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Abstract. We map the band structure of surface acoustic modes of a periodic
array of copper lines embedded in a SiO2 film on a silicon substrate by means of
the laser-induced transient grating technique. A detailed map of the lowest sheet
of the ω(k) surface and partial maps of two higher-order sheets are obtained.
We discuss the topology of the ω(k) surface and explain how it arises from the
Rayleigh and Sezawa modes of the film/substrate system. In the vicinity of the
bandgap formed at the Brillouin zone boundary, the first and second dispersion
sheets take the form of a saddle and a bowl, respectively, in agreement with
a weak perturbation model. The shape of the third dispersion sheet, however,
appears to defy expectations based on the perturbation approach. In particular,
it contains minima located off the symmetry directions, which implies the
existence of zero group velocity modes with an obliquely directed wavevector.
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1. Introduction

Studies of the propagation of acoustic waves in periodic structures go back over half a
century [1] and have resulted in many widely used applications, particularly in the area of
surface acoustic wave (SAW) devices [2]. Recent years have seen an explosion of activity in
this field, with the focus on new phenomena found in two-dimensional (2D) and 3D structures,
such as complete bandgaps, and the term ‘phononic crystals’ is now broadly used to define
the acoustics of periodic structures [3]. SAWs on periodically structured surfaces that can be
termed ‘surface phononic crystals’ (SPCs) have also attracted increasing attention both within
and outside the traditional SAW device field [4]–[13].

The main characteristic of an SPC is the shape of the dispersion bands that form surfaces
ω(k) in a 3D space. Experimental studies of SPCs published to date only involve measurements
of dispersion curves along limited selected directions of the acoustic wavevector [5, 11, 14].
Accurate mapping of the dispersion surface in 3D ω, kx , ky space, where ω is the angular
frequency and kx , ky are components of the 2D wavevector k, would therefore obviously be
desirable for the investigation of SPCs.

Since solid surfaces are amply accessible for optical measurements, non-contact laser-
based methods are particularly attractive for studying SPCs. An early version of the optical
pump–probe technique [15] makes use of a femtosecond pulse illuminating a wide area
compared to the SPC period to excite surface vibrations, which are detected by a variably
delayed probe pulse. This method has been applied to both 1D and 2D SPCs [9, 10, 15], but has
the disadvantage that only a single point k = 0 in the reduced Brillouin zone (BZ) is accessible.
Another version of the femtosecond pump–probe setup [8, 13] combines a point-like excitation
and a scanning point-like probe that allows 2D imaging of the acoustic field. This method proved
to be capable of accessing the full ω(k) surface [8], but the resolution of the measurements on
the frequency axis was limited by the fact that only discrete points corresponding to multiples
of the laser repetition rate of 76 MHz were accessible. The method produced some intriguing
constant frequency cross-sections of the dispersion surface but fell short of resolving the details
of the band structure.

In this work, we use an alternative technique for mapping ω(k) based on the laser-induced
transient grating method [5, 11, 12], in which two optical excitation pulses form an interference
pattern at the sample surface, thus precisely defining the wavevector of the excited SAWs.
The magnitude and the direction of the wavevector can easily be varied, thus allowing direct
mapping of the ω(k) surface. We investigate the band structure of a relatively simple 1D SPC
similar to that studied in [8]. The higher data quality compared to the previous work allows us to
reconstruct the shape of the ω(k) surface and gain better understanding of the main topological
features of the band structure.

2. Experiment

The sample used in this work is identical to that of [8], except that no gold coating was used.
A schematic cross-section of the sample is shown in figure 1(a). Copper lines are embedded in
a 0.8 µm thick SiO2 film on a (100) silicon substrate. The substrate of thickness 720 µm can
be considered semi-infinite for the purposes of this study. The copper linewidth is 2 µm and the
structure period is d = 4 µm. The lines are aligned along the [011]-axis of the Si substrate. The
lateral dimensions of the line array pattern are 3 × 3 mm2.
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Figure 1. (a) Cross-section of the sample and (b) top view showing the laser
spot (not to scale); (c) an example of a signal waveform and (d) the frequency
spectrum of the acoustic oscillations. The data were taken with the excitation
grating wavevector of 0.97 µm−1 (grating period 6.5 µm) perpendicular to the
Cu lines.

