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Abstract 
 
 The skin is an ideal organ for the safe and convenient delivery of vaccines, small 
molecules, and other biologics. Members of the Irvine and Hammond groups have developed a 
polyelectrolyte multilayer thin film-coated microneedle platform that can achieve simultaneous 
DNA and nanoparticle delivery. This delivery platform has the advantage of direct delivery of 
DNA or polymer nanoparticles to immune-active cells at the interface between the dermis and 
epidermis, enhancing uptake of the delivered cargo by resident immune cells. Ideal for the 
delivery of DNA vaccines, this platform aims to bridge the gap in the lack of efficient delivery 
platforms hampering the effectiveness of DNA vaccines. The ability to co-deliver polymer 
nanoparticles can serve as a conduit for delivering immune stimulating adjuvants or other drugs 
for therapeutic applications.  
 An overview of current vaccine and delivery system research is presented. Market factors 
for the commercialization of the polyelectrolyte multilayer thin film-coated microneedle delivery 
platform are considered along with the risk factors in bringing this invention to market. An 
assessment of the intellectual property surrounding the platform is performed and a preliminary 
market entry strategy is developed for minimizing the risks commercialization. 
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1 Introduction 
 

Vaccination is undoubtedly one of the most significant advances in medical science to 

prevent infection-related morbidity and mortality. First documented in China as early as the 

10th century and implemented on a wide scale in 1796 by Edward Jenner for smallpox, 

vaccination is currently credited for preventing more than three million deaths per year 

worldwide 1 and attributed to a significant portion of the thirty year increase in human 

lifespan during the 20th century 2. Major triumphs such as the eradication of smallpox more 

than three decades ago and the inevitable eradication of polio 3-4 underscore the current 

efforts to replicate the experience from these successful campaigns to other diseases and 

infectious agents. 

 While the danger of a polio epidemic is waning, the threat of a human influenza 

pandemic is on the rise, with many experts predicting the imminent and inevitable spread of 

pandemic influenza 5. Major governments around the world have sought to prepare for an 

influenza pandemic by ordering millions of doses of vaccine to stockpile. However, with a 

worldwide production capacity of approximately 300 million doses per year, 6 the demand 

for vaccine would easily outstrip available and anticipated supplies for a rapidly mutating 

and contagious strain 7. In addition, current influenza vaccine production is haphazard, 

relying on a hit or miss approach of screening inoculated eggs for recombinant strains that 

can provide protection against circulating strains and can grow well in ova, lengthening the 

already long egg-based production process. A logical course of action to minimize this lag 

time is to stockpile vaccine; however, pandemic strains cannot be predicted with certainty 

and any advantage from a stockpile would be negated if forecasts were inaccurate. 

 Varying strategies have been put forth by the World Health Organization (WHO) in an 

attempt to alleviate vaccine supply problems including exchange of clinical trial data from 

different strains of influenza, development of antigen sparing strategies, increased funding 

and tax incentives for industry, and lowering regulatory licensing fees 8. However, none of 

these suggestions addresses the core problem: adequate supply of vaccine in times of high 

demand (Figure 1). While commercial processes of existing vaccine strategies such as 

attenuated, whole killed and subunit vaccines are well characterized, major issues such as 

the suitability of an unknown or poorly characterized pathogen for attenuation in the short 

term after an outbreak and the need for relatively higher dosing for clinical effect in whole 
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killed and subunit vaccines put considerable strain on the vaccine supply chain in the event 

of a pandemic outbreak. DNA vaccines have been proposed as an alternative to alleviate this 

production bottleneck. Mechanistically able to induce robust humoral and cellular responses 

in small animals, DNA vaccines also promise to alleviate issues related to mass production 

given existing robust cell-based and cell-free manufacturing capabilities. The success of the 

DNA vaccine platform has been demonstrated with products on the market approved for 

veterinary use in horses, dogs, pigs, and fish for varying indications such as West Nile virus 

and melanoma (Table 1). 

 

 
Figure 1: Manufacturing and production timeline for producing influenza vaccines in eggs 1 
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Table 1: DNA vaccines approved for use 9 
 

However, there have been difficulties during stage II and stage III clinical trials in 

replicating the robust responses seen in small animals that have been attributed to poor 

expression of the delivered plasmid 9. Nevertheless, the proven efficacy of the veterinary 

products on the market and positive results in ongoing human trials for melanoma and 

prostate cancer therapeutic DNA vaccines 9-11 demonstrate that focusing efforts to boost 

expression and response levels in humans is one of the keys to the success of the platform. 

Among the areas ripe for investigation include optimization of transcriptional elements for 

stronger transcription activity, gene optimization for more stable mRNA and more efficient 

translation, addition of formulation adjuvants in the delivery vehicle and on the plasmid to 

stimulate a more potent response, and optimizing the delivery method to increase cellular 

delivery of the plasmid (Figure 2).  
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Figure 2: Areas for improvement for the development of a DNA vaccine 9 
 

Focusing on the delivery of vaccines, intramuscular (IM) injection has been the most 

common route for administration. To induce a more potent immune response for DNA 

vaccines, studies have demonstrated the importance of transfecting antigen presenting cells 

(APCs) directly to engage both the endogenous and exogenous antigen presentation 

pathways for robust humoral and cellular responses 12-13. However, most DNA vaccine trials 

have been administered via intramuscular injection, a method that is known to transfect 

mostly myocytes 14 as opposed to APCs. The lack of available alternative delivery methods 

has spurred the development of innovative means for targeted delivery of DNA to APCs. 

One such alternative is the microneedle array, a device that is able to increase the 

permeability of the skin by piercing the stratum corneum with pain-free micrometer length 

projections. Once disrupted, the skin is drastically more amendable for delivery of small 

molecules and other agents. Current methods for microneedle delivery of bioactive 

molecules involve coating thin films of dried formulations on the surfaces of the 

microneedle array 15. While delivery is achieved, this coating method is notably limited in 

the range of molecules that can stay active after a drying process, especially for fragile 

bioactive molecules, and provides few means for controlling release kinetics 16.  

