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Abstract

In this thesis, two new models are introduced for the purposes of (i) locating sites
in hillside terrain suitable for central receiver solar thermal plants and (ii) optimiza-
tion of heliostat field layouts for any terrain. Additionally, optimization of heliostat
canting, is presented as an application of the heliostat layout optimization model.
Using the site selection model, suitable sites are located based on heliostat field effi-
ciency and average annual insolation. By iteratively defining the receiver location and
evaluating the corresponding site efficiency, by sampling elevation data points from
within the defined heliostat field boundary, efficiency can be mapped as a function
of the receiver location. The case studies presented illustrate the use of the tool for
two field configurations, both with ground-level receivers. The heliostat layout opti-
mization model includes a detailed calculation of the annual average optical efficiency
accounting for projection losses, shading & blocking, aberration and atmospheric at-
tenuation. The model is based on a discretization of the heliostats and can be viewed
as ray tracing with a carefully selected distribution of rays. The prototype imple-
mentation is sufficiently fast to allow for field optimization. In addition, inspired by
the spirals of the phyllotaxis disc pattern, a new biomimetic placement heuristic is
described and evaluated which generates layouts of both higher efficiency and better
ground coverage than radially staggered designs. Case studies demonstrate that the
new pattern achieves a better trade-off between land area usage and efficiency, i.e.,
it can reduce the area requirement significantly for any desired efficiency. Finally,
heliostat canting is considered. Traditionally, canting has been parabolic, in which
the focal point of the heliostat lies on the axis of symmetry. Two alternative off-axis
canting methods are compared in this thesis, fixed facet (static) canting in which
the facet alignment is optimized for a single design day and time and then rigidly
mounted to the frame and dynamic canting in which the facets are actively controlled
such that the center of each facet is always perfectly focusing. For both methods, two
case studies are considered, a power tower with planar heliostat field and a hillside
heliostat field which directs light down to a ground-level salt pond.
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Chapter 1

Site Selection for Hillside Central

Receiver Solar Thermal Plants

1.1 Introduction

A simplified model utilizing digital elevation data is presented for the selection and

evaluation of potential hillside sites for central receiver solar thermal plants. The

primary intent of developing the model is for locating suitable sites for ground-level

receivers, such as the so called CSPonD concept [30, 28, 29]. In the CSPonD design,

the radiation concentrated by the heliostats is directly beamed down into a molten

salt which serves as a combined receiver and thermal energy (exergy) storage medium.

In addition to ground-level receivers, the model can also be used for receivers of any

height and in any terrain. However, the advantages of utilizing ground-level receivers

(made possible by hillsides) include the elimination of many significant costs and

operating problems associated with tower systems, such as salt freezing in pipes, the

capital cost and maintenance of high pressure pumps, and of course the capital cost

of the tower. Additionally, terrain that is otherwise difficult to develop is suitable for

hillside concentrated solar applications. As a result, hillside heliostat fields further

decrease capital cost relative to traditional CSP sites because they do not require flat

land, a resource of limited availability and high demand. A potential disadvantage of

hillside sites is the increased cost of installing heliostats on hillside terrain.



One such example of using a hillside heliostat field is the world's largest solar

furnace located at Odeillo, Font-Romeu in the French Pyrenees, consisting of 63

heliostats and having a nominal power rating of 1 MWt [11]. Despite the precedence

of using hillsides, no tools exist in the open literature for locating sites suitable for

hillside heliostat configurations nor predicting the efficiency and nominal power rating

for non-planar sites, outside of ray-tracing software, motivating the development of

the model described herein. While ray-tracing is an extremely useful tool and could

be used for the evaluation of non-conventional heliostat fields, its most significant

drawback is the required computation time. For instance, the case study of the

western United States, as shown in Figure 1-7, required evaluating approximately

375 million candidate receiver locations. Therefore, the ability to scan vast areas to

locate sites most suitable for CSP technologies necessitates a simplified model that

does not require detailed calculations, which is why ray-tracing tools are not suitable

for this purpose. The code most similar to the one proposed is the University of

Houston's cellwise performance model. It calculates the annual site efficiency for cells,

or representative points on the heliostat field, instead of on an individual heliostat

basis [13].

With the use of digital elevation data, the model presented evaluates sites by

calculating the average annual field efficiency of a set of sampled locations within

the extent of the heliostat field boundary, the dimensions of which are defined as

model parameters and are a function of the plant's nominal power. The sampled

elevation data do not correspond to the heliostat positions in an optimal heliostat

layout, but are used to approximate the efficiency of a heliostat field. Included in

the calculation of field performance are (i) cosine efficiency, i.e., the ratio of the

projected heliostat area in the direction of beam insolation to the surface area, (ii)

shading and (iii) blocking losses due to nearby hillsides and other sampled locations.

Two significant efficiency terms not included in this model are heliostat reflectivity

and spillage. Excluding both is justified because they are primarily independent of

the location of the heliostat field. Heliostat reflectivity is constant and spillage is

predominately a function of distance from the receiver, which is a function of the



heliostat field size and is constant in the application of the model. As a result,

the efficiencies reported are a product of a simplified model accounting for cosine,

shading and blocking. With reasonable assumptions for reflectivity and spillage, the

representative efficiency reported by the model could be adjusted to reflect the true

efficiency of the site. The approach of a simplified model is justified by the ability

to capture the most significant factors affecting heliostat field efficiency and is used

to provide a list of candidate sites from a potentially very large region. The results

of this model do not represent the final stage in site selection nor a substitute for

a detailed calculation of field performance. Further, economic metrics such as the

levelized cost of energy (LCOE) will ultimately be the determining factors in the

technology, configuration, and the location used. While any region can be evaluated

with this tool, the resolution of data sufficient for use in this model is currently only

publicly available for certain regions of the world, for instance the USA. In order to

accurately calculate the factors that affect heliostat field efficiency, the resolution of

the elevation data used must be capable of capturing variations in terrain on the scale

of heliostat separation distances.

Two receiver configurations are investigated in this article: beam-up, in which the

receiver is located at a higher elevation than the heliostats, and beam-down, in which

the receiver is located at a lower elevation than the heliostats. This terminology is

not to be confused with the definition of beam-down commonly used in literature to

describe a configuration in which a reflector is located on a tower to redirect energy

downwards toward the receiver [37]. In this article, the terms "beam-up" and "beam-

down" are used to describe the elevation of the receiver relative to the heliostat field.

The case studies consider direct absorption pond receivers [30]. Therefore, a reflector

is necessary in the beam-up configuration and is close to the receiver (e.g., not on top

of a tower). The design of the pond is contingent on variables including the properties

of the salt and the required storage capacity, and is beyond the scope of this article;

however, the size of the receiver aperture is expected to be no larger than a traditional

receiver because the heliostat fields are of comparable sizes. As a result, the model

proposed and conclusions presented are primarily independent of the receiver type.



In the first case study, the area around White Sands, NM, two scenarios are

investigated, (i) the beam-up site configuration with a secondary reflector having

an optical efficiency of 0.9 used to direct the radiation into the pond, and (ii) the

beam-down site configuration. Additional configurations are possible, such as a solar

furnace as in Odeillo or replacing the pond in the beam-up configuration with a

traditional receiver (without the need for a tower). In the case of a solar furnace, a

concentrator may be used, however no distinction needs to be made between heliostats

located at a higher elevation than the receiver and those lower than the receiver. This

simply means removing the penalty of the concentrator's optical efficiency. Finally,

the configuration of using a traditional receiver without a tower would be the same

as in case (i) but without the loss incurred due to the secondary reflector, i.e., the

efficiency of a site with a traditional receiver in a beam-up configuration is calculated

as the beam-up pond configuration efficiency divided by 0.9. Neither of the final two

configurations are considered in the case studies because they are simple modifications

of the pond configuration.

The structure of the subsequent sections is as follows. Section 1.2 describes all

major aspects of the model including the elevation data used for the case studies,

the calculation of cosine losses as well as shading and blocking, the methodology

for evaluating heliostat field performance, and lastly the post-processing required to

visualize the results. Section 1.3 demonstrates the use of the model in case studies.

Lastly, Sections 1.4 and 1.5 summarize the results from the application of the model

as well as conclusions based on the different site configurations considered in this

article.

For simplicity in the following, it is assumed that the sites considered are located

north of the Tropic of Cancer, such that the sun is always to the south of the receiver

at solar noon. Therefore, the corresponding heliostat field is most efficient north of

the receiver. The tools and results presented in this article are expected to hold for

sites to the south of the tropics with minimal changes to the model.



