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Abstract 

 Carboxymethyl guar gum (CMGG) synthesised from commercially available polysaccharide 

was formulated into nanoparticles via ionic gelation using trisodium trimetaphosphate (STMP) as 

cross-linking agent. Characterisation using a range of analytical techniques (FTIR, NMR, GPC, TGA 

and DLS) confirmed the CMGG structure and revealed the effect of the CMGG and STMP 

concentration on the main characteristics of the obtained nanoformulations. The average nanoparticle 

diameter was found to be around 208 nm, as determined by dynamic light scattering (DLS) and 

confirmed by scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA). 

Experiments using simulated gastric and intestinal fluids evidenced significant pH-dependent drug 

release behaviour of the nanoformulations loaded with Rhodamine B (RhB) as a model drug (loading 

capacity in excess of  83%), as monitored by UV-Vis. While dose-dependent cytotoxicity was 

observed, the nanoformulations appeared completely non-toxic at concentrations below 0.3 mg/mL. 

Results obtained so far suggest that carboxymethylated guar gum nanoparticles formulated with STMP 

warrant further investigations as polysaccharide based biocompatible drug nanocarriers. 

Keywords: carboxymethyl guar gum, phosphate, nanoparticles, cytotoxicity, drug delivery. 

1. Introduction 

Guar gum (GG) is a non-ionic natural polysaccharide sourced from the seeds of Cyamopsis 

tetragonolobus (Leguminosae family) and consists of linear chains of (1, 4)-β-D-mannopyranosyl units 

with α-D-galactopyranosyl units attached via (1, 6) linkages (Figure 1). Because of its ability to 

produce highly viscous aqueous solutions at lower concentrations, guar gum is used in many 

applications in industries such as, textile, petroleum, paper, food, explosives and pharmaceuticals (Patel 

et al., 2014) - it is biocompatible, biodegradable, non-toxic, low-cost and amenable to chemical 

*Manuscript
Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/44341488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gianina.dodi@yahoo.co.uk
http://ees.elsevier.com/msec/viewRCResults.aspx?pdf=1&docID=11413&rev=2&fileID=557902&msid={73FC6D24-2EE1-45D5-8717-C86763A5D23E}


2 
 

modifications, properties that make it an ideal material for developing drug delivery formulations 

(Prabaharan, 2011).  However, native guar gum has also shortcomings such as, uncontrolled rates of 

hydration, high swelling, thickening effect, instability upon storage, high susceptibility to microbial 

attack and the difficulty to control viscosity due to relative fast biodegradation (Yadav et al., 2008). 

Various strategies were developed in order to overcome these issues, offering the opportunity to tailor 

the physical and chemical properties of guar gum thus yielding materials that may find a wide range of 

applications. Many approaches dependent on chemical modification of guar gum were aimed at 

meeting the requirements of special applications (Rana et al., 2011) and included derivatisation 

reactions such as methylation (Risica et al., 2005), sulfation (Wang et al., 2013), hydroxyalkylation (He 

at al., 2008; Kono et al., 2015), carboxymethylation (Dodi et al., 2011; Gong et al., 2012), or 

phosphorylation (Niu et al., 2013). Carboxymethylation in particular has been found to improve water 

solubility while increasing the solution viscosity, to lower biodegradability and hence increase the shelf 

life compared to that of the native polysaccharide (Narasimha et al., 2004).  

Carboxymethyl guar gum was formulated as microparticles tailored for drug delivery applications 

(Parveen et al., 2012) and the studies indicated that these drug microcarriers were able to avoid rapid 

clearance by phagocytes and thus had an extended circulation into the blood stream (Balan & 

Verestiuc, 2014; Kumari et al., 2010). Microencapsulation of sensitive macromolecules such as, 

proteins into derivatized carboxymethyl guar gum was also achieved by using multivalent metal ions 

solutions (Ca
2+

 and Ba
2+

) as cross-linkers (Thimma & Tammishetti, 2001). The maximum retention of 

bovine serum albumin (BSA) in the beads was only about 50% under the studied conditions, which 

could be due to the lower rates of cross-linking. Microspheres of carboxymethyl guar gum loaded with 

abacavir sulfate were formulated using water-in-oil (w/o) emulsions and glutaraldehyde (GA) as cross-

linker; it was found that the beads extended the in vitro release time in both acidic and alkaline pH 

conditions when compared with unmodified GG (Sullad et al., 2011). Carboxymethyl guar gum was 

also combined with gelatine to obtain semi-interpenetrating polymer networks (semi-IPN) in the form 

of microspheres that were prepared by emulsion cross-linking method using GA and loaded with 

theophylline (an antasthmatic drug) (Phadke et al., 2014); the results suggested a potential toxicity of 

the microspheres due to the presence of GA and demonstrated an encapsulation efficiency ranging from 

