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Abstract 

 

Neurodevelopmental disorders (NDDs) are highly prevalent and severely debilitating brain 

illnesses caused by aberrant brain growth and development. Resulting in cognitive, social, motor, 

language and affective disabilities, common NDDs include autism spectrum disorder (ASD), 

intellectual disability, communication/speech disorders, motor/tic disorders and attention deficit 

hyperactivity disorder. Affecting neurogenesis, glia/neuronal proliferation and migration, synapse 

formation and myelination, aberrant neural development occurs over a substantial period of time. 

Genetic, epigenetic, and environmental factors play a key role in NDD pathogenesis. Animal models 

are an indispensable tool to study NDDs. Paralleling clinical findings, we comprehensively evaluate 

various preclinical tests and models which target key (social, cognitive, motor) neurobehavioral 

domains of ASD and other common NDDs. Covering both traditional (rodent) and alternative NDD 

models, we outline the emerging areas of research and emphasize how preclinical models play a key 

role in gaining translational and mechanistic insights into NDDs and their therapy. 

 

Keywords: neurodevelopmental disorder, model organism, experimental model, preclinical study, 

translational research 
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Research highlights: 

 

 Neurodevelopmental disorders are common and widespread psychiatric illnesses 

 Autism and other neurodevelopmental deficits often occur in early development 

 Animal models are a valuable tool to study autism and other neurodevelopmental disorders 

 We parallel clinical and preclinical data to gain a translational perspective of these illnesses 
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1. Introduction 

Neurodevelopmental disorders (NDDs) represent clinically heterogeneous, heritable 

psychiatric illnesses caused by aberrant brain growth and development (American Psychiatric et al., 

2013; Hansen et al., 2013; Homberg et al., 2015). Presenting with motor, cognitive, language and 

affective disabilities, common NDDs include autism spectrum disorder (ASD), social communication 

disorders, intellectual disability (ID), attention deficit hyperactivity (ADHD) and motor/tic disorders 

(Table 1, Fig. 1) (American Psychiatric et al., 2013; Hansen et al., 2013). While NDD symptoms 

typically emerge during childhood, aberrant neural development usually starts during early 

embryogenesis (Hu et al., 2014; Sadler, 2006) and continues over a substantial period of time. 

Affecting neurogenesis, glia/neuronal proliferation and migration, synapse formation and myelination 

(Fig. 1) (Ding, 2015; Frederick and Stanwood, 2009; Hu et al., 2014; Rice and Barone, 2000), these 

developmental changes lead to long-lasting behavioral and physiological deficits in both child- and 

adulthood (Bergner et al., 2010; Buckley et al., 2009; Krishnan, 2005). Depending on the brain 

structure(s) or the stage of neural development affected, clinical manifestations of NDDs range from 

specific symptoms to global mental impairments (Table 1) (American Psychiatric et al., 2013; Hansen 

et al., 2013). In addition, NDDs frequently co-occur (e.g., ADHD with learning disability, ASD with 

ID) and overlap with other brain disorders, forming a complex spectrum of neuropsychiatric 

comorbidities (Fig. 1) (Bergner et al., 2010; Buckley et al., 2009; Krishnan, 2005) 

NDDs remain a relatively unmet biomedical concern (Bergner et al., 2010; Buckley et al., 

2009; Krishnan, 2005) with high prevalence and socio-economic impact (Dykens, 2015). In addition, 

NDDs cause significant distress and persistent impairments of behavior, memory/learning, social 

communication, occupational performance and other important daily activities (American Psychiatric 

et al., 2013; Hansen et al., 2013). Multiple therapeutic approaches to NDDs include pharmacotherapy, 

behavioral therapy and rehabilitation, such as physical or speech/language therapy (Hansen et al., 

2013). However, specific and effective treatments for NDDs are lacking, as we do not know the 
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biological targets and the exact symptoms, which are also often detected at clinically advanced stages, 

past the best therapeutic intervention period (Homberg et al., 2015). This, as well as the growing 

health burden of NDDs (Fig. 2), necessitate further translational research in this field and the 

development of valid preclinical models, novel biomarkers and therapies.  

To address these challenges, the International Stress and Behavior Society (ISBS) has 

established the Strategic Task Force on NDDs - a team of international experts representing different 

clinical and preclinical fields (Homberg et al., 2015). Complementing the Panel’s recommendations 

on improving pharmacotherapy of NDDs (Homberg et al., 2015), the present review parallels clinical 

symptoms of ASD and several other common NDDs with their existing preclinical paradigms, and 

evaluates various tests and models of animal neurobehavioral development, social behaviors, 

restricted interests and behavioral perseverations. Covering both traditional (rodent) and alternative 

models of NDDs, we outline the emerging areas of research and emphasize how preclinical models 

help gain translational and mechanistic insights into NDDs and their therapy. 

2. Animals models of neurodevelopmental disorders 

Since a key function of the nervous system is to produce behavior, behavioral analyses 

provide the most meaningful assessment of the central nervous system (CNS) and its deficits. For 

example, rodent tests are commonly used to measure neural phenotypes in behavioral genetics, 

developmental psychobiology, psychopharmacology and neurotoxicology (Buelke-Sam and Kimmel, 

1979; Butcher, 1976; Elmazar and Sullivan, 1981; Reiter, 1978; Vorhees et al., 1979). However, 

because of multiple limitations inherent in experimental modeling of complex human brain disorders 

(Cachat et al., 2011; Kalueff and Tuohimaa, 2005b; Kalueff et al., 2007e), targeting the entire 

spectrum of clinical NDDs is impossible (Table 1). Nevertheless, animal paradigms continue to be 

indispensable for studying the neurobiology of human NDDs (Kalueff et al., 2007e). In general, a 

good animal model should possess three main attributes: construct validity (conforming to the 

underlying rationale of the disease), face validity (mimicking some of the characteristics of the 
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disease) and predictive validity (allowing the prediction of novel disease symptoms, or identification 

of disease treatments) (Kalueff et al., 2007e; Stewart and Kalueff, 2015). The animal model should 

also combine genetic tractability, tools to visualize and manipulate neurons in vivo, and the ability to 

translate findings to patients based upon conserved neurobiology. Two major groups of preclinical 

paradigms merit discussion here. One group is behavioral tests which assess NDD-linked phenotypes, 

and therefore often have high face and predictive validity. The second group represents experimental 

models relevant to NDD pathogenesis (Fig. 2), and therefore possesses high construct validity. Both 

types of preclinical paradigms can be used complementarily to gain translational and mechanistic 

insights into NDD pathogenesis (Table 2). 

2.1. Tests of rodent neurobehavioral development 

Numerous tests for neurobehavioral development in young rodents can be organized into five 

broad behavioral domains: simple reflexes, sensory function, motor function/coordination, 

learning/memory and emotionality (Table 3). Simple reflex tests measure behavioral responses that 

are relatively simple in form, resistant to motivational influences, and often mediated by a small 

number of sensory and motor neurons. The appearance or disappearance of reflexes from birth is used 

to assess the rate of maturation of the CNS and differences in the day of appearance or disappearance 

of reflexes may be used as predictors for NDDs. Tests used to measure sensory development and 

reactivity assess a wide range of different (e.g., visual, vestibular, auditory and olfactory) systems 

(Table 3). Differences or abnormalities in rate of sensory development may be indicative of abnormal 

neuronal pathways associated with NDDs. Furthermore, tests used to assess locomotor activity reflect 

both exploratory behavior and a state of arousal or “nonspecific excitability” in the context of motor 

function (Table 3). Proper development of motor coordination can be assessed using numerous tests, 

such as rotarod and gait analysis, which provide spatial and temporal characteristics of limb 

movement during locomotion. 
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Addressing another critical (cognitive) domain, Table 3 outlines learning and memory tests 

suitable for young rodents, whose immature sensory and motor systems place limitations on their 

ability to perform certain tasks or express certain learned associations. These tests have been used to 

assess such aspects of learning and memory as habituation, avoidance, retention, conditioning, and 

spatial, delayed, discrimination, and reversal learning. Finally, emotionality represents a key 

neurobehavioral domain often affected during neural development in both animal and clinical studies 

(Homberg et al., 2015). In general, assessing emotionality in rodents is a difficult task. Four issues are 

of particular importance to consider: how to measure emotions directly, how to classify emotional 

states, how to attribute overt behavior to covert emotional states, and how to identify animal models 

that are good models of human emotional reactions. Several robust tests of emotionality are 

summarized in Table 3 and have been recently comprehensively evaluated elsewhere (Cryan and 

Holmes, 2005; Griebel and Holmes, 2013), including altered emotionality in several rodent models of 

NDDs (Bolivar and Brown, 1994; Branchi and Ricceri, 2002; Martinez-Cue et al., 2006; Ricceri et 

al., 2007). 

