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Abstract 

In the field of composites technology, inefficient and poor designs of twist drills contribute immensely 

to the challenges facing drilling of composite materials. An attempt to report some of the drill design 

methods and their inherent challenges confronting composites machining necessitates the writing of this 

paper. A critical review has been conducted to offer a clear understanding of current advances in the 

field of mechanical drilling of composite materials, focusing on geometry, material and parametric tool 

designs. The inter-dependable effects of thrust force, cutting speed, feed rate, cutting force and torque on 

drill design are similarly reviewed. This paper also reveals other associated issues facing composites 

drilling include delamination, surface roughness, rapid tool wear and drill breakage. Well-designed drill 

geometry and good knowledge of drilling parameters afford the producers of polycrystalline diamond 

(PCD), Carbide and high speed steel (HSS) tooling materials better opportunity of developing a drill that 

will minimise delamination of the reinforced composites, tool wear and produce a high quality surface. 

Twist drill manufacturers and users will benefit from this paper as they seek to have well designed and 

improved drills.    
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Introduction 

The kinematics of drilling is a process of using a rotating drill bit to create or enlarge existing round 

holes in a workpiece.1 Drilling is one of the most frequently processes used in manufacturing industry 

among machining operations.2 Tonshoff et al.3 noted that drilling takes about 25% of the total machining 
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time and 33% of all the total machining operations of a manufacturing process. It is a preliminary step 

for many other machining operations, such as reaming, tapping and boring.4, 109 

     Drill, as a rotary end cutting tool, has one or more cutting lips and flutes for the release of chips and 

the access of a cutting fluid. Presently, drill bits are the most frequently and extensively used material 

cutting tools.5 Geometrically, a twist drill is a complex material cutting tool, as depicted in Figure 1. 

Both the geometrical shape and dimensions of a twist drill determine the cutting performance; influence 

the cutting forces, tool wear, cutting dynamics and, the quality and integrity of drilled holes.6–9 These 

make the design of twist drill of a critical importance. A poorly designed cutting edge results in an 

undesired distribution of the cutting angles along the drill cutting edge10–13, causing inefficient 

performance, loss of cutting ability and increase in total manufacturing cost.  

    This paper reviews recent advances in twist drill design for machining of composite materials. The 

main objective is to critically review the literature, focusing on the effect of twist drill design parameters 

on composites drilling. An attempt is made to outline the fundamental limitations of the currently 

developed and applied designs. The first part of this paper focuses on the variation in geometric design 

of twist drills, followed by tooling materials with respect to composites drilling; hence, common 

limitations associated with composites drilling and drilling parameters are lastly considered.  

Twist drill geometric design concept 

The complexity of the geometry of a twist drill requires careful design consideration. The cutting 

dynamics, drilling forces and tool wear14–19 strongly depend on the drill dimensions and geometry. The 

machine tool requires much more energy and power when its cutting tool is poorly designed, in addition 

to tendency of damage on the machine.   

    Fetecau et al.20 reported that the efficient approach to reduce drill wear in order to increase the drill 

performances is to have well defined geometry of the main cutting edge only, such that it could lead to a 

constant unitary energetic load along the main cutting edges. In an attempt to redesign a drill for an 

optimum performance, the flute profile has often been designed by incorporating ‘forward’ and 

‘backward’ simulation analyses, to decide on an optimum geometry of the flute grinding process.22 A 

straight lip and parabolic heel flute profiles, computer-aided design/manufacture software were used to 

establish a design flute profile from the drill specification. The application of the software and model to  
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Figure 1. Characteristics of a typical double fluted drill.21,40

flute showed that the required wheel profile parameter with respect to the diameter could be represented 

by simple regression equations.     

     Piquet et al.23 studied the drilling of thin carbon/epoxy laminates with two types of drills: a helical 

drill and a drill without chamfer on the cutting edge, made up of HSS and “micrograin” tungsten carbide 

(K20 rating) respectively. It was concluded that both drills caused damage at the entrance of the wall 

and the exit of the hole, but K20 tungsten carbide geometry drill produced reduction in the final damage. 

Cutting edges and angles 

The design of cutting edges has focused on point design with consideration of cutting forces for arbitrary 

cutting geometries24, stress analysis25, and design and optimisation using simplified drill geometry 

models.26-30 Majority of the drill geometrical improvements has often been limited to the chisel edge 

region. This proved to be effective in reducing the total thrust force, but marginally reduced the torque 

and the power which are major determinants of the tool performance.2 Furthermore, significant design 

features such as reverse web taper and internal cooling channels, cutting lips and chisel edge geometries 

including verification of grindability which is important for the drill cross sectional design has been 

reported to be considered in an acceptable drill geometry model.31 

     Thinned purpose and faceted point together with the patented 'circular centre edge' designs have been 

developed, using predictive force models.32 The predictive mechanics of cutting models for thrust and 

torque were numerically and experimentally tested, and found that the drill designs substantially reduced 

the thrust force when compared to un-thinned drills and differences in the forces for the three designs 

were minimal after comparison. 
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     A practical method to determine the cutting edges and rake angles has been carried out by Li et al.33 

Cutting edge points and the rake angles were examined using 2D tool microscope and image-based 

instrument and numerical computation respectively. This method proved effective compared with 

common unaffordable labourious analysis required in rake angle determination, because it does not 

require high level of co-ordinates transformation and mathematical competence.      