56 to 74 %, which was found to be affected by the amounts of CMGG and cross-linking agent. Congo 

Red, a hydrophobic dye commonly used for diagnosis and potentially useful as a therapeutic agent, was 

encapsulated recently into alginate-carboxymethyl guar gum hydrogel microspheres prepared by the 

extrusion of the biopolymer mixture in the presence of calcium chloride (Bosio et al., 2014). The 
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hydrogel microsphere structure was considered to play a key role in the controlled release of the model 

drug. Spherical carboxymethyl guar gum nanoparticles in the size range of 12–30 nm were successfully 

prepared via nanoprecipitation and sonication methods (Gupta & Verma, 2014); it was found that the 

stability of CMGG nanoparticle suspensions was dependent on the nature of the solvent and on the 

sonication time, parameters that can be optimized further to tailor CMGG nanoformulations for a wide 

range of applications. Although nanoprecipitation and sonication are eco-friendly and cost-effective 

methods to produce nanosized carboxymethyl guar gum nanoparticles, the main disadvantage is the 

poor stability, property necessary to get a proper drug delivery system with optimal control release. 

However, the nanoparticles need to be stabilized against dissolution at different pH by cross-linking, a 

process in which the free functional groups are partially consumed ( ). Cross-linking of carboxymethyl 

guar gum functional groups may also reduce the high swelling characteristics of this material and 

provide better control of drug release from various dosage forms such as microspheres, particles or 

beads. STMP is a non-toxic cyclic triphosphate often used for the preparation of cross-linked hydrogels 

and microspheres for pharmaceutical applications (Dulong et al., 2004; Gliko-Kabir et al., 2000; 

Mocanu et al., 2004). However, to the best of our knowledge, the preparation of carboxymethylated 

guar gum nanoparticles by ionic gelation with STMP has not been reported in the literature. 

The aim of this work was to investigate the possibility to formulate cost-effectively carboxymethyl 

guar gum nanoparticles for biomedical applications such as drug delivery using trisodium 

trimetaphosphate (STMP) as cross-linker.  

2. Experimental 

 2.1. Materials  

Guar gum (Mw 220 kDa), trisodium trimetaphosphate Na3P3O9 (STMP), Rhodamine B (RhB) 

and sodium hydroxide (NaOH) were purchased from Sigma-Aldrich, Germany. Chloroacetic acid 

(CAA) was obtained from Merck, Germany. Ethanol and acetone were procured from the Chemical 

Company (Iasi, Romania). Analytical grade chemicals were used as received without further 

purification. All solutions were prepared with ultrapure water (18.2 MΩ•cm). 

2.2. Guar gum purification  

Commercial guar gum was purified as described in the literature (Cunha et al., 2007) with some 

modifications. Briefly, commercial guar gum (5 g) was extracted with ethanol (Soxhlet, 72 h) and 

hydrated in ultrapure water (500 mL) under magnetic stirring (3 h); after centrifugation (1500 rpm; 605 

RCF; 15 min), the supernatant was precipitated in acetone and the solid was filtered and washed 

successively with ethanol and ultrapure water, and subsequently freeze-dried (batch denoted GG).  
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 2.3. Preparation of carboxymethyl guar gum  

The synthesis of carboxymethyl guar gum was performed as previously reported (Dodi et al., 

2011) with slight modifications. Briefly, 1 g of GG was dispersed in 100 mL of ultrapure water and the 

mixture was stirred for 2 h under nitrogen atmosphere. The resulting suspension was mixed with 20 mL 

of NaOH solution (0.1 M) and the mixture was allowed to react for 2 h at room temperature (25°C). 

Chloroacetic acid (20 mL; 1.58 g/cm
3
; 0.025 mol) was added and the mixture was stirred overnight at 

50° C. The reaction mixture was then cooled to ambient temperature, adjusted to pH 7.0 (using 1 M 

HCl), extracted with acetone and separated by centrifugation (5 000 rpm; 6142 RCF; 10 min). The 

product was further purified by dialysis against distilled water until neutral pH has been reached 

(approx. 72 h).  The final product (batch denoted CMGG) was then dried by lyophilisation and stored 

in a desiccator for further analysis. 