1.2 Model Description

The model proposed consists of designating candidate receiver locations on a grid of

uniform spacing for a predefined region. At each iteration in which a receiver location

is evaluated, the heliostat field is sampled by selecting points within the extent of the

heliostat field boundary and using digital elevation data to determine the position

relative to the receiver, from which the average annual efficiency is calculated for each

location. Then, the total field efficiency corresponding with each receiver location is

approximated as the average of the efficiencies from the sampled locations.

1.2.1 Elevation Data

The digital elevation data used in the analysis of US sites is publicly available as a

result of a joint project by the United States Geological Survey (USGS), the National

Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL),

and the National Geospatial-Intelligence Agency (NGA). Specifically, the data set is

from the Shuttle Radar Topography Mission (SRTM), with one arc-second resolution

between elevation data points (SRTM1 v2.1 [32]), corresponding to roughly 30 meters

on the horizontal plane. Due to the coarseness of the data, the analysis is based on

a simplified model of approximating site efficiency. Data is also available from the

same database for regions outside of the United States, but at a lower resolution

of three arc-seconds per sample. This resolution corresponds to roughly 90 meters

between samples, which is much larger than typical distances between heliostats, and

is therefore of insufficient resolution to accurately capture variations in terrain at the

scale necessary to evaluate a heliostat field.

Errors in the SRTM elevation data can be categorized based on the distances on

the horizontal plane in which they occur. Measurement errors occurring over large

distances do not significantly affect the results of this model because the magnitude of

the error does not change much across the heliostat field. In contrast, random errors

have much shorter correlation distances, approximately 100 meters or less, affecting

the heliostat layout by varying the relative error of each sampled location with respect



to the receiver. However, most of the database has less than 5 meters random error

in the z-direction [26], resulting in negligible angular variations for sampled locations

at typical distances between heliostat and receiver. Therefore, neither cause of error

significantly affects the results of the model. Factors not captured by elevation mea-

surements such as land coverage (vegetation or human-made) and existence of bodies

of water need to be accounted for prior to a final decision on site location.

1.2.2 Calculation of Average Annual Cosine Efficiency

Calculating the cosine efficiency for each sampled point during the site evaluation is

in principle a computationally expensive process because it is time-dependent and

requires time averaging. However, cosine efficiency is a function of position and is a

smooth, well-behaved function of only three variables. Therefore, an efficient imple-

mentation is to generate a multi-dimensional table of cosine efficiency as a function

of the discretized receiver azimuth and altitude angles, (see Figure A-i for their def-

initions) [10], as well as the latitude of the site. The resolution of the variables is

chosen such that the maximum error between two adjacent values in the table is less

than one percent. Table 1.2.2 shows the range and resolution of each parameter used

for tabulation.

Table 1.2.2 Cosine Efficiency Tabulation Parameters

Range and Resolution [*]

Minimum Maximum Resolution

Azimuth -180 180 1

Altitude -90 90 1

Latitude 25 50 1

For each tabulated value, the average annual cosine efficiency is the irradiation-

weighted mean of the instantaneous cosine efficiency integrated over a year, as shown

in (1.1), where instantaneous beam radiation is calculated using version one of the

Meteorological Radiation Model (MRM v1) for direct beam irradiance in clear sky



conditions [4].

365 sunset

Ecosine(t)qbea.(t)dt
day=1 sunrise

7lcosine, year - 365 sunset

S 65 Ismrse qbeam (t)dt
day=1

The MRM calculates hourly beam irradiance at the earth's surface as a function

of extraterrestrial solar irradiance and optical transmittances due to water vapor,

mixed gases, ozone, and Mie and Rayleigh scattering. The clear sky model is used

because it captures variations in insolation as a function of time without accounting

for local weather conditions. The advantage of using this simplified radiation model

is that cosine efficiency is easy to tabulate without the addition of local weather

parameters. This is sufficient for use of the site selection model in small areas, such as

the case study of White Sands, NM, because the variation in direct normal insolation

is negligible, so the insolation weighting should be approximately the same. However,

the assumption of clear sky conditions is not valid when considering large areas where

variations in insolation can not be ignored. Therefore, in the case study of the western

United States (Section 1.3.2), data from the National Solar Radiation Data Base [2]

was additionally used to weight site efficiency in order to distinguish between sites

having vastly different annual average direct normal insolation.

Figure 1-1(a) shows the dependence of yearly average cosine efficiency on the

receiver azimuth and altitude angles with respect to a sampled heliostat field location

at a constant latitude of 35*N (northern hemisphere). For the latitude selected, the

maximum cosine efficiency occurs when the receiver is directly south of the heliostat

and elevated roughly 600 from the horizontal plane. Figure 1-1(b) illustrates a subset

of the data shown in Figure 1-1(a), having a constant receiver azimuth of 0*, showing

the effect of varying the receiver altitude angle. For instance, the average annual

cosine efficiency of a heliostat at 35*N latitude, and receiver located at 0* azimuth

and 600 altitude, is 92%. Keeping everything else constant, a receiver at an altitude

angle of -20* has a cosine efficiency of 75%, a difference of 17%. While comparing



two receiver altitude angles is not an accurate representation of an entire heliostat

field, the difference in efficiencies of a field with a ground-level receiver versus an

elevated receiver can be significant due to projection losses.

90 >1

S 4 5 ...... ....... ...

0
... ..... ....... ... ... ...... 9 0 .78 ... . .... . . . .

0 6 0.6 .....................

Or. 5
-45

0.4 0.4-.4-900
-180 -90 0 9 0 180 .- -45 45 90

Azimuth [degrees] Altitude [degrees]

(a) Average Annual Cosine Efficiency (b) Average Annual Cosine Efficiency
as a Function of Receiver Azimuth and as a Function of Receiver Altitude An-
Altitude Angles at 35ON Latitude gle at 35'N Latitude and 0' Azimuth

Figure 1-1: Average Annual Cosine Efficiency as a Function of Receiver Position
Relative to a Heliostat

1.2.3 Calculation of Shading by Southern Hillsides

Another factor of site evaluation is the potential shading of the heliostat field by

southern hillsides. This occurs when the altitude angle of a hillside south of a heliostat

is greater than the altitude angle of the sun at any time such that their azimuth

angles are the same. This scenario poses a significant problem because locations

which utilize hillside heliostat fields are likely to be in mountainous terrain, where

there is a possibility that an adjacent hillside shades part or all of the heliostat field.

However, checking a very large area in all directions south of each elevation data point

is computationally expensive. Therefore, prior to cosine and blocking calculations,

the area to the south of the heliostat field between the angles of ±45* azimuth is

checked for hillsides with an altitude angle greater than the minimum yearly solar

altitude angle. The value of ±45* is chosen because it represents a range in the solar

state space which corresponds with peak daily insolation. This check is done once

in increments of five degrees and 100 meters in a two kilometer radius for a single



representative location in the middle of the heliostat field. Recognizing that some

amount of shading may be acceptable, this representative location is chosen to be at

the center of the heliostat field. This way, while some shading may be acceptable,

there will never be a case in which more than half of the heliostat field is ever shaded.

This method is not a subsitute for a detailed calculation of shading, however is efficient

due to the simplicity and ability to elminate sites in which nearby hillisides would

clearly introduce too much shading for the site to be considered.

As for the implementation, the sun's minimum yearly altitude angle is tabulated

as a function of two parameters, azimuth and latitude. If a southern hillside has an

altitude angle greater than the minimum yearly solar altitude angle, the field will

be approximately half shaded, or more, at least once a year. In this scenario, the

corresponding receiver location is assigned an efficiency of zero and is excluded from

further calculations. Computationally, this approach is extremely efficient compared

to evaluating each individual heliostat and saves unnecessarily calculating the effi-

ciency of a field that is significantly affected by shading. Figure 1-2 shows the result

of tabulating the minimum yearly solar altitude angle for two latitudes, 25*N and

500N, encompassing the contiguous United States. For example, a hill with an az-

imuth of 00 and an altitude angle of 250 will shade a heliostat located at 50*N latitude

at least once per year, but never for a heliostat at 25*N latitude.

1.2.4 Site Selection Methodology

The methodology of selecting suitable hillside sites includes uniformly designating a

receiver location and heliostat field boundary, sampling elevation data points from

within the field boundary, and then calculating the yearly cosine efficiency while tak-

ing into account shading by earth and blocking. An exact calculation of shading and

blocking between heliostats is not considered in this model because the sampled ele-

vation data points do not represent an optimal heliostat layout. Instead, it is assumed

that the effect of shading and blocking is small for an optimized heliostat layout and

that cosine losses are a much larger factor in field efficiency; while shading and block-

ing may not be ignored, they need not be calculated in detail. In particular, it is
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Figure 1-2: Minimum Yearly Solar Altitude vs Solar Azimuth

sufficient to determine whether a point on the heliostat field is blocked by comparing

the receiver altitude angle for all sampled locations sharing the same azimuth angle

and between the point and receiver. The following describes the process by which

sites are evaluated.

