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Abstract. The wavefunction of a massless fermion consists of two chiralities,
left handed and right handed, which are eigenstates of the chiral operator. The
theory of weak interactions of elementary particle physics is not symmetric about
the two chiralities, and such a symmetry-breaking theory is referred to as a
chiral gauge theory. The chiral gauge theory can be applied to the massless Dirac
particles of graphene. In this paper, we show within the framework of the chiral
gauge theory for graphene that a topological soliton exists near the boundary of
a graphene nanoribbon in the presence of a strain. This soliton is a zero-energy
state connecting two chiralities and is an elementary excitation transporting a
pseudo-spin. The soliton should be observable by means of a scanning tunneling
microscopy experiment.

6 Author to whom any correspondence should be addressed.

New Journal of Physics 12 (2010) 103015
1367-2630/10/103015+12$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:SASAKI.Kenichi@nims.go.jp
http://www.njp.org/


2

Contents

1. Definition of gauge fields 3
2. Topology of the gauge field 5
3. Zero-energy solution of H(r) 5
4. Topological soliton 6
5. Edge states 6
6. Soliton-edge state 6
7. Chirality mixing 7
8. Soliton in polyacetylene 8
9. Discussion 9
Acknowledgments 10
Appendix A. Original Dirac Hamiltonian 10
Appendix B. Solitons in armchair nanotubes 10
Appendix C. Solitons in zigzag nanotubes and armchair ribbons 10
References 12

For a massless fermion, the left- and right-handed chiralities are good quantum numbers and the
two chirality eigenstates evolve independently according to the Weyl equations. One chirality
state goes into the other chirality state under a change in parity. The weak interactions in
elementary particle physics act differently on the left- and right-handed states, which results
in well-known phenomena, such as the parity violation for nuclear β decay [1]. The weak force
is described by a gauge field. In general, a gauge field that has a different (the same) sign of
coupling for the left- and right-handed chiralities is called an axial (a vector) gauge field [2]. In
the presence of an axial component, the interaction between a gauge field and a fermion can be
asymmetric for the two chiralities. For example, in the case of weak interactions for neutrinos,
only the left-handed chirality couples with a gauge field and the theory is generally known as a
chiral gauge theory.

A chiral gauge theory framework can be applied to graphene. The energy band structure
for the electrons in graphene [3, 4] has a structure similar to the massless fermion, in which
the dynamics of electrons near the two Fermi points called the K and K′ points in the two-
dimensional Brillouin zone is governed by the Weyl equations [5]. Because the K and K′ points
are related to each other under parity, two energy states near the K and K′ points correspond
to right- and left-handed chiralities, respectively. The spin for a fermion corresponds to a
pseudo-spin for graphene, which is expressed by a two-component wavefunction for the A
and B sublattices of a hexagonal lattice [6]. The corresponding pseudo-magnetic field for the
pseudo-spin is given by an axial gauge field that is induced by a deformation of the lattice in
graphene [6]–[8]. The electronic properties of graphene are thus described as a chiral gauge
theory [9]. An important point here is that the axial gauge field in graphene has different signs
for the coupling constants about the two chiralities, whereas the conventional electromagnetic
(vector) gauge field does not.

In a chiral gauge theory, the chiral symmetry breaking and the resultant mixing of
chiralities are of prime importance. In elementary particle physics, this symmetry breaking
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Figure 1. Structures of a polyacetylene and a graphene edge. (a) Two possible
isomers trans- and cis-polyacetylene. (b) Two principal edge structures: zigzag
and armchair edges. H denotes a hydrogen atom, and carbon atoms are divided
into A (•) and B (◦) atoms.

relates to the origin of the mass of a fermion, and experimental investigations into the mass
of neutrinos are in progress. Since graphene is described by a chiral gauge theory, a chirality
mixing phenomenon in graphene is a matter of interest. In this paper, we show that a graphene
nanoribbon, which is graphene with a finite width having two edges at both sides [10]–[16],
has a chirality mixed soliton solution when applying strain to a graphene nanoribbon. Two
symmetric edge structures, that is, armchair and zigzag edges, are shown in figure 1. It is
known that the spatially localized electronic states, the edge states, appear near the zigzag
edge [17]–[21]. A chirality mixed soliton consists of two edge states belonging to different
chiralities, and it is a natural extension of the concept of the topological soliton in trans-
polyacetylene [22]–[25].