The transient grating apparatus with optical heterodyne detection has been described
elsewhere [16]. In summary, two excitation pulses derived from a single laser (pulse duration
0.5 ns, wavelength 532 nm and total energy at the sample ∼1 µJ) form a spatially periodic
interference pattern at the sample surface. Absorption of the excitation light followed by rapid
thermal expansion generates counter-propagating acoustic modes at the wavevector defined
by the periodicity of the excitation grating. Detection of the surface ripples associated with
surface acoustic modes is performed via diffraction of the quasi-cw probe beam (wavelength
830 nm and power at the sample ∼100 mW) focused at the center of the excitation pattern. The
diffraction signal amplified via optical heterodyning is detected with a fast photodiode and fed
to a digital oscilloscope, giving an effective bandwidth ∼1 GHz for the detection electronics.
The excitation spot size is 300 × 50 µm2 and the probe spot size is 50 × 25 µm2. The location
of the excitation and the probe laser beams at the sample surface is schematically shown in
figure 1(b).

Figure 1(c) shows an example of a signal waveform. The initial sharp rise indicates the mo-
ment when the excitation pulse strikes the sample. High-frequency oscillations are due to surface
acoustic modes, whereas the slowly decaying component is the contribution of the ‘thermal
grating’ associated with the periodic temperature profile. The Fourier spectrum of the acoustic
oscillations reveals the presence of three surface acoustic modes observed within the frequency
bandwidth of the experiment. As we will see, these three modes correspond to the three lowest
sheets of the ω(k) surface. The observed decay of the oscillations is not caused by acoustic
damping, but rather by the fact that the signal is only observed while counter-propagating
wavepackets pass through the probe spot. Thus, the frequency resolution of the technique is
determined by the laser spot size and the group velocity of the acoustic waves. In the vicin-
ity of the bandgaps, where the group velocity approaches zero, the oscillations are particularly
long lived and yield narrow peaks exemplified by the central peak in figure 1(d), which, as we
shall see, corresponds to a saddle point of ω(k). In practice, the 100 ns time window used for

New Journal of Physics 13 (2011) 013037 (http://www.njp.org/)

http://www.njp.org/


4

0

0.5

1

1.5

0 0.5 1 1.5

k y
(µ

m
-1

)

kx (µm-1)

Figure 2. Measured points in k-space (closed circles) and symmetrically
equivalent points (open circles). The vertical dashed line marks the BZ boundary.

the measurements sets a lower bound for the peak width at about 5 MHz; if needed, further
improvement of the frequency resolution in the vicinity of the bandgaps could be achieved by
expanding the time window. The precision (reproducibility) of the measurements of the position
of the frequency peaks was typically better than 0.1 MHz [16].

In order to map the ω(k) surface, one needs to vary both the magnitude and the direction
of the wavevector. The experimental setup allowed us to vary the wavenumber within a set
of 12 fixed values in the range 0.63–1.58 µm−1 (which corresponds to the range 4–10 µm in
the grating period). The direction of the wavevector was varied by rotating the sample in 5◦

steps. Figure 2 shows the array of measured points in (kx , ky) space. Due to the periodicity
of the structure, the acoustic mode dispersion in k-space is also periodic along kx , with the
period equal to the ‘wavenumber’ of the Cu line pattern q = 2π/d. Due to the symmetry of
the sample, there is also reflection symmetry with respect to both the kx = 0 and ky = 0 axes.
From the periodicity and symmetry with respect to kx = 0, it follows that ω(k) should also be
symmetric with respect to the BZ boundary kx = kB = π/d. This fact helps us to get a reasonable
coverage of the BZ even with the limited wavenumber range. Indeed, one can see that the lowest
wavenumber of 0.63 µm−1 results in a large ‘hole’ at the center of the BZ. However, this ‘hole’ is
covered by symmetrically equivalent points obtained from the measurements at large excitation
wavenumbers.

