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Abstract. We experimentally characterize the non-equilibrium, room-
temperature magnetization dynamics of a spin chain evolving under an effective
double-quantum (DQ) Hamiltonian. We show that the Liouville space operators
corresponding to the magnetization and the two-spin correlations evolve 90
degrees out of phase with each other, and drive the transport dynamics. For a
nearest-neighbor-coupled N -spin chain, the dynamics are found to be restricted
to a Liouville operator space whose dimension scales only as N 2, leading to a
slow growth of multi-spin correlations. Even though long-range couplings are
present in the real system, we find excellent agreement between the analytical
predictions and our experimental results, confirming that leakage out of the
restricted Liouville space is slow on the timescales investigated. Our results
indicate that the group velocity of the magnetization is 6.04 ± 0.38µm s−1,
corresponding to a coherent transport over N ≈ 26 spins on the experimental
timescale. As the DQ Hamiltonian is related to the standard one-dimensional
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XX Hamiltonian by a similarity transform, our results can be directly extended
to XX quantum spin chains, which have been extensively studied in the context
of both quantum magnetism and quantum information processing.
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1. Introduction

Solid-state spin systems provide an attractive test-bed to study both equilibrium and non-
equilibrium quantum many-body dynamics, and have recently emerged as a promising platform
for quantum simulation ([1], [2] and references therein). One-dimensional (1D) spin systems,
in particular, are of special interest as they connect to an important class of problems in
condensed-matter physics [3], and have been suggested as quantum wires to coherently transfer
quantum information across distant nodes in a quantum computer and distributed quantum
architectures [4, 5]. Transport properties, and magnetization transport in particular, have been
extensively investigated theoretically by both the condensed-matter community and more
recently in the context of spintronics and emerging nano-device applications [6].

The class of 1D spin-1/2 XY Hamiltonians [7–9], which are exactly solvable via a
Jordan–Wigner mapping onto a system of non-interacting spinless fermions, plays an archetypal
role in condensed-matter physics. In this case, a local magnetic disturbance is known to
propagate down the chain scatter-free with a constant velocity (ballistic transport), rather
than diffusively spreading from the site of the disturbance and eventually decaying (diffusive
transport). From a quantum communication perspective, the mapping to free fermions has
proved crucial to also allow a quantum state to be transported down the chain—which thus
acts as a quantum conduit or channel (see for example [10] and references therein for a
recent review). While at zero temperature, within linear response theory, integrable quantum
models are typically associated with ballistic transport, a coexistence with and/or crossover
to diffusive behavior may be possible more generally, for instance in the presence of non-
local conserved quantities [11] or of couplings to an environment [12–14]. Despite significant
progress, a satisfactory understanding of the conditions leading to ballistic versus diffusive
transport is as yet lacking, with a number of unresolved questions remaining, in particular, in
relation to the impact of finite and infinite temperatures [15], the role of non-integrability, and
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its interplay with frustration [16, 17]. As a result, experimentally characterizing the transport
properties and physical mechanisms in low-dimensional spin systems remains important from
both fundamental and applied standpoints.

The long coherence times afforded by nuclear spins and the ability to access a large
Hilbert space, in conjunction with the superb level of control available over spin degrees of
freedom, make solid-state nuclear magnetic resonance (NMR) an excellent setting for exploring
the coherent dynamics of a (nearly) isolated quantum many-body system [1, 18–20] as well
as the statistical physics of equilibrating spin systems [21–23]. In this work, we employ
solid-state NMR techniques to characterize the room-temperature magnetization dynamics
of a (quasi) 1D spin system during coherent evolution under an effective double quantum
(DQ) Hamiltonian, which is directly related to the isotropic XY (XX henceforth) Hamiltonian
by a similarity transformation. In particular, we find that the experimental results are in
very good agreement with those predicted by the free-fermionic solutions, indicating that
integrability-breaking perturbations (due to longer range couplings) have negligible effect
on the timescale of the experiments, and enabling us to calculate the transport velocity
of the magnetization. This is in marked contrast to the diffusive behavior observed under
the dipolar Hamiltonian in previous experiments on 3D spin networks [24, 25], where spin
diffusion arises from unitary dynamics under the high-field (secular) dipolar Hamiltonian.
While experimentally the high degree of isolation from the surrounding environment during
evolution was demonstrated by the observation of ‘polarization echoes’ upon reversing the sign
of the dipolar Hamiltonian [26], quantum chaoticity was explicitly invoked theoretically as a
mechanism for diffusion [27, 28].

