translocation leading to a EWSR1-YY1 fusion was reported
in two mesotheliomas, showing for the first time fusion genes in these neoplasms [113]. In
2017, EWSR1/FUS-CREB fusions have been described in a subset of malignant mesothe-
liomas occurring mainly in young adults [114]. However, the age range is broad, com-
prising patients from the childhood to the elderly [113,114]. There is an equal sex dis-
tribution [115]. The peritoneum seems to be mostly involved with pleural lesions less
frequently reported [114]. Extension into adjacent organs and structures and lymph node
involvement are reported [115]. Histologically, these lesions resemble AFH and in part
CSS as described above under these headlines (Figure 9). Additionally, papillary projec-
tions, acinar, and tubular structures and psammomatous calcifications are reported as
seen in classical mesotheliomas. The cells are epithelioid and histiocytoid with monomor-
phic round-to-oval nuclei and eosinophilic cytoplasm [113,115]. The immunophenotype
with keratin- and WT1 nuclear expression and absence of S100 differs from AFH and
CSS. Overlapping positive immunohistochemical markers are EMA and desmin. Loss of
BAP1 may occur in a minority of cases [113,115]. Other differential diagnoses are listed in
Table 8. EWSR1/FUS-ATF1/CREM are the described fusion genes showing the spectrum
seen in other entities with EWSR1/FUS-CREB [115]. Follow-up data show variable clinical
presentation ranging from indolent to aggressive behavior [114,115].

Figure 9. Mesothelioma consist sheets and nests of uniform epitheloid tumor cells with enlarged
nuclei and eosinophilic cytoplasm (HE; 20× magnification).
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Table 8. Differential diagnoses of mesothelioma.

Diagnosis Morphology IHC Common Genetic
Alterations

Clear-cell sarcoma

Nested-fascicular pattern;
epithelioid-plump spindle

cells with vesicular nuclei and
macronucleoli; fibrous septa;

and scattered wreath-like
multinucleated giant cells

Melanocytic markers (S100,
SOX10, Melan-A, HMB45,

and MITF)

EWSR1-ATF1/CREB (most
often); EWSR1-CREM (rare)

Desmoplastic small
round-cell tumor

Sheets/nests/cords of
uniform, small round cells;

and variable
desmoplastic stroma

Desmin (dot-like), keratin,
EMA, and WT1 (C-terminus) EWSR1-WT1

Carcinoma

Sheets/nests/trabecules;
round-oval-epithelioid cells

with nuclear atypia and
variable cytoplasm

Pankeratins, lineage-specific
markers (depending on site

of origin)

Diverse (depending on site
of origin)

6. Myoepithelial Tumors

Different from most other EWSR1-rearranged neoplasms, myoepithelial tumors have
a normal counterpart, with myoepithelial cells being the outer layer of glands present
in e.g., salivary glands, lung, skin adnexa, and mamma, but naturally not in soft tissue
and bone.

The first myoepithelial tumor of soft tissue was published by Stout and Gorman in
1959 in a series of cutaneous lesions, and the first bone myoepithelioma was reported
in 2001 [116,117]. Parachordoma is another term introduced 1977 in the English litera-
ture [118]. Reports of cytogenetic analyses showed heterogeneous abnormalities [119–124].

Since EWSR1 rearrangement was mentioned in one myoepithelial carcinoma and
one myoepithelioma of soft tissue 2007 and 2008 [125,126]; systematic analyses revealed
that approximately 50% of myoepithelial tumors of skin, soft tissue, viscera, and bone
harbor a EWSR1 fusion gene with a variety of gene partners, including PBX1, PBX3,
ZNF 444, POU5F1, ATF1, and KLF17 [126–132]. EWSR1 seems to be rarely substituted
by FUS [128–130,132]. PLAG1 rearrangement and other genetic changes are alternatively
observed [124,133,134].

The age range is broad from early childhood to the elderly. Extremities and limb girdles
are most frequently involved, followed by the head and neck and trunk. Skin, subcutis, and
deep soft tissue, including mediastinum and retroperitoneum, can be affected [125,135–137].
Bone lesions most often arise in long tubular bones but also in small tubular bones and
the axial skeleton, including iliac bone, sacrum, vertebra, ribs, skull, and jaw. Cortical
destruction and extension into surrounding soft tissue may be present [138].

Macroscopically, tumors can be large with up to 20 cm. They are usually circumscribed
and (multi)nodular. The cut surface often is white-grey in color with gelatinous areas.
Calcification and ossification may be seen [137,138].

Microscopy is similar to salivary gland myoepithelial tumors showing a (multi)nodular
appearance with well-circumscribed nodi/noduli variably infiltrating adjacent tissue.
There is a broad spectrum in terms of architecture, cellularity, and cell composition. Growth
patterns, often combined, are solid, nested, reticular, trabecular, cord-like, and glandu-
lar. Cells are epithelioid and/or spindled, having sometimes a clear cytoplasm, and/or
plasmacytoid, and/or rhabdoid (Figure 10) [135–137]. Lesions called syncytial myoepithe-
liomas mainly occurring in skin show a sheet-like syncytial growth of ovoid to spindled or
histiocytoid cells with pale eosinophilic cytoplasm [139]. Criteria for malignancy were es-
tablished in the largest series of soft tissue myoepithelial tumors, with tumors with benign
cytomorphology or mild atypia (little variation in cell size, small relatively uniform nuclei,
fine chromatin, inconspicuous nucleoli) diagnosed as myoepithelioma, whereas morderate
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to servere atypia (nuclear pleomorphism or vesicular or coarse chromatin, prominent
nucleoli) represented features of myoepithelial carcinoma [135]. Small round-cell morphol-
ogy has been described in myoepithelial carcinomas [125,136,137]. The matrix, variably
present in myoepithelial tumors, can be (chondro)myxoid and/or collagenous/hyaline.
Metaplastic cartilage or bone may occur. In myoepithelial carcinomas, malignant bone
or cartilage can be observed. High mitotic rate and necrosis is reported in myoepithelial
carcinomas [125,136,137].