2.2. Rodent tests of social behaviors  

Social deficits are a common symptom of ASD and many other NDDs. Popular rodent 

behavioral assays designed to target social behaviors characterize social interaction and 

communication deficits (Bishop and Lahvis, 2011; Crawley, 2004, 2007; Hunsaker, 2012; Lahvis and 

Black, 2011; Silverman et al., 2010b). Rodents are particularly suitable to model NDD-associated 

social deficits since both mice and rats are highly social species with a wide repertoire of social 

behaviors, including parenting, communal nesting and juvenile play as well as sexual and aggressive 

behaviors as adults. One of the most popular paradigms, the social interaction test evaluates social 

responses of the subject mouse directly facing a co-specific (i.e., a freely moving stimulus mouse). 

Importantly, this also allows a concomitant measurement of ultrasonic vocalizations (USVs) to 

simultaneously assess rodent social and vocal repertoires. During the social interaction test, mice 
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typically investigate each other by sniffing (of anogenital regions, heads or the rest of the body), by 

crawling over/under each other and/or by reciprocal following. This test is easy to perform, and can 

utilize either same-sex or mixed pairs. Moreover, in both the male-female and female-female social 

interaction tests, emission of USVs (40-80 kHz) is a consistent robust phenomenon, considered an 

index of social interest and motivation (Moles et al., 2007; Nyby, 2001; Scattoni et al., 2009). USVs 

positively correlate with social investigation, such as anogenital sniffing (Moles et al., 2007; Nyby, 

1983; Sales, 1972; Scattoni et al., 2011). Digital spectrographic analysis enables the collection of 

further information on USVs (e.g., waveforms of the calls), classified into several categories based on 

internal frequency, duration and spectrographic shape (Ey et al., 2013; Roy et al., 2012; Scattoni et 

al., 2008; Scattoni et al., 2011; Tyzio et al., 2014). Importantly, since mice engage in social 

interaction as juveniles, these tests are suitable for studying developmental trajectories of social 

behaviors, which is relevant to modeling NDDs in general.  

In behavioral studies, mouse preference for a social (vs. non-social) context, as well their 

ability to recognize an unfamiliar co-specific (social recognition), are important traits. The social 

approach task evaluates these two social aspects at two different test phases in the same apparatus 

(Moy et al., 2004; Nadler et al., 2004; Yang et al., 2011). This test has become extremely popular in 

phenotyping of ASD mouse models, since it is unbiased to individual variations in behavior of a 

social stimulus (a stranger mouse confined under small wire cages); is less time-consuming than other 

related tests (Pearson et al., 2012); can be used in an automated manner; and because mice can be 

tested at different ages (an opportunity scarcely exploited so far), thus offering the possibility to 

follow developmental trajectories. However, since the stimulus mouse is contained under a wire cup, 

the three-chamber social approach apparatus only measures social approach initiated by the subject 

mouse (also note that the strain of both stimulus and testing mouse can influence the results, and 

therefore must be carefully considered). This permits the olfactory, auditory and visual contact, 

avoids sexual and aggressive behaviors, but also prevents a fine-grain evaluation of the social 
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behaviors and their reciprocity. As already mentioned, various other disorders, both within (e.g., 

ADHD) and beyond NDD spectrum (e.g., schizophrenia, depression, anxiety), present with social 

deficits, and a careful dissection of these factors in respective animal assays is necessary. Thus, it is 

useful to combine the social approach with the social interaction tests (Feyder et al., 2010; Jamain et 

al., 2008; Peca J et al., 2011; Radyushkin et al., 2009; Schmeisser et al., 2012), as well as to apply 

tests assessing other behavioral domains (e.g., activity, memory, affect), for a more accurate 

characterization of rodent social deficits.  

Since NDDs typically have an early onset, behavioral phenotyping targeting the early 

developmental period is crucial (Bale et al., 2010; Branchi and Ricceri, 2002), although aberrant 

phenotypes can be present at different developmental stages. For instance, USVs, emitted by mouse 

pups in response to separation from mother and littermates, are considered a reliable index of pup 

social motivation (Branchi et al., 2010; Ehret, 2005; Sewell, 1970), suitable for the identification of 

early communication deficits in ASD mouse models (Wohr and Scattoni, 2013). Pup isolation-

induced USVs can reflect aversive affective states, eliciting maternal exploratory and retrieval 

behaviors (Knutson et al., 2002; Panksepp, 2003; Zippelius and Schleidt, 1956). Usually pups 

vocalize for a brief period after separation from the nest, and then rapidly habituate. During early 

postnatal days, USVs follow a clear strain-dependent ontogenetic profile, with a typical peak around 

Days 5-8, and a progressive decrease afterwards (Elwood and Keeling, 1982; Hahn et al., 1998; 

Roubertoux et al., 1996). Unusual calling patterns and reduced vocalization rates, sometimes 

associated with a restricted vocal repertoire (Michetti, 2012), are detected in several genetic mouse 

models of NDDs (Bozdagi et al., 2010; Romano et al., 2013; Scattoni et al., 2008; Schmeisser et al., 

2012; Wohr et al., 2012; Won et al., 2012; Yang et al., 2012). When evaluating development of vocal 

response, it is crucial to consider potential confounders, as altered body temperature, weight and 

growth can affect both quantitative and qualitative UVSs (Bozdagi et al., 2010; Hamilton et al., 2011; 

Romano et al., 2013; Roy et al., 2012; Shair et al., 2003; Veenstra-VanderWeele et al., 2012; Yang et 
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al., 2012). Overall, pup USV characterization permit identification of an ASD-like phenotype at an 

early stage of development, in situations when other social or behavioral phenotypes are difficult to 

obtain. 

2.3. Rodent models of repetitive behavior and motor stereotypies 

One of the symptoms of ASD and some other NDDs is restricted/repetitive patterns of 

behavior, interests or activities, manifested by stereotypic motor movements (i.e., repetitive 

sequences of motor behavior, topographically and morphologically invariant, often rhythmical), 

inflexible adherence to routines, ritualized patterns and circumscribed or perseverative interest 

(American Psychiatric et al., 2013). In general, repetitive behaviors can be divided in two classes, 

roughly indicating ‘lower-order’ (repetition of movements and stereotypies) and ‘higher order’ 

(insistence on sameness, lack of behavioral flexibility, with a distinct cognitive component) responses 

(Lewis et al., 2007). Although rodents exhibit several spontaneous motor stereotypies (e.g., excessive 

vertical jumping, back-flipping, circling, digging, chewing), excessive self-grooming behavior has 

been by far the most well-studied stereotypy in ASD mouse models (Fig. 2), likely because it is a 

common phenotype with a complex ‘patterned’ sequential nature, and is easy to measure in rodents 

(Crawley, 2007; Creese and Iversen, 1975; Kalueff et al., 2007a; Korff and Harvey, 2006; Lewis et 

al., 2007; McFarlane et al., 2008; Moy et al., 2008; Pogorelov et al., 2005; Turner et al., 2001), also 

see Table 2. 

Recapitulating behavioral perseveration, pathological self-grooming in rodents can also be 

valuable for examining neural pathways of NDDs (Pearson et al., 2011; Reynolds et al., 2013; 

Silverman et al., 2010a). For example, ephrins A (ephrin-A ligands), ephrin A receptors (members of 

the receptor protein-tyrosine kinase superfamily) and their genes are strongly implicated in neural 

development (Wurzman et al., 2014). Serving as an important membrane-anchored cellular protein, 

ephrin A modulates neuronal differentiation and synaptic plasticity, and ephrin-A2/A3 receptor 

double knockout mice display repetitive self-grooming, motor retardation and social deficits, 
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recapitulating some clinical symptoms of ASD (Wurzman et al., 2014). Similarly, exaggerated self-

grooming is seen in the inbred BTBR mice, displaying callossal agenesis, social deficits and 

behavioral inflexibility relevant to ASD (Amodeo et al., 2014; Brodkin et al., 2014). Interestingly, 

cholinergic agents which correct some clinical ASD symptoms (Van Schalkwyk et al., 2015) 

predictably reduce self-grooming (Amodeo et al., 2014) and other ASD-like behaviors (Karvat and 

Kimchi, 2014) in BTBR mice, whose self-grooming is also corrected by glutamatergic drugs 

(Silverman et al., 2012; Silverman et al., 2010a). 