Beside providing additional insight into the mechanisms underlying coherent transport
in isolated 1D many-body quantum systems, in the context of quantum information transport
it is important to stress that the nuclear spin chains we study here are initially in a highly
mixed quantum state. The importance of relaxing initialization constraints is being increasingly
appreciated within the quantum communication community (see in particular [29] and
references therein). We thus expect this study to also be of direct relevance to a number of other
quantum platforms where mixed-state spin chains are naturally encountered, such as phosphorus
defects in silicon nanowires [30], quantum dots [31, 32], molecular semiconductors [33] and
solid-state defects in diamond or silicon carbide [34, 35].

2. Experimental methods and results

The 19F spins in a crystal of fluorapatite (FAp—Ca5(PO4)3F) have long been used
to experimentally approximate a nearest-neighbor (NN)-coupled 1D spin system (see
for example [36–40]). In a 3D lattice of dipolar-coupled nuclear spins, every pair
of spins is coupled with an interaction strength (between spin j and spin `) d j` =

(µ0/16π)(γ 2h̄/r 3
j`)(1–3 cos2 θ j`) [41], where γ is the gyromagnetic ratio of fluorine, r j` is

the distance between nucleus j and ` and θ j` is the angle between Er j` and the z-axis (along
which the external magnetic field is applied). The geometry of the spin system is reflected
in the distribution of the d j` couplings. In FAp, the 19F nuclei form linear chains along the
c-axis, each one surrounded by six other chains. The distance between two intra-chain 19F nuclei
is r = 3.442 Å whereas the distance between two cross-chain 19F nuclei is R = 9.367 Å. The
largest ratio between the strongest intra- and cross-chain couplings (≈40) is obtained when the
crystalline c-axis is oriented parallel to the external field. In this orientation, the fluorine spins

New Journal of Physics 13 (2011) 103015 (http://www.njp.org/)

http://www.njp.org/


4

may be treated as a collection of many identical 1D chains with only NN couplings, with a
coupling strength d ≡ (µ0/8π)γ 2/r 3

= 8.17 × 103 rad s−1.
In this NN approximation, the high-field secular dipolar Hamiltonian of a single chain is

given by HDip =
1
2

∑N−1
i=1 d(3σ z

i σ
z
i+1 − Eσi · Eσi+1), where σ α (α = x, y, z) are the Pauli operators.

Starting from HDip and using suitable multiple-pulse sequences [43, 44], we can experimentally
implement an effective DQ Hamiltonian, given by

HDQ =
1

2

N−1∑
i

d
(
σ x

i σ
x
i+1 − σ

y
i σ

y
i+1

)
. (1)

Formally, the DQ Hamiltonian is related to the standard XX Hamiltonian by the similarity
transformation U XX

DQ = exp(−iπ/2
∑

′

i σ
i
x), where the sum is restricted to either even or odd

spins. While Iz ∝
∑

i I i
z is conserved under the XX Hamiltonian, the corresponding conserved

quantity under the DQ Hamiltonian is Ĩz ∝ U XX
DQ IzU

XX†
DQ . This results in the inversion of the sign

of the local magnetic disturbance at every alternate site as it moves down the chain, as will be
seen later (see figure 6).