To address these issues, the Irvine and Hammond groups have devised a biodegradable 

polymer microneedle device with surfaces that allow layer-by-layer (LbL) deposition and 

self-assembly of polyelectrolyte films for concurrent delivery of nanoparticles (NP) and 
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plasmid DNA 17. Using the mild aqueous conditions for building polyelectrolyte 

multilayered (PEM) films, they have demonstrated a general platform for in vivo 

transfection and nanoparticle co-delivery that preserves the activity of bioactive molecules. 

This combination addresses the challenge of targeted delivery to APCs by exploiting their 

relative abundance in the skin, where they are two times more abundant than in the 

circulation 18, to boost vaccine efficacy. The platform can potentially reduce the strain on 

vaccine manufacturing via dose sparing 19 of current vaccine formulations and by enabling 

the use of DNA vaccines, which can exploit the superior transport properties of a PEM film-

coated microneedle device to overcome the poor immunogenic responses elicited with 

traditional IM delivery methods. In addition, solid-state stabilization can alleviate logistical 

concerns related to stockpiling and distribution by allowing for stable room temperature 

storage of solid as opposed to liquid formulations 20-24. When compared to hypodermic 

needles, the use of microneedle arrays can also lower costs to a healthcare system by 

reducing the incidence of sharps related injuries and allowing for self-administration of a 

vaccine patch where there is a lack of trained medical personnel 23. These features of the 

layer-by-layer (LbL) assembled PEM film microneedle arrays make the technology 

attractive for commercialization, which will be the focus of this paper.  
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2 Background 
 
2.1 Current Vaccine Options 
 

A successful vaccine is marked by adherence to several design criteria including safety, 

cost, efficacy, and level of invasiveness to administer 25. Since Jenner’s observations more 

than two centuries ago of immunity that a related infection can confer, the concept of a live-

attenuated vaccine has been applied to numerous other pathogens including polio, 

chickenpox, and yellow fever. (Table 2) Efforts to improve the safety profile of the first 

vaccines resulted in Pasteur’s findings over a century ago of the effects of administering a 

killed pathogen to elicit an immune response and led to development of vaccines based on 

whole-killed pathogens to treat illnesses including whooping cough, typhoid fever, and 

influenza. Further efforts to improve safety and efficacy have employed reductionist 

principles for eliciting immunity and have resulted in the development and use of purified or 

recombinant subunit vaccines for indications such as HPV and meningococcus. Ongoing 

efforts over the last two centuries have indeed resulted in ever-safer vaccines; however, not 

all of these improvements have resulted in equal progress for all design criteria. 

 
Table 2: Sample of disease targets and method used to generate vaccine 1 
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2.1.1 Live-Attenuated Vaccines 
 

The concept behind a live-attenuated vaccine lies in separating illness-causing virulence 

from factors stimulating protective immunity. If virulence can be decoupled from a 

pathogen, a live-attenuated vaccine typically elicits strong immunogenic responses from its 

qualities as an invasive organism capable of efficient delivery to the cytosol, generating 

antigens for a memory response, and displaying pathogen-associated molecular patterns 

(PAMP) to provoke an innate response 1. These qualities provoke the infected host into 

treating the attenuated organism as a serious threat and mounting robust humoral and 

cellular immune responses to clear the pathogen. 

The attenuation process to generate a live-attenuated vaccine typically starts by 

subjecting the pathogen to non-ideal growth conditions and selecting for variants of the 

strain that are viable. In the case of influenza, attenuation involves growth at lower than 

ideal temperatures to select for temperature sensitive mutants. Since the attenuation process 

relies on the generation of viable but weakened mutants that are less able to cause disease, 

the process may not ever achieve a suitable strain that successfully decouples virulence from 

the invasive properties of the organism. In addition, attenuated strains risk reversion to a 

virulent form by acquiring mutations in the wild or encountering wild-type strains after 

distribution, which raises concerns for both consumers of the vaccine and healthcare 

providers who administer the vaccine 26. 

  
2.1.2 Whole-Killed Vaccines 
 

Another general strategy to generate vaccines is via killing or inactivating a pathogen. 

This procedure permanently disables the ability of the pathogen to invade, replicate, and 

cause disease. When a killed pathogen is administered as a vaccine, its antigens are still 

available to provoke an immune response via class II antigen presentation that APCs use to 

sample the extracellular space. Disabling of the invasive properties removes the reversion 

risk when exposed to the environment, which makes whole-killed vaccines preferable when 

compared to an attenuated vaccine formulation for vulnerable populations.  

While whole-killed vaccines are perceived to be safer than live-attenuated vaccination 

strategies, issues with efficacy are more pronounced. The lack of in vivo activity for an 

inactivated pathogen preferentially activates a skewed immune response resulting in 
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primarily humoral immunity and the generation of antibodies. This biased reaction results in 

poor cell-mediated immunity and the poor activation of cytotoxic T-cells (CTLs), which is 

important for sustained and effective long-term immunity to the pathogen in question. The 

inability to replicate in vivo also renders a whole-killed vaccine ineffective at provoking a 

strong immune response without an adjuvant to achieve adequate activation of APCs 1.  

 
2.1.3 Subunit Vaccines 
 

Purified and recombinant subunit vaccines take the concept of a whole-killed or 

inactivated vaccine one step further by isolating or exogenously expressing in another 

organism the immune stimulating epitopes from a pathogen and administering the purified 

antigens as a vaccine. The strategy has the advantage of removing harmful debris that may 

stimulate unwanted side effects from a whole-killed preparation and has no risk of causing 

disease. Similar to a whole-killed vaccine, subunit vaccines may also suffer from poor 

immunogenicity from the lack of in vivo activity and PAMP to generate a balanced immune 

response and may require an adjuvant or chemically conjugated carrier protein to be added 

to the final vaccine formulation 1.  