Several other candidate ‘NDD’ genes include the SHANK family - SHANK1, SHANK2 and 

SHANK3 (Guilmatre et al., 2014) modulating synaptic function in the brain. In addition to ASD-like 

social deficits and repetitive behaviors, Shank mutant mice display aberrant grooming (Schmeisser, 

2015) including elevated repetitive self-grooming in Shank1+/− and −/− (Sungur et al., 2014), 

Shank2−/− (Schmeisser et al., 2012)
,
(Won et al., 2012) and Shank3−/− mice (Peca et al., 2011; Wang 

et al., 2011; Yang et al., 2012). Ablation of the GABA-synthesizing enzyme glutamic acid 

decarboxylase (Gad67) also results in mouse ASD-like behavior, including increased self-grooming 

and cognitive and social deficits (Zhang et al., 2014).  

Related to grooming phenotypes, barbering (behavior-induced hair loss, Fig. 2), including 

both hetero- and self-barbering, can be used to assess repetitive behaviors (Kalueff et al., 2006). Note, 

however, that stressors and other laboratory environment factors (e.g., poor housing, nutrition/diet, 

lack of enrichment) may often trigger such behaviors in laboratory rodent colonies (Garner et al., 

2011), (Dufour et al., 2010), (Garner et al., 2004), and therefore should be carefully monitored to 

avoid confusion with NDD-related behaviors. Another rodent paradigm widely used in the context of 

repetitive behavior is the marble burying test, which measures repetitive behavior related to digging, 

not correlated with anxiety traits and primarily stimulated by novelty (Thomas et al., 2009). Notably, 

motor repetitive behaviors, such as self-grooming and marble burying, are often more sensitive (than 

social responses) in testing different drugs in NDD mouse models (e.g., mGluR5 antagonists 
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(Silverman et al., 2012; Silverman et al., 2010a) and acetylcholine esterase inhibitors (Amodeo et al., 

2014) in BTBR mice), raising the questions of potential differential sensitivity of various NDD 

phenotypes to drugs.  

2.4. Rodent models of restricted interests and behavioral inflexibility 

Because ASD patients often follow fixed routines and resist changes (Chen et al., 2009; Frith 

et al., 1991; Goldman et al., 2009), such restricted interests and behavioral inflexibility can be 

modeled in rodents by assessing their motivation to explore novel objects and to nose-poke holes in 

the wall or floor (Elsabbagh et al., 2013). Perseverative exploration of only a limited set of (rather 

than all) available objects or holes may resemble restricted interests in ASD humans (Moy et al., 

2008). Thus, it is possible to model this insistence on sameness in mice by assessing their flexibility 

to switch from an established habit to a new habit through reversal learning in the T-maze or Morris 

water maze. Briefly, after establishment of a spatial habit (e.g., reinforcing entries into the left arm of 

a T-maze or locating the hidden escape platform in one quadrant of a Morris water maze), the 

experimental set is changed and the mouse is requested to abandon the previously acquired habit and 

shift to a new location. ASD mouse models displaying repetitive behaviors usually perform well 

during the acquisition phase, but are generally slower in the acquisition of the new information during 

the reversal phase (Bader et al., 2011; Gandal et al., 2012; Guariglia and Chadman, 2013; Karvat and 

Kimchi, 2012; Lee et al., 2013; Moy et al., 2007; Penagarikano et al., 2011; Sala et al., 2013; Sala et 

al., 2011; Wang et al., 2011; Zhao et al., 2010). Other, more complex and refined rodent attentional 

set shifting tasks continue to be developed in mice (Colacicco et al., 2002), (Garner et al., 2006) and 

rats (McAlonan and Brown, 2003) to target cognitive deficits associated ASD, ADHD and other 

NDDs (Tait et al., 2014), (Scheggia et al., 2014). 

2.5. Rodent behavioral tests targeting comorbid traits 

Together with core symptoms, NDD patients often present comorbid traits, including seizures, 

altered emotional and sensory processing, as well as sleep and gastrointestinal deficits (Fassio et al., 
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2011; Gilby and O'Brien, 2013; van Steensel et al., 2011; Woolfenden et al., 2012). However, their 

underlying biological mechanisms remain poorly understood. For example, if comorbid traits are 

integral to the NDD (Argyropoulos et al., 2013), many of them must also be present in valid NDD 

mouse models, and assessed as associated symptoms (Crawley, 2007; Roullet and Crawley, 2011). 

The presence of comorbid phenotypes, such as seizures or altered anxiety levels, may also interfere 

with spontaneous behavioral responses, thus confounding the interpretations of results (Roullet and 

Crawley, 2011). Evaluation of comorbid traits (selected on the basis of the information already 

available on the phenotype or on the basis of the role played by the gene alteration on CNS function) 

is therefore critical for a fine-grain behavioral characterization of NDD mouse models.  

For example, seizures are observed in 8-25% of the ASD population (Hara, 2007; Jeste, 2011; 

Sansa et al., 2011), and are particularly common in ASD patients with ID (Woolfenden et al., 2012). 

The presence of seizures can be evaluated in mice using tonic–clonic rating scales or EEG recordings. 

Seizures can be spontaneous or drug-induced, and once started, interrupt normal activities such as 

walking, exploring, sniffing and grooming (Morrison et al., 1996). The brain activity recordings 

permit the evaluation of the neuronal activity and identify the seizures as a spike-wave pattern 

(Blundell et al., 2009; Chemelli et al., 1999; Zhou et al., 2009). Seizure susceptibility and high levels 

of seizures have been reported in several ASD mouse models, including Shank3B, CNTNAP2, Pten 

and Gabrb3 knockout mice (DeLorey et al., 1998; Peca J et al., 2011; Penagarikano et al., 2011; Zhou 

et al., 2009). In line with this, some epileptic strains, such as Synapsin I (Syn1) and Synapsin II 

(Syn2) knockout mice, show ASD-like traits (Greco et al., 2013), collectively emphasizing the 

overlap between this NDD and epileptic pathogenesis. 

Anxiety is also common in NDD patients (Argyropoulos et al., 2013; Gillott et al., 2001; van 

Steensel et al., 2011), and standardized mouse assays to measure anxiety-like behaviors are primarily 

based on approach-avoidance conflicts since mice are nocturnal and avoid lit open novel 

environments. Currently, the most popular anxiety-related tests include the elevated plus-maze and 
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light-dark tests, recently reviewed in (Cryan and Holmes, 2005; Griebel and Holmes, 2013). The 

elevated plus maze consists of two open and two enclosed arms, and the light-dark test represents a 

two-compartment apparatus with a dark enclosed and an open lit compartments. An unusually high 

preference for ‘protected’ closed arms and for ‘safe’ dark compartment is considered as an excessive 

anxiety-like trait. Interestingly, several ASD mouse models, such as the Nlgn2, 5HTT, FMR1, 

Avpr1b, Shank2, Shank3 and other mice with mutations that may be relevant to autism, show 

increased anxiety profiles, in addition to at least one other core symptoms (Blundell et al., 2009; 

Holmes et al., 2003; Peca J et al., 2011; Schmeisser et al., 2012; Spencer et al., 2005; Wersinger et 

al., 2002; Won et al., 2012). 

Finally, mounting evidence suggests early motor abnormalities in ASD neonates and children 

(Iverson and Braddock, 2013; LeBarton and Iverson, 2013; Phagava et al., 2008) and infants at 

increased risk for ASD (Leonard et al., 2013). Since motor dysfunction can affect other NDD 

symptoms, preclinical studies in mouse models have recently addressed this issue by fine-grain 

characterization of spontaneous motor behavior (De Filippis et al., 2010; Romano et al., 2013). This 

may be important as a behavioral biomarker of NDD at an early stage of development, when other 

behavioral phenotypes are difficult to record. 