3. Results and discussion

The measured 3D map of the ω(k) surface is presented in figure 3. The surface was produced
using a triangle-based linear interpolation algorithm in the MathLab software package that
yields a surface always passing through the data points. As mentioned above, in the frequency
range below 1 GHz, the dispersion surface comprises three sheets.
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Figure 3. Measured 3D map of the acoustic frequency versus wavevector surface
with the three lowest dispersion sheets shown (a) together and (b–d) separately.
Solid symbols correspond to experimental data (including points obtained from
the measured ones by symmetry transformations). The point k = 0, ω = 0, which
is not experimentally accessible, has been added to the lowest dispersion sheet
based on the known fact that the lowest mode does not have a low-frequency
cut-off since at low frequencies it should transform into the Rayleigh wave of
the substrate. Wavevector components kx and ky are expressed in µm−1.

The first (lowest) sheet yielded the most complete map within the covered wavevector
range; for the other two sheets, we only obtained partial maps since the corresponding peaks
in the spectrum were below the noise level at some points in k-space. The first sheet has the
simplest shape, with a saddle point located at the BZ boundary at kx = kB and ky = 0. The more
complicated shape of the second and third dispersion sheets is discussed below. Parts of the
measured dispersion surfaces belong to pseudo-surface or ‘leaky’ modes coupled to bulk waves
in the substrate [17]. For an isotropic substrate, all modes located above the cone ω = ct|k|

in the reduced BZ, where ct is the transverse velocity of the substrate, should be leaky. For
an anisotropic substrate, ct should be replaced by the angle-dependent limiting velocity [18]
whose value is within the range of anisotropic quasi-transverse velocities of the substrate. For
the purposes of the study of the shape of the dispersion surface, we will make no distinction
between leaky waves and true surface modes since the attenuation of the leaky waves only
affects the width of measured spectral peaks [11].

Let us start the discussion of the topology of the ω(k) surface with a study of its cross-
sections with the kx = 0 and ky = 0 planes (i.e. the dispersion curves measured along the
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Figure 4. Measured acoustic dispersion curves (a) along the y-axis and (b) along
the x-axis. Diamonds, squares and triangles refer to the three sheets of ω(k).
Solid symbols correspond to the experimentally measured points, whereas open
symbols are obtained from symmetry transformations. Solid lines in (a) are
obtained from calculations based on an effective medium model for the Cu/SiO2

layer. The dotted line in (a) corresponds to vertically polarized bulk transverse
waves in the Si substrate. The dashed-dotted line in (b) marks the BZ boundary
kx = kB.

y- and x-directions, respectively) presented in figure 4. It is apparent that the two modes in the
kx = 0 cross-section correspond to the familiar Rayleigh and Sezawa modes of a film/substrate
structure, with the Sezawa mode appearing from under the bulk transverse threshold [19].

It is instructive to compare measured dispersion curves with an effective medium model
treating the structure as a homogeneous layer with effective elastic properties. To calculate
the effective properties of a periodic layered structure comprised of Cu and SiO2 layers,
we used effective-medium equations from [20], properties of chemical-vapor-deposited SiO2

from [21] and properties of polycrystalline Cu from [22]. The effective medium has transversely
isotropic symmetry and is characterized by the effective density of 5565 kg m−3 and five
elastic constants [20]; however, in the analysis of acoustic waves with both propagation and
polarization directions contained in the plane perpendicular to the direction of periodicity,
only two elastic constants are involved, and those can be expressed in terms of the effective
longitudinal and transverse velocities 4686 and 2533 m s−1, respectively. We subsequently used
a standard method [19] for calculating velocities of guided modes for a homogeneous layer on
a semi-infinite elastically anisotropic Si substrate.