 
2.1.4 Manufacturing for Mass Distribution 
 

Manufacturing processes of existing vaccine technologies, while mature in the ability to 

produce a highly pure compound, lacks the ability to scale to higher production capacities at 

a low enough cost and a short enough timeframe for prompt worldwide distribution. In the 

case of the influenza vaccine, which uses an egg-based production process to produce a 

whole-killed formulation, large-scale production of the vaccine is extremely time-

consuming and labor-intensive but the economics of the influenza vaccine preclude 

investment in alternative means of production. Under the most optimistic scenarios and a 

production timeframe of one year, approximately 17% of the world population can be 

covered; a timeframe of almost five years is required for 100% worldwide coverage (Table 

3). The relatively short timeframe for the spread of a novel pathogen such as H5N1 avian 

influenza would have had a devastating effect on the human population by the time enough 

vaccine were produced to take advantage of herd immunity effects, making any effort to 

stem the spread of a particularly virulent and infectious strain a task with a bleak outlook.  
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Table 3: Worldwide manufacturing capacity and time needed to achieve population coverage 1 
 

 While the production process for attenuated, whole-killed, or subunit vaccines is 

relatively straightforward since cultures can be expressed to high concentrations with 

existing technologies 1, major issues remain that require assessment of alternatives to stem 

the spread of unanticipated outbreaks. In the case of attenuated vaccines, not all pathogens 

are amenable to attenuation. For pathogens that can be attenuated, the process can be very 

labor and time intensive, which would make it a poor candidate for controlling a fast-

spreading novel pathogen in the wild. Both whole-killed and subunit processes generate 

relatively safe vaccines but are poorly immunogenic without an adjuvant and primarily 

skews a normally balanced response between humoral and cellular immune reactions. In 

addition, the poor immunogenicity frequently requires large doses of a vaccine in 

conjunction with an adjuvant to elicit protective levels of immunity, which can strain a 

production and distribution chain for a rapidly spreading novel pathogen. Downstream 

manufacturing, especially in the case for subunit vaccines, can be an enormous bottleneck 

exacerbated by higher than expected dosing requirements. In combination, increased dosage 

and processing exerts upward pressure on pricing, narrowing the market for a vaccine 

product to populations that can bear the cost burden. Innovation that can blend the 

effectiveness of a live-attenuated strain with the safety of subunit vaccines at an accessible 

price point with low production lead times would be well equipped to flourish in the present 

and foreseeable market. 

 
2.2 DNA Vaccines 

 
Introduced in the early 1990’s, the concept of a DNA vaccine was presented as a 

technically simple means of inducing robust humoral and cellular immune responses against 

pathogens and tumor antigens 27-30. With promises to eliminate reversion concerns 

associated with the use of live-attenuated pathogens 31 and contamination risks during the 
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manufacture of whole-killed vaccine stocks, 32 high hopes were placed on the generalized 

platform for combating the most vexing chronic and infectious disease problems of the day 

including cancer, influenza, malaria, hepatitis B, and HIV. However, the concept proved too 

early for its time and early clinical trials in humans for these targets failed to demonstrate 

effective levels of immunity but did generate enough data to demonstrate the safe nature of 

the platform 33-38. Advances over the last two decades to improve the immunogenicity of the 

platform have begun to address the initial shortcomings of the original design. 

While the exact means by which DNA vaccines are capable of eliciting protective levels 

of humoral and cellular immunity in vivo is still under investigation 9, idealized mechanistic 

schematics exist outlining its mechanism of action (Figure 3). After delivery and uptake, the 

delivered plasmid DNA is thought to enter the nucleus of a transfected cell and direct the 

production of the encoded antigen of interest. Depending on the cell type transfected, the 

antigens produced by the delivered plasmid engage both the type I and type II presentation 

pathways to activate APCs via interaction with MHC I and II receptors to direct 

proliferation of CD8+ and CD4+ in lymph nodes and select for antigen-specific CTLs and 

B-cells. The activated CTLs and plasma cells direct a robust immune response to mobilize 

the host immune system to fight off the pathogen or tumor cells of interest. 
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Figure 3: Mechanism of action for DNA vaccines 9 
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Initially deemed a failure after results of early clinical trials yielded poor effectiveness 

data, DNA vaccines have made a comeback in the last five years with products licensed for 

use in small and large animals (Table 1) including fish, dogs, pigs, and horses. Research 

activity to translate the successes in large animals to humans remains intense as the allure of 

a truly universal, effective, safe, and easily mass producible vaccine (Table 5) draws 

researchers to work on the multifaceted challenges related to boosting expression in a 

human subject. Areas that have been targeted include plasmid optimization, gene 

optimization, formulation and immune plasmid optimization, and delivery vehicle 

optimization (Figure 2). Among the areas that are currently targets for research, 

optimization of the delivery method poses the greatest technical challenge with the largest 

amount of diversity and variability in the means that the challenge can be resolved. Initial 

trial failures can be partly attributed to the lack of alternative delivery methods to administer 

DNA beyond a traditional IM injection, which has been shown to transfect mostly 

myocytes, a cell type that is located beyond the APC-rich regions of the skin. Studies have 

shown the importance of transfecting APCs to generate a potent immune response 12-13 and 

these findings have directed the development of next-generation delivery methods that target 

the skin directly.  

 

 
Table 5: Qualities of a DNA vaccine 9 
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2.3 Vaccine Delivery 
 

The predominant mode of vaccine delivery has been and continues to be by needle and 

syringe. The World Health Organization estimates that approximately 12 billion needle 

injections are administered worldwide where 5% of that total accounts for immunization-

related injections 39. Despite refined protocols for administration, this mature but antiquated 

delivery technique is not without its risks, with the most prominent concern resting in safety 

from needle pricks for the healthcare provider and the reuse and spread of disease from 

improperly used or reused needles for patients and the community. Recent geopolitical and 

pandemic events have placed renewed focus on immunization and the resource-, and labor-

intensive nature for the proper handling of the needle and syringe, especially in developing  

nations where the population is already predisposed to increased morbidity and mortality 

from infectious agents (Figure 4) and it is estimated that 50% of all injections are given in 

an unsafe manner 40.  