Figure 10. Myoepithelioma: epitheloid and spindle cells are arranged in sheets possessing bland
looking nuclei. Note the prominent hyaline matrix (HE; 20× magnification).

The immunohistochemical profile of myoepithelial tumors is variable showing per
definition expression of broad-spectrum keratins and/or EMA and neuronal markers as
S100, SOX10, and/or GFAP. P63 is positive in a subset of cases. Smooth muscle markers
(SMA, calponin, and desmin) are possibly positive. INI1 is lost in a subset of myoepithelial
carcinoma [5]. MUC4 expression can be confusing when considering sclerosing epithelioid
fibrosarcoma [130]. Nuclear expression of brachyury, absent in myoepithelial tumors,
distinguishes them from chordomas [140]. Differential diagnoses are listed in Table 9.

Table 9. Differential diagnoses of myoepithelial tumors.

Diagnosis Morphology IHC Common Genetic
Alterations

Extraskeletal myxoid
chondrosarcoma

Multinodular;
lace-like/reticular pattern;

round-spindle monomorphic
cells with eosinophilic

cytoplasm; and
myxoid stroma

Non-specific; S100 (focal) NR4A3-
EWSR1/TAF15/TCF12/TFG

Chordoma

Lobulated; fibrous septa;
cords/nests of large

epithelioid/polygonal cells,
physaliphorous cells (bubbly

cytoplasm); and variable
myxoid stroma

Cytokeratin, EMA, S100,
Brachyury

Germline tandem duplication
of TBXT (rare); germline

loss-of-function mutations of
TSC1/2 (rare)

Sclerosing epitheloid
fibrosarcoma

Infiltrative; cords/nests of
monomorphic epithelioid

cells; and hyalin-
ized/sclerotic/collagenous stroma;

MUC4, SMA, and EMA
EWSR1/FUS/PAX5-

CREB3L1/CREB3L2/CREB3L3/
CREM
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Table 9. Cont.

Diagnosis Morphology IHC Common Genetic
Alterations

(Adeno)carcinoma

Sheets/nests/trabeculae,
glands; round-oval

-epithelioid cells with nuclear
atypia and variable cytoplasm;

and ductular structures
(adenocarcinoma)

Pankeratins, lineage specific
markers (depending on site

of origin)

Diverse (depending on site
of origin)

Small, blue, round cell tumors
Cells with small

round-oval-spindle cells with
little cytoplasm

Diverse (depending on entity) See Tables 1–3

Epitheloid sarcoma

Nodules of uniform
epithelioid-spindled cells with

eosinophilic cytoplasm;
central geographic necrosis

(classic type);
multinodular/sheet-like

growth; large-slightly
pleomorphic epithelioid cells
with eosinophilic cytoplasm

(proximal type)

CD34, keratins, EMA, and loss
of INI1 Loss of SMARCB1

Melanoma

Diverse growth patterns;
large, atypical

spindle-epithelioid-bizarre
cells with vesicular nuclei and

prominent, eosinophilic
nucleoli; nuclear

pseudo-inclusions; abundant
eosinophilic-clear cytoplasm;

and melanin pigment

S100, SOX10, Melan-A,
HMB45, and MITF

Diverse: ARID2, BAP1, BRAF,
GNAQ, HRAS, KIT, NF1,

NRAS, PTEN mutations; and
chromosomal gains/losses

Epithelioid schwannoma

Multilobulated growth;
capsule; nests or singly cells;
variable epithelioid cells; and

myxoid-hyalinized stroma

S100, SOX10, and loss of INI1
(~40%) Loss of SMARCB1 (~40%)

Epitheloid malignant
peripheral nerve sheath tumor

Lobulated growth; atypical
epithelioid cells with enlarged

nuclei; and prominent
nucleoli and

eosinophilic cytoplasm

S100, SOX10 (strong and
diffuse), and loss in INI1

(~75%)
Loss of SMARCB1 (~75%)

Ossifying fibromyxoid tumor
(mostly benign,

rarely malignant)

Multilobulated; nests/cords of
uniform round-spindle cells;

indistinct cytoplasm; no
atypia (rarely high nuclear
grade in malignant lesions);
fibromyxoid stroma; partial

rim of mature bone; and
atypical osteoid in
malignant tumors

S100, desmin, GFAP (focal),
and pankeratin (rare)

PHF1 rearrangements (diverse
fusion partners)

Clear-cell sarcoma

Nested-fascicular pattern;
epithelioid-plump spindle

cells with vesicular nuclei and
macronucleoli; fibrous septa;

and scattered wreath-like
multinucleated giant cells

Melanocytic markers (S100,
SOX10, Melan-A, HMB45,

and MITF)

EWSR1-ATF1/CREB (most
often); EWSR1-CREM (rare)



Diagnostics 2021, 11, 1093 21 of 41

Table 9. Cont.