In order to implement the DQ Hamiltonian, we used a standard 8-pulse sequence applied
on-resonance to the 19F Larmor frequency [43]. This 8-pulse sequence, S= C · C̄ · C̄ · C, may be
understood in terms of a simpler 2-pulse cycle (C, and its time-reversed version C̄), which also
simulates the DQ Hamiltonian. The primitive pulse cycle is given by C= [12 X1′ X 1

2 ], where
1′

= 21+w,1 is the delay between pulses andw is the width of the π/2 pulse (denoted by X ),
applied about the x-axis. The dynamics in the presence of the pulse sequence can be expressed
in terms of a time-independent effective Hamiltonian HDQ,

U x
MQ(t)= T exp

(
−i
∫ t

0
[Hdip +Hx

rf(s)]ds

)
= e−iHDQt , (2)

where T denotes time-ordering operator, h̄ = 1, and Hx
rf(t) is the time-dependent Hamiltonian

describing the rf-pulses along the x-axis. This sequence implements the Hamiltonian of
equation (1) to the lowest order in average Hamiltonian theory [45].

In an inductively detected NMR experiment where we measure quadrature signals from the
x and y components of the precessing magnetization, the observed signal is S(t)= ζ 〈σ−(t)〉 =

ζ Tr{σ−ρ(t)}, where σ−
=
∑

j σ
−

j =
∑

j(σ
x
j − iσ y

j )/2, and ζ is a proportionality constant. The
only terms in ρ(t) that yield a nonzero trace, and therefore contribute to S(t), are angular
momentum operators such as σ +

j , which are single-spin, so-called ‘single-quantum coherences’
in the language of multiple-quantum (MQ) NMR [42]. In a standard MQ experiment that is used
to characterize the many-spin dynamics of a nuclear spin system, the uncorrelated thermal initial
states of the spins are allowed to evolve under a Hamiltonian such as the DQ Hamiltonian that
generates the multi-spin dynamics. The multi-spin character of the states is indirectly encoded
by a collective rotation of the spins and the DQ evolution is then reversed to convert the many-
spin states back to single spin terms that can be detected.

Our experiments were performed at room temperature in a 7T vertical bore NMR magnet
on a single FAp crystal with its c-axis aligned to the external field. The measured T1 of
the fluorine spins was 300 s (many orders of magnitude larger than the timescales explored
experimentally here). The length of the π/2 pulse used was w = 1.06µs and 1= 2.9µs. The
thermal (equilibrium) state of the spins in high field and high temperature is highly mixed, and
is given by ρth ≈ 1 − ε

∑
i σ

i
z , where ε ∼ 10−5

� 1. The identity is unchanged under unitary
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Figure 1. Evolution of the thermal initial state under HDQ. The blue squares
correspond to the collective magnetization (

∑
i σ

i
z ) and the red asterisks to the

two-spin correlations (
∑

i(σ
i
xσ

i+1
y + σ i

yσ
i+1
x )). The dashed black line is the best fit

of the observed magnetization to the analytical model described later. The solid
red line is a guide to the eye. The inset shows the NMR FID of FAp.

transformations, and does not contribute to the signal S(t). Thus, it is only the deviation of the
density operator from the identity that gives rise to an observable signal. The constant ε then
becomes a scaling parameter and its value does not affect the details of the experiment (as long
as the high temperature approximation remains valid).

Figure 1 shows the observed evolution of the collective magnetization (∝
∑

i σ
i
z –blue

squares) and the two-spin correlations (∝
∑

i(σ
i
xσ

i+1
y + σ i

yσ
i+1
x )–red asterisks) under HDQ,

starting from ρth. The error bars were estimated from the standard deviation of a signal-free
region of the time-domain data. The evolution time was incremented by increasing the number
of cycles from 1 to 40 (30 in the two-spin correlation readout).