2.4. Preparation of cross-linked nanoparticles 

Varying amounts of CMGG (concentration ranging from 0.05 to 0.2 % w/v) were added into a 

2M NaOH aqueous solution (100 mL; pH=12.0) and were allowed to hydrate for a minimum of 2 h 

under constant magnetic stirring at room temperature. A STMP aqueous solution (100 mL; 

concentration varying from 0.2 to 10%, w/v, as described in Table 1) was then added at a flow rate of 1 

mL/min using a peristaltic pump, and the reaction mixture was then continuously stirred overnight.  

The resultant colloidal dispersion was dialyzed against distilled water until neutral pH (approx. 72 h). 

An aliquot of the sample suspension was kept for particle size measurements, while the remaining 

product was lyophilized by freeze drying and then stored in a desiccator. Preliminary experiments 

informed the preparation of 11 formulations, details of which are given in Table 1.  

2.5. Characterization 

2.5.1. NMR spectroscopy 

The 
1
H and 

13
C-NMR spectra were recorded on a Jeol NMR 400 MHz spectrometer at 70 °C in 

D2O using sodium trimethlysilyl propionate (TSP) as internal reference. 

2.5.2. FTIR-ATR spectroscopy 

The FTIR spectra were recorded on dried samples using a Nexus FT-IR Diamond HTR 

instrument (Thermo Scientific) in the range of 400–4000 cm
−1 

using a Smart Orbit ATR accessory with 

diamond crystal and were processed using Omnic 8.0 software. 

2.5.3. Gel permeation chromatography (GPC) 

The average molecular mass ( ) and the polydispersity index ( ) of the guar gum 

derivatives were determined by gel permeation chromatography (GPC) on a Polymer Laboratories 
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System (PL-GPC 120, Varian) instrument equipped with refractive index detector and three PL-

aquagel-OH packed columns (8 µm particle size and 20, 40 and 60Å pore type), connected in series. 

Chromatographic parameters were as follows: eluent (0.2M NaNO3; 0.01M NaH2PO4; pH=7) flow rate 

1 mL/min; column temperature 30
°
C; sample volume 100 µL. Pullulan standards (Type P-82, Lot 

01101, Shodex Denko KK, Japan) with sample weights of 0.6 × 10
4
, 1 × 10

4
, 2.17 × 10

4
, 4.88 × 10

4
 

and 11.3 × 10
4
, 21 × 10

4
, 36.6 × 10

4
, 80.5 × 10

4 
g/mol were used as standards.  

Samples were prepared by dissolving 0.1 ±0.001g of polymer in 10 mL eluent stirred at room 

temperature overnight, with the subsequent filtration of the solution through a syringe filter with a pore 

diameter of 0.45 µm. All data were recorded and processed using Cirrus GPC software. 

2.5.4. Thermal analysis (TG-DTG) 

Thermogravimetric analysis was carried out on a Mettler Toledo TGA-SDTA851 system, in 

nitrogen atmosphere with a flow rate of 50 mL/min, at a heating rate of 10 K/min in the temperature 

range of 25–700 °C; sample weight range 4–5 mg.  

2.5.5. Surface morphology 

The surface morphology of nanoparticles was investigated by scanning electron microscopy 

using a SEM Jeol JSM-6060LV instrument. Samples were deposited on stubs, dried with nitrogen and 

coated with golden alloy in an argon atmosphere (current 20 mA, pressure 10
e-3

 Pa) using a coater 

(Quorum, Q 150RES). 

2.5.6. Particle size and zeta potential measurements 

The average hydrodynamic diameter of the nanoparticles was determined in water at 25 °C by 

dynamic light scattering measurements using a Malvern Zetasizer ZS90 (Malvern Instruments, 

Worcester, UK). The same instrument allowed the determination of zeta potential ξ (mean of three 

measurements) and polydispersity index (PDI).  

In addition, real-time dynamic nanoparticle visualization was performed by nanoparticle 

tracking analysis (NTA) using a NanoSight LM10 instrument equipped with a sample chamber with a 

532 nm laser and a 560 nm long pass filter. The particle size was calculated using the Stokes–Einstein 

equation.  