Diagnosis Morphology IHC Common Genetic
Alterations

Malignant rhabdoid tumors

Solid pattern; uniform
rounded-polygonal cells with

vesicular nuclei and
prominent nucleoli; and
eosinophilic hyaline-like
cytoplasmic inclusions

Diverse; keratins, EMA, CD99,
synaptophysin, SALL4,

glypican-3, and INI1 loss
SMARCB1 biallelic loss

Epithelioid
hemangio-endothelioma

Infiltrative, sometimes
angiocentric growth;

cords/nests of bland looking
epithelioid and spindle cells;

glassy cytoplasm;
intracytoplasmic vacuoles

(blister cells); and
myxohyaline stroma

CD34, CD31, ERG, D2-40,
keratins (subset), SMA,

CAMTA1, and TFE3

WWTR1-CAMTA1 (>90%);
YAP1-TFE3

Pseudomyogenic (epitheloid
sarcoma-like)

hemangio-endothelioma

Multiple discontinuous
nodules; possibly

involvement of different
tissue planes; sheets/fascicles
of plump-spindle-epithelioid
cells with abundant, brightly

eosinophilic cytoplasm;
vesicular nuclei with small

nucleoli; mild nuclear atypia;
not obvious vascular; and

prominent stromal
neutrophils (50%)

Keratins (AE1/AE3 but not
MNF116), FLI, ERG, CD31

(50%), SMA (focal), and FOSB
SERPINE1/ACTB-FOSB

Excision is the treatment of choice. Most of the lesions are superficially located with a
benign morphology behaving indolent. Benign and malignant lesions have the potential
for local recurrence. The metastatic rate of myoepithelial carcinoma is high with spread to
lung, lymph nodes, bone, and soft tissue. Radiotherapy and chemotherapy are additional
treatment options, but clinical effectiveness is variable [5,137].

7. Low-Grade Fibromyxoid Sarcoma (LGFMS)/Sclerosing Epithelioid Fibrosarcoma (SEF)

These mostly deep situated sarcomas show overlapping features in terms of morphol-
ogy, immunohistochemistry, genetic aberrations, and behavior [141]. Therefore, it has been
suggested that they form a spectrum of one entity [141,142].

LGFMS was firstly observed by Evans in 1987, and the first description of SEF was
done by Meis-Kindblom eight years later [143,144]. The chromosomal translocation, most
typical for LGFMS, (t7;16)(q34;p11), has been described in 2003 by Reid et al. and the
corresponding fusion gene FUS-CREB3L2 in the same year [145,146]. Later on, it was
shown that CREB3L1 is an alternative fusion partner of FUS and that FUS can be substituted
by EWSR1 [147,148]. The genetic findings of LGFMS were also found in SEF and hybrid
cases with predominance of EWSR1-CREBL3L1 in SEF [149]. In one case, a PAX5-CREB3L1
was identified [88].

Both entities affect patients over a wide age range with a median in the 3th (LGFMS)
and 4th (SEF) decade [141,142,144,150]. Most often, these tumors occur in the deep soft
tissue of the lower extremities, particularly thigh and limb girdles and the trunk. However,
a wide variety of involved anatomic sites are reported, including intraabdominal, kidney,
and bone [5,141–144,149–153].

Macroscopically, lesions are (multi)nodular with a grey-white whorled cut surface.
Myxoid areas, if present, are visible. Infiltrative growth in adjacent structures can be
seen [142,144,151].
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Microscopically, LGFMS is characterized by alternating fibrous and myxoid areas with
a whorled and bundled growth of uniform bland-looking slender fibroblastic spindle cells
with elongated and tapered nuclei. A storiform, fascicular, and patternless architecture
may be seen (Figure 11). Mitotic figures are sparse. There is scant cytoplasm. Typically,
there are arcades of small blood vessels. In some cases, hyaline rosettes surrounded by
round or oval cells are present. Such neoplasms were formerly called hyalinizing spindle
cell tumor with giant rosettes. Cellular examples containing epithelioid cells show overlap
with SEF and hybrid cases occur. A shift of the LGFMS pattern to SEF morphology is
described in recurrences and metastases. Uncommonly noted are cell clusters, strands,
palisades, and a retiform pattern. Thick collagen bundles are sometimes found in fibrotic
areas. Nuclear pleomorphism and multinucleated giant cells are rarely observed and are
mainly associated with recurrences and metastases. Cystic changes and osseous metaplasia
may occur [141,143,150,151].

Figure 11. Low-grade fibromyoid sarcomas are characterized by bland looking spindle cells set in an
alternating fibromyxoid matrix (HE; 20× magnification).

SEF shows histomorphologically epithelioid/polygonal cells arranged in cords, nests,
and sheets situated in a sclerotic stroma. Due to cellular shrinkage, a pseudovascular
appearance can become apparent. The round-to-oval nuclei show at most slight pleomor-
phism and an open chromatin. There is a variable often low mitotic count
(Figure 12) [141,142,144]. Chondro-osseous differentiation is exceptionally observed [144,149].

Figure 12. Sclerosing epitheloid fibrosarcoma, demonstrated by cords of bland looking epitheloid
cells in a sclerotic stroma. Note pseudoangiomatous shrinkage artefacts (20× magnification).
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The most reliable immunohistochemical marker is MUC4 with positivity in the ma-
jority of LGFMS, whereas SEFs are positive in around 70% of the cases [149,154,155].
Other markers such as EMA, S100, CD34, SMA, and keratins (in SEF) are inconsistently
expressed [141].

Differential diagnoses are listed in Tables 10 and 11.
Wide excision is the treatment of choice. LGFMS typically shows a prolonged clinical

course with recurrences and metastases. SEF seems to be more aggressive with much
shorter survival; however, the outcome is variable [141,150].

Table 10. Differential diagnoses of LGFMS.

