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Kinetic viscoelasticity modeling has been successfully utilized to describe phenomena 

during cure of thermoset based carbon fiber reinforced matrices. The basic difference 

from classic viscoelasticity is that the fundamental material descriptors change as a 

result of reaction kinetics. Accordingly, we can apply the same concept for different 

kinetic phenomena with simultaneous curing and degradation. The application of this 

concept can easily be utilized in processing and manufacturing of carbon-carbon 

composites, where phenolic resin matrices are cured degraded and reinfused in a 

carbon fiber bed. This work provides a major step towards understanding complex 

viscoelastic phenomena that go beyond simple thermomechanical descriptors. 
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1. INTRODUCTION 

1.1 Carbon Carbon Composites  

 Carbon Carbon Composites (“CCCs”) have been established as superior 

materials for extremely high temperature applications, because of their unique thermal, 

chemical and mechanical properties. Conventional carbon fiber reinforced polymeric 

composites that undergo high temperature pyrolytic processing produce the CCCs. A 

particular structure of matrix – interphase – fiber is developed during this processing 

that results in unique properties for the CCCs [7-9, 11 and 12]. 

 The degradation step, which is required for CCC manufacturing, has a great 

influence on the properties and the final performance of CCCs [4-9, 11 and 12]. 

Particularly, the matrix conversion from organic polymer into inorganic carbon, with 

a carbon fiber reinforced phase, is one of the most important controlling factors in the 

processing and property investigation. 

1.2 Phenolic Resins 

 Phenolic resins’ suitability for impregnation processes results from their low 

viscosity as well as high char yield, which are the main characteristics for utilizing 

phenolic resins as matrix precursors for CCCs. Nevertheless, it has been reported that 

a certain amount of shrinkage takes place (20% and 50% linear and bulk shrinkage, 

respectively), during the highly exothermic curing reaction of phenolic resin, which 

also generates water as a byproduct [6 and 10]. Hence, the lamination process of the 

carbon fiber reinforced phenolic resin system is considered as both difficult and 

significant in terms of conventional lamination process parameters (time, temperature, 

pressure, tooling, prepreging, layup, and debulking, etc). 

 In composite degradation methodologies such as polymer/ceramic composite 

debinding and CCC carbonization, polymer degradation is considered as a main 

manufacturing process. During those processes, gaseous by-products are evolved by 

degradation reactions, causing weight loss in the polymer matrix, resulting in the 

potential for explosive delamination of composites, non-uniform degradation, and 

internal stress build up, etc. Thus, polymer weight – loss kinetics characterization is 

one of the key elements in manufacturing processes of high performance composite 

materials [3 and 13].  



  3 

 

2. BACKGROUND 

2.1 Dynamic Mechanical Analysis  

 Dynamic Mechanical Analysis (“DMA”) and the properties measured by this 

technique are widely used to study the behavior of viscoelastic materials. DMA is a 

very useful method for quality control and for correlations between structure and 

properties of polymeric composite materials. Furthermore, testing polymeric 

composites with DMA is complex as their dynamic mechanical properties are 

sensitive to fiber orientation as well as inhomogeneities in matrix cross-linking [25]. 

Dynamic mechanical measurements are also able to detect the presence of the 

interphase in glass– and carbon–fiber reinforced polymers [14, 19, and 25]. Utilizing 

frequency multiplexing, it is possible to calculate apparent activation energies from 

relaxation spectra and to correlate with rheological models. 

DMA shows high potential as an experimental technique for composite 

degradation studies due to its ability to show in situ viscoelastic characteristics of 

degrading composites over a wide range of temperatures and times or frequencies. 

 For viscoelastic materials, strain is not in phase with displacement stress, 

when a sinusoidal stress is applied. The dynamic modulus, M*, is defined as the ratio 

of an applied sinusoidal stress, σ*, to the resulting sinusoidal strain, ε*. In the case 

that the sample is linearly viscoelastic, the strain’s frequency will be the same as the 

frequency of the applied stress, but will lag the stress by an angle δ, which is called 

the phase lag. At higher stress levels, in the non – linear viscoelastic region, the strain 

will be no longer sinusoidal and no longer proportional to the stress. The applied 

sinusoidal stress and the corresponding strain for a linear viscoelastic material may be 

expresses as [21, 22 and 24] 