2.6. In vitro experiments  

Cell cultures 

For cytotoxicity tests, normal human dermal fibroblasts (NHDF) cells (from PromoCell) at a 

passage number lower than 10 were grown in T25 culture flasks with 10 mL of DMEM:F12 medium 

(from Lonza) supplemented with 10% fetal bovine serum (FBS, Gibco), 1 mM sodium pyruvate 
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(Lonza) and 1 % Penicillin-Streptomycin-Amphotericin B mixture (10K/10K/25 µg in 100 mL, 

Lonza). Cell growing was done at 37 °C and 5 % CO2 under humidified atmosphere and medium was 

changed with fresh one every 4 days. NHDF cells were harvested by trypsinization with Trypsin-

Versene (EDTA) mixture (Lonza), washed with phosphate buffered saline (PBS, Invitrogen) 

centrifuged at 200 rpm for 5 min, counted and seeded at a density of 5x10
3
 cells/well in 96 well plates 

with 100 µL/well of the above specified medium. Cells were incubated and were allowed to adhere in 

humidified atmosphere at 37°C until the next day. 

Cytotoxicity assay (MTS) 

The cytotoxicity induced by CMGG nanoparticles (batch Np11) was investigated by CellTiter 

96®AQueousOne Solution Cell Proliferation Assay (MTS) (Promega Corporation, Madison, 

Wisconsin, USA). The metabolic cell activity (an indirect measure of cytotoxicity) was measured by 

quantifying the conversion of MTS to formazan, which can be photometrically detected. The quantity 

of the formazan product as measured at 490 nm is directly proportional to the number of living cells in 

a culture. The cells were exposed for 24 and 48 h to different concentrations of nanoparticles (batch 

Np11) ranging from 0.78 to 100 mg/mL, in 100 µL fresh medium. The plates were incubated at 37 °C 

and 5 % CO2 under humidified atmosphere for 24 or 48 h. Four hours before reading the results, 20 µL 

of CellTiter 96®AQueousOne Solution reagent were pipetted into each well and the plates were 

returned to the incubator. The absorbance was then recorded with an EnVision Multilabel Plate Reader 

(PerkinElmer). A total of eight serial dilutions were tested and the experiment was repeated three times.  

Data analysis was done with GraphPad Prism version 6.04 for Windows (GraphPad Software, 

San Diego, CA). To calculate the half maximal inhibitory concentrations (IC50), a log (inhibitor) vs. 

response with variable slope (four parameters) nonlinear regression model was used. At least 3 

replicates were included in the analysis.   

Optical microscopy  

NHDF cells were seeded at a density of 35x10
3
 cells/well in six well plates with 2 mL/well of 

medium. Cells were allowed to attach in humidified atmosphere at 37°C until the next day. The 

medium was replaced with serial dilutions of nanoparticles (batch Np11, dispersed in 2 mL fresh 

medium) and the cells were incubated at 37 °C and 5 % CO2 under humidified atmosphere for the next 

24 or 48 h. Images were recorded using an inverted microscope Leica DMI 3000 under modulation 

contrast (MC) at the beginning of experiment, and then 24 and 48 h after incubation with nanoparticles. 

2.7. RhB loading and release studies  
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To determine the actual amount of the entrapped model drug, 100 mg of CMGG nanoparticles 

(batch Np11 was chosen based on its size distribution) were added in a water-ethanol (1:1) solution of 

RhB (20 mL; 2 % w) and stirred for 3 h at room temperature. The mixture was adjusted to pH 5.0 using 

HCl (0.01M) and was left overnight under stirring. The supernatant was separated by centrifugation 

(13.400 rpm; 12.927 RCF; 20 min) and measured by UV–Vis using a Perkin Elmer Lambda 35 

spectrophotometer at 554 nm. The drug entrapment efficiency ( ) was calculated from a calibration 

curve of RhB using the following equation (Vasi et al., 2014):  

 

where  is the initial weight of the RhB added and  is the amount of free RhB in the supernatant. 

The RhB-loaded nanoparticles were washed with ultrapure water in order to remove the unreacted 

components and then freeze-dried. 

 The release studies of RhB (Np11_RhB) were carried out as follows: dehydrated RhB loaded 

nanoparticles (10 mg) were suspended at 37 °C in 5 mL phosphate buffer solutions (0.1 M; pH 2.2 and 

7.4, respectively) in an incubated thermostatic shaker (100 rpm). At periodic intervals, a 150 μL aliquot 

was withdrawn and measured by UV–Vis in a 10 mm micro-cell. The amount of the released drug was 

calculated using a calibration curve.   