Diagnosis Morphology IHC Common Genetic
Alterations

Desmoid-type fibromatosis

Long, sweeping fascicles;
slender uniform spindle cells;
pale cytoplasm; and parallel
to fascicles thin-walled blood

vessels with perivascular
edema

Beta-catenin (nuclear), SMA,
and desmin (focal) CTNNB1 or APC mutations

Nodular fasciitis

Plump spindle cells;
tissue-culture aspect;

extravasated erythrocytes;
lymphocytes; and sometimes

osteoclast-like giant cells

Non-specific: SMA, CD68,
and desmin (focal)

USP6 rearrangements (diverse
fusion partners)

Ossifying fibromyxoid tumor
(mostly benign,

rarely malignant)

Multilobulated; nests/cords of
uniform round-spindle cells;

indistinct cytoplasm; no
atypia (rarely high nuclear
grade in malignant lesions);
fibromyxoid stroma; partial

rim of mature bone; and
atypical osteoid in
malignant tumors

S100, desmin, GFAP (focal),
and pankeratin (rare)

PHF1 rearrangements (diverse
fusion partners)

Neurofibroma

Nodular or diffuse growth;
variable admixture of

perineurial cells, schwann
cells and fibroblasts;

hyperchromasia; usually no
atypia or mitoses; and
myxoid-collagenous

stroma with
“shredded-carrot” collagen

S100, SOX10, CD34, and EMA NF1 deletions

Perineurioma

Nodular; non-encapsulated;
circumscribed or infiltrative;

whorled/storiform/fascicular
pattern; and slender spindle

cells with bipolar cytoplasmic
extensions and uniform oval

or elongated nuclei

EMA, GLUT1, CD34, and
Claudin 1

TRAF7 mutations (intraneural
perineurioma);
NF1/2 deletions

Desmoplastic fibroblastoma

Paucicellular; bland
stellate-spindle cells; and

abundant collagenous-
myxocollagenous stroma

FOSL1, SMA (focal) t(2;11)
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Table 10. Cont.

Diagnosis Morphology IHC Common Genetic
Alterations

Malignant peripheral nerve
sheath tumor

Fascicles of monomorphic
atypical spindle cells with

perivascular accentuation and
alternating cellularity;

pleomorphism is possible;
staghorn vessels; geographic
necrosis; and heterologous

differentiation

S100, SOX10 (focal), and loss
of H3K27me3

Inactivating mutations of NF1,
CDKN2A/B, EED, and SUZ2

Fibroma nuchae

Paucicellular; bland spindle
cells; thick collagen bundles;

and entrapped adipose tissue
and/or small nerves

CD34 Not relevant

Intramuscular (cellular)
myxoma

Myxoid stroma; hypocellular;
uniform spindle-stellate cells;

inconspicuous vessels; and
infiltration into
skeletal muscle

CD34 GNAS mutations

Dermatofibrosarcoma
protuberans

Dermal based; cellular,
storiform pattern of uniform
spindle cells; encasement of

skin appendages; and
infiltration in subcutaneous

fat with honeycombing

CD34
COL1A1-PDGFB (most often);

COL6A3-PDGFD or
EMILIN2-PDGFD (rare)

NTRK-rearranged spindle cell
neoplasm (emerging)

Wide spectrum of
morphologies and histological

grades; most often
haphazardly arranged

monomorphic spindle cells;
variable stromal/perivascular
hyalinization; and infiltrative

growth into fat

S100, CD34 (co-expression),
and NTRK

NTRK1-3 rearrangements
(diverse fusion partners);

RAF1 or BRAF fusions (rare)

Table 11. Differential diagnoses of SEF.

Diagnosis Morphology IHC Common Genetic
Alterations

Ossifying fibromyxoid tumor

Multilobulated; nests/cords of
uniform round-spindle cells;

indistinct cytoplasm; no
atypia (rarely high nuclear
grade in malignant lesions);
fibromyxoid stroma; partial

rim of mature bone; and
atypical osteoid in
malignant tumors

S100, desmin, GFAP (focal),
and pankeratin (rare)

PHF1 rearrangements (diverse
fusion partners)

Carcinoma (lobular, signet
ring cell)

Files-small nests; round-oval
cells with variable cytoplasm

and nuclear atypia; and
intracytoplasmic
mucin vacuole

Pankeratins, lineage specific
markers (depending on site

of origine)

Diverse (depending on site
of origin)

Sclerosing lymphoma

Variably sized
hyperchromatic-blastoid cells

with variable atypia; scant
cytoplasm; and
sclerotic stroma

CD45, B/T-cell markers Diverse
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Table 11. Cont.

Diagnosis Morphology IHC Common Genetic
Alterations

Synovial sarcoma

Sheets-fascicles; cellular,
monomorphic spindle cells;

high N/C ratio, variable
epithelial differentiation;
staghorn vessels; variable

amount of collagen; mast cells;
and calcification/ossification;

poorly differentiated areas
may show

round-epithelioid cells

CD99, BCL2, CD56, TLE1,
S100 (focal), EMA, and

keratins (variable)
SS18-SSX1/2/4

Clear-cell sarcoma

Nested-fascicular pattern;
epithelioid-plump spindle

cells with vesicular nuclei and
macronucleoli; fibrous septa;

and scattered wreath-like
multinucleated giant cells

Melanocytic markers (S100,
SOX10, Melan-A, HMB45,

and MITF)

EWSR1-ATF1/CREB (most
often); EWSR1-CREM (rare)

Osteosarcoma

Highly diverse; infiltrative
growth; severely anaplastic

and pleiomorphic cells;
monomorphic small cell
appearance is rare; and
atypical neoplastic bone

formation (essential)

SATB2, osteocalcin (BGLAP),
osteonectin (SPARC),

osteoprotegerin (TNFRSF11B),
RUNX2, S100, actins, CD99,

keratin, and EMA

Highly complex
chromosomal aneuploidy

Myoepithelioma

Divers spectrum;
reticular/trabecular

pattern; variable
spindle/epithelioid/clear/

plasmocytoid/rhabdoid cells;
rarely ductal component

(mixed tumors); fibromyxoid
stroma; and hyalinization

Pankeratins, S100, EMA,
GFAP, SOX10, P63, SMA,

calponin, and desmin (focal)

EWSR1 rearrangements
(various fusion partners);
PLAG1 rearrangements

(mixed tumors)

8. Extraskeletal Myxoid Chondrosarcoma (EMC)

When initially described by Stout and Verner in 1953, it was thought that EMCs
are true chondrosarcomas [156]. The first large series delineating this tumor type more
precisely was published by Enzinger and Shiraki in 1972 [157]. In 1985, Hinrichs et al.
reported for the first time the specific reciprocal translocation t(9;22)(q22;q11) leading
to the most common fusion gene EWSR1-NR4A3, which was detected by Labelle et al.
1995 [158,159]. It seems that NR4A3 is necessarily involved. The described fusion partners
besides EWSR1 are TAF15, TCF12, and TFG [160,161].