Lip Geometry 

Sambhav et al.34, 36 established a methodology to model the geometry and cutting forces of drills with 

generic point. With the aid of non-uniform rational basis spline, CAD geometric models were used for a 

fluted drill in terms of bi-parametric surface patches. Generic and mechanistic models were presented 

for the cutting lip and chisel edge, and prediction of the forces respectively. The mechanistic model was 

applied to calculate the forces for each element and determined the drill total thrust and torque. 

Similarly, a new paradigm to model various twist drill geometries in terms of three-dimensional 

parameters was established by Tandon et al.37 Their work outlined the construction of a detailed CAD 

model for a fluted tool. A new well detailed and broad 3D definition of the drill geometry was 

established. 

Point Angle 

Durão et al.38 experimental techniques showed that the most effective tool was 120o point angle drill for 

minimal delamination and at higher feed rates. They reported that a good alternative could be a step drill 

designed for a particular composite though presently, not yet available commercially. Vijayaraghavan39 

reported a tool which could generate automated 3D CAD drill geometric models and manufacturing 

parameters as a required component of numerical/finite element analysis models of FRP drilling. The 

outputs of the tool gave variety of solid geometry formats of drills and through meshing, it was used in 

different FEA analysis packages.  

     Drilling of thick fabric woven CFRP composite laminates was experimentally performed, using 

uncoated carbide (UC) and diamond coated carbide (DCC) twist drills. The effects of the geometries of 

double pointed angle drills were investigated.115 The UD, DCC-I and DCC-II have 6.35, 6.91 and 

6.38mm diameters; 140-60o, 130-60o and 140-60o drill tip angles respectively, with rake, clearance and 

helix angles of 7o, 11o and 30o respectively. The geometries of both UD and DCC-II drills were the 

same, while the tip angles, primary and secondary cutting edge lengths of DCC-I and II drills were 
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different. The diamond particles size as well as the coating condition and thickness determined the 

performance of the drills. It was concluded that the geometry of DCC-II was appropriate than the DCC-I 

drill during high feed drilling of the composite material, producing critical hole diameter tolerance than 

delamination drilling-induced damage. 

Table 1. Effects of different drill point angles and helical angles on interface normal stresses.40 

 Normal stress                       Point angle (degree)                                 Helical angle (degree) 

    (GPa) 

                                           90             118             135                           20             30            40  

   σrmax                              1.217          1.227          1.234                        1.24          1.23          1.21 

   σϴmax                                             2.78           2.89            2.94                          3.05          2.89         2.73 

 

     Chao et al.58 stated that edge radius has the greatest effect on the interface stresses by deposition. 

Tensile radial normal stresses affected the reliability of the coating bond and changed helix angle, point 

angle and web-thickness. These stresses influenced a difference in drill tip from 100 to 200 point angles. 

Meanwhile, point angle increased with the normal stresses unlike helical angle, as shown in Table 1, 

where σmax is the maximum stress, though depends on the tooling material, but decreased with 

delamination.38, 41 Stresses on the tool reduce its life. Kilickap73 observed that increase of HSS drill point 

angle leads to decrease in delamination effect during unidirectional-ply GFRP composite laminate 

conventional drilling.  During drilling (high speed and conventional) of woven-ply CFRP, Gaitonde et 

al.91 reported that cemented carbide K20 point angle increases with increase in delamination damage.  

 

Lip flute profile 

Armarego and Kange22 reported that the generated lip and heel flute profiles closely formed the ideal 

profile for the creation of straight lip and a parabolic curve respectively, with the curve being tangential 

to the web diameter and passing through the corresponding heel corner. A multi-objective geometry 

optimisation was realised by Sardinas et al.42 by implementing meta-heuristic algorithms. The 

subsequent geometry was validated and verified by constraint functions including chip flute grindability 

verification. 

 



6 

 

 

Tooling material selection    

Tooling material influences drilling-induced damage, such as delamination effect14, 15, 43, and variation in 

cutting forces44 which have significant effects on both drill life and the structural integrity of composite 

materials. 

Drill tool materials 

The life of a drill depends mainly on hardness, toughness, wear and thermal resistance.  A good drill 

must possess ability to resist wear, fracture, quick rupture and retain hardness at the state of hot 

hardness. The major properties of different tool materials are shown in Figures 2 and 3. From these 

Figures, hardest tooling material; PCD possesses least toughness property as its sharp deformation 

occurs around a temperature of 600oC unlike HSS with the best toughness, but deforms around 700oC 

when compared with other tooling materials.  

 

Figure 2. Relationship between hardness of                      Figure 3. Relationship between hardness and       

drill materials and temperature. 45                                        toughness of drill materials. 45 

High speed steel 

Liu et al.46 reported in their review study of drilling composite laminates that HSS or Carbide 

drill bits have primary attraction based on better performance at high cutting speed compared with 
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other drill bits. Some studies48-50 used HSS drills frequently; making it the most widely used tooling 

material due to its availability, low cost and highest toughness, as shown in Table 2. It has a highest 

percentage (47%) of applications; 24 applications out of 51 research works considered. 

Table 2. Various twist drill materials for drilling composite laminates. 

                                                             Tooling materials 

                      PCD                        CCC                           UCC                                  HSS 

               [51], [55], [56],       [16], [40], [58]           [19], [42], [43],           [9], [14], [15], [17], [18], 

                    [57], [58]            [59], [60], [61]           [51], [52], [53],          [43], [46], [47], [48], [49], 

Reference                               [62], [63], [64]           [54], [65], [66],          [50], [51], [53], [54], [68],   

                                                                                  [67], [68], [69],          [71], [72], [73], [74], [75], 

                                         [70]                         [76], [77], [78], [79]. 