         (1) 

        (2) 

Where: 

σ0 = sinusoidal stress amplitude 

ω = stress angular frequency 

t = time 

ε0 = sinusoidal strain amplitude 

δ = phase lag between stress and strain 
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The dynamic mechanical modulus M* is the one of the most common concepts to 

express dynamic mechanical data acquired during the experiment. It is defined as the 

ratio of an applied sinusoidal stress to the resulting sinusoidal strain in the material 

being tested. M* can be expressed as follows: 

      (3.1) 

       (3.2) 

         (3.3) 

Where: 

 Μ’ = storage modulus 

 Μ’’= loss modulus 

|Μ
*| = magnitude of dynamic mechanical modulus 

δ = phase lag between the applied stress and the strain response 

Dynamic mechanical data may also be expressed in the form of complex 

compliance,  defined as the reciprocal of complex modulus [24]: 

      (4.1) 

         (4.2) 

         (4.3) 

Where: 

 J’ = storage compliance 

 J” = loss modulus 

|J*| = magnitude of complex compliance 

Finally, dynamic mechanical data may also be expressed in the form of complex 

dynamic viscosity, μ*, most commonly in the case of liquid systems: 

      (5.1) 

         (5.2) 
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         (5.3) 

         (5.4) 

Where: 

μ’ = viscous (or in–phase) component 

μ’’= elastic (or out–of–phase) component  

| μ’’| = magnitude of complex viscosity 

The viscous parameter is in-phase when speaking for complex viscosity. However the 

material is not only viscous and it also tends to partly restore some of the obtained 

deformation (elastic parameter). This restoration occurs with retardation, and thus it is 

out-of-phase. 

Nevertheless, it should be noted that all of these methods of reporting data are 

equivalent. Knowledge any two parameters, the rest can be defined by using the 

equations (1) through (5.4) [1-3, 13, and 15]. 

 In the transition zones of a polymer during the experiment, the dynamic 

modulus is strongly dependent on temperature, and frequency, ω. Studying E
’ 

(Storage Modulus) (or G
’
 (Shear Storage Modulus)) and tanδ by changing frequency 

at constant temperature, and by changing temperature at constant frequency, is of high 

interest. DMA investigations by studying E* (or G*) versus T and ω can give 

information about relaxation processes: main chain relaxation (conventionally noted 

as α) from glass to rubber associated with the glass–transition process, and secondary 

transition (conventionally noted β, γ...) related to movements of side chains or to 

motions of small parts of the main chain [25]. In addition, dynamic mechanical 

properties associated with structural changes due to chemical reactions may also be 

studied, for instance, during thermoset crosslinking reactions and during phase 

transformation from an organic to an inorganic material system, because of the 

degradation process. 

2.2 Time-Temperature Equivalence Principle and Master Curve 

 When external parameters (e.g. temperature, pressure, mechanical, electrical 

or magnetic fields …) affect the internal parameters of a system (volume, strain, 

electrical or magnetic polarization), the polymeric system then passes from the 
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equilibrium state into a stable “excited” state. The process of spontaneous return of a 

microscopic system into a thermodynamically stable state is termed relaxation [27]. 

 In order to describe the viscoelasticity temperature dependence in terms of 

relaxation time, Ferry introduced a coefficient, αΤ [26]: 

          (6) 

Where: 

αΤ= shift factor  

τ(Τ) and τ(Τg) are the relaxation times at Tg and T temperature respectively. 

Obviously αΤ = 1 at Tg.  

The shift factor, αΤ, has been determined by using the time-temperature 

superposition principle, which is essentially an empirical principle, but it has been 

verified by extensive experimental and theoretical studies. Among various analytical 

expressions of αΤ, the expression proposed by Williams, Landel and Ferry is the most 

well-known equation [29]. 