The site evaluation methodology begins with designating a receiver location. Once

the receiver is set, the heliostat field is defined by minimum and maximum azimuth

angles as well as inner and outer radii (3D Euclidean distances), the area of which

is a function of the total plant efficiency and nominal power. An example of a field

with receiver azimuth angles between ±450, and field radii between 150 and 500 me-

ters, is shown in Figure 1-3 as projected on the horizontal plane. Each sampled field

location is separated in increments of latitude and longitude corresponding with the

resolution of the elevation data. The heliostat field is evaluated by referencing the

tabulated cosine efficiency and checked for blocking at each location. The order in

which points are selected is in increasing magnitude of the receiver azimuth angle for

constant latitude, starting at the receiver, then progressively moving north. There-

fore, successively sampled heliostat field locations have a radius greater than all other

elevation data points having the same receiver azimuth angle. This ensures that all



heliostat field locations are evaluated in increasing radial distance in all directions

and includes the land in between the receiver and the inner radius of the heliostat

field. If the azimuth angle of the field location being evaluated has the same azimuth

angle as any previously evaluated locations, the altitude angle of the current location

must be less than the previous. Therefore, only the minimum altitude angle must

be stored for any given azimuth direction. If the current altitude angle is greater

than the minimum altitude angle recorded, the current field location is blocked and is

assigned an efficiency of zero. If the current altitude angle is less than the minimum,

then blocking does not occur and the efficiency of the location being evaluated is

equal to the cosine efficiency. The total field efficiency is then calculated as the mean

of all sampled heliostat field efficiencies. In Figure 1-3, a projection of the sampled

locations on the horizontal plane is shown as an example, where the small squares

are locations which experience blocking and therefore have efficiencies of zero, while

every other point is shaded to represent the cosine efficiency of the corresponding

location. Four of the five sampled locations shown as blocked are located in or near a

small valley such that they have altitude angles greater than or equal to the altitude

angles of the sampled points in between their positions and the receiver. Most im-

portantly, these points are not meant to illustrate an actual heliostat layout nor the

heliostat dimensions; instead, they are used to approximate the field efficiency based

on the positions of the sampled points relative to the receiver and each other. A flow

diagram illustrating the process of site selection is shown in Figure 1-4.

After all receiver locations are evaluated, the program writes the latitude, lon-

gitude, and efficiency of each location to file. The output is then analyzed with a

geographic information system (GIS) software package, ArcMap v9.3 [9], and con-

verted from vector data to a raster file, a method used for visualizing discrete data

as a surface plot. For large areas, greater than 100 km2 , the raster file is created

by a kernel density calculation which represents the efficiency per unit area within a

defined radius specific to the scale of the image produced. Once an area of high effi-

ciency is found, a more detailed raster file is created by interpolating the efficiencies

of individual receiver locations to identify the exact optimal location for a receiver.
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Figure 1-3: Example Illustrating Sampled Locations for Evaluating Site Efficiency
Icon shading indicates efficiency of individual sampled locations. Blocked locations are

shown as small squares. This example field has a boundary defined by azimuth angles of
+450 and radii of 150 and 500 meters.

The resulting raster data is then written to a KML file, an image overlay for view-

ing in Google Earth [15]. The image overlay drapes the terrain with a color map in

which receiver efficiency is the scale, red representing high efficiency and blue as low

efficiency.

1.3 Case Studies

Two case studies are presented. The first, White Sands, NM, is located in the south-

west United States and was selected for its high average annual insolation. The area

considered is roughly 10,000km 2 with pond receivers evaluated every 60 meters, re-

sulting in approximately 2.8 million candidate receiver locations. The heliostat fields

are defined by minimum and maximum azimuth angles of ±45*, and the minimum

and maximum heliostat distance from receiver is 150 and 600 meters (area is approx-

imately 265, 000m 2 ). The dimensions of the field roughly correspond with a 4MWe

plant assuming the following: (i) a 30% heliostat surface area to land area ratio (i.e.,

coverage ratio), (ii) an average annual insolation of 250 , (iii) a field efficiency of

60%, and (iv) a thermal to electric conversion efficiency of 35% (including the thermal

efficency of the reciever, heat exchanger, and power cycle). The heliostat field is sam-

pled every 30 meters, for approximately 200 samples per field. A second case study



Figure 1-4: Flow Diagram Illustrating Site Selection Process

of the entire western United States is presented to illustrate the value of the model

for large scale analyses and identification of regional variations in site efficiency.

In each case study, a single node on a Linux Intel Core 2 Quad Processor (2

GHz) PC with 8 GB memory was used. The first case study of White Sands, NM

required approximately two hours to evaluate the 10,000km 2 area. The case study of

the western United States required approximately 1000 CPU hours, scaling linearly

with area from the White Sands, NM case study and was run on a cluster of four PCs

utilizing eight nodes each as the model was parallelized using OpenMP.

1.3.1 White Sands, NM

The first case study, White Sands, NM, is located at 32.8*N latitude and 106.3*W

longitude. The analysis is completed for two scenarios, (i) allowing a secondary

reflector at the receiver with an optical efficiency of 0.9, and (ii) sites with a beam-



down configuration that do not require a secondary reflector. As stated in Section 1.1,

the difference between these two scenarios is the reflector at the receiver, necessary

for ponds located at a higher elevation than part or all of the heliostat field.

One of the highest efficiency sites from each of the field configurations considered

are displayed in Figures 1-5 and 1-6. In these sites, the heliostat fields are shown

north (right) of the receiver. The icons represent sampled elevation data locations

used in the site efficiency calculation and not an actual heliostat layout, and the

distances between the icons are larger than typical heliostat separation distances that

would be seen in an actual field. The representative field efficiencies of the beam-up

and beam-down sites are calculated to be 77% and 70%, respectively, a difference of

7% despite the 10% loss assumed for the secondary reflector. As stated in Section

1.1, these efficiencies are the result of a simplified model and do not include heliostat

reflectivity and spillage losses. In any case, once found, candidate sites such as the

ones shown would require a more detailed tool for heliostat placement and provide a

more accurate calculation of field efficiency.
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Figure 1-5: Potential Site for a Beam-Down Ground-Level Receiver in White Sands,
NM (Icons denote receiver location and sampled locations from elevation data, not
heliostat dimensions nor an actual heliostat layout.)
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Figure 1-6: Potential Site for a Beam-Down Ground-Level Receiver in White Sands,
NM (Icons denote receiver location and sampled locations from elevation data, not
heliostat dimensions nor an actual heliostat layout.)

1.3.2 United States Ground-Level Receiver Site Potential

Figure 1-7 illustrates the result of applying the site selection model for the entire

western United States, an area 500 times larger than the case study of White Sands.

The purpose of this application of the model is to illustrate the regional variations in

site potential. Most importantly, the availability of solar resources varies significantly

by location. Therefore, instead of efficiency as the sole criterion, Figure 1-7 illustrates

the product of efficiency and insolation, averaged using the kernel density method

described in Section 1.2. Regions with the highest density of desirable sites are

shaded dark (red), while regions with few or no suitable sites are light (yellow). This

particular application of the model is for a heliostat field size corresponding to a

5 MWe power plant and a ground-level receiver for both beam-up and beam-down

configurations, the same as the previous case study. Again, after the analysis for

an area is complete, regional variations are easily identified and then either a more

refined analysis or further post-processing can be done to identify the locations and

efficiency of desirable sites for a particular heliostat field size and layout.



Figure 1-7: Western US Map Indicating Areas Most Suitable for Ground-Level Re-
ceiver Systems (Regions with high efficiency candidate sites are shaded dark (red)
and low efficiency sites are light (yellow).)

1.4 Results

The following are the most significant results for selecting sites for ground-level central

receiver applications. First is the heliostat field elevation compared to that of the

receiver. In the highest efficiency receiver locations, the field is located at an elevation

lower than the receiver, utilizing the terrain at the receiver as a natural tower. Despite

accounting for a 10% loss associated with a secondary reflector herein (necessary for

beam-up pond receivers), the difference between two optimal sites in the White Sands,

NM case study is 7%. Returning to the simple example of heliostat position relative to

receiver, located at the end of Section 1.2.2, and including a 10% loss to the efficiency

of the heliostat field with an altitude angle of 600, the difference in efficiencies is

reduced from 17% to 8%. Therefore, the results from White Sands, NM case study

match what was predicted in Section 1.2.2. Further, if a traditional receiver replaces



the pond in the beam-up configuration, the 7-8% difference relative to beam-down

increases to approximately 17%. Nevertheless, while the simplified model is used to

locate candidate sites suitable for solar thermal plants and is capable of evaluating a

variety of heliostat field configurations and receiver types, economics merits such as

the LCOE are the determining factors in the design and site selection process.