Total                5                                9                               13                                          24 

 

Cemented Carbide  

Carbide drills performed better in terms of wear resistance, delamination effect and surface finish 

when compared with HSS under comparative low speed and feed at high temperatures when 

drilling the same composite materials18, 43, 49, 51-54, as indicated in Figures 2 and 3. When the 

radius apart from the corner was measured, almost null wear land was shown in the flank surface 

of carbide drills, while HSS drill had considerable wear.49 

Polycrystalline Diamond  

Garrick55 reported producing a veined drill that was capable of drilling carbon composites and its 

stack with titanium. However, he observed that, after 200 holes had been successfully drilled, a 

wear land was formed on the cutting edge of the 86 series PCD veined drill which necessitated re-

sharpening of the drill. In addition, it was reported that in order to strengthen its cutting edge and 

make PCD drills viable, it might require modification with k-lands. Also, further suggestion was 

made, that an assessment of the drill process and delamination would be useful in the design and 

optimisation of new PCD drill geometry that might give a better output. Investigation of the effect 
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of the cutting parameters on drilling carbon/epoxy and carbon/peek was done by Chambers and 

Bishop.56 They concluded that the drilling of carbon composites is dependent upon the 

characteristics of the matrix. The helical PCD drill geometry gave the best overall performance 

when compared with other cemented carbide drills, but more reactive to feed rate changes, when 

delamination was considered51. 

    Heath57 reported that PCD being a stronger tool material could be used for machining of 

composites because of its ability to withstand the severe abrasion of the carbon fibre reinforced 

composites. However, PCD is found to be too fragile to withstand the high cutting forces required 

for metal such as titanium57 especially when stacked with composites. Furthermore, the 

configuration of the core drill had been proved better the traditional twist drill. Therefore, the 

outstanding advantages of core drilling, using a solid PCD drill has been reported by Butler-Smith 

et al. 111 A novel designed core drill produced 26% reduction in thrust force, reduced drill 

surface clogging, cutting force and drilling temperature, producing reduced delamination damage 

possibility during composites drilling. The novel micro PCD core drill possessed laser generated 

cutting micro-teeth formed onto a tungsten carbide backing. The performance of this novel drill 

was experimentally compared with electroplated diamond tool during micro-core drilling. The 

electroplated diamond micro (EDM) core drill produced cutting forces that were 36% and 190% 

greater than PCD core drill at new state of the tool and after 216 drilled holes, resulting to terrible 

composite delamination. Similarly, up to 11% and 25% greater drilling temperatures were 

generated by the EDM core drill than the PCD core drill at new state of the tool and after 216 

drilled holes. Also, at 216th hole 1.8 times higher thermal spread was produced by EDM core 

drill than the PCD core drill.  

Problems associated with drills  

Rapid tool wear 

Tool wear is an unwanted phenomenon in machining process, whereby tool lost an amount of 

matter. It affects the quality of the drilled surfaces (holes) and geometry of the material 

workpiece. The chip produced during the drilling of carbon composites is abrasive dry powder. 

The ineffective extraction of these chips is one of the major reasons for high tool wear rates. The 

most common type of wear; crater wear occurred to a major extent as a result of discontinuous 
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chip formation, caused flagging of the tool which propped up cutting edge chipping.51 The 

cutting force increased with the workpiece-drill tool interface temperature, followed by the 

increased drill wear, resulted to workpiece deflection and drill bit breakage.108 The flank wear 

decreased near the corner of the drill chisel edge, while the maximum flank was common at the 

drill outer corner. Increase in thrust force, torque on the drill bit and the number of drilled holes 

caused a proportional increase in the drill tool wear. 108  

    There have been some research on the tool wear processes during drilling of carbon 

composites, as well as the effect of tool wear on the drilling forces and quality of the holes 

produced. Some investigated the drilling process and correlated it with delamination, while others 

correlated the drill geometry and feed rate to delamination.41, 52, 78, 80-83 

    Karpuschewski et al.71 reported that consistent rounding of the drill cutting edges improves the 

quality of the corner edges and tool surfaces that form the cutting edge, citing that rounded 

corners allow the avoidance of run-in periods.  Consequently, the high wear of the drill is reduced 

which leads to 80% increased tool life. Ramkumar et al.76, 77 and Zhang et al.74 stated that 

vibration assisted twist drill could be used to improve drilling operations and reduce wear. Lin 

and Chen84 concluded in their study on drilling CFRC materials at high speed that an increase in 

the cutting velocity led to an increase in the drill wear which directly caused a rise in the thrust 

force. Furthermore, an analysis and monitoring of occurrence of a flank wear on a 10mm 

diameter twist drill tool had been carried out effectively by Sivarao 108, using Mamdani fuzzy 

inference system (FIS). He reported the reliability of the Fuzzy application as a tool condition 

monitoring technique. Statistical and mathematical methods have been used comparatively, to 

determine the wear on two 10mm diameter twist drills during drilling operation.110 The drill 

tools  X and Y experienced the same process parameters, but slightly different in specification. 

Drill tool X had 57HRc, 86mm and 136mm, while tool Y possessed 55HRc, 87mm and 133mm 

of hardness, flute and overall lengths respectively. Drilling operations were carried out with and 

without lubricant conditions. Tool wear analysis was performed by applying regression analysis 

and inverse coefficient matrix (ICM) method, considering these drilling variables: thrust force, 

feed rate, cutting speed and drilling time. In both drilling conditions and within drilling 

parameters selected, the results obtained from the statistical analysis were much better in terms of 
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accuracy and reliability, when compared with the expected values got from the mathematical 

analysis. Also, Tool X proved superior to tool Y in terms of design, quality and functionality. 