For the effective medium model [20] to be accurate, the period of the structure should
be small compared to both the acoustic wavelength and the thickness of the layer. Although
neither of these requirements is met, figure 4(a) shows that at longer wavelengths the calculated
dispersion curves nearly agree with the measured ones.

The cross-section with the ky = 0 plane shown in figure 4(b) reveals a more intricate
shape that was investigated in detail for similar structures in [11, 23]. The dispersion bands
of a periodic structure result from ‘zone-folding’ of the Rayleigh and Sezawa dispersion
curves and the formation of avoided crossing bandgaps, as schematically shown in figure 5.
The Rayleigh–Rayleigh and Sezawa–Sezawa crossings result in bandgaps located either at the
boundary or at the center of the BZ, whereas Rayleigh–Sezawa crossings result in bandgaps
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Figure 5. Schematic diagram of the ky = 0 cross-section of the ω(k) surface in
the limit of weak periodicity. ‘Avoided crossing’ bandgaps lead to the formation
of dispersion sheets composed of sections of the original Rayleigh (blue)
and Sezawa (red) dispersion cones. The horizontal dashed lines approximately
correspond to isofrequency cross-sections presented in figure 7 below.

inside the BZ. The original dispersion curves of the Rayleigh and Sezawa modes thus combine
and separate into sheets of the ω(k) surface of the periodic structure. The lowest sheet is formed
by the Rayleigh-like waves, whereas the second and third sheets are composed of parts of both
the Rayleigh and the Sezawa bands. As can be seen in figure 3(b), in experiment the bandgap
resulting from the Rayleigh–Sezawa crossing is much greater than the one formed at the BZ
boundary. This has been explained in [23] as being due to the structure of displacement patterns
in the eigenmodes formed by counter-propagating Rayleigh- and Sezawa-like waves.

Let us consider what happens to the ω(k) surface in 3D when the bandgaps are formed. In
the absence of periodicity, dispersion sheets of the Rayleigh and Sezawa modes have a nearly
conical shape. Bandgap formation in the case of weak periodicity can be described using the
general expression for the frequencies of weakly interacting oscillators [24],

ω1,2 =
1

2

[
(ω01 + ω02) ±

√
(ω01 − ω02)

2 + 12
]
, (1)

where ω01 and ω02 are the frequencies of the unperturbed oscillators and 1 is the width of
the bandgap. For example, in the vicinity of the first bandgap formed at the zone boundary
kB = (kB, 0), the frequencies of the unperturbed counter-propagating Rayleigh waves are
given by

ω01,02 = ω0 ± v(kx − kB) + ck2
y, (2)

where ω0 and v are the Rayleigh wave frequency and group velocity at k = kB, and the constant
c is equal to c = v/2kB in the isotropic case, but may be modified due to the elastic anisotropy
of the substrate. Equation (1) now takes the form

ω1,2 = ω0 + ck2
y ±

√
v2 (kx − kB)2 + 12/4. (3)

The ‘+’ sign in equation (3) yields a parabolic minimum at kB, whereas the ‘−’ sign yields
a saddle-shaped surface. The transformation of intersecting conical surfaces into an elliptical
paraboloid and a saddle is illustrated with an example in figure 6.
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Figure 6. (a) Intersecting conical dispersion sheets corresponding to counter-
propagating Rayleigh waves in the limit of vanishing periodicity; (b) the
formation of a saddle and an elliptical paraboloid as a result of the avoided
crossing described by equation (3).