2.6. Rodent models relevant to Tourette syndrome 

 A common NDD, Tourette syndrome is a highly heritable, early-onset illness (American 

Psychiatric et al., 2013) characterized by motor and phonic tics - habitual sudden, rapid, recurrent and 

non-rhythmic movements or vocalizations
 
(Yu et al., 2015). Often comorbid with other NDDs such as 

ADHD and ASD, clinical Tourette syndrome frequently overlaps with obsessive-compulsive disorder 

(OCD), anxiety and depression ((APA), 2013; Felling and Singer, 2011). Given excellent recent 

expert reviews of animal models of Tourette syndrome in this journal (Macri et al., 2013b),(Bronfeld 

et al., 2013), (Martino and Laviola, 2013), they will be only briefly mentioned here. Several mouse 

models have recently been proposed as relevant to Tourette syndrome, including DAT-/- mice with 
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elevated dopaminergic tone, overall hyperactivity and stereotyped self-grooming patterns, which 

parallel inflexible behavioral actions in Tourette patients (Berridge et al., 2005; Denys et al., 2013). 

Mutant mice lacking D1A receptors display aberrant behavior including shorter (and more incomplete) 

grooming episodes with disrupted sequential patterns (Cromwell et al., 1998), potentially relevant to 

dopaminergic deficits in Tourette syndrome. Other brain neuromediators, including glutamate, 

serotonin, GABA, norepinephrine (NE) and histamine, play an important role in clinical Tourette’s 

syndrome and its preclinical models (e.g., (Nordstrom et al., 2015), (Macri et al., 2013a), (Rapanelli 

and Pittenger, 2015)). For example, histidine carboxylase is an enzyme producing histamine from 

histidine. In line with clinical data implicating mutations in the human histidine decarboxylase (HDC) 

gene in Tourette syndrome (Castellan Baldan et al., 2014), the Hdc-/- mice recapitulate some aspects 

of this syndrome, including tic-like stereotypic grooming (Xu et al., 2015b). Together with the 

growing number of animal models of Tourette syndrome and other tic disorders (Macri et al., 2013a), 

(Godar et al., 2015), (Xu et al., 2015a), this suggests that future translational research will generate 

significant insights on these NDDs. 

2.7. Selected rodent models of attention deficit and hyperactivity  

Novel insights into the genetics and neurobiology of ADHD have already benefitted from 

animal models, and will be discussed here in the context of NDDs. Perhaps, the most robust and 

easiest ADHD symptom to measure in animal models is motor hyperactivity (hyperlocomotion). The 

control of hyperactivity is crucially linked to dopamine signalling, and both increased (Antrop et al., 

2000; Corkum et al., 2001; Porrino et al., 1983) and decreased dopamine (Giros et al., 1996; 

Viggiano et al., 2002) can lead to hyperactivity in animal models. Other measurements of ADHD-like 

behavior, including inattention and increased impulsivity, are more difficult to model (see further), 

suggesting that most animal paradigms represent “ADHD-like” rather than complete “ADHD” 

models (Sontag et al., 2010). For example, the spontaneous hypertensive rat (SHR) created by 

selectively inbreeding rats of the Wistar-Kyoto (WKY) strain (Okamoto and Aoki, 1963) shows face 
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validity for some aspects of ADHD, including hyperactivity in a novel environment, excessive 

responses during a fixed interval/extinction schedule and difficulty in operant learning (Mook et al., 

1993; Sagvolden, 2000; Wyss et al., 1992). Paralleling core symptoms of ADHD (hyperactivity, 

impulsivity and inattention), SHR are also less responsive to delayed reinforcement than WKY 

controls. Their behavioral alterations can be rescued by amphetamine (Myers et al., 1982; Sagvolden 

et al., 1992), methylphenidate (MPH) (van den Bergh et al., 2006) and the α2-agonist guanfacine 

(Sagvolden, 2006) providing further links to the human disorder. The SHR also demonstrate construct 

validity for ADHD, as their behavioral phenotypes are likely caused by altered dopamine signalling. 

SHR carry a 160-base pair insertion in intron 2 of the DAT gene Dat/Slc6a3, possibly affecting its 

expression in a manner similar to the VNTR seen in human ADHD patients (Vandenbergh et al., 

1992). SHR have several abnormalities in cathecholaminergic function, including reduced release of 

dopamine in the prefrontal cortex, nucleus accumbens and striatum, decreased dopamine turnover in 

the substantia nigra, ventral tegmentum and frontal cortex (Russell, 2002) and elevated 

norepinephrine in several brain areas (De Villiers et al., 1995). Nevertheless, despite its excellent 

attributes, the SHR is not the best ADHD model. For example, the background WKY rat strain is less 

active (than other rats) and does not perform well on some tasks (van den Bergh et al., 2006) making 

the behavioral alterations in SHR seem more pronounced. The high blood pressure (hypertension) 

seen in SHR is not observed in ADHD and could explain some of the behavioral alterations, 

including changes to learning and memory (Davids et al., 2003). In order to address this issue, a non-

hypertensive WKHA strain has been generated by back-crossing SHR rats to the WKY strain. 

However, while WKHA rats are hyperactive, they do not respond to MPH treatment, suggesting that 

they may not have predictive validity for ADHD (Hendley and Ohlsson, 1991). In general, despite its 

limitations, the SHR fulfils many of the criteria needed in an ADHD-like animal model, suggesting 

that further study may bring even more insights into the etiology of the disease.  
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Polymorphisms in the DAT gene have been linked to susceptibility for ADHD in a number of 

clinical studies. The Dat knockout (Dat-/-) mice show a spectrum of ADHD-like phenotypes 

including hyperactivity in a novel environment, a reduction of startle response and an impairment of 

learning and memory (Giros et al., 1996; Sora et al., 1998; Zhuang et al., 2001) (also see details of 

heterozygous Dat+/- mouse phenotypes in (Kalueff et al., 2007c)). The behavioral symptoms of Dat-

/- mice can be rescued by both amphetamine and MPH (Gainetdinov et al., 1998). Nevertheless, 

although DAT is linked to ADHD clinically, Dat knockout mice may not represent a good ADHD-

like model due to an extreme phenotype, such as a 5-fold increase in dopamine levels in the striatum 

of these mice coupled to compensatory changes in other dopaminergic signalling pathways. There is 

also increased activity of tyrosine hydroxylase (Jaber et al., 1999) and down-regulated expression of 

postsynaptic dopamine D1 and D2 receptors (Gainetdinov et al., 1998). This phenotype is at odds 

with the presumed pathology of clinical ADHD (which suggests reduced dopamine in the prefrontal 

cortex) and the postulated therapeutic action of many anti-ADHD drugs (including MPH and 

amphetamine) via DAT. Although the behavioral phenotype of Dat knockout mice can also be 

rescued by SSRIs, non-selective serotonin agonists and 5-HT2A antagonists (Barr et al., 2004), SSRIs 

are not particularly effective in controlling major disordered symptoms of ADHD clinically. Finally, 

due to their highly hyperactive phenotype, memory and learning testing is almost impossible to 

perform in Dat-/- mice, which also show unwanted growth retardation and an increased likelihood of 

premature death (Gainetdinov et al., 1998; Giros et al., 1996). Notably, Dat knock-down mice, which 

only have 10% of normal Dat function, also show hyperactivity, anti-hyperkinetic responses to 

amphetamine, excessive grooming and tendency to persevere in walking in straight lines (Berridge et 

al., 2005).  

The coloboma mouse has a radiation-induced mutation in the SNAP25 gene resulting in a 50% 

reduction of SNAP25-mediated synaptic transmission. Heterozygous coloboma mutant mice (Cm+/-) 

show spontaneous hyperactivity reduced by amphetamine but not MPH (Hess et al., 1996). Coloboma 
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mutants also display impulsivity and impaired inhibition in a delayed reinforcement task, being 

unable to wait as long as controls for a larger reward (Bruno et al., 2007). Mutation of SNAP25 

reduces dopamine in the dorsal striatum, increases cortical dopamine and striatal and accumbal 

norepinephrine (Jones et al., 2001; Raber et al., 1997). Thus, an interaction between these two 

monoamines’ signalling mechanisms seems to be important in coloboma mutants. These mice also 

seem to have predictive validity for ADHD, since identification of their SNAP25 mutation led to 

candidate gene studies that eventually revealed an association between the gene and human ADHD 

(Brophy et al., 2002). As a caveat, however, Cm+/- also have visual problems, while homozygous 

animals die early in pregnancy, these phenotypes are not associated with ADHD.  