    Wear mechanisms of PCD and tungsten drills when drilling CFRP stacked on top of titanium 

(Ti) has been studied by Park et al.58. The wear rate and progression of the tool surface were 

periodically monitored by using a scanning electron microscope and a con-focal laser scanning 

microscope. Micro-chipping was observed at the cutting edges near the PCD drill margin which 

reduced the tool performance. Major chipping was observed at the cutting edges when drilling 

titanium as a part of the constituents of the stacked composite due to the brittle nature of the PCD. 

However, the PCD drill was comparatively better than a tungsten drill tool in terms of wear 

resistance. 

Edge chipping and breakage 

Edge chipping is a process whereby small pieces of the drill is removed or cut off as a result of 

high cutting and thrust forces, as depicted in Figures 4 and 5.85, 86 Ineffective removal, control of 

the various  

 

 

 

 

 

Figure 4. Twist drill edge chipping type of wear at lip.85 

chip formation, poor cooling of the drill and improper selection of the drill point angle, helical 

angles, chisel edge and inadequate knowledge of the composite materials could lead to reduction 

in tool life and eventually, tool breakage. These occur when there is no effective space between 

the tool and workpiece due to poor design of drill geometry and thermal resistance, causing 

catastrophic rise in drill temperature. 
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Figure 5. Types of drill wear: (a) Outer corners; (b) Flank; (c) Margin; (d) Crater; (e) Chisel edge 

and (f) Chipping.86 

Tool coatings 

Improvement and better performance of twist drill life could be achieved, especially at high 

cutting parameters such as cutting speed and feed rate, and during dry machining, by coatings.45 

Coating increases wear resistance, surface quality of drilled composites, corrosion resistance and 

oxidation resistance. Factors include coefficients of friction, interface temperature and thermal 

energy that aids wear could also be reduced using appropriate coatings on correct drill bits. 

Coatings are rampant on both cemented carbide and HSS drills.  

Coated cemented carbide 

Drill geometry effects on the deposition residual or interface stresses in diamond coated carbide 

drills has been investigated by Chao et al.40, through the performance of a solid modelling of 

diamond-coated two-fluted twist drills. They concluded that diamond-coated drills have a 

potential for high performance drilling and for drilling of difficult-to-machine materials. 

Researchers have concluded that coated drills performed better than the uncoated, as a result of 

their increased wear resistance and consequently, improved tool life.61-63, 87 
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Coated high speed steel 

Investigation on effectiveness of WC-8CO electro-spark coating on HSS drills has been reported 

by Raju et al.72 They stated that ESC performance enhances the drill bit life, as high as 5 fold 

compared to the uncoated HSS drills, based on the machining conditions of variable spindle speed 

at fixed feed. In comparison to bare drill bit, ESC coated drills performed better in terms of tool 

life even when drilling at higher speeds. 

Performance and effects of tool coatings  

The better or improved performance of drill bits are achieved through coating. In machining 

technology, several processes have been used in coating cutting tools. In the past nearly 40 years, 

the thermal diffusion and thin-film processes have been well and rampantly used.  Also, it could 

be chemical and physical vapour deposition (CVD and PVD, respectively) coatings. 

Contemporarily, 40% and 50% of high speed steel and super hard tools, while 85% of carbides 

utilised in company are subjected to coating, either on the substrates or entire tools.45 The later 

application attracts more cost. The coating method could be combination of multiple layers. 

Among the tooling materials, carbides have been found to be an excellent substrates, irrespective 

of the types of coatings, including solid lubricant, soft, hard or super-hard, single and multi-layer 

coatings, as well as PVD: Chromium nitride [CrN], Titanium nitride [TiN], Titanium aluminium 

nitride [(Ti,Al)N)] and Titanium carbonitride [TiN(C,N)], to mention but a few.45 Audy 113 

performed a comparative experimental and quantitative investigations on TiN, Ti (C,N) and  Ti 

(Al,N) coatings and found that Ti (Al,N) coating produced the lowest force components  and 

‘edge’ forces, using cathodic arc evaporateds PVD coatings. Sivarao et al.107 have reported in 

their experimental work that the TiAlN coated 8mm diameter twist drill tool performed better 

when compared with the TiN coated type, under the same dry drilling conditions and parameters 

in terms of reduction in burrs formation (height). However, using 5mm diameter drill tool, TiN 

coating proved better when considered the caps formation. The characteristic performances of 

these coatings are based on their ability to function at high speed, high temperature and dry or 

semi-dry condition of machining.  

     In addition, Iliescu et al.114 had modelled and experimented the uncoated and Balzers (BS) and 

Cemecon (CN) diamond coated twist drills wear in CFRP drilling. The drills were manufactured 
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by Diager and Sofimag manufacturer. The results obtained revealed that higher life expectancy of 

the CN diamond coated drills than the BS coated type, while the Diager and CN coatings were 

better than the Balzers coating. Furthermore, in a single shot conventional drilling operation on 

30mm thick Ti-6Al-4V/CFRP/Al-7050 stacks, a comparative experimental evaluation of the 

effects of diamond-like carbon (DLC) and chemical vapour-deposited (CVD) diamond tool 

coatings on drill wear modes and quality of drilled holes were carried out by Kuo et al.118 The 

DLC and CVD diamond coated drills experienced abrasion (and brittle fracture) wear mechanism 

initially and untimely flaking/delamination of the coating primarily, respectively. They concluded 

that the holes drilled with CVD diamond coated drills were clearly better than holes produced 

with DLC coated drills, in terms of burrs reduction and when circularity was considered. 