1. Definition of gauge fields

First we review the chiral gauge theory of graphene [6]. A lattice deformation in graphene
gives rise to a change in the nearest-neighbor hopping integral from the average value, −γ , as
−γ + δγa(r), where a (= 1, 2, 3) denotes the direction of a bond as shown in figure 2(a). We
define the axial gauge A(r)= (Ax(r), Ay(r)) by δγa(r) as [6]–[8]

vF Ax(r)= δγ1(r)− 1
2 {δγ2(r)+ δγ3(r)} ,

vF Ay(r)=

√
3

2
{δγ2(r)− δγ3(r)} ,

(1)

where vF is the Fermi velocity. The direction of the vector A(r) is perpendicular to that of the
C–C bond with a modified hopping integral, as shown in figure 2(b). The effective Hamiltonian
for deformed graphene is written by a 4 × 4 matrix as [6]

Ĥ9(r)= vF

(
σ ·

(
p̂ + A(r)− eAem(r)

)
σxφ(r)

σxφ
∗(r) σ ′

·
(
p̂ − A(r)− eAem(r)

)) (
9K(r)
9K′(r)

)
, (2)
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Figure 2. Representing a lattice deformation in terms of the axial (deformation-
induced) gauge field. (a) A lattice deformation is defined by (δγ1, δγ2, δγ3).
(b) The direction of vector A is perpendicular to the lattice deformation. The
directions of the arrows are for the case of a positive δγ . (c) The configuration of
the axial gauge field A for a trans zigzag nanoribbon. The two distinct bonding
structures, α phase (A+) and β phase (A−), are combined together to form a
domain wall (a kink). The y-component of the field A1(x) changes its sign at
x = 0, which represents a kink structure. The zigzag edges are represented by
the field A2(y).

where the field φ(r) relates to A(r) as φ(r)= (Ax(r)+ iAy(r))e−2ikFx in which kF is the Fermi
wavevector of the K point and Aem(r) is an electromagnetic gauge field. Here, σ = (σx , σy)

[σ ′
= (−σx , σy)] are the Pauli matrices that operate on the two-component spinors 9K(r) and

9K′(r) for the pseudo-spin. We use the units vF = 1 and h̄ = 1, and thus the momentum operator
becomes p̂ = −i∇. A lattice deformation does not break time-reversal symmetry, which appears
as different signs in front of the field A(r) for the two chiralities, whereas the electromagnetic
gauge field Aem(r) breaks time-reversal symmetry and has the same sign for the K and K′

points. A (Aem) is an axial (a vector) gauge field [2]. Similar to the case of Aem(r), the field
strength of A(r), defined as Bz(r)= ∂x Ay(r)− ∂y Ax(r), plays a fundamental role in discussing
topological solitons and edge states, as we will show below. We note that a more general
Hamiltonian including all the possible terms allowed by symmetry is discussed by Mañes
et al [26, 27].

It is straightforward to show using equation (1) that the field φ behaves as a position-
independent interaction for Kekulé distortion [6], and then equation (2) is equivalent to the
Dirac equation with a mass φ in four-dimensional space–time without the z-component [pz = 0]
(see appendix A). Although the main concern of this paper is chirality mixing due to a local
mass φ(r), let us begin by considering the massless limit φ(r)= 0 and examining the chirality
eigenstate 9K (right-handed chirality) using the 2 × 2 Hamiltonian, H(r)= σ · (p̂ + A(r)).
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2. Topology of the gauge field

In figure 2(c), the double bond represents the presence of deformation, δγ ,7 and the single bond
denotes the absence of deformation. The α phase is defined as the bonding structure for the case
of (δγ1, δγ2, δγ3)= (0, δγ, 0), whereas the β phase is the case of (δγ1, δγ2, δγ3)= (0, 0, δγ ).
From equation (1), the corresponding A fields for the α and β phases, A+ and A−, are given,
respectively, by A± = (−δγ /2,±