Finally, as an example of a developmental toxin that can lead to the symptoms of ADHD, rats 

lesioned with 6-hydroxydopamine (6-OHDA) on postnatal day 1 show hyperactivity and reduced 

learning at certain developmental period. 6-OHDA is a neurotoxin that is uptaken by the DAT and 

NE transporter, and selectively kills both types of neurons. Motor and learning defects of 6-OHDA 

rats can be rescued by applying amphetamine or MPH. The hyperactivity of 6-OHDA-lesioned 

animals is accompanied by reduced dopamine in the striatum, prefrontal cortex, midbrain and 

amygdala, and increased striatal serotonin (Luthman et al., 1989). However, the noradrenergic system 

does not appear to be altered in these animals. Notably, the behavioral phenotype of 6-OHDA rats 

normalizes by adulthood, demonstrating the ability of the dopaminergic system to recover from some 

lesions during early development (Davids et al., 2003).  

2.8. Developing translational models of NDDs using non-rodent species 

While rodents are an indispensable tool for NDD research (Homberg et al., 2015), other 

model organisms are gaining popularity in this field. For example, invertebrate models, such as fruit 

flies (Drosophila melanogaster), have traditionally been used in developmental and behavioral 

genetics, and while out of scope here, are be mentioned for their emerging potential in modeling 
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NDDs, including ASD and ADHD (see (Kaur et al., 2015; van der Voet et al., 2015; Wise et al., 

2015) for details).  

Mounting evidence suggests zebrafish (Danio rerio) as a valuable translational model 

(Kalueff et al., 2014a; Stewart et al., 2014a) for behavioral analysis in both larval and adult fish and 

in-depth characterization of their rich behavioural repertoire (Kalueff et al., 2013; Kalueff et al., 

2014b; Stewart et al., 2015a; Stewart et al., 2015d). The large number of mutant strains, as well as the 

availability of modern genetic, optogenetic and neuroimaging tools (Kalueff et al., 2014a; Kalueff et 

al., 2014b; Stewart et al., 2015d; Ullmann et al., 2015; Ullmann et al., 2010), make zebrafish an 

excellent model for studying NDDs. For instance, zebrafish have recently been suggested as a 

promising model of ASD (Stewart et al., 2014b), especially as fish spent >80% of their time 

swimming together in shoals (Fig. 2D) and display robust kin recognition and social preference 

phenotypes (Kalueff et al., 2013). Similar to rodent models, zebrafish also display robust social 

preference, which can be easily tested in aquatic versions of social interaction and social preference 

paradigms discussed above for rodents (Fig. 2). Additionally, multiple pharmacological, genetic and 

environmental manipulations can disrupt zebrafish shoaling behavior (Stewart et al., 2014b). The 

ability to swim in a stereotypic manner (e.g., corner-to-corner, as after treatment with nicotine, or in 

tight circles, as after treatment with glutamatergic antagonists ketamine, MK-801 or phencyclidine 

(Stewart et al., 2015b)), raises the possibility of using zebrafish as models of repetitive behaviors, 

relevant to motor symptoms of ASD and other NDDs.  

Despite the numerous advantages of zebrafish for developmental neuroscience, there are 

currently very few ADHD-related models in zebrafish. Hyperactivity is arguably the easiest ADHD-

related phenotype to assess in zebrafish, presenting as increased distance travelled, velocity and 

movement frequency/duration in both adult (Blaser et al., 2009; Lopez-Patino et al., 2008) and larval 

fish (Chen et al., 2011; Norton, 2011; Saili et al., 2012; Seibt et al., 2010). Even fewer studies 

targeted impulsivity and inattention in zebrafish, most likely reflecting challenges of designing 
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specific tests (Parker et al., 2012) and the general under-appreciation of zebrafish as a behavioral 

model of NDDs. Several successes, however, indicate the growing potential of zebrafish models of 

ADHD. For example, morpholino-mediated inhibition of nr4a2, an ADHD-linked dopaminergic 

orphan nuclear receptor (Saili et al., 2012), during development leads to permanent hyperactivity 

(Blin et al., 2008). A recently developed 5-choice serial reaction time task (5CSRTT) can measure 

impulsivity in zebrafish similar to rodents (Parker et al., 2014b; Parker et al., 2014c; Parker et al., 

2012). To analyze the role of ADHD-linked genes in zebrafish phenotypes, the latrophilin 3.1 

(lphn3.1) gene has been comprehensively evaluated during zebrafish development (Lange et al., 

2012b). LPHN3 is an orphan adhesion-G protein-coupled receptor whose gene contains a variation 

that conveys a risk haplotype for ADHD (Arcos-Burgos et al., 2010). latrophilin3.1 represents a 

zebrafish homolog of human LPHN3, expressed in the brain up to 6 dpf. The reduction of its function 

during zebrafish development by injecting morpholinos results in hyperactive phenotype of the 

morphants, also displaying more bursts of acceleration (increased motor impulsivity) – the two 

ADHD-like phenotypes rescued by anti-ADHD drugs MPH and atomoxetine (Lange et al., 2012b) 

(Fig. 2). Together with some other recent interesting genetic models (e.g., (Huang et al., 2015)), this 

illustrates the growing utility of zebrafish in modelling ADHD and other NDDs.  

Chick models are also gaining popularity in neurodevelopmental research, especially since 

they display robust social, motor and cognitive phenotypes relevant to clinical NNDs (Fig. 2E) and 

demonstrate critical disease ‘susceptibility’ windows during the neural development (Koshiba et al., 

2013a; Mimura et al., 2013; Mimura, 2013). For example, chicks display high preference for social 

groups (like rodents), and emit social vocalizations (e.g., ‘alarm’ and ‘joy’ calls when isolated or 

meeting peers, respectively (Koshiba et al., 2013c)). Social environment is particularly important for 

chicken normal behaviors and their overall sensitivity to environmental stressors (Koshiba et al., 

2013a; Mimura et al., 2013; Mimura, 2013). For example, deficit of peer rearing affects 

monoaminergic systems in young chicks, evoking depressive-like behaviors (Koshiba, 2013; 
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Shirakawa, 2013b) and suppressing forebrain growth around critical susceptible age (Koshiba et al., 

2013a).  

Non-human primate models, such as those based on common marmoset (Callithrix jacchus), 

represent another promising area of NDD research (Fig. 2E). Marmosets display rich vocal 

communication with approximately 10 types of ‘calls’, likely representing (based on contexts) 

positive or negative emotional states (Koshiba et al., 2011; Koshiba et al., 2013b). Together with 

parallel assessment of vocalizations and behaviors, the socio-behavioral trajectories in marmosets 

have recently been studied using multivariate repression. For example, such analyses revealed 

important time windows around weaning, critical for establishing normal social and motor behaviors, 

also showing pathological hyperactivity in marmosets if reared without adequate social environment 

(Koshiba et al., 2013b). Light-induced disruption of the young marmoset circadian rhythm affects 

their adult behaviors, leading to more ‘hyperactive’ patterns of social and motor activity (Koshiba et 

al., 2015b; Senoo et al., 2011) (also see the link between marmoset emotional responses, body 

temperature (Karino, 2015; Koshiba, 2013; Shirakawa, 2013a) and hormones (Koshiba et al., 2011), 

Fig. 2E).  