 Drilling of composite materials  

Composites refer to physically and chemically joined materials of dissimilar phases which are 

separated by a distinct boundary (Figure 6). The dissimilar systems are joined together in a bid to 

achieve structural and desirable properties which are unattainable homogeneously by each 

constituent.87 Composites have become attractive materials today with various applications such 

as defence or military (naval and marine), transportation (automobile, marine and aerospace), 

structural (houses and buildings),  communication and manufacture engineering as highly demand 

for materials of low weight, high strength, required stiffness and resistance to high wear, shear 

stress, impact, fatigue and temperature is increasing.88-90,116,119,120, 121 Carbon fibre reinforced 

polymer composites are rampant workpiece in experimental composite materials drilling. 

(a) (b) 

Figure 6. (a) An orientations ply of bi-directional fibre and (b) Schematic representation of 

unidirectional-plies CFRP composite laminate.46 
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Composition of carbon fibre composites  

Composite is basically made up of fibres and a matrix. Carbon fibre contains textile, melt-spun, 

polyolefin and lignin. Table 3 depicts some constituents of a CFRP composite laminate. 

Table 3. Constituents of a typical CFRP composite laminates.91 

 Material                                                                                            Type 

 Matrix                                                                                               Epoxy: araldite M 

 Reinforcing                                                                                       240gm-2 Carbon fibre  

 Matrix maximum strength stress                                                      82.55 MPa 

 Matrix modulus of elasticity                                                             2.15 GPa 

 Hardener                                                                                           HY 956 

Carbon fibre and matrix formed the reinforcement material and binder of a typical carbon fibre 

reinforced composite, respectively. Carbon fibre has good mechanical properties in terms of 

strength and modulus of elasticity. 

    The mechanism of drilling composites is a process different from that of conventional materials 

(especially metals and their alloys) for a good quality hole to be obtained.116 Velayudham et al.92 

stated that due to the coexistence of hard abrasive fibres and a soft matrix, there is need for an 

appropriate selection of cutting conditions. Carbon fibre composites have a challenge of poor 

machinability as a result of their highly abrasive nature, which limits its applications. This causes 

its fast replacement with natural fibre composites. There are damage caused on drilled composite 

materials as a result of their composition such as delamination, hole dimensional inaccuracy, 

surface roughness, fuzzing and composite fibre-pull out or uncut fibres.93, 116,117 The damaged 

composite materials are susceptible to fatigue strength and load bearing capacity.117 

Problems associated with drilling of CFRC laminate materials 

Kim and Ramulu43 reported that for years, carbon fibre composites have been drilled using the 

same methods applied in drilling metals. These have resulted in poor finish quality and excessive 

tool wear.43 Abrasive, heat sensitivity and heterogeneous nature of composite materials make its 
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drilling a complex operation.49 For applications where quality demand is high, drilling of the 

composite structures remains a major challenge, especially where carbon reinforced composite is 

stacked to metal parts.19, 43 This scenario increases the severity of the problem and requires a 

more robust specially designed drill and better drilling processes.  

     In addition, drilling of carbon fibre laminates has several common problems. These setbacks 

include surface scorching, delamination, excessive tool wear, fibre cratering, matrix- melting and 

softening.94 Among these, delamination is the most critical defect as it has the highest level of 

impact on accuracy and quality of a drilled hole.51, 117  

            

Peel-up delamination.                                             (b) push- out delamination. 

Figure 7. Types of delamination phenomena.46 

Delamination 

Delamination in a composite material occurs whereby reinforced fibre plies separate, either by peel-

up or push-out phenomenon.  This defect occurs at the upper most layer of laminate from the rest of 

the body and/or on the drill bit’s tip which pushes the bottom layers of the laminate respectively75, 

96 (Figure 7). In drilling, delamination occurs mainly at the critical entry and exit locations of the 

drill bit when the thrust force is greater than a threshold value.60, 65, 70, 93 Delamination depends on 

many factors such as composite fibre nature, drilling parameters, drill design and laminate 

orientation. When the drill tip exerts compressive thrust force on the uncut composite laminate 

plies, and the point loading is greater than the inter-laminar bond strength of the composite, 

delamination occurs. It reduces composite dimensional accuracy, structural integrity, surface 

quality and durable applications.49, 51, 93 Madhavan and Prabu51 indicated that an increase in cutting 
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speed reduces the delamination for HSS drills, whereas an increase in feed rate increases the 

delamination effect in case of carbide drills. An analysis of the differences in delamination 

mechanisms has been carried out by Capello47 when drilling laminate composites with and without 

a support device placed under the workpiece. His results showed that the proposed device 

drastically reduced delamination.  

    An analytical approach to identifying the process window of chisel edge length concerning drill 

diameter for delamination-free drilling has been studied by Tsao and Hocheng.97 The approach was 

based on linear elastic fracture mechanics of fibre reinforced composites. An optimal range of 

diameter of pilot hole associated with chisel edge length was derived. They concluded that 

composite laminates drilling at higher feed rate without delamination damage could be conducted 

by controlling the ratio of chisel edge length and preferring medium to large hole. Isbilir and 

Ghassemieh98 studied that the delamination free drilling process might be obtained by the proper 

selections of drill point geometry and the process parameters: high spindle speed and lower feed 

rate. They showed that effective tool choice could minimize delamination effect. Most importantly, 

the use of higher feed rates is achievable provided there is sufficient knowledge of the effects on 

thrust force and delamination for each selected drill.      