√
3δγ /2). For the skeleton of a trans-polyacetylene shown

between the closed dashed lines of figure 2(c), it is well known that a topological soliton appears
when the configuration has a domain wall (a kink), that is, when the β phase changes into the
α phase at some position along the x-axis [23]–[25]. The gauge field for such a domain wall
configuration for a zigzag nanoribbon is written as

A1(x)= (cx , Ay(x)), (3)

where cx ≡ −δγ /2, Ay(x)= −ay (ay ≡
√

3δγ /2) when x � −ξ , and Ay(x)= ay when x � ξ .
Here, ξ (> 0) denotes the width of a kink (see figure 2(c)). In addition, the gauge field that
describes the edge structure is given by A2. This A2 comes from the fact that the C–C bonds at
the zigzag edge are cut [28]. This cutting is represented by (δγ1, δγ2, δγ3)= (γ, 0, 0) at the edge
and A2 = (γ, 0). Since there are two zigzag edges at y = yu and y = yl in the zigzag nanoribbon
(without a domain wall), A2(y)= (Ax(y), 0) has a value only for y = yu and y = yl (the edge
location); otherwise Ax(y)= 0. The total gauge field for a trans zigzag nanoribbon is given by
the sum of A1(x) in equation (3) and A2(y) as A1(x)+ A2(y)= (cx + Ax(y), Ay(x)). As a result,
the (K point) Hamiltonian is given by

H(r)= σx( p̂x + cx + Ax(y))+ σy( p̂y + Ay(x)). (4)

3. Zero-energy solution of H (r)

Here we assume that the energy eigenstates of H(r) in equation (4) have the form of
eipx x9px (x, y)|σ 〉, where px is the quantum number and |σ 〉 denotes the spinor eigenstate. The
energy eigenequation is rewritten as{

σx( p̂x + Dx + Ax(y))+ σy( p̂y + Ay(x))
}
9px (x, y)|σ 〉 = E9px (x, y)|σ 〉, (5)

where Dx ≡ px + cx . We decompose this eigenequation into two parts by putting 9px (x, y)=

ψ(x)ϕ(y) and E = E1 + E2 as{
σx p̂x + σy Ay(x)

}
ψ(x)|σ 〉 = E1ψ(x)|σ 〉, (6){

σx(Dx + Ax(y))+ σy p̂y

}
ϕ(y)|σ 〉 = E2ϕ(y)|σ 〉. (7)

In general, the spinor eigenstate of the first equation cannot be identical to that of the
second one. However, in the special case that E1 = E2 = 0, the spinor eigenstates of these
equations can be the same. This is because H(r) commutes with σz for the zero-energy state,
[H(r), σz]−eipx x9E=0

px
(r)|σ 〉 = 0, and the spinor eigenstate can be taken as the eigenspinor of σz

defined as σz|σ±〉 = ±|σ±〉, where

|σ+〉 =

(
1
0

)
, |σ−〉 =

(
0
1

)
.

7 Note that the double bond is usually regarded as a shrinking of the C–C bond and δγ is a negative value in this
case. Here, we assume a positive value of δγ for convenience.
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Thus, the corresponding zero-energy states are pseudo-spin polarized states, namely, the
amplitude appears in only one of the two sublattices. In the following, we show that
equations (6) and (7) give, respectively, the topological soliton [23]–[25], [29] and the edge
states [6, 28]. From these zero-energy states for equations (6) and (7), a general zero-energy
solution for equation (5) can be constructed.

4. Topological soliton

Let us obtain the zero-energy soliton for equation (6). When E1 = 0, the eigenequation is
represented as {σx p̂x + σy Ay(x)}ψ±(x)|σ±〉 = 0. We have two solutions,