 
 
Figure 4: Mortalities per year from unsafe injections 39 
 

In addition to the safety and resource matters that pervade the use of needles and 

syringes, there are also issues of compliance with recommended vaccination schedules, fears 

of pain from a needle prick, and general convenience matters related to the proper 
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administration of a needle and syringe delivered vaccine 41 that drives patients away from 

being proactive about receiving their vaccinations and plays an important role in changing 

morbidity and mortality for populations in developing countries. Cost also plays a very 

important role in motivating the design of alternative delivery methods for vaccinations. 

While the materials cost for an injection amounts to $0.06, the social costs of increased risks 

of infection and the need for trained personnel to administer an injection increases resource 

outlays more than 450-fold to $26.77 per injection 42. In addition, needle syringe delivery 

obligates the use of liquid formulations that require a cold chain to sustain vaccine integrity 

at a worldwide annual cost of between $200 and $300 million that can be redirected to 

vaccinating 100 million more children annually 43. These factors combined have catalyzed 

innovation in the field to change the standard of needle and syringe delivery with promising 

results. Among the alternatives to an IM injection with a needle and syringe are delivery 

candidates that target mucosal and cutaneous surfaces.  

Mucosal delivery of vaccine was first practiced centuries ago in China with the nasal 

delivery of smallpox scabs and oral delivery of fleas from cows infected with cowpox as a 

means to prevent smallpox 44. However, the field was not brought to prominence until the 

1960’s with the introduction of Sabin’s oral polio vaccine, which has since resulted in 

several vaccines developed exclusively for use on mucosal surfaces including the influenza 

nasal spray. Other mucosal surfaces of interest include pulmonary and vaginal or rectal 

surfaces; however, the inherent qualities of mucosal surfaces as the first line of defense 

against insults from the environment has made development of effective vaccines difficult 

without the use of strong adjuvants. In addition, mucosal surfaces frequently display high 

levels of degradative enzymatic activity, making the delivery of intact antigens difficult 

(Table 6).  
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Table 6: Needle-free delivery methods 44 
 

Potent systemic and mucosal responses elicited through cutaneous immunization have 

made skin immunization a desirable means by which to prevent infection at the point of 

entry 45-46. Skin immunization offers an effective means to elicit robust CD8+ CTL mucosal 

responses simultaneously in the gut, lung, saliva, and the female reproductive tract 47. 

Cutaneous immunization is thus vastly superior to traditional immunization routes including 

intramuscular or intranasal techniques that typically elicit compartmentalized mucosal 

responses specific to a subset of the surfaces stimulated via cutaneous immunization 45.  

Cutaneous delivery vehicles designed to take advantage of the robust immune response have 

had a long history of development since the introduction of the liquid-jet injector (Table 6). 

However, its usefulness as an alternative to the needle and syringe is limited because of the 

same risks of infection and contamination in common with needles as well as the high cost 

associated with the device 44,48. An alternative developed to better target APCs for 

intracellular delivery was embodied in epidermal powder devices that propel dried 
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formulations under high pressure. While powder injectors enhanced targeting for more 

efficacious delivery (Table 6), the devices also suffered from the same drawbacks as liquid-

jet injectors and needles at significantly higher costs 44,48.  

Recent efforts for cutaneous delivery have focused on topical delivery devices that 

attempt to permeate the outermost layers of the skin to make the skin more amenable for 

delivery of small molecules and biologics. Initial efforts have focused on passive delivery 

patches but these devices were limited to small molecules that were readily diffusible past 

the stratum corneum layers of the skin 44,49. Iterations of the platform have made it possible 

to deliver higher molecular weight compounds and biologics but at the cost of adding strong 

adjuvants and permeabilizing agents such as cholera toxin 44,49, which comes with risks such 

as inflammation and damage from retrograde transport to neuronal cell bodies, causing 

unintended side effects to the central nervous system 50. Most recently, efforts have been 

focused on electroporation as a candidate for reversible physical disruption of the stratum 

corneum and success has been documented with the delivery of a peptide into the skin of a 

mouse that generated a strong CTL response 51. Positive results for the electroporation 

platform has been documented in small and large animals for the transcutaneous 

administration of therapeutic genes 9 although complexities with device design have 

inhibited study in humans 49.  

An alternative effort at cutaneous delivery has focused on microneedle patches dip-

coated with small molecule or biologic compounds 49. These devices have been shown to be 

painless or near painless by careful design of short micrometer projections that do not 

penetrate the dermis where pain receptors are found 52 (Figure 5). However, dip-coating 

comes with many disadvantages including limited control of delivery kinetics and the 

relatively few molecules that stay active after a drying process 16. Iterations of the concept 

have resulted in the production of a dissolvable microneedle array molded from biologically 

compatible monomers and cross-linked to encapsulate a vaccine payload 53. However, 

photopolymerization with UV light to form the final array precludes the use of more 

sensitive biomolecules such as DNA due to photochemical damage 54 to the payload, 

restricting the range of compounds that a dissolving microneedle patch can deliver. Recent 

efforts in thin film engineering have sought to deal with the challenge of coatings on 
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micrometer surfaces while preserving bioactivity of a therapeutic agent 55 and results point 

to a generalizable platform for potent and cost effective vaccine delivery vehicle 17.  

 

 
Figure 5: Delivery methods in development to replace needle and syringe delivery of vaccines 44 
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3 Invention Overview 
 
3.1 Motivation 

 
Transdermal delivery has been extensively studied as an alternative to mucosal delivery 

and hypodermic needle injection of drugs and vaccines. The ease of access and stratification 

of bioactive layers 17 makes the skin a very desirable target for immunization and has been 

the focus of innovative solutions that aim to permeabilize this robust barrier for the delivery 

of bioactive compounds. One solution that has garnered much attention involves the use of 

microneedle patches composed of micrometer arrays of projections coated with thin films of 

dried drug or biologic formulations 15,56-58 that efficiently permeabilizes the stratum corneum 

to deliver the coated compounds directly to APCs. However, the use of a dry-coat dipping 

process has inherent disadvantages that prevent uniform deposition and controllable release 

kinetics 16. Another proposed solution for transcutaneous delivery involves the use of 

dissolvable microneedle arrays that release its encapsulated contents upon application of the 

microneedle patch 53. However, UV photopolymerization to crosslink the polymer matrix 

during production has been shown to damage sensitive biomolecules such as DNA 54, which 

places a limitation on the breadth of biomolecules that this platform can deliver.  