    Analytically, Fd has been generally used 14, 49, 51, 66 to describe the intensity of damage on the 

composite both at the drill entry and exit. It is expressed as Fd =  
𝐷𝑚𝑎𝑥

𝐷
 , where Dmax and D are the 

maximum diameter of the delamination zone and the drill diameter 112,119 respectively (Figure 8). 

The higher the Fd, the greater the delamination effect.14, 66, 112  

 

25x 
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Figure 8. Analysis of determination of delamination factor. 

 

Surface roughness and dimensional inaccuracy 

The importance of surface integrity, quality, dimensional and geometric tolerances of holes when 

drilling CFRP composites can never be compromised. Surface roughness is basically measured 

using two distinctive methods: direct and indirect methods. The former involves the use of stylus 

(contact)      instruments and the later depends on optical (non-contact) instruments.109 As a result 

of the nature of some composite materials, very little has been accomplished to improve on surface 

roughness and dimensional integrity.18, 19, 52, 63, 68, 70 The roughness of the drilled surface has not 

been accounted for as a major issue based on its application.99 In addition, formation of burrs and 

caps are another causes of dimensional inaccuracy, as reported by Sivarao et al.107 They both 

reduced the fatigue life of the assembly components. Burr occurred as a resultant effect of a plastic 

deformation of a material under machining process (drilling). Practically, the burrs formed at the 

entrance of a drilled hole are usually smaller than the exit burrs.107 The surface roughness in drilling 

with two different tools has been comparatively analysed and modelled, using regression analysis 

and ICM method.109 It was concluded that the statistical (regression) analysis produced better 

results than the mathematical analysis (ICM). The evaluation was based on the proximity of their 

results to the actual values. 

     Poor surface finish as well as delamination occurs due to the heat generation (friction) between 

drill edges and the composite. The heat aids the softening of the matrix. Also, poor surface finish 

could be aided by improper selection of drilling parameters and tooling materials. Ogawa et al.102 

reported that surface roughness varies at different speeds, but speed is only of minor influence. 

They also stated that feed rate seems to affect the surface roughness most. Thereby, it is a great task 

to obtain the required surface quality for accurate assembly of some structural parts.19, 51 Ogawa 

observed that smoothest surfaces of almost 0.1μm were produced with PCD drills, followed by 

Carbide drill at the same speed of 100 mm/min which produced good appearance holes but with 

high roughness of 6.5μm while HSS has the highest surface roughness of 8.0μm. Cutting speed 

increases with decrease in surface roughness. Comparatively, PCD drills provided good surface 

finish at high cutting speed and feed rate.51 It was concluded that the surface roughness of drilled 
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holes on composites increased with increase in feed rate irrespective of the drill diameters unlike 

the spindle speed which has a small effect on surface roughness. Meanwhile, the machine spindle 

speed, drill diameter and feed rate increased with decrease in the dimensional accuracy of drilled 

hole 85 (Figure 9), where TD represents the tool diameter. 

 

Figure 9. Drilled hole dimensional accuracy using different tool diameters.85

     From Figure 9, the experimental numbers increased with the diameters of the drilled holes. 

Most importantly, increase in the TD caused a significant increase; deviation in form of errors in 

the desired hole diameter. This was more evident at 0.6 and 0.8mm TD immediately after 

experimental number 5, at most in 1.0mm TD progressively. Dimensional errors ranging 

between 5 to 10% were recorded.85 Summarily, it has been reported that the surface roughness of 

a drilled hole depended on the hardness of the workpiece and drill, geometry of the drill, drilling 

parameters and machine rigidity.109 

Other associated problems 

Abrao et al.99 suggested in their review paper that the cutting speed should be kept below 60 

m/min; due to the fact that high cutting speed values led to higher cutting temperatures, which 

caused composite matrix softening, followed by matrix cratering and thermal damage of its 

constituents, particularly the binders.  

     Fibre pull-out and uncut fibre (Figure 10) are separate relevant problems. Zitoune et al.101 

reported the significance of correct choice of process parameters especially when drilling multi-
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material stack. Their experimental results depicted that the quality of drilled holes could be 

improved by proper selection of cutting parameters as the drilled hole circularity increased with 

feed rate: around Ra  of 6μm (at low feed rates) to 25μm in CFRP. From drill wear test results, 

they showed that thrust force significantly increased to 90% in CFRP compared with 6% in 

aluminium after the first 30 holes were drilled. When the number of holes increased to 60, 

composite fibre pulled out and parts of the fibres remained uncut (Figure 10). 