This in deep subcutis and soft tissue located sarcoma affects adults with a mean
age of 50 years. Children are rarely involved [162,163]. Males are slightly more often
affected [160]. The main sites are the proximal extremities and limb girdles followed by
the distal extremities and trunk. Unusual sites are the head and neck area, including
the intracranial cavity, the pelvic cavity/retroperitoneum, or intraabdominal and acral
sites [21,160,162]. Rarely bone lesions are also reported [164].

Macroscopically, tumors show a (multi)nodular configuration with relatively well-
defined margins and variably a pseudocapsule. The cut-surface appears gelatinous with a
tan color. Firm grey-white areas and hemorrhage may be seen [160].

Regarding microscopy, EMC is commonly a hypocellular lesion characterized by a
multinodular growth pattern with presence of fibrous septa. The tumor nodules show
peripheral accentuation of cellularity and are composed of bland-looking small round-to-
spindled cells with scanty eosinophilic cytoplasm set in a myxoid matrix resulting in a
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lace-like or reticular appearance. The nuclei are usually uniform, round-to-oval with an
open chromatin or with hyperchromasia (Figure 13). There is low mitotic activity. Cellular
areas lose their classical architecture owing to the limited myxoid matrix. They may be
present in primary and recurrent lesions sometimes associated with pleomorphism of
epithelioid, rhabdoid, and spindled cells [160,162].

Figure 13. Extraskeletal myxoid chondrosarcoma shows a lace-like architecture due to the myxoid
matrix. There are monomorphic epitheloid and spindle cells with an obvious eosinophilic cytoplasm
(HE; 20× magnification).

Immunohistochemistry is of little value depicting focal S100 reaction. GFAP, EMA,
SMA, keratins, and p63 are expressed in a minority of cases with a focal staining pat-
tern [160,161]. Fusion gene analyses is especially helpful when classical features are
less obvious.

The most important differential diagnosis is myoepithelial tumors of soft tissue. They
show morphological, immunophenotypical (EMA/Keratins + and S100/SOX10/GFAP+),
and genetic overlap with rearrangement of EWSR1 in a subset of cases. Fusion chimera
involving NR4A3 are confirmatory for the diagnosis of EMC [161]. For further differential
diagnoses see Table 9.

Surgery is the treatment of choice. EMC shows a protracted clinical course with a high
rate of recurrences and metastatic potential [21,162,165].

9. EWSR1-SMAD3-Positive Fibroblastic Tumor (ESFT)

This recently defined tumor type was first described by Kao et al. in 2018 [166]. Few
reports have followed since then [167–171].

Lesions usually present as a relatively small painless mass in the skin and superficial
soft tissue of the extremities, mainly distal, especially the foot. Occurrence in bone is
reported in one case localized in the tibia [171]. There is a broad age range from the early
childhood to the elderly and an obvious female preponderance.

Macroscopically, the neoplasms are nodular and firm, showing on cut surface a white-
grey solid appearance.

Histologically, tumors have a nodular configuration and consist of infiltrative growing
intersecting long or short fascicles. The spindle cells possess uniform elongated nuclei with
open chromatin. Mitotic activity is low. There is inconspicuous cytoplasm. Cellular areas
merge with hyalinized areas showing sometimes calcifications. In some cases, a zonation
pattern is seen often with central hyalinization (Figure 14). When located intradermal,
an epidermal collarette may be present. Arrangement around blood vessels as seen in
myopericytomas is sometimes observed. Myxoid and collagenous areas with the latter
reminiscent of collagen rosettes are rarely reported [167–171].
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Figure 14. EWSR1-SMAD3-positive fibroblastic tumor is composed of fascicles of bland looking
spindle cells. There is an alternating cellularity with a hyaline matrix (HE; 20× magnification).

Immunohistochemically, the most reliable marker by now seems to be ERG demon-
strating an homogeneous nuclear expression. Variable positive markers are SMA, keratins
(both mostly week and focal), and SATB2. Reported negative stainings are EMA, desmin,
S100, SOX10, CD34, CD31, MUC4, STAT6, TLE1, HMB45, and CD99. When a classical
clinicopathologic constellation is present with expression of ERG, the diagnosis is straight
forward. However fusion gene analysis may aid for the precise diagnosis, because benign
and malignant lesions are in the differential diagnoses listed in Table 12 [167–171].

Table 12. Differential diagnoses of EWSR1-SMAD3-positive fibroblastic tumor.

Diagnosis Morphology IHC Common Genetic
Alterations

Cellular schwannoma

Encapsulation;
predominantly Antoni A
areas; variable neuroid
spindle cells; possibly

hyperchromasia and frequent
mitoses; rarely Verocay bodies

or schwannian whorls; and
hyalinized vessels

subcapsular lymphocytes

S100, SOX10

NF2 deletion; LATS1/2,
ARID1A/1B, and
DDR1 mutations;

SH3PXD2A-HTRA1

Perineurioma

Whorled/storiform pattern;
slender spindle cell with

bipolar cytoplasmic
extensions and
oval/elongated
uniform nuclei

EMA, GLUT1, CD34,
Claudin 1

TRAF7 mutations (intraneural
perineurioma); NF/2 deletions

Myofibroma/myopericytoma

Myofibroma: nodular;
biphasic pattern: immature
plump-spindle cells around

staghorn vessels; and
nodules/fascicles of

hyalinized-myoid-chondroid
appearing cells.