In contrast to typical NMR experiments which involve the DQ Hamiltonian [43], no
evolution reversal was performed before signal detection in our experiments. In order to
minimize receiver dead-time effects, a solid echo was used to read out the (single-spin)
magnetization terms. The two-spin terms were read out using a π/4 pulse to generate a dipolar
echo (with an appropriate phase cycle). The combination of a π/4 pulse followed by evolution
under the dipolar Hamiltonian refocuses a portion of the two-spin correlations back to single-
spin coherences that can then be detected [41]. The importance of the single-spin and two-spin
operators in driving the transport dynamics can be seen from the following equations (the short
time dynamics are further discussed in appendix B):

d

dt
σ z

1 =
id

2

(
σ x

1 σ
y

2 + σ y
1 σ

x
2

)
,

d

dt

(
σ x

1 σ
y

2 + σ y
1 σ

x
2

)
= −d σ z

2 + 3 spin terms. (3)
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Figure 2. Evolution of the end-polarized initial state underHDQ. The blue squares
correspond to

∑
i σ

i
z , while the red asterisks correspond to

∑
i(σ

i
xσ

i+1
y + σ i

yσ
i+1
x ).

Inset shows the 4-pulse experiment on the thermal initial state. The dashed black
lines are the best fits of the magnetization dynamics to the analytical model.

As a result, the single-spin and two-spin terms are observed to evolve 90 degrees out of phase
with each other during DQ evolution. The inset shows the observed NMR Free Induction
Decay (FID), which corresponds to the evolution of

∑
i σ

i
x under HDip. While the FID decays in

about 350µs, due to the creation of multi-spin correlations [18], the magnetization oscillations
persist for up to ≈1.5 ms under HDQ, indicating that high-order spin correlations develop quite
slowly [46].

It is also possible to experimentally prepare initial states of the form ρ1N ≈ 1 − ε(σ z
1 +

σ z
N ) [47], in which the polarization is localized at the ends of the chain. We call this the end-

polarized state. Figure 2 shows the DQ evolution observed for ρ1N . Here, we implemented
HDQ using the first 4 pulses of the above sequence (C · C̄) to achieve better temporal sampling
of the signal, though this introduces first-order errors in the resulting average Hamiltonian.
The alternating sign of the local magnetization during spin transport of the end-polarized state
results in a rapid attenuation of the amplitudes of the observed signal (the 8-pulse version of the
experiment is included in appendix A). For comparison, the inset shows the 4-pulse version of
the thermal state experiment.

3. Theoretical analysis and interpretation

3.1. Fermionic model

Both the NN XX [7] and NN DQ [47, 48] Hamiltonians are well known to be analytically
solvable in 1D, by means of a Jordan–Wigner mapping onto a system of free fermions. We
invoke this mapping to interpret the experimental results. Starting from an end-polarized initial
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state ρ j = 1 − εσ z
j , we once again take note of the fact that the identity does not evolve, and

focus our attention on the deviation term σ z
j . The deviation density operator at time t under the

DQ Hamiltonian is given by [47, 49]:

ρ
DQ
j (t)=

1

N + 1

N∑
k,h=1

sin

(
πk j

N + 1

)
sin

(
πhj

N + 1

)
×

[(
a†

k ah + a†
hak

)
cosψkh(t)− i

(
a†

k a†
h − ahak

)
sinψkh(t)

]
, (4)

where ak =

√
2

N+1

∑N
h=1 sin

(
πkh
N+1

)
ch , ch = −

∏h−1
l=1 (σ

l
z )σ

h
−

are canonical fermionic operators,

and ψkh(t)= 2dt
[
cos

(
πk

N+1

)
+ cos

(
πh

N+1

)]
, and we have assumed open boundary conditions on

the chain. In order to characterize the evolution of the individual spin operators, we can express
the evolved state ρDQ

j (t) in terms of the ch operators. This yields:

ρ
DQ
j (t)= (−1) j−1

 ∑
p−q ∈ even

(
c†

pcq + c†
qcp

)
A j,q(t)A j,p(t)+

∑
p−q ∈ odd

ip−q
(
c†

pc†
q −cqcp

)
A j,q(t)A j,p(t)

,
(5)

where the time-dependent amplitudes A j,q read

A j,q(t)=

∞∑
m=0

i2m Ñ
[
iδ J2m Ñ+δ(2dt)− i6 J2m Ñ+6(2dt)

]
+

∞∑
m=1

i2m Ñ
[
i−δ J2m Ñ−δ(2dt)− i−6 J2m Ñ−6(2dt)