 The simplest application of time-temperature superposition is to produce 

master curve by selecting a particular temperature and applying only a horizontal shift 

on a logarithmic time scale to make the curve for other temperatures join as smooth as 

possible to the curve at this particular temperature. Mathematically, a modulus may be 

expressed as: 

                (7.1) 

                (7.2) 

Even though the success and the general application to amorphous polymers of this 

superposition principle have been proven, one additional correction is required. The 

molecular theories of viscoelasticity suggest that there should be an additional small 

vertical shift factor changing from the actual temperature T (at a density ρ) to the 

reference temperature To (at a density ρο). The mathematical expression for the 

correction becomes: 

       (8.1) 
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       (8.2) 

 The above method gives the modulus or compliance as a function of time (or 

frequency) over a very wide range. Hence, it is possible to calculate the relaxation (or 

retardation) time spectrum, and to compare results with theoretical models. One 

equation that describes the relaxation time is the Williams, Landel and Ferry equation 

known as “WLF equation” [29]: 

       (9) 

Where C1 and C2 are constants and TR is a reference temperature. The WLF equation 

covers the temperature range  
0
C for most of the amorphous polymers. 

 It is significant for the shift time to shorten in order to simulate (at the 

reference temperature TR) a low-temperature property, while for the relative time to 

lengthen in order to simulate (at the TR) a high-temperature property [13]. 

 Furthermore, it is possible to express the activation energy (E) dependence 

based on kinetic theory. Using the activation energy, the Arrhenius shift factor can 

also be expressed as: 

       (10) 

For the glass transition process, the activation energy is in the range of 400-

1000 KJ/mol. In the WLF equation, the activation energy at the reference temperature 

can be expressed by the constants C1 and C2 as: 

      (11) 

According to the form of shift factors, the relaxation time can be described as 

a function of temperature in two forms: WLF equation and Arrhenius-type equation. 

The Arrhenius-type equation is mostly used below Tg while the WLF equation is 

usually used above the Tg [2, 3 and 13]. 

2.3 Viscoelastic Behavior 

 Generally, the composite materials are assumed to be invariant during 

viscoelastic analysis of polymers. Nevertheless, for the situations that viscoelastic 
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characterization is of the most use, the structure is likely to be changing while the 

experiment. For those systems where the materials undergo significant chemical or 

physical change, the retardation time or relaxation time increases during the 

experiment [26]. Seferis, et al. analyzed Viscoelasticity of epoxy curing reactions, 

where the reaction kinetics was successfully described by the changing retardation 

time [15 and 20].  

 During carbonization processing of carbon carbon composites, the viscoelastic 

properties change due to degradation reactions which affect the final structure and 

performance of the composite. In such systems, a polymer matrix pre-form is 

degraded in an inert gaseous atmosphere, converting the organic part of the composite 

to a carbon matrix.  Accordingly, it is very possible that a viscoelastic polymeric 

matrix composite may be transitioning to an elastic carbon matrix composite. Having 

been coupled with shrinkage and gasification during degradation, this transition is 

considered important processing stage because it can be related to beginning of micro-

cracking and delamination of the laminate in the manufacturing processing of CCCs 

[16]. Moreover, the polymer matrix modulus may begin to increase due to further 

crosslinking reactions at high temperatures. Also, chain – scission reactions, which 

consist of typical degradation reactions for thermosetting polymers, can take place 

simultaneously having as a result modulus decrease. These coupled structural changes 

have to be understood in order to control the final performance of the CCCs. 

 Additionally, the thermo-oxidative stability (TOS) of composite materials is of 

primary technological concern in such programs as supersonic transport airplane 

development and in aircraft engine applications. In these load bearing applications at 

high temperatures, the viscoelastic properties of degrading composites reflect the 

stiffness variation as a function of time and temperature. For the specification of 

quality assurance and control tests in high temperature applications, viscoelastic 

characteristics of degrading composites should be identified in the form of modulus 

and/or compliance. Consequently, those viscoelastic properties may be correlated 

with other conventional TOS techniques such as oven aging and weight-loss 

measurements. 

 In this study, a dynamic mechanical time – temperature multiplexing 

technique was utilized to research the glass transition temperature and the initial 

degradation processes of a phenolic resin / carbon fiber composite system, which have 
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been used as a pre-form of CCCs. Modulus master curves for the two processes, were 

created by a horizontal and vertical shift method. Based on those results, the 

generalized standard linear solid model extensively utilized by Seferis and co-workers, 

was developed in order to describe the dynamic mechanical properties of the model 

composite systems as a function of frequency and temperature during degradation [3 

and 13]. 