Myopericytoma: lobular;
variably cellular; bland

oval-spindle-myoid cells; and
perivascular growth

SMA (myofi-
broma/myopericytoma),

caldesmon (myopericytoma)

PDGFRB, NOTCH3 mutations;
SRF-RELA
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Table 12. Cont.

Diagnosis Morphology IHC Common Genetic
Alterations

Angioleiomyoma
Bundles of bland

leiomyocytes around
numerous vessels

SMA, calponin, caldesmon,
and desmin (variable) Not relevant

Cellular digital fibroma

Whorls/short fascicles; bland
spindle cells with slightly

eosinophilic cytoplasm; pale
pink-red, paranuclear

inclusions; and
collagenous stroma

Actin, calponin,
and caldesmon Not relevant

Calcifying aponeurotic
fibroma

Fibromatosis-like, infiltrative
component of bland spindle

cells; nodular calcified
component with

hyalinized-chondroid matrix
encircled by

rounded-chondrocyte like
cells; and osteoclast-type

giant cells

SMA, CD99, S100
(chondroid areas) FN1-EGF

Acral fibromyxoma

Nodular or diffuse; infiltrative
growth of bland

spindle-stellate cells; and
variably

myxoid-collagenous stroma

CD34, EMA, SMA, and
RB1 (loss) RB1 deletions

Superficial fibromatosis

Plexiform or multinodular;
moderately cellular bland

spindle cells; and
collagenous stroma

SMA, desmin, beta-catenin
(nuclear) positive in a subset
of cases despite absence of
CTNNB1 or APC mutation

Not relevant

Cellular dermatofibroma

Radiar configuration;
storiform/short fascicular
pattern; cellular center of
fibrohistiocytic cells; and

peripheral
collagen entrapment

SMA, FXIIA, and CD68 PRKCB/PRKCD-
PDPN/CD63/LAMTOR1

Lipofibromatosis

Admixture of mature fat,
fascicles of bland

myofibroblastic spindle cells
(fibromatosis-like) and

lipoblast-like cells at
the interface

CD34, SMA EGFR/HER1/ROS/RET/
PDGFRB-EGF/HBEGF/TGF-α

Smooth muscle neoplams

Intersecting fascicles of
smooth muscle cells;

blunt-ended, cigar-shaped
nuclei; and

eosinophilic cytoplasm

SMA, desmin, and caldesmon Not relevant;

Synovial sarcoma

Sheets-fascicles; cellular,
monomorphic spindle cells;

high N/C ratio; variable
epithelial differentiation;
staghorn vessels; variable

amount of collagen; mast cells;
calcification/ossification; and

poorly differentiated areas
may show

round-epithelioid cells

CD99, BCL2, CD56, TLE1,
S100 (focal), EMA, and

keratins (variable)
SS18-SSX1/2/4 fusion
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Table 12. Cont.

Diagnosis Morphology IHC Common Genetic
Alterations

Malignant peripheral nerve
sheath tumor

Fascicles of spindle cells with
perivascular accentuation and

alternating cellularity;
staghorn vessels; georgraphic

necrosis; and heterologous
differentiation

S100, SOX10 (focal), and loss
of H3K27me3

Inactivating mutations of NF1,
CDKN2A/B, EED, and SUZ2

Acral dermatofibrosarcoma
protuberans

Dermal-based; cellular,
storiform pattern of uniform
spindle cells; encasement of

skin appendages; and
infiltration in subcutaneous

fat with honeycombing

CD34
COL1A1-PDGFB fusion (most

often); COL6A3-PDGFD or
EMILIN2-PDGFD (rare)

Low-grade fibromyxoid
sarcoma

Alternating myxoid-fibrous
areas; whorling/fascicular

pattern of bland spindle cells;
arcades of small vessels; and
sometimes hyaline rosettes,
which sometimes overlap
with sclerosing epitheloid

fibrosarcoma

MUC4 (highly sensitive and
specific); EMA, S100, CD34,

and SMA (variable)
EWSR1/FUS-CREB3L1/2

Pseudomyogenic (epitheloid
sarcoma-like)

hemangioendothelioma

Multiple discontinuous
nodules; possible involvement

of different tissue planes;
sheets/fascicles of

plump-spindle-epithelioid
cells with abundant, brightly

eosinophilic cytoplasm;
vesicular nuclei with small

nucleoli; mild nuclear atypia;
not obvious vascular; and

prominent stromal
neutrophils (50%)

Keratins (AE1/AE3 but not
MNF116), FLI, ERG, CD31

(50%), SMA (focal), and FOSB
SERPINE1/ACTB-FOSB

NTRK-rearranged spindle
cell neoplasms

Wide spectrum of
morphologies and histological

grades; most often
haphazardly arranged

monomorphic spindle cells;
variable stromal/perivascular
hyalinization; and infiltrative

growth into fat

S100, CD34 (co-expression),
and NTRK

NTRK1-3 rearrangements
(diverse fusion partners);

RAF1 or BRAF fusions (rare)

The clinical behavior appears to be benign, also when located in the bone, but lesions
are prone to local recurrence even after 10 years [167–171].

10. Epithelioid and Spindle Cell Rhabdomyosarcoma with EWSR1/FUS-TFCP2 Fusion

These lesions were first described by Watson et al. in 2018 [26].
Hitherto-reported cases arose mainly in the bone and rarely in soft tissue, with predilec-

tion for the craniofacial bones. However, sites are heterogeneous, including also pelvis,
femur, groin, and peritoneum. Intraosseous lesions show destruction of the cortex and
expansion into soft tissue. The age range is broad, including pediatric patients and elderly
patients. The average age is in the third decade. Males and females are affected (almost)
equally with a slight female preponderance [172].