]
(6)

with Ñ = N + 1, δ = q − j , 6 = q + j , and Jn(·) being the nth order Bessel function of the
first kind. Similarly, for a thermal initial state ρth = 1 − ε

∑
j σ

j
z , we find the deviation density

operator at time t

ρ
DQ
th (t)= −

∑
p−q ∈ even

(
c†

pcq + c†
qcp

)
Ap,q(2t)+

∑
p−q ∈ odd

(
c†

pc†
q − cqcp

)
Ap,q(2t). (7)

Taking the even/odd constraint into account, the density operators in equations (5) and (7)
are seen to belong to a N (N + 1)/2-dimensional operator subspace which defines the Liouville
space within which the transport occurs. Mapping back to spins, and assuming p > q , we get:

c†
pc†

q = σ +
q σ

z
q+1 · · · σ z

p−1σ
+
p , cqcp = σ−

q σ
z
q+1 · · · σ z

p−1σ
−

p ,

c†
qcp = σ +

q σ
z
q+1 · · · σ z

p−1σ
−

p , c†
qcq =

1
2

(
1 − σ z

q

)
.

(8)

The above quadratic scaling is the same that Fel’dman and coworkers theoretically established
for the XX Hamiltonian [50]6 . While ρth is a constant of the motion under the XX Hamiltonian,
evolution of the end-polarized state can be readily expressed as

ρXX
j (t)= −

∑
p,q

i p+q
(
c†

pcq + c†
qcp

)
A j,q(t)A j,p(t). (9)

6 It is also interesting to observe that the operators in equation (8) are the same as the string operators in the
spin–spin correlation functions SXX(q, p) defined in [55].
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3.2. Magnetization dynamics and transport velocity

We can re-examine the experimental data in figures 1 and 2 using the analytical results outlined
above. The magnitude of the collective spin magnetization is given by S(t)=

∑N
p=1 A2

1,p(t)

for an end-polarized initial state, and by S(t)=
∑N

p=1 Ap,p(2t) for a thermal initial state. The
dashed black lines in the figures are the best fits to these expressions, where we have assumed
that N is sufficiently large that no boundary effects are observed. Thus we only used the m = 0
term in equation (6) for A1,p and Ap,p when calculating S(t) as shown above. For the end-
polarized state we have also assumed that on the timescale of the experiment the magnetization
propagating from the two ends have not had a chance to overlap, and we can thus describe them
as two independent chains. This allows us to ignore the AN ,p term.

Three fitting parameters were used: a scalar multiplier, the frequency argument of the
Bessel function, and an additive baseline constant. The baseline constant was subtracted from
the data shown in the two figures, so that the oscillations are observed around zero. For the
thermal initial state, the observed signal is seen to damp out at a faster rate than expected from
the model. This is likely due to the presence of longer-range couplings that have been ignored
in the NN model, as these long-range couplings lead to a leakage out of the restricted Liouville
space. The obtained fitting frequencies are d = 8.32 × 103 rad s−1 (8-pulse, thermal state),
d = 8.52 × 103 rad s−1 (4-pulse, thermal state), d = 8.71 × 103 rad s−1 (8-pulse, end polarized
state–see appendix A), and d = 9.56 × 103 rad s−1 (4-pulse, end polarized state), yielding an
estimate d = 8.78 ± 0.55 × 103 rad s−1. The estimate is biased by the value obtained in the 4-
pulse experiment on the end-polarized state, where the fitting frequency is seen to be too high
at longer times (figure 2). However, the estimate is still in good agreement with the values d =

8.3 × 103 rad s−1, obtained from observing MQ coherences [40], and d = 8.17 × 103 rad s−1,
obtained from the known structure of FAp [38].