Further results of the analysis are locational trends. To illustrate why a beam-

down receiver configuration would not be suitable for locations near the tropics, Fig-

ure 1-8 plots the effect of varying latitude on field cosine efficiency. In each plot,

Figures 1-8(a) and 1-8(b), various heliostat locations are evaluated for a hillside of

constant altitude angle relative to the receiver, with the average of these representa-

tive points plotted as the solid line. For field altitude angles of -20* and -30*, the

trend is an increasing field efficiency with increasing latitude. The caveat to the trend

of increasing field efficiency with increasing latitude is the effect of shading, which is

more prevalent with increasing latitude for areas of similar terrain. This is caused

by the lower solar altitude angle, as shown in Figure 1-2, increasing the likelihood

that a southern hillside will shade the heliostat field as well as increased shading by

nearby heliostats. Another drawback of higher latitude locations is a lower average

annual direct normal insolation. As a result, ideal candidate sites from case studies

with both high efficiency and high insolation were found to be predominately in the

southwest United States, where shading by heliostats is not a significant issue because

of large solar altitude angles (sun high in the sky). Therefore, the calculation of shad-

ing by heliostats was omitted; however, if regions are considered with high insolation

and high latitude, shading by heliostats should be addressed and a procedure simi-

lar to blocking could be implemented for a representative solar altitude (e.g., annual

average) at discrete azimuth angle intervals.

1.5 Conclusions

Presented is a model and tool used for hillside central receiver site selection and evalu-

ation. As a result of developing the model, the following conclusions are made. First,
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latitude and cosine efficiency are positively correlated for the beam-down configura-

tion. When the pond is located at the ground level, the angle of incidence at the

heliostat decreases with increasing latitude. Second, as a corollary to the previous

result, due to a decrease in solar altitude angle with increasing latitude, the chance

of shading by hillsides south of the heliostat field increases. Finally, the most advan-

tageous receiver locations for ground-level receiver systems are elevated with respect

to the heliostat field, utilizing the terrain at the receiver to create a natural tower.

The advantage of defining constant heliostat field dimensions for all evaluated sites

is the computation time of the model. However, the drawback to this implementation

is that the heliostat field dimensions are not optimal for all receiver locations. In other

words, without calculating the optimal field dimensions for a given site, the evaluated

site efficiencies are going to be a function of the model inputs. Therefore, caution

must be used in the application of the model. One potential solution is to use a

weighting factor to reflect the probability that a sampled location will be included

in an optimized heliostat layout. For example, the perimeter of the heliostat field is

more flexible than the center because a detailed tool is likely to calculate a heliostat

layout in which the shape of the boundary is slightly different from the one predicted

and used in this model, but the center of the field will surely be included. Using a

weighting system to reflect uncertainty in the model parameters allows more flexibility

30



in the results.

The results of this model do not represent the final stage in site selection nor a

substitute for a detailed calculation of field performance, which will be considered in

future work.
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Chapter 2

Heliostat Field Optimization: A

New Computationally Efficient

Model and Biomimetic Layout

2.1 Introduction

A new model is presented for the calculation of heliostat field optical efficiency, ac-

counting for all significant factors affecting the performance of central receiver solar

thermal systems including, (i) cosine losses, (ii) shading and blocking, (iii) receiver

interception (i.e., heat not lost due to spillage), (iv) atmospheric attenuation between

heliostat and receiver, and (v) heliostat reflectivity. The definition of each of these

terms is common in the open literature [27] and a detailed description of their calcu-

lation in the model is presented in Section 2.2 (except for heliostat reflectivity which

is assumed constant).

The purpose of developing this model, written in object-oriented Fortran 95, is for

the gradient-based optimization of both traditional and non-traditional heliostat field

layouts (e.g., on hillsides [21, 30]). This results in two main requirements, namely

(i) computationally efficient calculation of efficiency with high accuracy and (ii) suit-

ability for differentiation using AD tools [16, 17]. This article describes the new



model and proposes an improved biomimetic pattern for heliostat placement which

substantially improves on the existing heuristics.

As a result of the intended purpose of optimization of heliostat field layouts, the

proposed model was developed considering accuracy and computational efficiency,

allowing for several distinguishing approaches to implementation. Firstly, Monte

Carlo ray-tracing tools, such as SolTRACE [35], are accurate with a sufficient number

of cast rays; however, the drawback is that they are computationally expensive for

the purpose of evaluating instantaneous optical efficiency of large heliostat fields and

are not a practical option for optimization of annual optical efficiency. SolTRACE is

however used in Section 2.3 to validate the proposed model in small tests involving

only the instantaneous heliostat field efficiency and the results of the two models show

excellent agreement.

Secondly, the most expensive efficiency evaluation, that of shading and blocking,

is calculated using a discretization of the heliostat surface. With a relatively coarse

discretization, this method is both faster than exactly calculating the intersection

exactly and is sufficiently accurate. Similar codes in the open literature assume that

shading and blocking effects between multiple heliostats are distinct and therefore

can be treated pairwise [20] (i.e., the shaded or blocked region of a heliostat is neither

shaded nor blocked by another heliostat), or in an even more simplified case, that

shading may be neglected and blocking assumed to be constant [8]. However, with a

hierarchical approach to evaluating shading and blocking [5], these assumptions are

not necessary at the heliostat level because the source of shading or blocking does

not matter at the discretization level. In other words, the proposed model is similar

to ray-tracing techniques in that whether a region shaded by one heliostat is also

blocked by another heliostat is of no consequence because the ray does not reach

its intended target in any scenario. If shading and blocking is calculated between

heliostats pairwise, the resulting efficiency is either a lower or upper bound depend-

ing on whether the modeler assumes the pairwise effects are distinct or completely

overlapping, respectively.

Thirdly, the receiver flux calculation is more accurate than assuming a single



error cone originating at the center of the heliostat, because the proposed model uses

the surface normal at each discretization (or facet) to determine the direction of the

reflected rays as a function of orientation on the heliostat. As a result, the effect of

the time-variant optical error of aberration (i.e., astigmatism) is directly accounted

for.

Finally, rather than iterating with a constant time step size, as is common practice

in the open literature [20, 12, 36], the model presented takes steps in the solar state

space. In the middle of the day when insolation is at peak and the solar azimuth

changes the fastest (with respect to time), the proposed method takes small time steps

relative to sunrise and sunset. This approach allows the model to retain the same

accuracy as a constant time step implementation but requires much fewer iterations.

The structure of the subsequent sections is as follows. Section 2.2 describes all

major aspects of the model, namely the calculation of solar position and insolation

as well as each of the aforementioned efficiency factors presented in Equation (2.1).

Section 2.3 validates the most computationally extensive components of the model

(and thus most error-prone), specifically shading and blocking efficiency and inter-

ception efficiency. In terms of both implementation and computational expense, the

much simpler evaluation of cosine, atmospheric attenuation, and reflectivity efficien-

cies are discussed in Section 2.2 and the implementations are validated with the open

literature but do not warrant a detailed discussion. Section 2.4 demonstrates the ap-

plication of the model by evaluating the design of the commercial scale power plant,

PS10, as well as a new radially staggered configuration which performs better. Sec-

tion 2.5 presents a new biomimetic spiral heuristic and is shown to outperform even

the optimized radially staggered configuration. Lastly, Section 3.5 summarizes the

model, applications, and heliostat placement heuristics presented.

2.2 Model Description

The instantaneous efficiency is calculated as the product of the instantaneous effi-

ciency terms introduced in Section 3.1, where r,, represents cosine (or projection)



losses, qsb is shading and blocking, qitc is the interception of heat at the aperture (i.e.,

heat not lost due to spillage), and q,ef is the heliostat reflectivity.

77= 77cos * 7b' 77te ' 77aa ' 71ref

Additionally, two average annual heliostat field efficiencies are calculated, the

unweighted 'lyear and the insolation weighted 71year,1. The equation for the unweighted

efficiency is identical to the insolation weighted efficiency with the exception that the

insolation term Ib(t) is removed.

365 sunset

S Jse Ib(t)?l(t)dt
day=1 sunrse

Yyear,I - 365 sunset

Ib (t)dt
day=1 sunrise

2.2.1 Solar Position

In order to calculate the instantaneous heliostat field efficiency, as shown in Equation

(2.1), a model for solar position is implemented. The solar positioning model [10]

requires minimal computational expense, is sufficiently accurate, and has a simple

functional form which is beneficial in the implementation of automatic differentiation

tools used with gradient-based optimization algorithms. The solar declination, J, and

hour angle of sunrise and sunset as a function of day number, nd, and latitude, # (all

angles in radians), are calculated as

23.457r . 2 284 + nd

180 365

Wsunrise = cos-' (tan # tan 6) - 7r = -osu.set

The sun's position relative to an observer on the ground is described by two angles,



the solar altitude and azimuth (Figure A-1).

a = sin-1 (cos # cos J cos w + sin 4 sin J)

-1 (sin a sin 4 - sin J
(sisgn(n)coI Cos a Cos#

While these equations are sufficiently accurate for heliostat placement, if more

accurate solar positioning is required, models such as the Solar Position Algorithm

(SPA) [24] are available.