 

Figure 10. Fibre pull out and fibre uncut defects at hole entry and exit.101

Chip formation and separation 

Composite fibre orientation determines chip formation during machining. The chip formed on 

the drill increased as cutting speed increased during composites drilling.84 FEA drilling model 

that showed chip formation at the exit surface has been developed by Min et al.44 The model was 

used to simulate the formation of both crown and homogeneous chips which were formed at 

higher and lower feeds respectively. They based the failure criterion governing the chip 

formation on the equivalent discrete element-plastic strain. Also, the same plastic failure 

criterion was used to model chip separation by Klocke et al.100  

Parametric design (input variables) 

Drilling parameters are the machining variables and conditions that affect the entire drilling 

process. They are machine capacity and function-dependents. Among them include cutting force, 

thrust force, torque, feed rate, material removal rate, coolant flow resistance and cutting speed. It 

has been reported that thrust force and torque increased with the size of the drill bits. Also, 

increase in feed rate caused an increase in both thrust force and torque, while both decreased 
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with the spindle speed. 108 The effects of drill wear and composite thickness on thrust force and 

torque has been investigated by using ‘one shot’ drill bit.73, 103 They concluded that the thrust 

force increased with number of drilled holes for twist drill bit, unlike torque. Decrease in 

composite thickness caused increase in thrust force due to wear, while increase in feed affected 

thrust force causing increase in the rate of the tool wear. Hence, thrust force and torque 

significantly depends on drill feed rate, bit, wear, and composite thickness.  

     Experimental results of CFRP composite drilling using Carbide, HSS and PCD drills 

conducted by Modhavan and Prabu51 and Mohan et al.64 revealed the effect of feed rates, drill 

geometry and cutting speeds on chip formation, delamination, surface roughness and cutting 

forces. They stated that feed rate increased with delamination factor and surface roughness. Chip 

formation increased with increase in cutting force. Similarly, variations of cutting forces with or 

without onset of delamination during the drilling operations has been studied by Chen50 and 

concluded that the delamination-free drilling processes might be obtained by the proper 

selections of tool geometry and drilling parameters such as cutting force. 

     During drilling, thrust force is the applied force on workpiece by the machine tool through 

speed and feed in downward direction. It is the plunging force of the drill bit unlike cutting force 

which is rotating force. Delamination effect, occurred principally at the drill exit in composite 

materials, has been reported to be mainly caused by the thrust force.95,117 An optimisation of 

twist drill point geometries in order to minimise thrust and torque in drilling has been carried out 

by Paul et al.13, using conical, racon and helical drill point geometries. Racon drill showed a 

marked reduction in thrust while the optimised helical drill reduced thrust by over 40% when 

compared with conical. Lazar and Xirouchakis67 experimentally determined the axial and 

tangential cutting loads distribution by analysing the thrust on drilling CFRP composites with 

three different types of drills. It was shown that the maximum thrust forces occurred on the fibre 

plies in contact with the drill tip. Analysis of delamination in various drills: saw, candle stick, 

core and step drills has been analytically and compressively carried out by Hocheng and Tsao.48 

They predicted the critical thrust force that caused the initiation of delamination mathematically. 

They concluded by comparing the results obtained with that of a twist drill for all the available 

drills and predicted the decrease of critical thrust for the different drills and the points at which 

they were reduced to the twist drill. Theoretical predictions of critical thrust force at the 
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inception of delamination, of different special drill bits have been carried out by Hocheng and 

Tsao104 using experimental investigations. Their results on critical thrust forces were confirmed 

and agreed with both the analytical findings of critical thrust forces and industrial experiences, 

that drill geometry has significant effect on the thrust force, as supported by works of Madhavan 

and Pradu 51, Wang et al. 53  

    Moreover, formulation of a detailed analysis for the critical thrust force ratio related to the 

peripheral drilling moment has been conducted by Tsao and Hocheng. 95 Special drill bits such 

as saw, core and candle stick were used for the composites drilling. It was concluded that the 

special drill bits possessed a lower critical thrust force at peripheral drilling moment than 

without peripheral moment. This indicated that at the exit of drill bit in the composite materials, 

the peripheral moment caused bigger delamination drilling-induced damage. Prediction of thrust 

force during All 100/10% SiC metal matrix composites (MMCs) drilling has been performed.122 

Both experimental method and ABAQUS/Explicit FEA were used, with close agreement in their 

results. Drilling the typical MMCs with a low cutting speed and feed rate, for reduction in thrust 

force, were recommended. 

     Xiong et al.6 used mapping method to develop 81 major mathematical equations in a new 

methodology for designing a curve-edged twist drill. They distributed the cutting angles along 

the tool cutting edge randomly. Their results were validated experimentally, and the drilling 

torque and the thrust force were compared. It showed that the new curve-edged drill reduced the 

drilling torque and thrust force by 28.5% and 24.6% on average respectively. Nagaraja et al.105 

reported that an increase in spindle speed and feed rate led to increase in torque, delamination 

and thrust force when drilling carbon fibre epoxy composite using HSS drill. They concluded 

that spindle speed has insignificant effect on torque and thrust force.  

     Liu et al.46 stated that feed rate had the greatest influence on drill wear, thrust force and 

delamination.35 Low feed rate coupled with high cutting speed reduced delamination and 

prolonged drill life.46 Research on the development of suitable models with intelligent control 

scheme in the machining of composite laminates has been carried out by Dharan and Won.60 

Drilling experiments were conducted using carbide-tipped twist drills on composite material to 

obtain thrust force and torque responses for a wide range of feeds in high-rate drilling. Empirical 

expressions relating the thrust force and torque to the feed and drill diameter were obtained from 
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the results of the experiment. Isbilir and Ghassemieh98 declared vividly that the detailed 

understanding of the effects of higher feed rate on delamination and thrust force is essential 

before embark on its application. They concluded that step drill reduced torque and thrust force 

(delamination) when compared to twist drill at similar feed rate and speed.   