In the thermodynamic limit, the magnitude of the magnetization transported from site j = 1
at time t = 0 to site j = n at time t is given by P∞

1,n(t)= A∞

1,n(t)
2, where

A∞

1,n(t)= in−1 n Jn(2dt)

2dt
= in−1 Jn−1(2dt)+ Jn+1(2dt)

2
. (10)

Using properties of the Bessel functions [51], it is possible to show that ∂t A∞

1,n = −d(A∞

1,n+1 −

A∞

1,n−1). If we define a continuous spatial variable z = aj , with a equal to the distance between
two spins and j being the spin number in the chain, we can replace the finite difference with
a spatial derivative ∂t A∞

1,n = −2a d∂z A∞

1,n. Taking the second derivative with respect to time we
thus obtain a wave equation for the transport amplitude:

∂2
t A∞

1,n = (2ad)2∂2
z A∞

1,n. (11)

P∞

1,n(t) also follows the same wave equation with velocity 2ad . We can also calculate the group
velocity of the spin system directly from the dispersion relation for the DQ Hamiltonian, ω(k)=

2d|cos(ka)|, which results in vg = ∂ω/∂k|k=π/2a = 2ad . Using d = 8.78 ± 0.55 × 103 rad s−1,
and a = 3.442 Å, we obtain vg ≈ 6.04 ± 0.38µm s−1. This corresponds to a displacement of
≈9.07 ± 0.57 nm in 1.5 ms or transport across N = 26 ± 2 spins. The time taken to travel a
distance of n lattice sites is t = n/2d. At this time A∞

1,n = in−1 Jn(n), and P∞

1,n = (−1)n−1 J 2
n (n).

For large n, Jn(n)∼
1

0(2/3)

(
2

9n

)1/3
[51] and the magnitude of the polarization transported from
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Figure 3. This figure illustrates the evolution of the 1, 2, 3, and 4-spin
correlations for a N = 9 spin system initialized in the state ρ1 = 1 − σ z

1 . The
amplitudes of different product operators are obtained from equations (3) and (4)
in the main paper. (a) Single spin polarization terms σ z

n . The amplitudes are
given by A2

1,n(t). (b) Two spin correlation terms h(2)n,n+1. These are DQ terms
whose amplitudes are given by A1,n(t)A1,n+1(t). (c) Three spin correlation
terms h(3)n,n+1,n+2. These are zero quantum terms whose amplitudes are given by
A1,n(t)A1,n+2(t). (d) Four spin correlation terms h(4)n,n+1,n+2,n+3. These are DQ
terms whose amplitudes are given by A1,n(t)A1,n+3(t). Higher order correlations
are not shown.

spin 1 to n scales as

P∞

1,n(n)∼ n−2/3. (12)

3.3. Evolution of multi-spin correlations

Figure 3 shows the dynamics of the 1, 2, 3 and 4-spin correlations for a N = 9 spin chain
initialized in the state ρ1 = 1 − σ 1

z . These curves were generated using equations (3) and (4).
We can express A1,q as

A1,q =

∞∑
m=0

i2m Ñ+q−1

(
2m Ñ + q

dt

)
J2m Ñ+q(2dt)+

∞∑
m=1

i2m Ñ−q+1

(
2m Ñ − q

dt

)
J2m Ñ−q(2dt),

where we have used the Bessel function identity Jν−1(z)+ Jν+1(z)=
2ν
z Jν(z) [51]. The

sequential growth outlined above can easily be visualized in these simulations. The figures show
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Figure 4. Growth of x-basis coherences during DQ evolution, starting from
an end-polarized initial state. Only odd-order coherences are observed due to
selection rules.

that the presence of the boundary (at 2dtm ≈ 5, where tm ∼ N/2d identifies the so-called ‘mirror
time’, see also next section) has a large effect on the spin dynamics. In appendix B we show
that additional insight into the dynamics is obtained by calculating the short-time evolution, and
examining the growth of the multi-spin operators.

It is possible to experimentally characterize the growth of these multi-spin correlations. In
a MQ experiment [43], we record the coherence orders by performing a collective rotation of
the state about the z-axis, and observing the resulting phase shifts. The first row of equation (8)
shows the DQ coherences created during NN DQ evolution, while the second row shows the
zero-quantum coherences and the polarization states.