2.2.2 Insolation

The model used for estimating hourly solar radiation is the first version of the Mete-

orological Radiation Model (MRMvl) [4], which accounts for several transmittance

terms, but assumes cloudless skies. While this assumption prohibits the use of the

model in much of the world, sites which are suitable for CSP rarely have extended

periods of cloudy, overcast, or hazy weather. This model has been validated with

measurements from select locations in the United States and southern European

countries and has shown acceptable accuracy in capturing hourly, daily, and seasonal

variations. While the MRM is used herein, countless alternate radiation models in the

literature, and even measured data, can be used instead; insolation serves primarily

as a weighting function.

2.2.3 Cosine Efficiency

The calculation of cosine efficiency is extremely simple using the Law of (specular)

Reflection. The dot product of the directions of sun and heliostat (or facet) normal

direction is related to the angle of incidence, 64.

r/cos = cos Oi = dsun ' an

For a paraboloid, the surface normal direction is calculated at any position by



differentiating the equation of the surface, where z is the normal direction of the

center of the heliostat in the local coordinate system and f is the focal distance.

x2 + y2

4f

-z 0

d1 -y P 0 (for f > x,y)Qx2±y ,24f2
2f 1

2.2.4 Shading and Blocking Efficiency

An exact calculation of shading and blocking for a single heliostat, hi, is accomplished

by first calculating the pairwise intersection of hi with every other heliostat in the

directions of the sun and receiver, then finding the union of these intersections. Due

to the computational expense, no existing code for heliostat field optimization calcu-

lates shading and blocking exactly; instead, either ray tracing techniques are used or

assumptions are made about multiple interactions in order to eliminate the step of

computing the union of shaded and blocked regions.

A sufficiently accurate and simple alternative is to use a discretization of hi, as

shown in Figure 2-1(a). The discretization points are projected in the directions of the

sun and receiver for shading and blocking, respectively. If the projected point inter-

sects the interior of another heliostat, the representative area on hi is either shaded or

blocked, while a point on the exterior is neither. For the purpose of increased accuracy

(relative to only calculating whether or not intersection occurs), if the point is near

the heliostat edge, a region of width equal to the discretization distance (Js as shown

in Figure 2-1(b)), the amount of shading and blocking is interpolated as a function of

distance from the edge. The interpolation method chosen can also be used to ensure

that the model is differentiable, which may also be satisfied by time integration. The

reason shading and blocking are combined into a single term is that in the implemen-

tation of the model, the shading and blocking efficiency of each discretization point is

calculated as the minimum ratio of useful area to total area after projecting to each of



the other heliostats. For example, if the area represented by discretization point p is

is partially shaded by hi and partially blocked by hj, the interaction which shades or

blocks the largest area represents the efficiency of the discretized area. The shading

and blocking of the entire heliostat is then calculated the mean efficiency of the set

of discretization points. In terms of the implementation, the discretization points are

calculated such that the separation distance in both the heliostat width and height

is uniform. Recognizing that the effect of shading and blocking is typically small and

thus confined to the edges, it would be advantageous to use a fine discretization near

the heliostat edge and a coarse discretization in the middle; however, for the purpose

of this article, only a uniform discretization is considered.
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face ing and Blocking of Projected Discretized

Points

Figure 2-1: Schematic for Discretization Method of Shading and Blocking Calculation

The computational complexity of a pairwise comparison of heliostats can be re-

duced by only considering a subset of heliostats that can potentially shade or block

heliostat hi. This method, also referred to as the bounding sphere method [5], pre-

vents unnecessary calculations for heliostats that are incapable of shading or blocking

the heliostat currently being evaluated. Figure 2-2 illustrates how the method is used

to determine whether h2 is included in the subset of heliostats capable of potentially

blocking heliostat hi. If the distance d between the line segment connecting hi and

the receiver (or the ray from h1 in the direction of the sun) is less than the sum of

the radii of the bounding spheres, r, then h2 potentially blocks (or shades) hi. By

maintaining two lists of potentially shading and blocking heliostats for each hi, the



complexity of the pairwise intersection calculation is reduced from 0(n 2 ) to O(nm),

where n is the total number of heliostats and m is the subset of heliostats evaluated

for shading and blocking (typically m < n). Regardless of how shading and blocking

is implemented, the much simpler calculation of the distance between a point and line

segment significantly reduces the instances of the much more expensive calculation of

shading and blocking. Additionally, while the subset of potentially shading heliostats

needs to be updated for each time step due to the motion of the sun, the centers of

the heliostats and receiver aperture are fixed with respect to time, so the subset of

potentially blocking heliostats needs to be calculated only once.

Blocking Helioetat, h2

II. J Heliostat, hl
............ .... r. ..r2

*s Receiver

*% .
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Figure 2-2: Schematic for Evaluation of Potential Blocking of Heliostat h1 by Heliostat
h2

2.2.5 Interception Efficiency

The interception efficiency is calculated as a result of factors including off-axis aber-

ration (i.e., astigmatism), surface errors such as microscopic imperfections and slope

errors, tracking errors, and sun shape. The proposed model uses a similar discretiza-

tion method as in the calculation of shading and blocking to determine the direction

of the reflected rays at each point and the intersection of the reflected error cone with

the plane of the aperture. The direction of the reflected ray as a function of direction

of the sun (from the point of view of an observer) and the surface normal direction

of the discretization (or facet) is calculated as

dref = 2 (a asun) an - dsun



Similar to existing codes [27, 13, 7, 36], the error cone of the reflected ray is ap-

proximated with flux density proportional to an angular Gaussian distribution [23].

The interception efficiency is then calculated as the integral of the power incident to

the aperture divided by the total power incident to the plane of the aperture. As de-

scribed in the following, the power incident to the plane of the aperture is the specular

reflectance from the heliostats minus the atmospheric attenuation between heliostat

and receiver. It is assumed in the model that each heliostat aims toward the center of

the aperture. In reality, complex time-variant targeting strategies reduce the flux at

the center of the aperture by (intentionally) spreading the incident radiation across

the surface of the aperture. While these strategies mitigate the risk of dangerous

flux levels at the center, the result is a lower interception efficiency. Therefore, the

interception efficiency presented herein is an upper bound.

An advantage of using a discretization of the heliostat is that the curvature of

the heliostat is accounted for when calculating the normal direction of each point

during initialization of the heliostat field. Standard "on-axis" focusing or canting is

modeled by fixing the focal point along the optical axis at a defined distance. The

same procedure is used for asymmetric curvatures by defining a direction or solar

position in which each heliostat is designed to focus. After the normal directions of

the discretization points are defined, they too are rotated along with the position of

the heliostat at each time step.

2.2.6 Atmospheric Attenuation Efficiency

Atmospheric attenuation accounts for radiation losses in the distance dr, between a

heliostat and the receiver and is calculated as

0.99321 - 0.0001176drec + 1.97 - 10- 8d dr < 1000m
'rza=

exp (-0.0001106dre) drec > 1000m

for drec in meters [27]. These losses are approximated assuming a visibility distance



of about 40 km. Similar equations exist in the open literature for varying visibilities

[18, 20], but the difference is less than 1% in the range of visibilities typical of a clear

day.

2.3 Model Validation

The most computationally extensive components of the model (and thus most error-

prone), described in Section 2.2, specifically the terms shading and blocking efficiency

and interception efficiency, are validated using the ray-tracing tool SolTRACE [35].

Additionally, the dependence of efficiency on discretization size and time step size are

also investigated.

The model is validated with SolTRACE for several test cases shown below as

well as the full heliostat fields shown in Section 2.4. In all of the cases, using a

heliostat discretization of only 9 points (25 discretization points shown in Figure 2-

1(a)), the error in shading and blocking efficiency is less than 10-3. While this error

is sufficiently small for heliostat placement, the error reduces to less than 10-' using

a grid of 100 points. Therefore, the method presented is both highly accurate even

with a relatively coarse discretization.