Recent work in the field of PEM thin film engineering has demonstrated the versatility of 

self-assembled films to encapsulate small molecules and biologics, enabling control over 

release kinetics and solid-state stabilization of coated compounds on the nanometer scale 16-

17,21-22,59-60. However, cutaneous patches require a means of disrupting the stratum corneum 

of the skin for the delivery of larger and more charged compounds such as DNA. The 

synergy of PEM thin films deposited on microneedle arrays would combine efficient and 

pain-free disruption of the stratum corneum with the superior release kinetics and solid-state 

stabilization intrinsic to PEM films. As a combination platform, this PEM film-coated 

microneedle device would be ideal for the delivery of vaccines, small molecules, and other 

biologics.  

 
 
3.2 Device Fabrication 
 

Fabrication of the PEM film-coated microneedle arrays requires serial processing of the 

raw constituents to form the final device. While most bench-scale processes require 
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retooling and adaptation of methods for mass manufacture, the utilization of processes 

prevalent in microelectronics and techniques refined to fabricate microfluidic devices for the 

fabrication of this coated microneedle device would most likely only require swapping of 

fabrication machinery to accommodate higher throughput in an industrial process. 

 
3.2.1 Poly(lactide-co-glycolide) Microneedle Array 

 
Poly(lactide-co-glycolide) (PLGA), a biocompatible and biodegradable copolymer 

compound, was used as the raw starting material to fabricate the microneedle arrays. A 

polydimethylsiloxane (PDMS) mold was fabricated and laser ablated to the required depth 

and geometry to serve as a reusable negative mold. PLGA pellets were then placed on the 

PDMS surface and the PLGA-loaded mold was placed in a vacuum oven for 40 minutes at 

145o C. After melting into the mold, the microneedle-mold device was placed in a -20o C 

freezer for 1 hour to allow for solidification before separation (Figure 6). Microneedle 

devices fabricated in this way yielded PLGA arrays with either pyramidal or conical 

geometry and needle lengths ranging from 800 to 1200 µm. For the purposes of this study, a 

needle length of 900 µm was selected (Figure 7).  

 

 

 
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission 

 
Figure 6: Schematic for the production of PLGA microneedle arrays from a PDMS mold 17 
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Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission 

 
Figure 7: Microneedle arrays with pyramidal (left) and conical (right) cross sections 17 
 
 
3.2.2 Polyelectrolyte Multilayered Thin Film Coatings 
 

After separation of the PLGA microneedle device from the PDMS mold, the microneedle 

surfaces were treated in plasma cleaner with O2 plasma for 2 minutes. The PLGA 

microneedle array was then dipped in an alternating fashion into a solution of protamine 

sulfate (PS) and poly(4-styrene sulfonate) (SPS) for 10 and 5 minutes respectively with 

intervening 1 minute rinses with deionized water to provide a uniform surface charge 

density for PEM functional layer deposition. Following 20 coats of PS/SPS, plasmid DNA 

was deposited on the PS/SPS coated microneedle surfaces by dipping in the same fashion as 

described above but alternating with polymer-1, a hydrolysable polyelectrolyte in the 

poly(B-amino ester) family, in 5 minute dipping intervals separated by 30 second rinsing 

steps with deionized water to achieve an alternating stacked structure of cationic and anionic 

charges that self assemble onto the microneedle surface (Figure 8). Lipid-coated PLGA 

nanoparticles were also deposited onto the PS/SPS prepared surfaces in an alternating 

fashion with polymer-1 but via an airbrush spray method for 3 seconds punctuated by 6 

second deionized water rinse sprays. Spray coating followed by dip-coat deposition of the 

microneedle surfaces was also attempted and combination plasmid DNA/lipid-coated PLGA 

nanoparticle delivery arrays were studied as a platform for concurrent DNA and 

nanoparticle delivery. 
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Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission 

 
Figure 8: Alternating polycation and polyanion coating strategy for layer-by-layer assembly of thin films 
17 
 

3.3 PEM Microneedle Performance 
 
3.3.1 Delivery Performance 
 

Delivery performance of the DNA and/or nanoparticle loaded microneedle arrays was 

visualized using a MHC II-GFP transgenic mouse model that expresses an in situ marker for 

discerning viable epidermis. Microneedle devices were placed on the dorsal ear skin of the 

mouse model and delivery performance was visualized with fluorescent confocal 

microscopy after applications for 1 min, 5 min, and 24 hours. Delivery kinetics for labeled 

DNA-loaded microneedle arrays differed from that of nanoparticle-loaded arrays (Figure 9). 

Insertion of the DNA-loaded microneedle array for short time periods (5 min) revealed poor 

delivery characteristics as shown in Figure 9A whereas a 24 hour insertion period revealed 

highly localized and efficient delivery into the viable epidermis (Figure 9B), suggesting that 

the polymer-1 layers require time for hydrolytic degradation to release the DNA cargo. 