3. Selected emerging translational questions 

A complex, systems biology-based approach that parallels clinical studies, preclinical animal 

models, biomarker discovery and mechanistically-driven in-vitro research is becoming increasingly 

critical for improving our understanding of brain disorders and their therapies (Cryan and Slattery, 

2007; Kalueff and Stewart, 2015; Kalueff et al., 2015; Kalueff et al., 2007d; Redei et al., 2001; 

Stewart and Kalueff, 2015). As outlined here, marked progress in studying NDDs has been achieved 

through translational analyses using preclinical (animal) models and tests (Table 1) (Homberg et al., 

2015). However, more work is needed in order to fully understand the pathobiology of NDDs. For 

example, while the opportunity of targeted genetic manipulations in mice resulted in significant 

advances in our understanding of genetics and biology of NDDs, the availability of genetically altered 
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rat models (especially due to the development of modern gene-editing approaches, such CRISPR-

Cas9 or Zinc-Finger Nuclease (ZFN) technologies) may significantly further the progress in the field 

(Kaneko and Mashimo, 2015), (Parker et al., 2014a). Beyond their obvious advantage of larger size, 

rats have a wider range of well established complex behavioral paradigms (compared to mice), 

particularly critical to evaluate fine behaviors, cognitive function and emotionality, critical for NDD 

research (Parker et al., 2014a). The Panel recognizes the importance of genetically modified rats in 

studying a wide spectrum of NDDs and other brain disorders (Kalueff et al., 2010). Several 

additional, emerging challenges can be relevant to building translational bridges in this field. Thus, 

while we may not be able to provide definite answers to these questions at present, their discussion 

can benefit future studies of NDDs. 

3.1. Making research more translational: from lab to bedside 

Discussion of translational NDD models would be incomplete without mentioning clinical 

studies utilizing behavioral approaches and biomarkers similar to those developed for rodents, 

zebrafish, chicks and non-human primates (see above). One interesting example of such translational 

bridge is “reverse translation”, or "bedside to bench", experiment performed in patients with 

psychiatric disorders (schizophrenia and bipolar disorder) by analysing their behavioural pattern of 

activity and directly comparing them with the behavioral pattern of mutant mice (e.g., hyperactive 

DAT knockouts) recorded in similar conditions (Perry et al., 2009), (Perry et al., 2010). Such 

translational angle is also important given the need to develop ‘early’ and ‘very early’ behavioral and 

physiological biomarkers of clinical NDDs. For instance, multivariate analyses of neurological 

development across age in normal infants vs. infants with aberrant neural development shows 

correlation of physiological biomarkers (blood and brain imaging data) with specific behavioral 

phenotypes, such as head control and rolling behavior (Fig. 2F) (Koshiba et al., 2015a). This raises 

the possibility of using such phenotypes as potential ‘early’ behavioral biomarkers of NDDs (Koshiba 

et al., 2015a), crucial in the absence of other, more complex behaviors to aid diagnostics. This is 
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particularly important because early neural development represents a critical window for maximizing 

the success of therapeutic intervention. Finally, the development of video-tracking and other 

behavior-recording methods (e.g., those utilizing smart phones (Mimura et al., 2015)) to study older 

children and adults further fosters NDD research and extraction of novel behavioural biomarkers (Fig. 

2F). 

3.2. Moving from single- to poly-phenotype models 

As already mentioned, the majority of NDDs are multi-factorial brain illnesses with many 

genetic and environmental determinants. Therefore, a conceptual approach deconstructing these 

disorders into simpler and easily quantifiable phenotypic units (‘endophenotypes’) is a reasonable 

strategy (Gottesman and Gould, 2003; Gould and Gottesman, 2006; Lenzenweger, 2013). The 

endophenotype concept has been successful in dissecting various brain disorders, their overlapping 

and unique symptoms, as well as candidate biomarkers and genes across the disorder spectrum 

(Courtet et al., 2011; Crossley et al., 2014; Ikeda et al., 2013; Ivleva et al., 2010); also see (Kalueff et 

al., 2008b; Kalueff and Stewart, 2015; Kalueff et al., 2015; LaPorte et al., 2010; Stewart and Kalueff, 

2015) for detailed discussion. Recognizing that multiple phenotypes can be shared by several distinct 

disorders, such strategy is in line with the recently suggested research domain criteria, RDOCs 

(Casey et al., 2013; Cuthbert and Insel, 2010; Insel et al., 2010; Insel, 2014) that target phenotypic 

dimensions, rather than categories, of psychiatric diagnoses (Gottesman and McGue, in press; Kalueff 

et al., 2015). However, in parsing individual endophenotypes across and within the disorders in both 

clinical and preclinical models, the predominant focus of biological psychiatry continues to be narrow 

and phenotype-centered (Ditzen et al., 2012; Filiou et al., 2011; Gormanns et al., 2011; Kalueff et al., 

2008b; Maccarrone et al., 2013). From a conceptual standpoint, if a CNS disorder consists of several 

distinct endophenotypes A, B and C, then focusing on clinical and preclinical models or tests that 

target more than one endophenotype (e.g., A and B or A, B and C) is better than using experimental 

models or clinical studies that assess only one. Using ASD as an example, an animal model is likely 
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more valid if it assesses both social deficits and behavior perseverations, as compared to a model with 

only one aberrant phenotype. A growing number of studies are already embracing this approach, 

monitoring several distinct endophenotypes of a disorder and discovering their biomarkers and 

potential treatments (Amodeo et al., 2014; Burket et al., 2013; Kalueff et al., 2015; Pearson et al., 

2011; Reynolds et al., 2013; Silverman et al., 2010a) (Fig. 4). The main challenge, however, is that it 

may be insufficient to dissect ‘unique’ molecular mechanisms of endophenotypes A, B and C from 

their ‘shared’ pathways (e.g., A+B or B+C) because, as suggested recently (Kalueff et al., 2014c; 

Kalueff et al., 2015), principally novel genetic and molecular ‘cross-talk’ pathways may underlie the 

pathogenetic coupling of such endophenotypes (e.g., ‘A<->B’ or ‘B<->C’) without affecting each 

endophenotype per se (Fig. 4). Remaining to yet be established, the putative mechanisms by which 

such novel classes of genes act, may include synchronizing or synergizing several distinct disordered 

processes (Stewart et al., 2015c). Applying this concept to NDDs, it is possible that in clinical or 

experimental ASD, social deficits can be pathogenetically linked to repetitive behaviors via cross-talk 

molecular mechanisms. Likewise, in addition to its hallmark symptoms - hyperactivity and attention 

deficit – ADHD may rely on additional molecular networks integrating the two endophenotypes 

together, thus making it the single well-defined clinical disorder. Complementing current theories of 

NDDs, the pathological linkage between several distinct disordered endophenotypes, in addition to 

focusing on them separately or in combination, merit further scrutiny (Fig. 4). For example, this can 

be achieved by applying a network-based ‘cloud’ approach to modeling NDDs, where individual 

endophenotypes (as well as biomarkers and disorders) are not only assessed in clinical and preclinical 

studies individually or in combinations, but are assessed by novel linkages between them (Fig. 4). 

Based on this rationale, clinical cases with two synchronized phenotypes (e.g., repetitive behaviors 

and social deficits in ASD) may demonstrate a stronger (and, therefore, more debilitating or 

treatment-resistant) NDD, compared to cases when core endophenotypes are expressed in less 

organized manner (Fig 4, therefore, implying their weaker pathogenetic integration and less 
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pronounced overall pathogenesis). Clearly, this necessitates further integrative clinical studies and 

respective innovative preclinical models of NDD pathogenesis. 

3.3. Monoamines as neurotrophic factors: lessons from serotonin 

While brain neurotransmitters play a key role in NDDs, it is often overlooked that in early 

development they also act as neurotrophic factors (Homberg et al., 2010). As one illustrative 

example, consider the serotonergic system – a target of many pharmaceutical agents (e.g., 

antidepressants and antipsychotics) used to treat NDDs, with multiple genetic polymorphisms 

conferring the risks for NDDs (Lesch and Waider, 2012). Although the precise role of serotonin in 

NDDs is not fully understood, it mediates aversive processing (Deakin and Graeff, 1991), behavioral 

inhibition (Cools et al., 2008) and social behavior (Kiser et al., 2012), which are often affected in 

NDDs. The common underlying function of serotonin may be the modulation of sensitivity to 

environmental stimuli (Homberg, 2012), a role mostly ascribed to serotonin acting as a 

neurotransmitter. However, serotonin also acts as an important neurotrophic factor during early 

development (Gaspar et al., 2003), and may shape brain circuits involved in these processes. The 

latter function is likely to be critical for NDDs.  