2.3.1 Generalized Standard Linear Solid Model 

The general form of linear viscoelasticity is generally described by the equation [30]: 

   (12) 

Assuming non-zero constants in equation (12), four non-zero constants can describe 

the characteristic features of both stress relaxation and creep. Then, the model 

equation will be formed as: 

       (13) 

The mechanical model, which is a composite of two elastic springs and one viscous 

dashpot in a series-parallel sequence, has this form of differential equation: 

       (14) 

Where Gr is the relaxed modulus, Gu is the unrelaxed modulus and τ is the relaxation 

time defined as: 

         (15) 

This model is known as Standard linear Solid (“SLS”) model [23]. 

 In dynamic mechanical experiments with an oscillating induced stress of 

frequency ω, the complex modulus can be derived as: 

       (16) 

The complex modulus G* consists of the storage modulus G’ and the loss 

modulus G’’ 

  Successful efforts to monitor the dynamic behavior of polymers have also 

been made in dielectric study. The analogy to dielectric analysis has been 
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demonstrated and utilized for the analysis of dynamic mechanical experiments [15, 17, 

18 and 28]. Based on this analogy, a generalized standard linear solid model proposed 

by Dillman and Seferis was defined as [15]: 

      (17) 

Where α and β are parameters ranging from 0 to 1 which account for an asymmetric 

relaxation time distribution. 

The real and imaginary components of the complex modulus can be derived by 

equations (14) through (17) as it is clearly described in the Dillman – Seferis model 

[15]. According to the same model, the compliance form of the model J* can also be 

described [3, 13, 15]. 

 The characteristic feature of α and β in the model has been investigated in 

terms of J’ and J’’ in the τω axis [16]. The empirical parameters α and β account for 

the non-ideality of the system by considering the distribution of the relaxation time. 

As utilized in this study, the relaxation time may be described by the Arrhenius-type 

equation as:  

       (18) 

Subsequently, the model consists of four parameters that need to be determined: τo, E, 

α and β. The effect of these parameters on the normalized G’ and G’’ curves in the 

temperature axis can be derived by curves that have been expressed in the Dillman – 

Seferis model [3, 13, 15]. It is important to note that α may be accounted by the 

combined effects of β and το. The activation energy, E, of the relaxation time is 

considered as a unique value that represents the characteristics of the nature of a 

polymer in the same way that the universal constants represent in the WLF equation. 

In this study, the activation energy will be determined by the superposition principle, 

resulting in a temperature – dependent relaxation time. The other parameters of το and 

β will be appropriately determined to fit the experimental data, which will be analyzed 

in the following paragraphs. 
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3. EXPERIMENTAL 

3.1 Materials 

 Phenolic resin (SC-1008), which is commercially available, was impregnated 

into the 8H woven fabric of T-300 carbon fiber provided by Toray. The materials 

were cured by heating to 135  using controlled heating rates and postcured at 250
0
C 

for 5 hours. This thermal treatment fully cured the phenolic resin [31]. Also, during 

the curing process the laminates were pressurized at 250psi in the autoclave, after 

having been laid up under vacuum first. Depending on the debulking process, the 

fiber volume of a void-free composite was controlled to 74% measured by the acid 

digestion method. 

3.2 Analysis 

 A TA Instruments DMA 2980 was used for carrying out the dynamic 

mechanical experiments. The DMA measurements were performed in regular serrated 

clamps, which were utilized in the horizontal set-up. The rectangular – shape 

composite sample dimension was 23.93x11.83x1.5mm. The oscillation amplitude was 

0.2mm. For the thermal degradation study without oxidation, the experiment was 

conducted in nitrogen atmosphere with a flow rate of 300ml/min. nine frequencies 

were used: 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5 Hz. The temperature increase was set 

in 2.5
0
C steps from 100

0
C to 450

0
C and the heating rate between steps was about 1

0
C 

/min. 

4. RESULTS & DISCUSSIONS 

Figure 1 presents the storage modulus of the composite at nine different 

frequencies as a function of temperature. The higher modulus at higher frequencies 

shows typical viscoelastic behavior, as it was expected. The glass transition process 

was observed between 220
0
C and 300

0
C, identified by the decreasing modulus. 

Following the glass transition, modulus increase is observed between 320  and 

350
0
C because of the thermal degradation process and the high temperature 

crosslinking reactions. Above 350°C the modulus decreases and its dependence on 

frequency disappears, demonstrating a transition from viscoelastic to elastic behavior. 