ψ±(x)= N exp

(
±

∫ x

Ay(x) dx

)
, (8)

where N is a normalization constant. When we use a trial function Ay(x)= ay tanh(x/ξ), we
obtainψ±(x)= N cosh±ayξ (x/ξ) [30]. Hence, when ay > 0 (kink), onlyψ− is selected, whereas
when ay < 0 (anti-kink), only ψ+ is selected. The significance of a single zero-energy state
is that the particle–hole symmetric partner is given by itself, which leads to the result that a
soliton has no charge but has spin 1/2 [25, 29]. The sign of ay corresponds to the sign of the
field strength as Bz(x)= ay/(ξ cosh2(x/ξ)). The sign of the Bz field is essential to a rule for
obtaining the normalizable solution. This is easy to understand by noting that the square of
H(r) is given by H(r)2 = (p̂ + A(r))2 + Bz(r)σz, which gives a positive coupling for +Bz(r)σz.
Because H(r)2 = 0 for a zero-energy state and (p̂ + A(r))2 is always a positive value, the zero-
energy state needs to satisfy +Bz(r)σz < 0, so that a positive Bz (> 0) selects |σ−〉 (or ψ−)
and a negative Bz (< 0) selects |σ+〉 (or ψ+).

5. Edge states

The derivation of the zero-energy edge states from equation (7) is given in [28]. For the case of
Dx < 0, there are degenerate zero-energy states given by

ϕ+(y)|σ+〉 = eDx |y−yu |
|σ+〉,

ϕ−(y)|σ−〉 = eDx |y−yl ||σ−〉,
(9)

where |Dx |
−1 is the localization length. As shown in figure 2(c), at the upper edge located

at y = yu , the Ax(y) field increases abruptly when y approaches yu (y 6 yu). Therefore, the
corresponding Bz field [Bz(y)= −∂y Ax(y)] points toward the negative z-axis there. Hence,
only the |σ+〉 state can appear near the upper edge. In contrast, at the lower edge (y = yl), the
Ax(y) field decreases abruptly as y moves away from yl (y > yl). Therefore, the corresponding
field strength is positive there, and only the |σ−〉 state is selected near the lower edge.

6. Soliton-edge state

A zero-energy solution of equation (5) is constructed by the product of the topological soliton
ψ−(x) of equation (8) and the edge state ϕ−(y)|σ−〉 of equation (9) as

9−

px
(x, y)|σ−〉 = e−

∫ x Ay(x)dxeDx |y−yl ||σ−〉. (10)
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This new state is localized not only near the lower zigzag edge but also near the kink. Because
a kink satisfies Bz(x) > 0, this state 9−

px
(x, y)|σ−〉 is the solution to equation (5). If there is an

anti-kink with Bz(x) < 0 at x = 0, another zero-energy state given by

9+
px
(x, y)|σ+〉 = e+

∫ x Ay(x)dxeDx |y−yu |
|σ+〉 (11)

is the solution. This state is localized near another zigzag edge and is also localized near the
anti-kink. In addition to these zero-energy solutions of the K point Hamiltonian, there are
zero-energy solutions of the K′ point Hamiltonian. Let the solutions for the K′ point be of the
form 9−px (x, y)|σ 〉 = ψ ′(x)ϕ′(y)|σ 〉. The energy eigenequation for the K′ point Hamiltonian,
σ ′

· (p̂ − A(r)), leads to a pair of energy eigenequations:{
σx p̂x + σy Ay(x)

}
ψ ′(x)|σ 〉 = −E1ψ

′(x)|σ 〉,{
σx(Dx + Ax(y))+ σy p̂y

}
ϕ′(y)|σ 〉 = E2ϕ

′(y)|σ 〉.

These eigenequations are the same as those given in equations (6) and (7) (except for the
unimportant sign change of E1). As a result, the solutions to these equations are the same as
equations (10) and (11). We thus have two zero-energy solutions originating from the K and K′

points for a given px . The number of zero-energy states for a ribbon is different from a single
zero-energy state for a polyacetylene chain. This difference is attributed to the fact that the
soliton for a polyacetylene chain results from chirality (or intervalley) mixing.