Table 2.1: Interception Efficiency Validation Parameters
Location and Time

Latitude 37*26' N
Day March 20
Hour 3pm

Configuration
Receiver Position (x,y,z) (0, 0, 115)m
Receiver Normal Direction (0, 0.9763, -0.2165)
Heliostat Position (300,150, 5)m
Heliostat Width 12.84m
Heliostat Height 9.45m

Interception efficiency was also validated using SolTRACE by first checking that

the image of the concentrated light on the receiver (i.e., spot size) is consistent between

the two programs. Shown in Figure 2-3(a) is the image produced by a single heliostat



at the configuration shown in Table 2.1 and assuming an ideal paraboloidal geometry

(i.e., no facets or optical errors). Figure 2-3(b) is the image produced by SolTRACE,

which show excellent agreement. Furthermore, an advantage of the implementation

is that the time-dependent effects of off-axis aberration are directly accounted for by

using a discretization of the heliostat.
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Figure 2-3: Validation of Spot Size (neglecting optical errors) Shown
Coordinates of the Receiver Aperture of a Single Heliostat

Based on the location of the discretization points and the direction of the reflected

rays, the intersection of the rays with the receiver is known (Figure 2-3(a)). Then,

the calculation of interception efficiency simply combines the optical errors, sun size,

and the finite size of the facets into a representative error cone and an integration

of the intersection of the error cone with the surface of the receiver. The resulting

flux map from Figure 2-3 is shown in Figure 2-4, which was validated in SolTRACE

by modeling the individual heliostat facets. Again, after including optical errors, the

spot size and intensity show excellent agreement.

2.4 PS10 Validation and Redesign

PS10, the 11MWe power tower plant located in Andalusia, Spain [1, 3], is analyzed

with the presented model for additional validation and benchmarking purposes. As

detailed in Table 2.2, the heliostat field consists of 624 heliostats, each roughly 120m 2,
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Figure 2-4: Validation of Spot Size (including optical errors) using SolTRACE

arranged in a radially staggered configuration north of the 115m receiver tower. For

the purposes of this analysis, the heliostat configuration is assumed to be planar

despite the small variation in elevation of the PS1O site, with a maximum difference

in elevation across the field of approximately 10 meters [1].

The first test case is the existing PS1O layout, generated by the Sandia code

WinDELSOL1.0 [20, 34], shown in Figure 2-5(a). The resulting annual unweighted

efficiency is 64%, the same value provided by Abengoa Solar [1] as well as results

from previous modeling efforts [34]. Table 2.3 details a breakdown of the individual

efficiency factors described in Section 2.2.
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Without changing any aspect of the plant other than heliostat positions, the layout



Table 2.2: PS10 Heliostat Field Parameters [1, 3]
Location
Latitude 37O26' N

Longitude 6*15' W

Heliostats (Sanldcar 120)
Count 624
Width 12.84m
Height 9.45m

Reflectivity 0.88
optica 2.9mrad

o-sun shape 2.51mrad
Receiver

Tower Height 115m
Normal Direction (0,0.9763, -0.2165)
Aperture Width 13.78m
Aperture Height 12m

Solar Model
Distribution of Aerosol Particles, a 1.3

Turbidity Coefficient, # 0.1

of PS10 was redesigned using the presented model with a similar radially staggered

heliostat placement heuristic described in Section 3.2. The new layout, shown in

Figure 2-5(b) increases the optical efficiency -yea,1 by 0.19 percentage points and

decreases the land area by about 10.9% (where land area is defined as the area of

the convex hull of the (x, y) positions of the tower and heliostats), while maintaining

the constraint that nearby heliostats must be separated by a minimum distance such

that collision is not possible. Table 2.3 lists the individual efficiency factors. While

the effect of atmospheric attenuation is greater in the improved radially staggered

layout due to an increase in average distance from heliostat to receiver, interception

efficiency is slightly improved by placing the heliostats closer to the normal direction

of the receiver aperture so the intersection of the error cone with the aperture produces

a smaller spot size. Most notably however, is that by placing the heliostats closer

together, the total area of the field can be reduced significantly without sacrificing

efficiency simply by trading a lower shading and blocking efficiency for a higher cosine

efficiency.



2.4.1 Methodology of Heliostat Field Optimization

The heliostat field layout in Figure 2-5(b) was chosen by optimizing two parameters of

the pattern which control the increase in distance between successive rows and when

the rows split (i.e., when the distance between heliostats in a row is large enough that

the angular separation between heliostats in the successive row can be split in half

without the potential for heliostat collision or causing significant shading or blocking).

The nominal values for radial and azimuthal (angular) spacing are from the DELSOL

user's manual [20], where 0 L is the receiver aperture altitude angle with respect to

a position on the ground (function of row radius), HM is the heliostat height, WM

is the heliostat width, and THT is the tower height. The radial spacing has been

divided by two from the original form of the equation to represent distance between

successive rows.

1
Ar = - (1.14424 cot 9 L - 1.0935 + 3 .068 40 L - 1.125602) HM2L

0.02873 2r HM_-__r_ -
Aaz= 1.7491 + 0.63960L + 0283 WM 1r -M-A -

(L - 0.04902 2 r - HM - Ar 2r - THT)

In the implementation of the model, a multiplier is added to the Ar term to

modify the radial growth. Additionally, another parameter is used to control the

azimuthal spacing (when the row splits) and is defined by the ratio of the angular

separation of the current row and the Aaz term above. When this ratio exceeds the

parameter value, the angular spacing of the row is halved from the previous row. This

parameter optimization requires a computationally efficient model and is the primary

reason why traditional ray-tracing tools were not used.

Specifically, the individual locations of the heliostats are determined by generating

a pattern much larger than the expected size of the actual heliostat field using a known

heuristic (e.g., the radially staggered pattern) and selecting parameter values (in this

case, there are two) which control how large the pattern is and/or how quickly it

grows. Next, all of these candidate locations are evaluated in the absence of shading



and blocking in order to quickly calculate efficiency neglecting interaction between

heliostats. These candidate locations are then sorted by their individual efficiencies

and the n heliostats with the highest efficiency are chosen to comprise the field.

Finally, this field is then evaluated with all of the efficiency factors (including shading

and blocking) to calculate the average annual insolation weighted efficiency of the

entire field.

This process of generating the over-sized candidate set of heliostats, evaluating

the set, and then selecting a prescribed number of heliostats is repeated for a finite

set of parameter combinations in order to maximize the objective rqye, (as done for

the improved radially staggered and phyllotaxis patterns, Figures 2-5(b) and 2-6(a),

respectively). In the phyllotaxis pattern described in Section 2.5, the parameters

optimized are a and b of Equation (2.2).

2.5 Biomimetic Heuristic

For tower receivers, the efficiency of an individual heliostat is typically higher near the

tower than far away, see also Figures 2-7(a) and 2-8(a). Therefore, it seems preferable

to have a higher density of heliostats near the tower than far away even at the ex-

pense of increased shading and blocking. The disadvantage of the radially staggered

configuration is that the transition from high to low density is not continuous (unlike

efficiency). Therefore, a new heuristic is presented, inspired from spiral patterns of

the phyllotaxis disc, which has the advantage of a continuous density function. An

example is the configuration of florets on the head of a sunflower [33], taking the form

of Equations (2.1) and (2.2), where 9 k is linearly proportional to the kth element of

the sequence and rk is the radial growth function, expressed by the constant exponen-

tiation of kth element. The angular component is related to the golden ratio <p, which

equals 1 . In the example of sunflowers, the coefficient b in the radial component

equals 0.5, resulting in the form of Equation (2.2) known as Fermat's spiral. However,

when b is 0.5, the mean distance between neighboring florets in the sunflower model

is constant [19, 25]. In heliostat fields, it is beneficial to vary the heliostat pattern



density as a function of distance from the receiver, which is accomplished by allowing

b to vary.

O = 2-ip- 2k (2.1)

rk = akb (2.2)

2800 x 10
5

700 --- ---... ....... A-
o600- **.ie'~*.

500-.. - - -

4 00 - -3.

4300 .. -.

2 00 -.- . .

.... ... ...

r1o00 ---- 2.5 -! -.- --

-500 -250 0 250 500 02.68 0.85 0.69 0.695 0.7
(West) X Position [rn} (East) Efficiency, ie,.,j

(a) Redesigned PS10 Heliostat Field (b) Trade-off Between Heio-
Configuration Using the Phyllotaxis stat Field Area and Field Ef-
Spiral Heuristic ficiency

Figure 2-6: Redesigned PS10 Plant and Pareto Curves for Optimization
Field Area and Efficiency

of Heliostat

Applying the spiral pattern to heliostat placement yields the result shown in Fig-

ure 2-6(a). The values of the coefficients a and b are 4.5 and 0.65, respectively, and are

obtained with the same approach of parameter optimization as the radially staggered

results presented in Section 3.2, optimizing the heliostat field layout for combinations

of a and b in the ranges of [2,8] and [0.5,0.7], respectively. Figure 2-6(b) illustrates the

Pareto curve as it represents the trade-offs between the size of the heliostat field and

efficiency across the range of parameters selected for both the radially staggered and

phyllotaxis spiral patterns. In addition to the parameters shown, the center of the

spiral pattern was varied along the north-south direction with respect to the tower;

however, optimal field configurations resulted when the spiral pattern is centered at

the receiver tower. The value of cp is not optimized because even small variations from

the nominal 1 produces dramatically different patterns which were significantly



suboptimal. While other radial growth functions are considered, namely the loga-

rithmic and Archimedean spirals, neither perform better than the growth function of

Equation (2.2). This is due to the fact that the exponential and linear radial growth

functions of the two spiral patterns below results in a much faster change in heliostat

field density than Equation (2.2). As a result, either heliostats near the tower are

placed too close together or heliostats far from the receiver are spread too far apart.

rk = a exp (bOk)

rk - aOk

logarithmic spiral

Archimedean spiral

As detailed in Table 2.3, the spiral pattern significantly outperforms the radially

staggered pattern. Compared to the design of PS10, the spiral pattern has an effi-

ciency qyea,1 0.36 percentage points higher while simultaneously reducing the size of

the heliostat field by 15.8%.