Nanoparticle-loaded microneedle arrays were found to deliver nanoparticles even after a 5-

minute insertion period as shown in Figure 9C, suggesting that the act of inserting the 

microneedle is associated with nanoparticle delivery. When the microneedle array was 

coated with nanoparticles followed by DNA, controlled delivery of nanoparticles and DNA 

was observed after 24 hours as shown in Figure 9D, suggesting that the profile of the thin 

film should be a design criterion dependent on the delivery application.  
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Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission 

 
Figure 9: Confocal microscopy for visualizing delivery of labeled DNA and labeled nanoparticles by 
microneedle application to the dorsal ear skin of transgenic MHC II-GFP fusion mouse. A) DNA loaded 
array applied for 5 minutes B) DNA array applied for 24 hours C) Lipid-coated nanoparticle array applied 
for 5 minutes D) DNA/lipid-coated NP co-delivery after 24 hour application 17 
 
3.3.2 Transfection Performance 
 

DNA transfection performance was evaluated with a DNA-coated microneedle device 

carrying a plasmid expressing the firefly luciferase gene. Transfection was evaluated for 

different coating densities (1, 5, 24 bilayers) and at two times (5 minutes and 24 hours) 

(Figure 10). When comparing Figures 10A and 10D, there is a notable time dependence for 

transfection of a 24-bilayer coated microneedle array that correlates well with the co-

localization trend observed with the delivery of labeled DNA in Figures 9A and 9B. In 

addition, there was a discernable difference in expression level between mice treated  with 

an array loaded with more DNA as measured in the differences in luminescence between 

mice in Figures 10B, 10C, and 10D. Mice treated with an array loaded with 1-bilayer 

(Figure 10B) showed no expression whereas mice treated with arrays loaded with 24-

bilayers (Figure 10D) showed strong luciferase expression. These findings indicate that 

dosage can be tuned with modification of simple parameters to suit the needs of the desired 

delivery application.  
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Figure 10: Bioluminescence assay to visualize transfection efficiency of pLUC loaded microneedle 
arrays. A) 24-bilayer applied for 5 minutes. B) 1-bilayer applied for 24 hours. C) 5-bilayers applied for 24 
hours. D) 24-bilayers applied for 24 hours 17 
 

3.4 Suitability and Market Potential as a Vaccine Delivery Platform 
 

The Hammond and Irvine groups have demonstrated a proof of concept device that 

synergizes the permeabilizing efficiency of a microneedle array with the versatility of PEM 

thin films coatings. Tunable layer-by-layer deposition of DNA and/or nanoparticles allows 

for robust control of dosing and release kinetics, a feature absent or lacking in dip coated 

and dissolvable microneedle arrays. In addition, the conditions for deposition of thin films 

are mild and do not require the use of drying or radiation to produce the final product, 

expanding the range of molecules that can be encapsulated in a PEM thin film-coated array 

to include fragile biomolecules.  

  Initial characterization of the device on viable murine dorsal ear epidermis with 

fluorescently labeled cargo showed co-localization of delivered cargo with epidermal 

Langerhans cells, which is indicative of successful delivery at the proper depth to induce an 

immunogenic response. Subsequent characterization with an in vivo transfection assay 

demonstrated stable DNA transfection by a microneedle-supported PEM film, a key finding 

that allows for the translation of this device to vaccination-related uses for the delivery of a 

DNA vaccine.  
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4 Market Dynamics and Commercialization Strategy 
 
4.1 Global Vaccine Market 
 

Traditionally a high cost, low profit margin segment, the pharmaceutical industry has 

found renewed interest in the vaccine market and have begun to invest in the segment since 

the blockbuster introduction of Prevnar, a 7-valent conjugate vaccine for pneumococcal 

infections, by Wyeth in 2000 61. With the rise of critical public health issues in the face of 

H1N1, H5N1, and the specter of bioterrorism, pharmaceutical giants have begun a 

conversion to hybrid biotechnology/pharmaceutical companies to take advantage of the 

growth opportunities through mergers and acquisitions of key market players including 

Chiron by Novartis in 2006 and Wyeth by Pfizer in 2009. Attrition from this high cost 

vaccine industry, especially after the 1980 introduction of good manufacturing practices 

(GMP), has thinned the number of market players significantly from over a dozen in 1967 to 

five major players that control almost 90% of the market 62: Novartis, GlaxoSmithKline, 

Merck, Sanofi-Pasteur, and Pfizer 61. 

While the global vaccine market accounted for only 2.8% of pharmaceutical industry 

revenue of $21.28 billion in 2008, revenue is expected to grow with a compound annual 

growth rate (CAGR) of 12.1% in the global market to over $47 billion in 2015 62 (Figure 

11). Emerging markets such as India, China, and Brazil are becoming key drivers for 

revenue growth as the government finds renewed focus in public vaccination campaigns 62.  

 

 
Figure 11: Global vaccine market revenue projections from 2008-2015 62 
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4.2 Industry Challenges for Incumbent and Potential Market Players 
 

Growth potential in the vaccine market remains high and is expected to grow at a 

sustained rate but the path to higher revenues remains rocky. Major barriers to entry and/or 

growth include crushing upfront capital expenditures, a highly fragmented global market, 

and the absence of healthcare infrastructure in developing nations for effective penetration 

of the market. These barriers are not insurmountable for emerging players but do require 

large amounts of capital and is a strong deterrent for smaller players that aim to challenge 

the 89.8% market share amongst the market leaders 62.    

For aspiring market entrants planning to tap into this growth sector, large investment 

outlays are required at the outset for manufacturing capabilities since the introduction of 

GMP and the requirement to document and validate each step in the supply chain. Because 

vaccines are typically produced in or are parts of living organisms, FDA regulatory 

guidelines pose an enormous barrier for entrants that attempt to penetrate to market with a 

new product since there is an approximately 15-year lag time before market approval 62.  

A highly fragmented market also poses a challenge for both established and aspirant 

vaccine manufacturers. A patchwork of differing regulatory guidelines, price controls, and 

monopsony purchasing power of governments in developing countries and Europe pose 

challenges for maximizing revenue, especially for a startup (Table 7). 

While developing nations possess enormous growth potential for vaccines, inadequate or 

non-existing healthcare infrastructure poses a challenge for getting any product to market no 

matter the size of the company. By far, the greatest issue remains the maintenance of the 

cold chain, the low temperature storage needed for most biologics until the point of use. 