7. Chirality mixing

The zero-energy solutions given by equations (10) and (11) were obtained on the assumption
that chirality mixing between the K and K′ points can be neglected. However, translational
symmetry along the x-axis is broken due to the presence of a kink (or an anti-kink), and
a kink itself causes a mixing of chiralities. In this case, the eigenfunction may be written
as a linear combination of 9±

px
for the K point and 9±

−px
for the K′ point. Their mixing is

determined by the mass term, which is expressed by means of valleyspin τa (a = 0, 1, 2, 3) as
σx{τ1Re[φ(r)] − τ2Im[φ(r)]}. By putting 9K = e−ikx9̃K and 9K′ = e+ikx9̃K′ into equation (2)
for a zigzag ribbon, we obtain the equations for a general case:{

τ3

(
σx p̂x + σy Ay(x)

)
− τ2eiτ32δkxσx Ay(x)

}
9̃ = E19̃,

τ0

{
σx(cx − k + Ax(y))+ σy p̂y

}
9̃ = E29̃,

(12)

where δk ≡ kF − k.8 The last term on the left-hand side of the first equation of equation (12)
shows that the effective domain wall profile for the mixing term is an oscillating function of
x , in contrast to a smooth function of the intravalley mixing term for the second term. It is
straightforward to find a zero-energy solution of equation (12) as 9̃±

= ψ±(x)ϕ±(y)|σ±〉 ⊗

U (x), where U (x) is a two-component valleyspinor that satisfies the equation ∂xU (x)−
τ1eiτ 32δkx Ay(x)U (x)= 0. Note that ψ±(x) and ϕ±(y) are still given by equations (8) and (9).

8 It is noted that we have neglected τ1σx (cx + Ax (y)), which would appear when we put A1(x)+ A2(y) into the
definition of the field φ(r). This is because a constant field cx and the zigzag edge Ax (y) are irrelevant to a chirality
scattering process [37].
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Figure 3. Wavefunction patterns for a zero-energy soliton. (a) An example of the
wavefunction pattern. The solid and empty circles represent phases (+ or −)
of the wavefunction, and the diameter of each circle is proportional to the
amplitude. We use δγ = 0.2γ and the kink profile of tanh(x/ξ) with ξ = 2Å.
(b) An example of the zero-energy soliton in a zigzag ribbon. Because the
wavefunction of this example appears only at the edge sites, this state is identical
to the topological soliton in trans-polyacetylene shown in (c).

Due to chirality mixing, the actual wavefunction of a zero-energy state in a zigzag nanoribbon
can be complicated. One example of the wavefunction is shown in figure 3(a).

8. Soliton in polyacetylene

Equation (12) can be solved analytically for the special case of δk = 0 (k = kF). In this case, we
obtain simultaneous differential equations:

σx

{τ3

2
p̂x − τ2 Ay(x)

}
9̃ = E19̃,

τ3

{σx

2
p̂x + σy Ay(x)

}
9̃ = E29̃,

τ0

{
σx(cx − kF + Ax(y))+ σy p̂y

}
9̃ = E39̃.

(13)

The first equation gives rise to chirality mixing. For a zero-energy solution of the first
equation, the spinor eigenstate should be the eigenspinor of τ1 defined as τ1|τ±〉 = ±|τ±〉,
which shows strong chirality mixing. The zero-energy solutions for the first two equations are
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given by ψ̃±(x)|σ±〉 ⊗ |τ±〉, where ψ̃±(x)= N exp(±
∫ x 2Ay(x) dx). This state is a valleyspin

unpolarized state and also a pseudo-spin polarized state, and these properties are consistent
with those of the topological soliton in polyacetylene [31]. The third equation in equation (13)
describes the edge state having the shortest localization length since the localization length is
given by |cx − kF|

−1, which vanishes in the continuum limit. The resulting zero-energy solution
of equation (13) given by 9̃(r)= ψ̃±(x)ϕ±(y)|σ±〉 ⊗ |τ±〉 corresponds to figure 3(b), which
reproduces a topological soliton in polyacetylene at the zigzag edge sites (see figure 3(c) for
comparison). Note that the soliton can move along the zigzag edge and the soliton has a mass.
In the case of polyacetylene, the soliton mass is estimated to be around 6me, where me is the
mass of the free electron [25]. In the case of the ribbon, we obtain 65(W/ξ)me, where W
denotes the ribbon width. This result reproduces the soliton mass in polyacetylene when W = a
and ξ = 10a, where a is the lattice constant.