While we cannot directly observe the high-spin correlations in equation (8), we can use
so-called x-basis encoding techniques to characterize the distribution of p − q [44], thereby
indirectly probing the growth of these terms. For example, the first term in equation (8) in the
x-basis reads:

c†
pc†

q =

[
σ x

q +
i

2
(σ x+

q + σ x−

q )

]
(σ x+

q+1 − σ x−

q+1) · · · (σ
x+
p−1 − σ x−

p−1)

(2i)p−q−2

[
σ x

p +
i

2
(σ x+

p + σ x−

p )

]
,

where σ x±

q = σ y
q ± iσ z

q [52]. Here, a collective rotation of the system about the x-axis results
in overlapping binomial distributions of phase factors whose highest order is p − q. Higher-
order coherences in the x-basis are thus a signature of the presence of multi-spin correlations.
Figure 4 shows the relative x-basis coherence intensities measured as a function of the DQ
evolution time, starting from the end-polarized state. The experiments were performed using a
16-pulse implementation of the DQ Hamiltonian [44], and both the number of cycles and the
delay1 were varied. It can be seen that following an initial rapid creation of 3-spin correlations
(and concomitant reduction in the single spin term), the coherence orders change quite
slowly.
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Figure 5. Five copies of a 20-spin chain illustrate the origin of the interference
patters observed following reflection off the boundary during evolution under the
NN XX Hamiltonian. The time axis is in units of 1/d.

3.4. Mirror times

Equations (3)–(7) also help us understand the source of the signal enhancements observed near
the boundaries of a finite spin chain. The sum over m in equation (6) resembles a sum over an
infinite number of copies of the N -spin chain (consistent with the periodic boundary conditions
imposed by the sine transform [49]). At short times, only the lower-order Bessel functions
contribute, and each ‘replica’ of the chain is independent of the others. At longer times, the
adjacent copies begin to interfere with each other as illustrated in figure 5. It is the interference
between these terms that is responsible for the mirror times observed in our previous work [40],
consistent with the interpretation in terms of bouncing spin-wave packets and ‘erratic’ dynamics
put forward for the XX model [50]. In particular, the leading mirror term yields a factor of 4
increase in the magnitude of the transferred magnetization. A similar transport behavior has
been shown for pure states [53].

Figure 6 shows that the mirror enhancements obtained under the DQ Hamiltonian are also
due to interferences generated as a polarization wave-packet reflects off the boundary in a finite
spin chain. In the case of the DQ Hamiltonian the polarization is inverted at every adjacent spin
site as it travels down the chain, and the nature of interferences at the boundary depends on
whether the chain contains an even or odd number of spins.

The above mirror dependence on chain length is also manifested in the MQ coherence
dynamics of the spin chain. Mirror times were also observed in the MQ dynamics for thermally
polarized spin chains [40]. We can explain this as follows. Although significant overlap for
waves originating at symmetric spin positions j and N + 1 − j can occur at different times
depending on j (for example, at times t j ∝ N ± j) there is also large overlap at the time tm ∝ N ,
when one of the waves has bounced off a boundary and encounters the second wave originating
from the symmetric spin (see figure 7). Since at each time t j there occurs only the overlap for
one pair, weighted by a factor N , only the overlaps at the mirror time tm ∝ N are noticeable for
the thermal initial state [40].
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Figure 6. Five copies of a spin chain illustrating the boundary interferences for
(a) N = 20; (b) N = 21 during evolution under the NN DQ Hamiltonian. The
time axis is in units of 1/d.