Macroscopically, a solid mass is reported [173].
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Histologically, tumors consist of epithelioid and/or spindle cells. Whereas epithelioid
cells are arranged in sheets, spindle cells show fascicular growth. The enlarged, relatively
monomorphic round, oval, or elongated nuclei are vesicular with prominent nucleoli. The
cytoplasm is scant or moderate, more or less intense eosinophilic, and can be rhabdoid
in the epithelioid population. Round-cell morphology and uncommonly pleomorphism
and hyperchromasia are reported. Real rhabdomyoblasts are not always present. There
is a variable, sometimes prominent stromal reaction with sclerosing/hyalinized areas.
Immunohistochemically, tumors were all positive with desmin and MYOD1 and to a much
lesser degree with myogenin. ALK seems to be heterogeneously expressed in a large subset
of cases, and broad-spectrum keratins are positive in almost all cases. S100 can be expressed
without concomitant positivity for SOX10 [26,172,174,175]. Differential diagnoses are listed
in Table 13.

Table 13. Differential diagnoses of epithelioid and spindle cell rhabdomyosarcoma.

Entity Morphology IHC Common Genetic
Alterations

Inflammatory
myofibroblastic tumor

Fascicular pattern (variable);
plump-spindle cells with
vesicular nuclei and small
nucleoli and amphophilic

cytoplasm;
oedematous-myxoid-fibrous

stroma; and mixed
inflammatory infiltrate

SMA, calponin, desmin,
keratin (focal), ALK,

and ROS1

ALK rearrangements (various
fusion partners); ROS1,

NTRK3, RET, or PDGFRB
rearrangements

Carcinoma

Sheets/nests/trabecules;
round-oval-epithelioid cells
with variable cytoplasm and

nuclear atypia

Pankeratins, lineage-specific
markers (depending on site

of origine)

Diverse (depending on site
of origin)

Myoepithelial carcinoma

Solid sheets/nests of variable
myoepithelial cells (epitheloid,

spindled, plasmocytoid,
rhabdoid, and clear) with high

nuclear grade or
undifferentiated round-cell
morphology; necrosis; and

high mitotic count

Pankeratins, EMA, S100,
SOX10, GFAP, P63, SMA,

calponin, desmin (focal); and
INI1 loss (subset)

EWSR1 rearrangements
(various fusion partners);
PLAG1 rearrangements

(mixed tumors)

EWSR1-PATZ1 sarcoma
Diverse morphology:
round-spindle cells;

fibrous stroma

Co-expression of
myogenic markers

(desmin/myogenin/MyoD1)
and neurogenic markers

(S100/SOX10/MITF/GFAP)

EWSR1-PATZ1

Dedifferentiated
chondrosarcoma

Conventional
chondrosarcoma with abrupt

transition to a high-grade
non-cartilaginous sarcoma
(undifferentiated sarcoma,

osteosarcoma, angiosarcoma,
leiomyosarcoma, and
rhabdomyosarcoma)

Diverse (according to line of
differentiation); loss of

H3K27me3, MDM2
overexpression, p53

overexpression, and PDL1

Complex karyotype; IDH1/2,
TP53 mutations
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Table 13. Cont.

Entity Morphology IHC Common Genetic
Alterations

Pseudomyogenic (epitheloid
sarcoma-like)

hemangioendothelioma

Multiple discontinuous
nodules; possibly

involvement of different
tissue planes; sheets/fascicles
of plump-spindle-epithelioid
cells with abundant, brightly

eosinophilic cytoplasm;
vesicular nuclei with small

nucleoli; mild nuclear atypia;
not obvious vascular; and

prominent stromal
neutrophils (50%)

Keratins (AE1/AE3 but not
MNF116), FLI, ERG, CD31

(50%), SMA (focal), and FOSB
SERPINE1/ACTB-FOSB

Rhabdomyosarcoma
(spindle cell)

Cellular fascicles with
intersecting/herringbone
pattern; atypical uniform

spindle cells with pale
eosinophilic cytoplasm;

primitive round cells may be
present; and tadpole/strap

cells (sometimes)

Desmin, MyoD1 (focal or
diffuse), myogenin (focal)

SRF/VGLL2/TEAD1-NCOA2,
VGLL2-CITED2 (congenital

spindle cell RMS); and
MYOD1 mutation

Leiomyosarcoma

Intersecting fascicles of
smooth muscle cells;

blunt-ended, cigar-shaped
nuclei; variable atypia and

pleomorphism (depending on
grade); eosinophilic

cytoplasm; mitoses; necrosis

SMA, desmin, and caldesmon

Extensive genomic instability
(leiomyosarcoma); diverse
gene involvement with p53

mutations; deleterious ATRX
alterations; ALK

rearrangement (small subset);
and NF1 mutations (subset of

inflammatory
leiomyosarcoma);

Melanoma

Diverse growth patterns;
large, atypical

spindle-epithelioid-bizarre
cells with vesicular nuclei and

prominent, eosinophilic
nucleoli; nuclear

pseudo-inclusions; abundant
eosinophilic-clear cytoplasm;

and melanin pigment

S100, SOX10, Melan-A,
HMB45, and MITF

Diverse: ARID2, BAP1, BRAF,
GNAQ, HRAS, KIT, NF1,

NRAS, and PTEN mutations;
chromosomal gains/losses

Malignant peripheral nerve
sheath tumor

Fascicles of spindle cells with
perivascular accentuation and

alternating cellularity;
staghorn vessels; necrosis; and
heterologous differentiation

S100, SOX10 (focal), and loss
of H3K27me3

Inactivating mutations of NF1,
CDKN2A/B, EED, and SUZ2

Most of the tumors behave extremely aggressively, with a reported median survival of
8 months [26,172,173]. However, few patients with local disease and long-term follow-up
showed no evidence of disease after treatment, with the mandible being a site of favorable
prognosis [172,174–176].