Manufacturing and delivery innovation that can alleviate this barrier can be extremely 

attractive to existing market players and can be used as leverage for a small company with 

the proper intellectual property holdings looking to penetrate the market due to the cost 

savings and disruption of the current supply chain model this innovation may have 17,43,62-63.  
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Table 7: Challenges in vaccine market 62 
 
4.3 Initial Analysis of Intellectual Property  
 

For any innovation to succeed on the market, clear intellectual property (IP) rights need 

to be established in order to attract sources of funding as this is the only way to ensure that a 

market exists for a return on investment. The patentability of the PEM thin film-coated 

degradable microneedle device was assessed through a patent and literature search. 

 
4.3.1 Patents Related to Microneedle Arrays 

 
Extensive patent coverage has already been issued for the use and manufacture of 

polymer microneedle arrays. Patent 6,334,856 held by the Georgia Tech Research 

Corporation describes a microneedle device that is extensively similar to the device 

employed by the Irvine and Hammond system 64. Among the most substantial claims that 

prevent the use and manufacture of a polymer microneedle device includes claims 1 and 23, 

which are especially vague in its claims to any microneedle device constructed from a 

polymer. In addition, extensive coverage of the molding process including the use of polymer 

to make the mold and the use of laser ablation to generate the holes used to make the 

microstructures is covered in claims 2, 5, and 22.  

In addition to claims made in patent 6,334,856, a follow-up patent application number 

20090131905 65 was filed on 5/21/2009 that attempts to expand the coverage of the uses and 

manufacture of microneedle devices. In this patent application, Allen, et al. clarify their 

claims to polymer microneedle devices to include biodegradable polymers composed of 

poly(hydroxy acid)s, polyanhydrides, poly(ortho)esters, polyurethanes, poly (butyric acid)s, 
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poly(valeric acid)s, and poly(lactide-co-caprolactone)s. While the Irvine and Hammond 

microneedle platform uses a polymer that is not specifically covered in this claim, a literature 

search revealed public disclosures 66 by Allen, et al. documenting use of PLGA 

microneedles. Depending on the outcome of the new patent application and its claims to the 

use of other classes of biodegradable polymers, licensing of this patent may be required. 

 
4.3.2 Patents Related to Microneedle Coatings 

 
In the realm of coated microneedle structures, patent application 20080213461 67 has 

been filed by Gill et al. claiming coverage for coatings that are composed of at least one drug 

and a viscosity enhancer. The restriction of the use of a drug and a viscosity enhancer should 

post no threat to the patentability of the Irvine and Hammond system as neither a drug nor a 

viscosity enhancer was used. A point of caution should be noted if further development 

requires a means of securing a microneedle array to the skin with adhesive; claim 65 

specifically claims the use of adhesive material between two or more needles in the array. 

This claim poses a minor annoyance if it remains in final approval since a different means of 

fixating the device to the skin, if needed for complete delivery, may need to be developed.  

 
4.3.3 Patents Related to Thin Films 

 
Methods for constructing decomposable thin films of polyelectrolytes and their uses has 

been patented in patent 7,112,361 68 by a group that includes Professors Hammond and 

Langer at MIT. This patent provides broad coverage of the alternating polycation and 

polyanion structure similar to the scheme used in the Irvine and Hammond system. The 

patent also provides coverage for deposition of this film on polymer substrates. Hammond, et 

al. has also further clarified claims to self-assembled thin film structures in patent application 

20080311177 55  to lay claim to films that self assemble specifically with proteins and drugs. 

The Irvine and Hammond microneedle system employs a PEM thin film structure that layers 

DNA and lipid-coated nanoparticles, which is not explicitly claimed by patent 7,112,361 or 

patent application 20080311177. The wording of both patents covering decomposable thin 

films, however, should not be of any issue as Hammond is a collaborator for this PEM film 

coated microneedle system and will be an integral part of any commercialization process.  
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4.3.4 Patents Related to Manufacturing Processes 
 
Issues related to the patentability of certain manufacturing processes associated with the 

Irvine and Hammond microneedle array tie back to the IP surrounding polymer microneedle 

arrays described in patent 6,334,856 issued to Allen, et al. of Georgia Tech. The patent 

provides broad coverage for a mold-produced microneedle array composed of a polymer. 

Patent application 20090131905 further excludes the use of degradable polymers that are not 

already in the public domain. Licensing of this technology may likely need to happen if 

innovation to circumvent the existing patent and patent application does not occur.  

 
4.3.5 Patents Related to Vaccines and Targets 
 

At its core, the PEM film-coated microneedle array is a delivery vehicle and offers no 

therapeutic benefit on its own. In order to confer therapeutic qualities to the microneedle 

device, an IP portfolio for particular antigen targets and/or vaccine candidates must be 

obtained. Since the development of an IP portfolio for antigen targets and DNA vaccines is 

not a core competency, it would be very time- and cost-prohibitive. A strategic partnership to 

license an IP portfolio of disease targets would be the most effective solution. 

 
4.4 Market Strategy for Commercialization 
 

With the assumption that the initial analysis of intellectual property revealed most of the 

major roadblocks to successful commercialization of the Irvine and Hammond microneedle 

system, the IP holdings for this delivery system would be most amenable to 

commercialization via a strategic partnership with a pharmaceutical company and with the 

stakeholders at Georgia Tech while grouping all the IP holdings into an intellectual property 

licensing company. This partnership would be mutually beneficial for all parties involved. 

Pharmaceutical companies have large portfolios of disease and antigen targets that can be 

adapted for use in a DNA plasmid delivered in a vaccine formulation. Georgia Tech’s 

holdings for the underlying microneedle device would be inadequate if used in its current 

form to controllably deliver a plasmid for transcutaneous delivery. This gap can be bridged 

with the patent holdings between Irvine and Hammond for a LbL PEM film coating that can 

be self-assembled onto the surface of a degradable polymer microneedle.  
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Once suitable partners that possess disease target portfolios, negotiations should take 

place for the disease target IP holders to acquire a non-exclusive license to use the Irvine and 

Hammond system for the delivery of the vaccine candidate. In this way, the IP surrounding 

the Irvine and Hammond platform will not be limited to the disease targets with earlier 

partners and the company holding the IP for the Irvine and Hammond delivery system would 

be able to maximize revenue. Once the rights to use the IP from the disease target holders are 

acquired, the company should work to maximize the efficient delivery of the construct and 

contract with a contract manufacturing organization to produce this specific formulation. The 

pharmaceutical partners who hold the rights to the disease target antigens would then use the 

formulations produced by the contract manufacturing organization to conduct clinical trials, 

which can also be outsourced if the pharmaceutical partners wish to do so.  