3. Results and discussion  

3.1. CMGG synthesis and characterisation  

Following purification of commercial guar gum by removal of insoluble fractions as well as 

sugar and protein contaminants, carboxymethylation of the purified guar gum was carried out via a 

consecutive two-step reaction as previously reported in the literature (Dodi et al., 2011), with minor 

modifications (Figure 1). The carboxymethylated guar gum obtained following reaction optimisation 

(labelled CMGG) had a degree of substitution of 0.62 %. 

Figure 1 

 The formation of CMGG was confirmed by 
1
H and 

13
C-NMR results (Figure 2), which were in 

good agreement, with other studies (Manna et al., 2015). The 
1
H-NMR spectrum showed new proton 

peaks at 3.77, 3.95 and 4.22 ppm, attributed to the methylene protons from the carboxyl group, in 

addition to the anomeric (4.70 and 5.03 ppm) and sugar protons (3.57 and 4.13 ppm) found in the raw 

GG. 
13

C-NMR spectra of CMGG confirmed the presence of a carbonyl peak at 180 ppm, while the 

carbon peaks of mannose and galactose appeared in the range 90–110 ppm and the rest of the side 

chain in the range 60–80 ppm. Successful carboxymethylation was confirmed in the FTIR spectra of 
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CMGG (Figure 3) by the presence of additional peaks (1732, 1413 and 1230 cm
-1

) corresponding to the 

COO
−
 symmetric and asymmetric stretching vibrations; moreover, a shift of the OH stretching band 

(3354 cm
-1

) in the GG spectrum to 3333 cm
-1

 in CMGG, and an increase of the band intensity (both 

rationalized by an increase in hydrogen bonding interaction consequent to the introduction of a 

carboxylic group and) were observed. 

Figure 2 

GPC measurements indicated a higher molecular weight ( ) for CMGG compared to GG 

(Table 1), as a direct result of the introduction of carboxymethyl groups onto the polysaccharide 

backbone. The carboxymethylation step increased considerably the solubility of the modified 

galactomannan chains compared to GG and also led to an improved polydispersity index.  

Table 1 

3.2. Determination of the nanoparticles optimum reaction conditions 

The synthesized carboxymethyl guar gum was successfully formulated into nanoparticles by 

using STMP as an ionic gelation agent (Figure 1). Cross-linking was achieved through the formation of 

phosphoester linkages between the CMGG chains, in two steps: the opening of the STMP ring by 

CMGG in the presence of sodium hydroxide was followed by the reaction with another polymer chain 

and the release of sodium pyrophosphate. The reaction between the carboxylated polysaccharidic 

chains and STMP under basic conditions resulted overall in nanoparticulate, three-dimensional 

hydrogel networks.  

To optimize the conditions for cross-linking in an attempt to yield stable nanoformulations with 

uniform size distribution, a series of CMGG particles (batches 1–11) were prepared from CMGG by 

varying the concentration of CMCG and SMTP, as presented in Table 2. The cross-

linker/polysaccharide ratios were calculated according to the assumption that each mole of STMP 

reacts with three pairs of hydroxy groups (Gliko-Kabir et al., 2000).  

It was found that a larger particle size was obtained as the concentration of both polymer 

(CMGG) and cross-linker (SMTP) increased. When the concentration of both components was low 

(e.g. CMGG -0.05% and STMP 5%), the mean diameter of the nanoparticles was about 208.8 ± 0.87 

nm; this could perhaps be attributed to a lower number of macromolecules being linked together as part 

of the same particle and to better packing (due to stronger inter and intra molecular interactions allowed 

by the higher flexibility of the lightly cross-linked polymer chains). The PDI values indicate a broad 

size distribution (Table 2). The negative ζ-potential measured for all nanoparticles (expected due to the 

presence of CMGG terminal carboxylic groups in combination with phosphate groups) contribute to 
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the particle good stability (without any aggregation) observed during storage at room temperature.  

According to Akasov et al. (2015) the high negative surface charge of the polysaccharide formulations 

is a key factor to stabilize colloidal dispersions. Following the optimisation step, the batch labelled 

Np11 (Table 2) was selected for further investigations.  