     Material removal rate (MRR) is another drilling parameter that determines the efficiency of a 

drill. A good designed drill should be able to evacuate chips easily and rapidly. An attempt to 

determine the drilling process for carbon laminates, Sardinas et al.42 proposed a multi-objective 

optimisation of the drilling process. Two mutually contradictory objectives were optimised: 

material removal rate and delamination factor, which represented the productivity and 

characterised the superficial quality respectively as jointly contradictory objectives were 

optimised. Increase in cutting speed and feed led to increase in MRR while delamination factor 

increased with decrease in MRR. 

     During wet machining, flow rate of coolant is imperative. Abele and Fujara31 designed a drill 

geometry performance characteristic model and used it to obtain drill performance 

characteristics, numerical simulation of 3D FEA models and calculated coolant flow resistance. 

Their models also captured prediction of coolant flow, effects of coolant channel diameter and 

its surface roughness. 

     The cutting speed of a drill determines the rate of production of holes in composite materials. 

Cutting speed has less effect on delamination when compared with feed rate.46 HSS drill 

supported a high cutting speed when compared with carbide (coated and uncoated types) and 

PCD.51 Isbilir and Ghassemieh106 stated that surface roughness and delamination damage 

reduced with increase in cutting speed when drilling CFRP composite with multi-layer 

TiAlN/TiN PVD tungsten carbide tools. They concluded that drilling parameters influenced 

drilling outputs significantly. Gaitonde et al.91 investigated process parametric effects on 

delamination during high-speed thin woven-ply CFRP composite drilling. Cutting speed, one of 

the process parameters considered, was used to analyse the delamination-damage factor. Their 

investigations showed that the delamination tendency decreased with cutting speed and further 

suggested that combined low values of feed rate and point angle would reduce the damage.116 

Conversely, Sardinas et al.42, Davim et al.49 and Kilickap73 studied delamination during 

conventional drilling of composite laminates and optimisation of cutting parameters using 



23 

 

genetic algorithms, design experiments and Taguchi methods respectively. They reported that 

delamination increased with cutting speed.  Lastly, High spindle speed as well as lower feed rate 

favoured delamination-free composite drilling. Thus, thrust force and delaminations go together 

and depend on other drilling parameters such as cutting  

 

Figure 11. Parametric effect of cutting speed and feed rate on thrust force in CFRP composite 

drilling.46 

speed73, feed rate (as illustrated in Figure 11), drill geometry and wear.17, 46, 54,116 From the 3D 

plot of Figure 11, the highest thrust force of more than 500N was recorded at highest feed rate of 

0.8mm/rev and lowest cutting speed of 24m/min. These results evidently implied that the thrust 

force of the drills increased as the feed rate increased, but decreased as the cutting force 

increased during CFRP composite (conventional) drilling. Also, a lowest feed rate of 0.1mm/rev 

and thrust force of nearly 25N were recorded at maximum cutting speed of 235m/min. 

Conclusions  

A highly efficient twist drill is the outcome of innovation and ingenuity. Recent advances in 

twist drill design with respect to composites drilling have been critically reviewed and presented. 

The following summary can be made: 

 HSS twist geometry is the most commonly used type of drilling tool due to its outstanding 

performance with regards to better chip removal, availability, mass production and cost 

effectiveness. 
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 The chisel edge, point and helical angles are the most important parts of twist drill design 

geometry. 

 The quality of drilled hole depends greatly on the drill geometry, design, materials and 

selected drilling parameters. 

 Delamination of composites and rapid tool wear are the main problems encountered when 

drilling CFRP accounting for drilling-induced damage as high as almost two-third of the total 

drilled products.  

 PCD provides good surface finish at high cutting speed and feed rate. Improved surface 

quality and dimensional accuracy of composite materials could be achieved using carbide 

especially coated types and PCD drills. 

 Good knowledge of drilling parameters, composite materials and well-designed drill 

geometry afford better opportunity of developing drills that will minimise delamination effect 

on the reinforced composites, tool wear and produce a high quality drilled hole surface. 

    The drill design engineers and manufacturers will obtain a comprehensive understanding of 

the recent advances in twist drill design for fibre reinforced composites drilling by going through 

this review paper, with intention of improving and optimising the efficiency of drills and solving 

challenges confronting composites drilling. 
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Appendix 1 

Notations 

(Ti,Al)N    titanium aluminium nitride 

𝐷𝑚𝑎𝑥         maximum diameter of the delamination zone, mm    

BS             balzers 

CAD          computer aided design 

CC             cemented carbide 
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CCC          coated cemented carbide 

CFRC        carbon fibre reinforced composite 

CFRP         carbon fibre reinforced plastic 

CN             cemecon  

CrN           chromium nitride 

CVD          chemical vapour deposition  

D                drill diameter, mm 

DCC          diamond coated carbide  

DLC          diamond-like carbon 

DLC          diamond-like carbon 

EDM         electroplated diamond micro  

ESC           electro-spark coating 

Fd                     delamination factor,  
𝐷𝑚𝑎𝑥

𝐷
 

FEA           finite element analysis 

FIS            fuzzy inference system  

FRP           fibre reinforced polymer 

GFRP         glass fibre reinforced plastic 

HSS           high speed steel 

ICM          inverse coefficient matrix 

MMCs       metal matrix composites 

MRR         material removal rate 

PCBN        polycrystalline cubic boron nitride 

PCD           polycrystalline diamond 

PM HSS     powder metallurgical high-speed  steel    

PVD           physical vapour deposition 

Ra               surface roughness, μm 

TD             tool diameter, mm 
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TiN            titanium nitride  

TiN(C,N)   titanium carbonitride 

UC             uncoated carbide  

UCC           uncoated cemented carbide 

 