Additionally, the increasing and decreasing modulus between 320
0
C and 400

0
C may 
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be ascribed to the coupled structural changes by random chain scission and additional 

crosslinking reactions. 

 

Figure 1: Measured DMA storage modulus of phenolic resin/carbon fiber composite 

as a function of temperature at nine different frequencies: 0.01, 0.03, 0.05, 0.1, 0.3, 

0.5, 1, 3, and 5, in nitrogen atmosphere at 300 ml/min. 

4.1 Master Curves for Glass Transition and Degradation Processes 

 By analyzing the master curve of glass transition, the high modulus portion is 

given by low-temperature experiments and the low modulus portion by high-

temperature experiments. The storage modulus dependence on temperature and 

frequency is presented in Figure 2 for the glass transition between 230 and 295
0
C. As 

it can be observed, there is an overall change in the shape of the modulus-frequency 

curve as the temperature varies.  

 

Figure 2: Storage modulus of phenolic resin/carbon fiber composite for glass 

transition as a function of inverse frequency at different temperatures as indicated 

Figure 3: Shift factors compared with Arrhenius type equation using E=790.4KJ/mol 

and T0=277.50C for the glass transition 

 

 Note that the time dependent modulus is quite similar in form to the storage 

modulus plotted versus inverse frequency. Dynamic results found in the literature are 

sometimes plotted versus frequency and sometimes versus inverse frequency [32]. 

Moreover, in Figure 3 the shift factors temperature dependence, which was 

empirically constructed, is compared to the Arrhenius-type equation (10) with 

E=2766.2 KJ/mol and To=277.5
0
C. This equation accurately fits the shift factor up to 

290
0
C (End of glass transition region), but beyond 290

0
C, it seemingly deflects from 

the equation because degradation begins to occur. 

 

Figure 4: Storage modulus of phenolic resin/carbon fiber composite for degradation 

processes as a function of inverse frequency at different temperatures as indicated 
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 As far as the degradation process is concerned, the storage modulus 

dependence on temperature and frequency is presented in Figure 4 between 320 and 

370
0
C. It can be observed that there is an overall change in the shape of the modulus-

frequency curve as the temperature varies. At low temperatures the frequency-

dependent viscoelastic modulus rapidly changes with respect to frequency. At high 

temperatures, however, the modulus is approximately constant with respect to 

frequency. 

 

Figure 5: Horizontal shift factor for degradation process obtained by the DMA 

modulus maximum plotted as inverse maximum temperature vs. inverse frequency 

Figure 6: Vertical shift factor for degradation process obtained from DMA modulus 

maximum plotted as inverse maximum temperature vs. maximum modulus 

 

Furthermore, the modulus and frequency logarithmic values at the maximum peaks 

due to the high frequency dependence of the modulus in those areas are presented in 

Figures 5 and 6, as a function of maximum temperature (Tmax). Logarithmic values of 

frequency and G’max exhibited linear relations with respect 1/Tmax, giving activation 

energies for the shift factors as -2461.3 KJ/mol and 8.782 KJ/mole in the horizontal 

and vertical directions, respectively, with a reference temperature of 342.5
0
C. 

 

Figure 7: DMA storage modulus master curves for glass transition and degradation 

processes 

 

 Finally, by utilizing these shift factors, the degradation master curve can be 

constructed as presented in Figure 7. A considerable result is that at specific time and 

temperature, the polymer property during degradation is comparable with the polymer 

property before degradation. In terms of polymer modulus, the degradation process 

may provide a favorably comparable material property, revealing the possibility to 

improve or change the polymer property by controlled degradation processing. 

Considering the degradation process from a CCC point of view, the initial degradation 

step, which has been investigated in this study up to 400
0
C, is an outstanding 

processing stage because there is a considerable change of modulus value from 

rubbery state to an elastic state. 
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4.2 Modeling Approach 

 From equation (17) the real and imaginary components of the complex 

modulus can be derived as: 

     (19) 

     (20) 

       (21) 

By equations (18) through (21) the relaxation times as well as the activation 

energies can be extracted for both the glass transition and the degradation processes 

independently through equations (22) and (23): 

For the glass transition, v is equal to 1.7611 and this value is taken from 

master curve in Figure 7. Consequently, the relaxation time can be expressed as a 

function of temperature via: 

      (22) 

Where Eg=766.2 KJ/mol and Tg=277.5
0
C. The same procedure was performed for the 

degradation process, providing the following relaxation time: 

      (23) 

Where Ed=-2461.3KJ/mol and Td=342.5
0
C. 