Table 2.3: PS1O: Breakdown of Heliostat Field Efficiency Terms and Heliostat Field

7cos

?lsb

7Titc

'7aa

G7ref
n7year

7year, I

Area [x10 3m 21

radially staggered, radially staggered, phyllot
WinDELSOL1.0 MIT MIT
(Figure 2-5(a)) (Figure 2-5(b)) (Figur

Unweighted Heliostat Field Efficiency
0.8283 0.8308 0.8310
0.9255 0.9232 0.9264
0.9926 0.9937 0.9938
0.9498 0.9496 0.9491
0.8800 0.8800 0.8800
0.6401 0.6409 0.6430

Insolation Weighted Heliostat Field Efficiency
0.6897 0.6916 0.6933

Heliostat Field Area
439 391 379

An advantage of the spiral pattern is that the density of heliostats better matches

the pattern of heliostat efficiency as a function of position. Simply, the efficiency of

the heliostat field is improved by placing more heliostats in a higher efficiency location

axis spiral,

e 2-6(a))

Area



of the field until of course the effect of shading and blocking exceeds the incremental

benefit in the remaining efficiency terms, which is the reason the coefficient b in Equa-

tion (2.2) required optimization instead of assuming the same value as for sunflowers.

Figure 2-7(a) shows the layout of the redesigned PS10 plant with the radially stag-

gered configuration. The color map indicates the efficiency of each heliostat position

neglecting shading and blocking (used in the methodology for selecting the heliostat

layout, as described in Section 2.4). Figure 2-7(b) represents the density of the he-

liostat field as a function of position by plotting the distance between neighboring

heliostats as a function of position. Inherent in the radially staggered configuration

is a non-monotonic heliostat density as a function of distance from the receiver. This

is clearly suboptimal because the heliostats at the high density regions are incurring

significant shading and blocking while the heliostats in the low density regions are

not fully utilizing the high efficiency field positions. On the other hand, in the spiral

pattern shown in Figure 2-8, the density function is both continuous and monotonic.
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Figure 2-7: Comparison of Heliostat Efficiency and Density for the Improved Radially
Staggered Configuration

Another benefit of the phyllotaxis spiral is that the polar angle of the heliostat lo-

cations, shown in Equation (2.1), is related to the irrational golden ratio <p. Therefore,

no two heliostat centers share the same azimuth angle with respect to the receiver

tower, as opposed to the radially staggered pattern, where every other row shares the

same azimuth angle for every heliostat. Therefore, when blocking does occur in the



spiral pattern, it is more likely to be localized.
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Figure 2-8: Comparison of Heliostat Efficiency and Density for the Phyllotaxis Spiral
Configuration

Lastly, Table 2.4 presents the results of scaling the size of the field of PSI to

observe trends in efficiency and heliostat field area for larger plant sizes. At each

heliostat field size, the parameters of the PS10 plant remain constant, except for

the number of heliostats and size of the receiver aperture dimensions. The following

function roughly calculates the diameter of the receiver aperture necessary to maintain

the same interception efficiency as in PS1O for the optimized heliostat field as a

function of the number of heliostats. This function is simply a polynomial fit of the

annual average spot size at each of the field sizes and used to prevent high spillage

losses, not the result of a detailed analysis in receiver design.

da = -2.42. 0-ni + 5.37 10-3 nh + 8.95

As the number of heliostats is increased from the original 624, the difference in field

efficiency between the optimized phyllotaxis spiral pattern and the radially staggered

pattern grows while maintaining a roughly 18% reduction in heliostat field area. In

other words, the proposed pattern outperforms the radially staggered pattern and the

difference between the two is more pronounced at larger field sizes.



Table 2.4: Field Efficiency Improvement and Land Area Reduction of the Optimized
Phyllotaxis Spiral Relative to the Optimized Radially Staggered Pattern at Various
Plant Sizes
Number of Percentage Point Improvement Percent Reduction
Heliostats in Efficiency, rjye,1 [pp] in Land Area [%]
1000 0.1979 18.1
2000 0.3366 18.7
3000 0.3558 18.5

2.6 Conclusion

In this article, both a model and heuristic for heliostat field optimization are pre-

sented. The model, developed in object-oriented Fortran 95, is detailed herein and

validated with the use of SolTRACE [35]. As presented in Section 3.1, the develop-

ment of the model offers opportunities to improve upon existing methods for calculat-

ing heliostat field efficiency including a heliostat discretization approach which is both

fast and accurate in the calculation of shading and blocking and spillage. Addition-

ally the model takes iterations throughout the day in steps of solar state which results

in more instantaneous field efficiency evaluations around solar noon when the rate of

change of solar azimuth is fastest and when insolation is greatest, thus producing a

more accurate integration with fewer iterations.

The PS10 power tower plant in Andalusia, Spain, is used as a demonstrative

application which both shows results similar to those available in the open literature

[1, 34] and the ability of the model to improve upon existing configurations. As shown

in Section 2.4, even with the existing heuristic of placing the heliostats in radially

staggered pattern, the optical efficiency of the heliostat field can be improved by 0.19

percentage points while simultaneously reducing the land area by 10.9% simply by

optimizing the parameters of the heuristic.

Finally, a new heuristic inspired by disc phyllotaxis [33] is presented. Section 2.5

demonstrates the application of the spiral pattern by again redesigning the original

heliostat field layout of PS10 for an improvement in optical efficiency of 0.36 percent-

age points and reduction in land area of 15.8%. Figures 2-7 and 2-8 illustrate the

difference in radially staggered and spiral patterns' heliostat density and the ability to



utilize high efficiency land area. While the spiral pattern performs better than tradi-

tional approaches, there is likely still room for significant improvement by considering

other functional forms and heuristics.

As mentioned in Section 3.1, future work includes the optimization of uncon-

ventional sites for heliostat fields, such as hillsides in the CSPonD concept [21, 30].

Without the simplifications used in planar layouts, hillsides are expected to rely more

heavily on local optimization of individual heliostats and will require the automatic

differentiation tools introduced with optimization algorithms to generate suitable he-

liostat configurations.
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Chapter 3

Reduction in Spot Size via

Off-Axis Static and Dynamic

Heliostat Canting

3.1 Introduction

While central receiver plants are idealized as point concentrating systems, in actuality,

the reflected power from a heliostat creates a finite size image on the receiver. This is

obviously advantageous to avoid excessively high flux levels, but also means increased

receiver sizes. Simply, by reducing the image size (or spot size) of each heliostat, the

receiver can be made smaller and targeting strategies can more evenly distribute

the incident power from all heliostats. Traditional parabolic canting provides ideal

focusing when the heliostat, receiver, and sun are aligned, and thus he focal point lies

in the line of symmetry of the paraboloid. However, for most heliostats in a typical

field, the receiver is far from the axis of symmetry during periods of peak insolation,

which results in significant aberration. In this article, two alternative canting methods

are evaluated based on their average reduction in spot size. The reader is referred to

[6] for a more detailed discussion and thorough literature review.

The structure of the article is as follows. Section 3.2 describes the methodology



used for defining the orientation of the facets and how canting performance is eval-

uated. Section 3.3 presents a case study based on [6] as a means of validating the

approach described in Section 3.2. Finally, Section 3.4 presents the results of two case

studies, namely a traditional planar heliostat layout with a tower receiver and a he-

liostat field located on a hillside which direct lights down to a ground-level salt pond.

Both static and dynamic canting are considered. Lastly, Section 3.5 summarizes the

results of the case studies.

3.2 Methodology

The approach used in this analysis for optimizing heliostat canting is to select a facet

orientation which maximizes the power incident to the receiver (i.e., the interception

efficiency). However, this requires assumptions on the receiver design (e.g., one or

multiple flat/cavity apertures, external cylindrical receiver, etc.) and dimensions.