This business arrangement would be optimal for the Irvine and Hammond holding 

company as all partners would be involved with their core competencies. The Irvine and 

Hammond holding company would be charged with optimizing the layered film formulations 

and then passing this formulation to a contract manufacturer, which would have the expertise 

to produce the devices at a large scale and at low cost. The IP for the target vaccine that did 

not have a feasible delivery vehicle that the pharmaceutical partners held would now have an 

effective delivery vehicle for use in clinical trials, a core competency that requires resources 

that a large pharmaceutical company would already possess. In this way, the Irvine and 

Hammond IP holding company and the pharmaceutical partners would be able to minimize 

risk throughout the entire process. The lack of a need to develop manufacturing facilities 

would drastically reduce costs related to capital expenditure, the primary barrier for 

competitors to the main players in the vaccine market.  

 

4.4.1 Value-Added in the Vaccine Supply Chain 
 

In order to be a successfully commercialized technology, there has to be an incentive for 

the existing market players to employ the novel technology. One of the main benefits of the 

Irvine and Hammond microneedle delivery platform is the solid-state stabilization of the 

loaded vaccine, which has enormous implications for reducing cost throughout the supply 

chain. The pharmaceutical partners that participate in the joint venture would be able to 

reduce logistical costs associated with ensuring the vaccine does not spoil at ambient 



 

40 
 

temperatures. The contract manufacturing partners would also be able to reduce overhead 

from the lack of cold chain maintenance throughout the manufacturing process. The savings 

associated with the lack of a cold chain alone can either be converted into higher profits or, if 

the partnership terms allow, enable the sale of the resultant vaccine at significantly lower 

costs and generate good will and publicity for all partners involved in the venture.  

 
4.4.2 Risks of the Commercialization Process  
 

While strategic planning can reduce most of the risks associated with the 

commercialization process, unexpected events should be expected to occur. Variables that 

need to be considered during the commercialization process include the variability that 

contract manufacturing can introduce to the supply chain, regulatory hurdles for approval by 

the FDA, and the long-term investments required to last through a FDA approval process.  

While contract manufacturing can reduce the risks of failure in terms of upfront capital 

costs to all parties, manufacturing by a third party can lead to unintended and unexpected 

variability in the final product. Bench-scale operations typically do not scale well to 

industrial processes and tweaking of the production process for manufacturing may be 

required to achieve feasibility and cost goals. In order to minimize the level of unintended 

roadblocks during the contract manufacturing stage, it would be useful to work closely with 

the contract manufacturing partners to co-develop a process that does not deviate from the 

function of the final device.  

FDA approval for a novel delivery device can be a long and arduous process. Successful 

preclinical data in animals may not translate to successful outcomes in human studies as was 

experienced with first generation DNA vaccines 9. Even in cases where clinical trials uphold 

the data obtained from animal models, unexpected occurrences can take place including 

adverse events and demands for more trial data. Should these occurrences take place, the 

enormous capital outlays that the pharmaceutical partners have budgeted might be exceeded 

and threaten the future of the project. Since these events cannot be predicted with any 

certainty, adequate budgeting and working closely with pharmaceutical partners is the only 

recourse for mitigation.  

Collaborating with a large pharmaceutical company provides the benefits of reduced 

risks, especially for a startup company, but the results of failure are more profound for the 
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startup partner due to limited resources. There is always risk of a disruptive technology that 

can make the delivery platform obsolete before it has a chance to recoup costs from selling 

on the market. It is therefore wise to diversify and recruit a group of pharmaceutical partners 

and target various disease targets to hedge the risk of inevitable failure given the low rates of 

FDA approval 69. 
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5 Conclusion 
 

An evaluation of the polyelectrolyte multilayer thin film-coated microneedle vaccine 

delivery system has been performed throughout this paper. Combining the advantages of a 

microneedle array to permeabilize the stratum corneum in the skin with the superior control 

characteristics of a self-assembling thin film loaded with bioactive cargo, the Irvine and 

Hammond microneedle platform is poised to supplant existing microneedle coating solutions 

that rely on surface tension and drying during manufacture 23. The solid-state stabilization of 

cargo allows for streamlined handling of vaccine formulations by potentially eliminating the 

need for refrigeration and allowing storage at ambient temperatures 16. The ability to 

eliminate the cold chain can confer any vaccine therapeutic with a competitive advantage in 

cost and in logistical concerns for developing nations where an adequate cold chain does not 

exist.  

The intellectual property landscape for this new technology was also discussed in this 

paper. While most of the delivery platform is clear of any potentially infringing elements, the 

need to license intellectual property from Georgia Tech may pose some issues if the 

infringing elements cannot be circumvented. Even if the potential overlap cannot be feasibly 

circumvented, a strategic partnership can and should be formed to add partners to the joint 

venture, which can mitigate risk if FDA approval should fail.  

The case to form a purely intellectual property company was presented in this paper as a 

means to maximize revenue and hedge away most of the potential risks of bringing a new 

biologic and delivery device to market. While contracting out all manufacturing does have 

risks, the consequences of failure far exceed the costs associated with developing expertise 

outside the scope of the company’s core competencies. The proposal to develop a partnership 

should be viable as value is added across the supply chain where all partners stand to gain 

from the efficiencies generated from this delivery platform.  

Risks during the commercialization process were also discussed that may hamper 

progress during a joint venture. While the risk factors may be hard to hedge away, especially 

in the case of the FDA approval process, this should not deter the company from attempting 

the joint venture as the technology underpinning the delivery platform is sound and has the 

potential to disrupt the status quo for vaccine delivery in a positive manner.  
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