To further elucidate the effect of the edge on the soliton, we consider the solitons of an
armchair tube, a metallic zigzag tube and a metallic armchair ribbon in appendices B and C.
We show that chirality mixing is negligible for the zero-energy states in these tubes. A metallic
armchair ribbon produces chirality mixed solitons when there is a domain wall. The solitons are
not localized near the edge since there are no edge states near the armchair edge. This feature
is in contrast to that of the soliton in a zigzag nanoribbon. See appendices B and C for more
details.

9. Discussion

We can use equation (1) for a lattice deformation induced by a strain. Let u(r)= (ux(r), yy(r))
be the displacement vector of a carbon atom at r. The axial gauge field is written as [32]–[34]

Ax(r)= g

[
−
∂ux(r)
∂x

+
∂u y(r)
∂y

]
,

Ay(r)= g

[
∂ux(r)
∂y

+
∂u y(r)
∂x

]
,

where g is the electron–phonon coupling. An interesting consequence of this is that the field
configurations which are equivalent to A± may be realized when an appropriate strain is applied
to a sample. For example, a ‘V’-shaped graphene nanoribbon caused by an acoustic shear
deformation given by ux = 0 and u y(x)= u ln[cosh(x/ξ)], with u = ξ(ay/g), can reproduce
the gauge field representing a bond alternation (a domain wall) in zigzag ribbons. Because
g ' γ [34], u is smaller than ξ by a factor of δγ /γ . This shows that a domain wall can be
realized by a strain of ∼10% [33]. A pseudo-spin polarized wavefunction pattern that is spatially
localized near the bottom of a ‘V’-shaped graphene nanoribbon is an indication of a chirality
mixed soliton. Note that a strain makes it possible to observe the soliton by means of a scanning
tunneling microscopy (STM) experiment, in contrast to the fact that STM is unable to detect
a soliton in polyacetylene since the soliton is moving. Moreover, it was recently suggested by
Guinea et al [33] that a uniform Bz field may be realized in graphene by a strain-induced lattice
deformation, which is an interesting consequence. If this is the case, it is expected that the
Landau level appears only for one chirality and the other chirality decouples from the gauge
fields in the presence of a magnetic field that eliminates Bz for one chirality. Then the chiral
symmetry in graphene is maximally broken, and this situation is similar to the case of weak
interactions in elementary particle physics.

New Journal of Physics 12 (2010) 103015 (http://www.njp.org/)

http://www.njp.org/


10

Acknowledgments

KS, KW and TE are supported by a grant-in-aid for specially promoted research (no. 20001006)
from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). RS
acknowledges a MEXT grant (no. 20241023). MSD acknowledges grant NSF/DMR 07-04197.
KS thanks Professor Francisco (Paco) Guinea for useful comments.

Appendix A. Original Dirac Hamiltonian

The original Dirac Hamiltonian is written as

Ĥ9(r)=

(
σ ·

(
p̂ +A(r)+V(r)

)
m

m −σ ·
(
p̂ −A(r)+V(r)

)) (
9R(r)
9L(r)

)
,

where m is the mass of the fermion. The electronic Hamiltonian for graphene corresponds to the
case in which 9R →9K, 9L → σx9K′ and m → φ(r). The vector gauge field V(r) and axial
gauge field A(r) correspond to eAem(r) and A(r), respectively. The third component, such as
p̂z, is assumed to be zero when we identify the original Dirac equation (in 3 + 1-dimensional
space–time) with the effective Hamiltonian for graphene (in 2 + 1-dimensional space–time).

Appendix B. Solitons in armchair nanotubes

Here we consider the solitons in armchair nanotubes. The K point Hamiltonian is given by
removing Ax(y) from equation (5). By putting 9px (x, y)= e−iDx xψ(x)eipy y into the energy
eigenequation (5), we obtain {∂x ∓ (py + Ay(x))}ψ±(x)= 0 for the zero-energy state. It follows
that the function ψ±(x) contains the exponential function exp (±pyx), so that either ψ+(x)
with py = 0 or ψ−(x) with py = 0 can be a normalizable solution. The momentum py is
quantized by a periodic boundary condition around the tube’s axis, and a zero-momentum
state py = 0 satisfies the boundary condition for any armchair nanotube [35]. The solution
with py = 0 is a topological soliton. From equation (2), we obtain the chirality mixing term as
σx{τ1Re[φ(x)] − τ2Im[φ(x)]}, where φ(x)= iAy(x)e−2ikFx . This mixing term is small because
a smooth function Ay(x) of x is multiplied by a rapid oscillating function e−2ikFx . Moreover,
the chirality mixing term does not cause a first-order energy shift, since the unperturbed states
ψ±(x)|σ±〉 are pseudo-spin-polarized states satisfying 〈σ±|σx |σ±〉 = 0. For these reasons, the
chirality mixing is negligible in the case of an armchair nanotube.