11. Retroperitoneal Leiomyoma

The first cytogenetic analyzed retroperitoneal leiomyoma harbored a t(10;17)(q22;q21)
translocation resulting in a KAT6B-KANSL1 fusion gene, and the second case was identi-
fied with a t(9;22)(q33;q12) leading to an EWSR1-PBX3 chimeric transcript. Both lesions
occurred in woman 45 and 26 years old and showed a usual leiomyoma morphology, with
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leiomyocytes arranged in long fascicles and a classical immunoprofile with expression
of smooth muscle markers. It is obvious that molecular heterogeneity may exist in these
tumors [177,178].

12. Simple (Unicameral) Bone Cyst (SBC)

SBC was initially reported by Rudolf Virchow in 1876 [179–181]. It is a benign in-
tramedullary cystic lesion involving the long bones in skeletally immature individuals.
Boys are twice as more affected than girls. The reported peak is between the ages of 3
and 14 years. It commonly arises in the proximal humerus or proximal femur and less
frequently in other long bones. Symptoms can be pain and swelling. A unilocular expansile
cyst showing double-density fluid levels is radiologically characteristic [5,179,180,182].

Macroscopically, an often-fragmented thin fibrous membrane representing the cyst
wall possibly with thickening and hemorrhage after trauma is seen (fracture). The fibrous
pseudocystic structure is also microscopically obvious showing focal fibrin-like collagen
with calcification and ossification. There is no true lining (Figure 15). Myofibroblastic cells
and osteoclasts are not as prominent as typically seen in aneurysmal bone cyst (ABC), which
is a differential diagnosis. Secondary changes as hemorrhage with resorption with chronic
inflammation can be found after fracture. This can camouflage the classical microscopical
features [5,179,180,182]. In 2002, the translocation (16;20)(p11.2;q13) was identified as the
sole cytogenetic abnormality in a SBC case [183]. Recently, the corresponding FUS1-NFATC2
or alternatively EWSR1-NFATC2 fusion have been demonstrated in a subset of cases proving
that SBC is a neoplasm [5,180,182] (WHO, Pizem et al., 2020, Hung et al., 2021).

Figure 15. Pseudocystic space of a simple bone cysts lined by myofibroblastic cells. There is primitive
osteoid. The preexistent bone shows resorption (HE; 20× magnification).

Besides ABC, other differential diagnoses are cystic fibrous dysplasia, intraosseous
ganglion, or lipoma (Table 14) [5,180].

Table 14. Differential diagnoses of simple (unicameral) bone cyst.

Diagnosis Morphology Common Genetic Alterations

Fibrous dysplasia
Irregular, curvilinear trabeculae of woven (or rarely lamellar)
bone without osteoblast rimming; inconspicuous osteoblasts;

sharpey fibers; and osteoclasts bland fibroblastic stroma
GNAS mutations (50–70%)

Intraosseous ganglion Cavity without lining; filled with mucoid viscous material None (probably degenerative)

Lipoma Nodules of mature adipose tissue, often fibrotic Unknown
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Conservative and surgical treatment are discussed in the literature. The recurrence
rate is low but fractures are a known complication [5,179,180].

13. Hemangioma of Bone with an EWSR1-NFATC1 Fusion

In 1982, Mulliken and Glowacki separated vascular anomalies into hemangiomas
and vascular malformations based on their clinicopathological appearance and biological
background [184,185]. This was the base for the classification of the International Society
for the Study of Vascular Anomalies (ISSVA) [186]. Vascular tumors arise by clonal cellular
proliferation of vessels showing a disproportionate growth. In contrast, vascular malforma-
tions originate in utero as a result of mosaic mutations leading to erroneous development
of vessels with proportionate growth [187].

Hemangiomas of the bone are relatively common and often incidental findings. They
can be found at any age and arise often multifocal. The spine is the predilection site
followed by the craniofacial bones. Radiologically, well-demarcated lucent lesions with
coarse primary trabeculations are visible. When symptomatic, surgical intervention can be
necessary and tissue will be obtained [5].

Macroscopically, the lesional tissue, often piecemeal, is soft and hemorrhagic with
some bony fragments.

Microscopy is variable, showing thin and thick-walled vessels of different caliber. The
endothelial lining is not remarkable [5]. A stromal reaction can be prominent. A vascular
malformation can be difficult to differentiate (Figure 16).

Figure 16. Hemangioma of bone consisting of cavernous blood-filled vessels. Note the surrounding
cellular matrix and remodeling of the preexisting bone (HE; 20× magnification).

Recently, a multifocal hemangioma has been described located in the occipital bone
and clavicle showing a t(18;22)(q23;q12) with an EWSR1-NFATC1 fusion chimera [188].

Comparable lesions were found with EWSR1-NFATC1 or EWSR1-NFATC2 (own obser-
vation). Therefore, it seems to be a recurrent finding.

Prognosis is excellent [5,188].

14. Conclusions

Several malignant and benign tumors harbor an EWSR1 rearrangement due to the
central role of EWSR1 in different cell processes and vulnerability of the gene as conse-
quence of frequent transcription. It was the first described fusion gene in sarcomas, and
during the last decade(s) its promiscuous character has been shown by involvement in
a variety of tumors. The recently described polyphenotypic sarcomas, which seem to be
different entities with aggressive behavior, are interesting in this context. Whether they
could be treated like Ewing sarcoma or require a more tailored approach is paramount
to investigate.
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Another intriguing point is that the same fusion partners are present in benign and
malignant tumors, arguing that secondary genetic and epigenetic changes are mandatory
to regulate and activate the required oncogenic pathways.
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