The relaxed and unrelaxed moduli in the degradation processes were also 

derived by the master curve. Since the relaxation time was already determined, the 

other two parameters of Gu and Gr could be determined by rearranging equation (19): 

       (24) 

Where 
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According to these equations, when master curve G’ is plotted as a function of 

h (aTω, β) for a certain value of β, Gu, Gr can be determined by the intercept and slope 

of the line, respectively. 

The relaxed and unrelaxed moduli for the degradation process may be 

described by the temperature-dependent shift factor in the vertical direction, as: 

       (25) 

       (26) 

Where Ev = 8.782 KJ/mol, Td = 342.5
0
C, and G

0
u and G

0
r are 16.02 and 9.313 GPa, 

respectively. 

Extracting the relaxation times, the activation energies and the relaxed and 

unrelaxed moduli from equations (18) through (21) leads to results, illustrated from 

Figure 8 to 11, which fit the experimental results. 

 

Figure 8: DMA storage modulus for the glass transition compared to the model (solid 

line), as a function of temperature, at three different frequencies: 0.01, 0.1 and 1 Hz 

 

Figure 8 presents the comparison between the experimental modulus data and 

the model prediction in the glass transition as a function of temperature for three 

different frequencies: 0.01, 0.1, 1 Hz. The model is in excellent agreement with the 

experiment up to 290
0
C. 

 

Figure 9: DMA storage modulus during degradation compared to the model (solid 

line), as a function of temperature, at three different frequencies: 0.01, 0.1 and 1.0 Hz 

 

Moreover, Figure 9 compares the DMA storage modulus with the model 

prediction in the degradation process between 290
0
C and 360

0
C for three frequencies 

of 0.01, 0.1, 1 Hz. They are in good agreement as well and they demonstrate the 
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validity of the viscoelastic analysis methodology for the degradation process. 

Relaxation time and relaxed/unrelaxed modulus are the two temperature – dependent 

parameters involved in this model. 

 

Figure 10: DMA storage modulus for both glass transition and degradation processes, 

compared to the model (solid line), as a function of temperature, at three different 

frequencies: 0.01, 0.1 and 1.0 Hz 

Figure 11: Comparison of tanδ with the model (solid line), as a function of 

temperature, at two different frequencies: A 1.0 Hz and B 0.01 Hz 

 

Finally, as presented in Figure 10, this empirical equation describes the 

intermediate region between glass transition and degradation processes very well for 

different frequencies. Additionally, Figure 11 presents tanδ value predicted by the 

model. Two peaks of tanδ for 0.01 Hz and one broad peak for 1 Hz are predicted by 

the model. 

5. CONCLUSIONS 

A DMA time - temperature multiplexing technique to 400
0
C in a nitrogen 

atmosphere was used to analyze phenolic resin/carbon fiber composites. The glass 

transition and degradation processes were clearly detected by the changing DMA 

modulus with respect to temperature. In addition to the typical glass transition 

exhibited by a model system, during the degradation stage, the storage modulus 

initially increased and then passed through a maximum value, followed by a decrease. 

 A master curve for the glass transition was successfully constructed through 

horizontal shifting, however, a vertical shift as well as a horizontal shift was required 

to construct the master curve for the degradation process. The shift factors in the two 

directions were derived by the frequency- and temperature- dependent modulus 

maxima, which were detected by the DMA data in the temperature region between 

340
0
C and 350

0
C. A degradation master curve was constructed from these factors in 

the horizontal and vertical directions, in order to demonstrate the validity of the 

analytical methodology. 

 The superposition procedure provided a basis for a phenomenological 

description of the glass transition and degradation processes in terms of the 
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temperature-dependent relaxation time. The Dillman – Seferis model was extended to 

describe the viscoelastic dynamic mechanical properties of the two processes. The 

characteristic feature of the model parameters was researched, and afterwards, the 

parameters were appropriately determined from the master curves. Finally, it was 

demonstrated that the model successfully described the dynamic mechanical 

properties, validating this expanding viscoelastic modeling methodology that couples 

relaxation phenomena to cure and degradation processes. 
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