Note that the zero-energy solitons in an armchair nanotube obtained above are distinct from
the topological soliton in polyacetylene. The chirality mixing term is irrelevant to the solitons
in armchair nanotubes, whereas it is relevant to the topological soliton in polyacetylene.

Appendix C. Solitons in zigzag nanotubes and armchair ribbons

Let us examine solitons in a zigzag nanotube and an armchair ribbon. The existence of a
zero-energy topological soliton in a zigzag tube requires two factors: A field topology and the
presence of Dirac singularity. The A field topology can be understood by noting that the basic
unit of structure is cis-polyacetylene for which the two phases shown in figure C.1(a) can be
considered [25]. The α phase is defined by (δγ1, δγ2, δγ3)= (0, δγ, δγ ), and the β phase is
(δγ1, δγ2, δγ3)= (δγ, 0, 0). From equation (1), the corresponding gauge fields for the α and β
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Figure C.1. Soliton in an armchair nanoribbon. (a) The wavefunction of a
topological soliton in an armchair nanoribbon obtained from a tight-binding
model. (b) The two phases A+ and A− are separated by a domain wall kink
distortion represented by the shaded region.

phases, A+ and A−, are given, respectively, by A± = (∓δγ, 0) (see figure C.1(b)). A domain
wall kink is represented by A1(y)= (Ax(y), 0) with Ax(y)= −δγ tanh(y/ξ). By assuming that
the wavefunction is of the form eipy yψ(x)ϕ(y)|σ 〉, we have a pair of eigenequations from the
K point Hamiltonian as{

σx Ax(y)+ σy p̂y

}
ϕ(y)|σ 〉 = E1ϕ(y)|σ 〉,{

σx p̂x + σy py

}
ψ(x)|σ 〉 = E2ψ(x)|σ 〉.

The first equation possesses a zero-energy topological soliton. Therefore, when there is a zero-
energy state for the second equation, the K point Hamiltonian may possess a mixed zero-energy
solution. The state with px = 0 and py = 0, i.e. the state at the Dirac singularity, can satisfy the
second equation with E2 = 0. Since px is quantized by a periodic boundary condition around
the tube’s axis, this state with vanishing wave vector exists only for ‘metallic’ zigzag tubes [35].
For ‘semiconducting’ zigzag tubes, the quantized px misses the Dirac singularity, and therefore
such a zero-energy topological soliton does not exist. Thus, only the presence of a non-vanishing
Bz field strength does not necessarily result in the presence of a zero-energy state. In addition to
a domain wall, the Dirac singularity is rather essential for the presence of a zero-energy state.
Note that a non-topological excitation, a polaron, may exist even in ‘semiconducting’ zigzag
tubes near a bound kink–antikink pair [25].

The localization pattern of a topological soliton is sensitive to the lattice structure of the
edge of a nanoribbon. To illustrate this, we show the wavefunction of a topological soliton in a
‘metallic’ armchair nanoribbon in figure C.1(a). The soliton is extended along the kink, which
is contrasted with the localized feature of the wavefunction of a zero-energy state in a zigzag
nanoribbon shown in figure 3(a). This difference is a consequence of the fact that unrolling a
zigzag tube can be represented by a strong intervalley mixing term φ(r) at the armchair edge,
and that this field φ(r) does not destroy the Dirac singularity [36]. As a result, a topological
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soliton appears in a ‘metallic’ armchair ribbon, as illustrated in figure C.1(a). It is interesting
to note that unrolling a ‘metallic’ zigzag tube does not result in a ‘semiconducting’ armchair
ribbon. This implies that a topological soliton in a ‘metallic’ zigzag tube disappears when the
tube is unrolled since the Dirac singularity also disappears then.
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