4. Summary

In summary, we have measured the single-spin and two-spin Liouville-space operators that drive
the (nearly) ballistic transport of magnetization under the DQ Hamiltonian at room temperature.
We also developed a real-space description of the spin dynamics that is able to accurately
describe the observed results, by allowing us to characterize the growth and coherent dynamics
of multi-spin correlations, and to explain the origin of the previously described ‘mirror times’
in finite spin chains. Within the validity of a NN approximation, the dynamics of the N -spin
system are seen to be restricted to a Liouville space whose size grows only quadratically with N .
Based on our model, we estimate that the magnetization is coherently transported down the
chain with a group velocity of 6.04 ± 0.38µm s−1. We expect this velocity to be directly
independently measurable using reciprocal space NMR methods [54].
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Appendix A. Evolution of the end-polarized state under HDQ

Figure A.1 shows the experimental results obtained using the 8-pulse implementation of the DQ
Hamiltonian (in contrast to the 4-pulse version shown in figure 2), when the spins are prepared
in the end-polarized state ρ1N ≈ 1 − ε(σ z

1 + σ z
N ) in which the polarization is localized at the

ends of the chain. Fitting the magnetization dynamics to the analytical model results in a value
of d = 8.7 × 103 rad s−1.

Appendix B. Short time evolution

Let the initial state of the spin system be ρ j = 1 − σ j
z . The state of the spin system at a time t

later, following evolution under the DQ Hamiltonian is

ρt = ρ0 − it
[
HDQ, ρ0

]
−

t2

2

[
HDQ,

[
HDQ, ρ0

]]
−

it3

6

[
HDQ,

[
HDQ,

[
HDQ, ρ0

]]]
+ · · · (B.1)
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Figure A.1. Evolution of the end-polarized initial state under HDQ, showing the
collective magnetization (

∑
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(
∑

i(σ
i
xσ

i+1
y + σ i

yσ
i+1
x )—red asterisks). The dashed black line is the best fit of

the observed magnetization to the analytical model described later (yielding
d = 8.7 × 103 rad s−1). The solid red line connecting the red asterisks is a guide
to the eye.

Figure B.1. The successive commutators in equations (B.1)–(B.4) yield the
Liouville space operators shown in the figure and illustrate the progressive
generation of zero and DQ coherences.

Evaluating the above commutators, we get

[HDQ, ρ0] = 2d
(

h(2)j−1, j + h(2)j, j+1

)
, (B.2)
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where h(2)i, j = σ +
i σ

+
j − σ−

i σ
−

j =
i
2

(
σ x

i σ
y
j + σ y

i σ
x
j

)
. A collective rotation of h(2)i, j about the z-axis by

an angle φ results in phase shifts by angles ±2φ, indicating a DQ coherence. Similarly,

[HDQ, [HDQ, ρ0]]=−2d2
(
σ z

j−1 +2σ z
j + σ z

j+1

)
−2d2

(
h(3)j−2, j−1, j +2h(3)j−1, j, j+1 +h(3)j, j+1, j+2

)
, (B.3)

where h(3)i, j,k = σ +
i σ

z
j σ

−

k + σ−

i σ
z
j σ

+
k and

[HDQ, [HDQ, [HDQ, ρ0]]] = 6d3
(

h(2)j−2, j−1 + 3h(2)j−1, j + 3h(2)j, j+1 + h(2)j+1, j+2

)
−2d3

(
h(4)j−3, j−2, j−1, j + 3h(4)j−2, j−1, j, j+1 + 3h(4)j−1, j, j+1, j+2 + h(4)j, j+1, j+2, j+3

)
, (B.4)

where h(4)i, j,k,l = σ +
i σ

z
j σ

z
k σ

+
l + σ−

i σ
z
j σ

z
k σ

−

l and so on. Collective rotations of h(3)i, j,k and h(4)i, j,k,l about
the z-axis by an angle φ results in phase shifts by angles 0 and ±2φ respectively, indicating
these are zero and DQ coherences. We observe the same alternating zero and DQ signatures in
the commutator expansion as obtained in the fermionic solution (equation (3) in the main text).
Moreover, here we see that the growth of the spin system is necessarily slow. At the level of
the second commutator, we can infer that the system is three times more likely to evolve from
a 3-spin state to a 2-spin state, than it is to evolve to a 4-spin state. This is one indication of
why locally polarized states are transported almost ballistically along the spin chain. This is
schematically illustrated in figure B.1.
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