Table 2 

FTIR measurements of the CMGG nanoparticles (batch Np11) showed the appearance of a 

shoulder of low intensity at 1225 cm
-1

 that corresponds to P=O stretching (Shalviri et al., 2010), and a 

shoulder of increased intensity at 1090 cm
-1

 that was attributed to P–O–C deformation vibrations (Braz 

et al., 2007). The increased intensity in the 874-1225 cm
-1

 region is considered therefore a clear 

indication of the presence of phosphate groups in the prepared nanoparticles.  

Figure 3 

Figure 4 presents the thermogram (1
st
 derivative) of STMP cross-linked nanoparticles overlayed 

with those of the guar gum and carboxymethylated guar gum. The results of the thermogravimetric 

analysis indicate the presence of stronger hydrogen bonding following carboxymethylation of the guar 

gum, possibly due to an increase in free water content (from 8.54 % in GG to 10.69 % in CMGG, Table 

3). The thermal stability of CMGG (reflected in the temperature of the peak in the first derivative 

spectra, corresponding to the main degradation step) appears slightly lower (241 ºC; 57 % mass loss) 

than for GG (262 ºC; 70 % mass loss), while a second degradation step appears at considerable higher 

temperatures (478 ºC; 9.56 % mass loss) due to the carboxymethyl groups that make possible increased 

inter- and intra-molecular interactions that ultimately impart higher thermal stability (Tripathy et al., 

2008). It was interesting however to observe that the nanoparticles (CMGG cross-linked with SMTP) 

had the major mass loss step at a much higher decomposition temperature than the native guar and 

CMGG, likely due to the fact that the cross-linking reaction increases the average molecular mass and 

the intermolecular interactions, which in turn increase considerably the thermal stability of the 

nanoparticles.   

Figure 4 

Table 3 

 To complement the results of DLS analysis, NTA studies investigated in more detail the particle 

size distribution of samples in liquid suspension (Figure 5A). The average particle size results were in 

good agreement with both DLS and SEM data.  

Figure 5 
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The results of SEM analysis confirmed the almost spherical surface morphology of the synthesized 

CMGG nanoparticles ((Figure 6A). When in dry state, nanoparticles tend to self-assemble into 

secondary clusters with grape-like morphology, as a result of the Van der Waals and other inter-particle 

forces closely correlated with the very high surface area to volume ratio.  

Figure 6 

3.3. In-vitro investigations  

The results of dose-response cytotoxicity tests carried out on NHDF cells using MTS after 24 h 

incubation with CMGG nanoparticles demonstrated no significant toxic effect at concentrations up to 

0.3 mg/mL (Figure 7). Cell viability was found to decrease substantially with an increase in 

nanoparticle concentration up to 25 mg/mL, with a calculated IC50 value of 4.715 mg/mL.  

Figure 7 

While not application-specific, NHDF cell lines represent a suitable and convenient model for 

preliminary cytotoxicity assessment. The growth behaviour of the cells in the presence of CMGG 

nanoparticles was monitored using optical microscopy, using NHDF cell adhesion as an indicator of 

viability since the cells detach during apoptosis (furthermore, cell spread can also give an indication of 

the nature of interactions with nanoparticles present in the media, as an adherent cell which has 

increased its spreading area is considered to show active proliferation (Rosman et al., 2014). NHDF 

cell proliferation, distribution and adhesion of the cells following incubation with CMGG nanoparticles 

were examined at different time points (24 h and 48 h, respectively) and different nanoparticle 

concentration (1.56 mg/mL and 3.125 mg/mL), Figure 8. Even after 48 h, the NHDF cells incubated 

with nanoparticles at a concentration of 1.56 mg/mL show a good distribution and cover almost the 

entire substrate, suggesting reasonably good compatibility with the nanoparticles. However, cell 

proliferation appears to start being affected after 48 h in contact with nanoparticles at concentration 

reaching 3 mg/mL.  

We attribute the excellent biocompatibility of the samples to the sugars of the polymer 

backbone, sugars which are suitable for the cell growing. Also, the higher cell compatibility of CMGG 

nanoparticles could be related to surface charge (Akasov et al., 2015), explained by their ability to 

interact with the positively charged fibroblast surface. These data indicates that surface modification 

can be modulated in order to design drug delivery systems with more predictable clinical outcomes. 