Serotonin is first generated in the developing brain at mid-gestation, by serotonergic neurons 

in the raphe nuclei of the brainstem, mediated by the neuronal isoform tryptophan hydroxylase 2 

(TPH2) (Gaspar et al., 2003). Serotonin is synthesized from the essential amino acid tryptophan and 

packed into vesicles by vesicular monoamine transporter (VMAT), whereas SERT is responsible for 

the reuptake of serotonin into the presynaptic nerve terminal, and thereby determines synaptic 

serotonin levels (Kriegebaum et al., 2010). During development, circulating serotonin of 

gastrointestinal, placental and maternal origins produced by peripheral isoform TpH1 penetrate into 

the developing brain (Bonnin and Levitt, 2011). There it influences developmental processes, 

including cell division, differentiation and migration (Gaspar et al., 2003). These developmental 

processes may also involve non-serotonergic neurons, since SERT is transiently expressed in non-
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serotonergic cells in the brain during development (Homberg et al., 2010). Indeed, SERT is expressed 

in specific sets of glutamatergic neurons in the thalamus and in thalamocortical projection neurons, as 

well as in prefrontal cortex and hippocampus, and takes up extrasynaptic serotonin during perinatal 

CNS development, until approximately P14 (corresponding to the third trimester of human 

pregnancy) (Gaspar et al., 2003). This serotonin is expected to be derived from serotonin-producing 

raphe neurons traveling a long distance in the developing brain (Kullyev et al., 2010). The role of 

SERT in glutamatergic thalamocortical neurons is particularly well established, as SERT regulates 

sensory map architecture (Chen et al., 2015). For example, knockout of SERT in these neurons causes 

lasting alterations in thalamocortical axon patterning, spatial organizations of cortical neurons and 

dendritic arborization in sensory cortex (Gaspar et al., 2003). These developmental effects of 

serotonin are specific for non-serotonergic neurons, since SERT knockdown in serotonin-producing 

neurons does not impair barrel maps (Chen et al., 2015). Likewise, excessive serotonin levels in 

SERT knockout rats is associated with disrupted topographic patterning of both the barrel and visual 

cortex (Cases et al., 1996; Miceli et al., 2013; Murphy and Lesch, 2008; Persico et al., 2001). In 

addition, the outgrowth of raphe neurons to the prefrontal cortex and cortical layering are altered in 

SERT knockout rodents (Altamura et al., 2007; Witteveen et al., 2013). Behaviorally, SERT 

knockout is consistently associated with anxiety-like behavior (Kalueff et al., 2010) and impaired 

social interactions (Kiser et al., 2012), symptoms that are key to NDDs. In contrast, behavioral 

inhibition is reduced in rodents lacking SERT (Holmes et al., 2002; Homberg et al., 2007a). Thus, 

there is strong but indirect evidence that serotonergic genetic variance modulates neurodevelopmental 

processes involved in the pathogenesis of NDDs. In rodents, administration of SSRIs during 

pregnancy and during the first 2 postnatal weeks reduces social play in rats and alters sensory 

processing, cortical wiring and myelin sheet formation (Simpson et al., 2011; Xu et al., 2004). These 

findings resemble those associated with ASD (Deoni et al., 2015; Zikopoulos and Barbas, 2010) and 

SERT in rodents (Homberg et al., 2007b). SSRI exposure decreases cortical dendritic arbor 
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complexity prenatally (Chameau et al., 2009; Smit-Rigter et al., 2012) while during P2-P11 it 

decreases dendritic complexity in the prefrontal cortex and evokes anxiety-like behavior (Rebello et 

al., 2014) (similar to SERT knockout rodents (Kalueff et al., 2010)). Thus, further research is needed 

to examine both the neurotransmitter and neurotrophic roles of serotonin and other brain 

neuromediators in NDD pathogenesis. 

3.4. Understanding gene-environment correlations and environmental enrichment  

Another problem to address in future translational studies is the potentially self-perpetuating 

nature of NDDs (Fig. 2B). For example, since aberrant neural development often results in 

debilitating NDD behavioral symptoms (e.g., social, cognitive or motor deficits) from early 

childhood, this disrupts normal social and affective interactions of an affected individual with their 

social environment (Fig. 2C). Accordingly, this can increase risks of the environment becoming more 

adverse for affected individuals. Because healthy social/environmental stimulation is important for 

shaping neural plasticity in maturing brain and for developing efficient behavioral adaptations from 

early age, the evoked social/environmental adversity may further impair neural development, 

worsening the existing NDD by creating a pathogenetic ‘vicious circle’ (Fig. 2). The recognition that 

the individual’s exposure to the environment can be a function of their genotype, called Gene-

Environment correlations (Jaffee and Price, 2007), is relatively recent in biological psychiatry. 

Conceptually, it complements the widely accepted notion of Gene x Environment interactions (GxE), 

which reflect how genotypes modify the sensitivity to environmental factors (Duncan et al., 2014; 

Kalueff et al., 2007d; Le Strat et al., 2009). Highly relevant to NDD pathogenesis, the Gene-

Environment correlations (Fig. 2C) may have multiple clinical implications. For example, correcting 

behavioral strategies (e.g., pharmacologically or behaviorally) in ASD or ID children can improve 

their interaction with social environment at a ‘critical’ early age. Moreover, educating parents and 

peers on how to best deal with special needs patients can improve their integration into the society, 

therefore reducing ‘early’ environmental adversity. Collectively, this may not only improve clinical 
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symptoms of the existing NDD, but, in parallel, prevent the risks of additional (e.g., stress/adversity-

triggered) neurodevelopmental deficits (Fig. 2C). From a practical standpoint, a potential strategy to 

target Gene-Environment correlations in experimental models of NDDs can involve correlational 

analyses of social components displayed by multiple individuals in social interactions. Improvement 

of software tools to analyze social interactions of multiple animals in detail (e.g., assessing social 

components sequentially with a high time- and space- resolution) may significantly empower the 

assessment of Gene-Environment correlations in biological experiments. As the concept of Gene-

Environment correlations is gaining more recognition in neuropsychiatry (Jaffee and Price, 2007), 

the development of their experimental preclinical models may represent an important and novel 

strategic direction of NDD research (Homberg et al., 2015).   

Paralleling clinical data on positive effects of cognitive and behavioral therapy in various 

NDDs (e.g., (Morand-Beaulieu et al., 2015), (Boyer et al., 2015)), the ability of early environmental 

interventions to reverse or rescue aberrant phenotypes in animal models of NDDs is particularly 

interesting (Nithianantharajah and Hannan, 2006). For example, Fmr1-knockout mice, a model of 

FXS, display hyperactivity and a lack of habituation that is rescued in animals raised in an enriched 

environment (Restivo et al., 2005). In mice deficient for Mecp2, a genetic model of Rett syndrome, 

early environmental enrichment rescued memory deficits, motor coordination and anxiety-like 

behaviors in a sex-specific manner (Lonetti et al., 2010), whereas environmental enrichment reversed 

the increase in repetitive self-grooming behavior in BTBR mice (Reynolds et al., 2013). Taken 

together, these preclinical studies further support the need to investigate a possible role for 

environmental treatments in alleviating the symptoms of NDDs. 

4. Conclusion 

In summary, while NDDs are triggered by aberrant neural development, their pathogenesis 

involves a complex interplay between developmental, genetic, endocrine, immune and neural 

abnormalities. The extensive research covered here illustrates the existing challenges in identifying 
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the neurobiological basis as well as clarifying susceptibility, resilience and strategies for novel 

effective treatments of NDDs.  