We can now trace the formation of the three dispersion sheets out of the original Rayleigh
and Sezawa cones with the help of figure 7(a), (b), which schematically shows constant
frequency cross-sections of the ω(k) surface. The four cross-sections shown correspond to the
four frequencies indicated in figure 5: below and above the first bandgap, inside and above
the second bandgap. One can see how the dispersion sheets are composed of sections of the
original conical surfaces. When two cones ‘touch’ each other, a bandgap arises, with a saddle
at the bottom and a parabolic minimum at the top. Thus, the first dispersion sheet has a saddle
point at the BZ boundary; the second sheet yields a parabolic minimum at the BZ boundary
and saddles inside the BZ, whereas the third sheet forms a saddle at the BZ boundary and
parabolic minima inside the BZ. When the frequency is inside the bandgap (ω3 in figure 7),
the isofrequency cross-section also forms a gap, indicating that there are no propagating modes
below some critical value of |ky|.

Figure 7(c) shows the isofrequency cross-sections of the experimentally measured
dispersion sheets loosely corresponding to the model cross-sections in figure 7(b) (the latter
drawn by hand rather than calculated). Qualitative agreement between figures 7(b) and (c) can
clearly be seen for the first mode as well as for the partial data available for the second mode.
This agreement can also be seen in figure 8, which shows detailed maps of the dispersion sheets:
the first mode has a saddle point at the BZ boundary kB = 0.79 µm−1, whereas the second mode
has a parabolic minimum at the BZ boundary and two saddles either side of it.

However, the measured shape of the third dispersion sheet shown in figure 8(c) differs from
the expectations based on the weak perturbation model. Instead of a saddle point, the measured
surface yields a maximum at kB = (kB, 0), and unexpected deep minima are formed above and
below it at |ky| ∼ 0.4 µm−1. Clearly, we are not in the ‘weak perturbation’ limit here, as the
gap between the second and third dispersion sheets is quite large. However, the very possibility
for the ω(k) surface to have a minimum located off the symmetry axis ky = 0 is intriguing. In
particular, this implies the existence of a zero group velocity mode with the reduced wavevector
at an angle of ∼30◦ to the direction of periodicity of the structure. The existence of off-axis
zero group velocity waves in a 1D periodic structure is not intuitive: the naïve expectation is
that a 1D structure would only be capable of confining waves propagating in the direction of
periodicity.
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Figure 7. Formation of the dispersion surface of a periodic structure
illustrated by horizontal cross-sections of the ω(k) surface. These approximately
correspond to the horizontal dashed lines shown in figure 5. (a) Dispersion
cones of the original Rayleigh and Sezawa modes shown schematically in
the limit of vanishing periodicity. (b) The formation of the three lowest
dispersion sheets of the periodic structure sketched roughly according to the
weak perturbation model. (c) Isofrequency cross-sections of the experimentally
measured dispersion surface.

4. Conclusions

In conclusion, the laser-induced transient grating technique has been proved well suited for
mapping the band structure of an SPC. We have measured dispersion surfaces of the three lowest
acoustic modes of a 1D structure comprised of alternating Cu and SiO2 bars on a Si substrate
and explained their formation from the Rayleigh and Sezawa modes of a uniform film/substrate
structure. According to the weak-perturbation model, the dispersion surface yields avoided-
crossing bandgaps comprised of a saddle below the gap and a parabolic minimum above it. This
model has been found to be in agreement with the experimental data for the first and second
acoustic dispersion sheets of the structure. However, the shape of the third dispersion sheet
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Figure 8. Maps of the central sections of the measured dispersion sheets for
the (a) first, (b) second and (c) third modes. Symbols mark the location of the
measured points (including those obtained by symmetry transformations). The
wavevector components kx and ky are expressed in µm−1.

defied expectations: in particular, it was shown to contain minima located off the direction of
periodicity. An intriguing consequence of this finding is the existence of zero group velocity
waves with the wavevector at an angle to the periodicity direction. We believe that mapping
the dispersion surfaces of 2D phononic crystals should yield even more interesting results.
The approach used in this work may be extended beyond phononic crystals: for example, the
transient grating technique has been used to measure the dispersion of phonon-polaritons in
LiNbO3 and LiTaO3 [25]; thus it may prove instrumental for studying the band structure of
photonic crystals in the THz range fabricated in these materials [26].
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