Figure 8 

3.4. RhB entrapment efficiency and drug release studies 
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 The lack of toxicity at low concentrations (0.3 mg/mL or less) makes CMGG nanoparticles a 

good candidate to be considered for drug delivery applications. A hydrophilic fluorescent marker, RhB 

was chosen as model drug for its lack of toxicity at easily detectable concentrations, strong absorption 

and emission spectra, and good stability to pH variations (Figure 1). RhB was successfully entrapped 

into nanoparticles with high efficiency ( of 83.2 %, for batch Np11_RhB). To optimize the effect of 

drug concentration on the entrapment efficiency, different concentrations of RhB were tested in the 

range of 0.25 to 5 mg/mL (Table 4).  It was found that high RhB concentrations led to low entrapment 

efficiency (ranging overall between 33.5 % and 83.2 %), with an optimum found at 0.5 mg/mL RhB.  

Table 4 

A substantial change in size distribution, zeta potential and polydispersity index was observed 

for the drug loaded nanoparticles compared to the unloaded ones. As expected, the drug loaded 

nanoparticles had a larger mean diameter and lower negative ζ-potential (in absolute values) following 

the entrapment of RhB, with the colloidal stability not being noticeably affected. The RhB loaded 

nanoparticles were also analysed using NTA in fluorescence mode (Figure 5B); while noticeable photo 

bleaching limited the sensitivity of the measurement, the results confirmed the presence of RhB within 

the nanoparticles and an increase in the mean diameter compared to unloaded nanoparticles, and were 

consistent with the of DLS results.  

SEM investigations confirmed as well the size increase following loading with RhB, with 

images showing discrete and near spherical (slightly elongated) nanoparticles, well separated from one 

another (Figure 4B) and with low polydispersity (confirming again DLS results, where  measured 

was 0.08).   

Drug release behaviour was investigated in simulated gastric (pH 2.2) and intestinal (pH 7.4) 

fluids at 37 
0
C as suggested in the literature (Li & Liu, 2008; Chaurasia et al. (2006) and 

Subrahmanyam (2012)). Figure 9 presents the release profiles for the Np11_RhB batch. A burst release 

of 13% was observed for both pH values just after the addition of loaded nanoparticles, likely due to a 

fraction of RhB present on the surface of the nanoparticles being immediately released in contact with 

the simulated fluids. The RhB released in acidic medium over the total duration of the experiment 

reached only 37.1 % while in alkaline conditions the model drug was released almost completely (92.7 

%), indicating that the release of RhB from the CMGG nanoparticles can be controlled by pH. 

Figure 9 

To investigate the mechanism of the RhB release, the initial release data was fitted in the Ritger 

and Peppas equation (Popa et al., 2010; Ritger & Peppas, 1987): 
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where  is the mass ratio of the drug released from nanoparticles at time point  compared to 

equilibrium;  is a characteristic constant related to the structure of the polymeric network; and  is a 

diffusion exponent. Constants  and  were calculated from the slopes and intercepts of the 

graph . The  and constants are related to a specific transport mechanisms, which 

normally consider the relative rates of drug diffusion, matrix swelling and polymeric network 

relaxation. Three main models are typically employed to describe the behaviour of the swelling 

polymeric network that releases the drug in aqueous solutions: Fickian diffusion (  = 0.5); non-

Fickian, anomalous diffusion (0.5< <1); and zero order release (  = 1.0) (Mullarney et al., 2006). 

The values obtained at (n = 0.5) suggests an anomalous diffusion mechanism close to the Fickian 

model for acidic conditions (pH 2.2) and a non-Fickian diffusion release process (n = 0.83) in an 

alkaline environment (pH 7.4). 

4. Conclusions 

 Guar gum - a biocompatible, biodegradable, low cost, accessible and versatile polysaccharide of 

natural origin can be easily converted into carboxymethyl guar gum, which was successfully 

formulated into nanoparticles by ionic cross-linking complexation with a non-toxic and inexpensive 

cross-linking agent, trisodium trimetaphosphate. The reaction conditions were optimized through 

careful investigation of the effects of polymer and cross-linker concentration upon particle size 

distribution, ζ-potential and polydispersity. Following optimization, DLS results revealed a relatively 

uniform size distribution of CMGG nanoparticles around 208 nm, also confirmed by NTA and SEM 

analysis. Cytotoxicity studies using NHDF cell cultures and MTS assays demonstrated that CMGG 

nanoparticles are non-toxic at concentrations below 300 µg/mL. To investigate the potential of CMGG 

nanoparticles for drug delivery applications, RhB was employed as a model drug and it was found that 

the drug initial concentration significantly influenced the entrapment efficiency, which ranged from 