Herein, an alternative metric that does not require assumptions on the receiver uti-

lized is the average annual insolation-weighted spot size (or image) on a plane at

the receiver and aligned normal to the incident power. Simply, if the receiver is flat

and pointed directly at an individual heliostat, the spot size is the effective diameter

determined to capture 98% of the incident power. Minimizing this spot size allows

for smaller receiver sizes, higher interception efficiencies, and more complex targeting

strategies geared toward uniform flux distribution at the receiver.

In the case studies presented, optimal canting at a single point in time is deter-

mined by aligning each facet such that the reflected ray from the facet center strikes

the center of the receiver. While aberration is instantaneously eliminated, the spot

size is not zero due to additional optical errors such as macroscopic and microscopic

imperfections of the heliostat surface, sun shape (i.e., the sun is not a finite source),

and in the case of non-focusing facets, the size of an individual facet. The model val-

idation performed in Section 3.3 uses focused facets while the case studies in Section

3.4 use heliostats with flat facets.

In the case of static off-axis canting, the facet orientation is prescribed by a design



day and time, then fixed (relative to the common frame) and evaluated by calculating

the average annual insolation-weighted spot size. This process is repeated for the

entire year to determine the optimal day and time of day which results in a minimum

spot size. In dynamic canting, the heliostat facets are assumed to be controlled

such that at all time, the center of the facets are perfectly focusing. The results for

both canting types are presented as the percent reduction in spot size compared to

parabolic canting.

3.3 Model Validation

The model used herein for the calculation of heliostat spot size is an in-house model

developed for heliostat field optimization (Noone et al. [22]) and has been validated

using SolTrace [35]. However in [22], only on-axis parabolic canting is considered.

In order to validate an application of off-axis canting, a case study from Buck and

Teufel [6] is considered. In short, the average annual insolation-weighted interception

efficiency is calculated for a single heliostat with off-axis canting as a function of

design day and time, i.e., the point in time for which the heliostat is canted such that

the center of each facet focuses perfectly on the center of the receiver aperture (zero

aberration). In consistency with [6], the interception efficiency for a given receiver, as

opposed to the proposed spot size metric, is considered. All parameters used (receiver

design, facet size, heliostat location, etc.) are the same as in [6]. In Figure 3-1 the

results of the in-house code are compared to the literature results and show excellent

agreement in terms of efficiency magnitude, trends, extrema, and optimal design day

and time that maximizes interception efficiency.
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Figure 3-1: Receiver average annual insolation-weighted interception efficiency as a

function of design day and time of static canting. The model used herein closely

matches both qualitative features and quantitative values of literature results [6].

3.4 Heliostat Canting Case Studies

With the methodology presented in Section 3.2, two case studies are considered. The

first is a traditional tower system modeled after PSI, the 11MWe power tower plant

located in Andalusia, Spain [1, 3]. The receiver aperture is approximately 100m above

the heliostat field, which consists of 624 heliostats each approximately 120m 2 in area.

The second case study evaluates the potential improvement of off-axis canting for

beam-down heliostats on hillsides, e.g., a plant design called the CSPonD concept

[21, 30, 14]. This field design involves placing heliostats on a south-facing hillside (if

in the Northern Hemisphere) to reflect light down and directly into a ground-level salt

pond. In both case studies, two heliostat designs are considered, (i) facets which are

canted based on a single design day and time (referred to as static canting), similar

to the validation case study based on Buck and Teufel [6], and (ii) facets which are

actively controlled throughout the day such that each facet center is always perfectly

focusing (referred to as dynamic canting).



3.4.1 Planar Heliostat Field

In the power tower configuration with a planar heliostat field, the heliostat dimensions

and receiver height are modeled after PS1O; but unlike PS1O, heliostat locations in a

full 360' around the tower are considered. Figure 3-2(a) shows the percent reduction

in spot size, compared to on-axis parabolic canting, due to static canting of a heliostat

as a function of position relative to the tower. The most significant improvement is

gained to the south of the tower with approximately 5% reduction in the average

annual insolation-weighted spot size. If a cavity receiver is considered such that the

acceptance angle requires the heliostat field to be north of the tower (e.g., the PS10

receiver), the spot size reduction is only 1-2%.
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Figure 3-2: Reduction in average annual insolation-weighted spot size for a planar
heliostat field with tower receiver (height = 115m) as a function of field position. The
receiver is located at the origin (x=0,y=O).

In the case of dynamic canting, there is a significantly greater opportunity for

improvement. Figure 3-2(b) again shows the percent reduction in spot size, yielding

an average improvement of 20.8%. The average improvement is calculated as the

mean spot size reduction using a uniform distribution of heliostats in the limits of

the plot shown. No weighting function was used to reflect the density of an actual

heliostat layout nor variations in efficiency. Not only is the spot size reduction more

significant in the dynamic case, but the locations with highest improvement are in a

west-east line near the receiver, which have a higher cosine efficiency than locations

south of the receiver.



3.4.2 Hillside Heliostat Field

The second case study, based on the CSPonD concept [21, 30, 14], utilizes a south-

facing hillside as the site for a heliostat field to reflect light downwards. Consequently,

and in contrast to a receiver atop a tower, not only are projection (cosine) losses

greater but aberration is also greater using on-axis parabolic canting. An idealized

hillside is tested in which the ground-level receiver is located 100m south of the base

and the hillside is defined by a constant slope in the x-direction (east-west). In both

static and dynamic canting, three hillside slopes are considered.

The first scenario, static canting, is presented in Figure 3-3. Similar to the

tower configuration presented in Section 3.4.1, the reduction in spot size compared

to parabolic canting is small. While the reduction is as much as 5% at locations very

close to the receiver, average improvements are again in the 1-2% range. Locations

south of the receiver were not considered in this case study because the cosine effi-

ciency of a heliostat focusing light directly into the salt pond from the south, at the

same elevation, would be prohibitively low.
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Figure 3-3: Reduction in average annual insolation-weighted spot size for a beam-
down hillside heliostat field with static canting as a function of heliostat field position.

The second scenario, dynamic canting, is shown in Figure 3-4 to have potential

benefits much greater than the static case, with average improvements ranging from

22.1% to 25% depending on hillside slope. Note that reducing the effective diameter

of the receiver by approximately 23% can result in significant improvement in receiver

efficiency and motivates dynamic canting instead of on-axis parabolic canting.
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Figure 3-4: Reduction in average annual insolation-weighted spot size for a beam-
down hillside heliostat field with dynamic canting as a function of heliostat field
position.

3.5 Conclusion

In this article, two off-axis heliostat canting methods are compared to the traditional

on-axis parabolic canting. As a metric for comparison, average annual insolation-

weighted spot size was minimized. A small spot size allows for uniformly distributing

power on the receiver and minimizes losses to the environment, e.g., interception

losses or thermal (convective and radiative) losses from the receiver. Both static (i.e.,

facets rigidly attached to the common frame) and dynamic canting are considered.

While the degree of complexity in the heliostat design varies significantly between the

two, dynamic canting provides an upper bound on the expected improvement for the

case studies considered.

In both planar and hillside heliostat fields, static off-axis canting provided only

a small improvement over on-axis canting with roughly a 1-2% reduction in average

annual insolation-weighted spot size. In other words, for the same interception effi-

ciency, the receiver effective diameter could be reduced by about 1-2%. In contrast,

dynamic canting yielded a more dramatic result, reducing the average spot size by 20-

25% in the case studies considered. Whether either canting method is implemented

depends on the thermo-economic trade-off of reduced receiver size versus increased

heliostat cost. This trade-off has not be considered herein.

Intuitively, beam-down heliostats (located on a hillside) are expected to be sig-

nificantly better candidates for off-axis canting than heliostats with a tower receiver.



However, based on the results, the method of canting is a much greater influence on

performance than the field configuration. This result is explained by a contribution

of other factors affecting spot size other than aberration, including surface errors on

the mirror and sun shape. Therefore, the spot size has a much greater dependence

on heliostat canting and dimensions than on the configuration of the field.

Finally, while not considered in this analysis, is the potential for optimization of

static canting. The implicit assumption in this paper is that the optimal annual cant-

ing corresponds with an optimal instantaneous canting, which has not been proven.

The model has the capability to do such optimization, but is not considered herein.



Appendix A

Horizontal and Cartesian

Coordinate Systems

The transformation from the local (body-fixed) frame (Cartesian coordinates, as in

Figure A-1, with origin at the heliostat or aperture center) to the global coordinate

system is calculated via the rotation ([R]- 1 = [R]T) and translation [31]. The az-

imuth and altitude (shown in Figure A-1) are defined with respect the surface normal

direction.

North

Altitude, a 'Y

West --- ..., --- East

Azimuth, -y

Horizontal
South Plane

Figure A-1: Horizontal and Cartesian Coordinate Systems
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