33.5 % to 83.2 %. Release studies at 37 ºC in simulated gastric and intestinal fluids indicated a slow 

and prolonged release of RhB from CMGG nanoparticles over several hours, and demonstrated that the 

release process can be controlled by pH. Overall, the results presented demonstrate the potential of 

nanoparticles formulated from CMGG via ionic gelation with trisodium trimetaphosphate for the 

development of sustained and controlled drug delivery systems. 
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Figure captions 

Figure 1. Schematic diagram for carboxymethylation, CMGG nanoparticles formulation and RhB 

loading 

Figure 2. 
1
H and 

13
C-NMR spectra of GG and CMGG 

Figure 3.  FTIR-ATR spectra of native GG, CMGG sample and CMGG nanoparticles 

Figure 4. TG curves (1
st
 derivative) of native GG, CMGG sample and CMGG nanoparticles 

Figure 5. NTA images of typical tracks of particles moving under Brownian and a smoothed 3D plot of 

size distribution vs. particle concentration for A. CMGG nanoparticles (batch NP11) and B. loaded 

particles analysed under fluorescent (optically filtered) mode vs. particle concentration (batch 

Np11_RhB) 

Figure 6. Morphology of A. CMGG nanoparticles (batch Np11) and B. loaded nanoparticles (batch 

Np11_RhB) 

Figure 7. Cellular viability MTS assay on NHDF cells of CMGG nanoparticles 

Figure 8. NHDF cell distribution, adhesion and morphology following incubation of CMGG 

nanoparticles using optical microscopy images  

Figure 9. RhB release profiles in simulated gastric and intestinal fluids 
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Tables 

Table 1. Molecular weight characteristics of GG and CMGG. 

 

 

 

 

 

Table 2. Characteristics of different nanoparticle formulations prepared. 

Batch 
CMGG  

conc., %  

STMP conc. 

% 

Size ± SD 

nm 

ζ-potential 

±SD, mV 
PDI 

Np1 0.1 10 780 ± 1.4 -72.6 ± 1.8 0.5 

Np2 0.1 5 460 ± 1.3 -39.1 ± 9.5 0.4 

Np3 0.1 2.5 360 ± 16.2 -50.6 ± 6.3 0.34 

Np4 0.2 5 540 ± 6.6 -39.9 ± 2.5 0.3 

Np5 0.2 2.5 594 ± 11.5 -37.5 ± 11.9 0.3 

Np6 0.1 1 417.8 ± 1.9 -27.3 ± 9.5 0.2 

Np7 0.1 0.5 537.4 ± 8.9  -25.3 ± 4.3 0.3 

Np8 0.1 0.25 450.6 ± 12.4 -22.5 ± 8.5 0.31 

Np9 0.1 0.2 387.7 ± 0.6 -29.3 ± 2.1 0.25 

Np10 0.2 0.2 593.4 ± 1.3 -33.2 ± 1.4 0.12 

Np11 0.05 0.2 208.8 ± 0.9 -39.3 ± 1.1 0.11 

 

 

Sample kDa  

GG 220 1.92 

CMGG 261 1.5 

Table



Table 3. Thermogravimetric analysis 

Sample Step Tpeak, 

0
C 

Weight 

loss, % 

Residue 

% 

GG I 51.13 8.54 
21.73 

II 262.07 69.73 

CMGG 

I 51.04 10.70 

23.17 II 241.98 56.57 

III 478.51 9.56 

Np11 
I 70.05 2.34 

26.13 
II 492.91 71.53 

 

Table 4. Entrapment efficiency, size distribution, ζ-potential and  for RhB loaded 

CMGG particles (batch NP11). 

NP11, mg RhB, 

mg/mL 

%  
Size ±SD nm 

ζ-potential ±SD  

      mV 
 

100  5  33.5±0.6 259.5±0.49 -4.8±0.5 0.2 

100  1  57.5±0.2 274.3±0.74 -4.57±0.27 0.15 

100  0.5  83.2±0.6  318.4±0.8 -13.4±0.57 0.14 

100  0.25  61.4±0.4 321±1.22 -9.54±1.37 0.08 

 