As already emphasized, both traditional ‘rodent’ mouse and rat models (extensively used in 

NDD research) are also increasingly complemented by the growing spectrum of alternative model 

organisms, including zebrafish, chicks and non-human primates. Overall, experimental animal 

models are critical to increase our understanding of NDDs, including studying behavior, neuronal 

morphology and gene expression patterns across developmental stages before and during the 

manifestation of disorders-related symptoms (Homberg et al., 2015). In addition, preclinical models 

permit the functional assessment of the impact of genes and gene networks at the level of genetic, 

synaptic and neuronal networks of cognition, behavior and neural systems. Paralleling clinical 

findings, such models begin to play a more critical role in gaining translational and mechanistic 

insights into NDD pathogenesis. 
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Figure 1. The spectrum nature of neurodevelopmental disorders (NDDs). Panel A presents the 

spectrum of neurodevelopmental and other associated disorders. Panel B shows phenotypic domain 

structure and heritability of common NDDs (red – reduced, green – increased; also see Table 1). ASD 

– autism spectrum disorder, ID – intellectual disabilities, ADHD – attention deficit hyperactivity 

disorder, OCD – obsessive compulsive disorder, PTSD – post-traumatic stress disorder. Panel C 

summarizes the temporal dynamics of key neuronal processes related to neural development. Panel D 

illustrates typical onset of selected common neurodevelopmental disorders. 
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Figure 2. The growing clinical and preclinical importance of neurodevelopmental disorders 

(NDDs). Panel A demonstrates global prevalence of NDDs and their costs (USA, $B per year; Center 

for Disease Control/CDC, 2014). Panel B shows rapid growths in occurrence of NDDs, such as ASD 

and ADHD, in the last decade (ASD data represent prevalence in 8 year olds (2015) and ADHD data 

represent prevalence in children 3-17 years old (Bloom et al., 2013)). Panel C shows the relative 

‘health burden’ of NDDs and other common human disorders, calculated as year-patients since the 

disorders’ onset and based on average life expectancy of 80 years (AD – Alzheimer’s disease, PD – 

Parkinson’s disease). Note that NDDs are among the most impactful disorders. Inset: the rapidly 

expanding biomedical research on NDDs in the last 20 years, based on Pubmed article search for 

‘neurodevelopmental’ (December 2015). Panel D shows popular model organisms used in 

translational research on NDDs, and relevance of rodent and zebrafish behaviors to various 

phenotypic domains of these disorders. Rodent models of NDDs have been extensively discussed in 

the text. Note overt social, locomotor and repetitive (e.g., grooming, hetero- and self-barbering 

(Kalueff et al., 2007a; Kalueff et al., 2006)) behaviors in rodents. Illustrating the value of zebrafish 

models for NDDs, the bottom left section shows normal and aberrant ASD-like zebrafish shoaling 

behaviors (Stewart et al., 2014b). Botom right section illustrates an ADHD-related zebrafish model 

based on morphants with rediced fucntion of lphn3.1 gene encoding latrophilin 3 (note overall 

baseline hyperactivity associated with impulsive-like acceleation bursts, accompanied by reduced and 

mislaced dopaminergic neurons in the ventral diencephalon) (Lange et al., 2012a, c). Panel E 

illustrates social and cognitive behavioral tests used in preclinical NDD models based on domestic 

chicks (Koshiba et al., 2013a; Koshiba et al., 2013c; Koshiba, 2013; Mimura et al., 2013; Mimura, 

2013; Shirakawa, 2013b) and common marmosets (Karino, 2015; Koshiba et al., 2011; Koshiba et al., 

2015b; Koshiba et al., 2013b; Senoo et al., 2011; Shirakawa, 2013a). Paralleling human clinical 

studies in preterm infants and juveniles (Koshiba et al., 2015a; Koshiba et al., 2013b; Koshiba, 2013) 

, such models can also enhance biomarker discovery. For example, the posterior-lateral forebrain 



34 
 

serotonin metabolite, 5-hydroxyindolacetic acid (5HIAA), correlates with chick freezing behavior 

(Koshiba, 2013; Shirakawa, 2013a), whereas emotional phenotypes in common marmosets correlate 

with venous blood progesterone in female adult common marmosets (Koshiba et al., 2011). Panel F 

illustrates several examples of clinical models of NDDs based on behavioral analyses (similar to 

those developed for non-human model organisms), including studying head control and body rolling 

in normal and neurologically affected infants or using computer games in older children (top row) 

(Koshiba et al., 2013b) and behavioral video-tracking of social and locomotor activity in normal vs. 

autistic 2-year old children (bottom row), image courtesy of Noldus IT (Netherlands). 

 

  



35 
 

 

 

 

 

 

 



36 
 

 

 

  



37 
 

Figure 3. The concepts of Gene x Environment interactions (GxE) and Gene-Environment 

correlations (G-E), as well as their potential implications for NDDs and their experimental 

animal models. 
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Figure 4. The proposed ‘integrative’ strategy for modeling of neurodevelopmental disorders 

(NDDs). NDDs usually consist of several ‘core’ symptoms (endophenotypes, e.g., A and B). Panel A 

shows ‘early’ experimental models of brain disorders that focus on targeting individual 

endophenotypes A or B, and more recent complex models examining several endophenotype and 

their respective biomarkers in parallel (A+B vs. A vs. B). As an example here, we use the mouse 

autism-like behaviors (endophenotype A – behavioral perseverations/self-grooming, endophenotype 

B – social deficit). In addition, we suggest that a network-like ‘cloud’ approach must be used to link 

disordered endophenotypes between themselves (i.e., A<->B vs. A+B vs. A vs. B), in order to 

identify their “interplay” genes and biomarkers, in addition to those ‘unique’ and ‘shared’ between 

them. For example, a disorder with stronger synchronization of endophenotypes A and B is likely to 

be more severe and treatment-resistant, as compared to a disease with similar ‘amplitude’ of 

endophenotypes, but the lack of their correlation. Panel B illustrates the importance of tracking the 

activity of all proposed genetic networks across ontogenesis, as different subgroups of genes (A-

specific, B-specific, and ‘interplay’ A<->B genes may show distinct pattern of gene 

activity/expression (Y-axis) during neural development (X-axis). Circles represent the severity of 

phenotype expression (note that subtypes of severe NDDs may include cases of mild but tightly 

coordinated disordered endophenotypes, as well as strongly affected but relatively moderately 

coordinated/overlapping endophenotypes). 

  



39 
 

 

  



40 
 

Table 1. Neurodevelopmental disorders currently listed in Diagnostic Statistical Manual (DSM-

5) (American Psychiatric et al., 2013), also see Table 2 

 

Disorders and their main symptoms Availability of 

animal models 

Intellectual Disabilities (ID) – impairment of mental functions in conceptual (language, reading, 

writing, mathematics, memory, insight, knowledge, interpretation), social (empathy, compassion, 

social judgment, communication and interaction skills, amicability, harmony) and practical 

(personal care, school and/or occupational responsibilities and organization, financial management, 

entertainment, hobby) aspects, including: Intellectual Disability (Intellectual Developmental 

Disorder), Global Developmental Delay, Unspecified Intellectual Disability (Intellectual 

Developmental Disorder)  

+ 

Communication Disorders (CD) – difficulties in language, speech, phonetic fluency or social 

communication, including: Language Disorder, Speech Sound Disorder, Childhood-Onset Fluency 

Disorder (Stuttering), Social (Pragmatic) Communication Disorder, Unspecified Communication 

Disorder  

Not feasible 

Autism Spectrum Disorder (ASD) - persistent reciprocal social deficits (communication and 

interaction), and restricted, repetitive patterns of behavior, interests or thoughts 

+ 

Attention-Deficit/Hyperactivity Disorder (ADHD) - a pattern of inattention and/or hyperactivity-

impulsivity, including: ADHD, Other Specified and Unspecified ADHD 

+ 

 

Specific Learning Disorder - difficulties learning skills like reading, writing, spelling, mathematic 

calculations, etc. 

Not feasible 

Motor Disorders (MD) – impairments of execution of coordinated motor skills, or repetitive 

motor behaviors, including: Developmental Coordination Disorder, Stereotypic Movement 

Disorder  

+ 

 

Tic Disorders (TD) - habitual motor movements or vocalizations which are sudden, rapid, 

recurrent and non-rhythmic, including: Tourette’s Disorder, Persistent (Chronic) Motor or Vocal 

Tic Disorder, Provisional Tic Disorder, Other Specified and Unspecified Tic Disorders 

+ 

 Other Neurodevelopmental Disorders  ? 
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Table 2. Selected animal (rodent) models of neurodevelopmental disorders, abbreviations as in 

Table 1 (also see Fig. 2 and Table 3) (Homberg et al., 2015).  

 

Animal (rodent) model Ease to 

perform 

Throug

hput 

Affected 

domain/phenotype 

Clinical relevance 

Social interaction test ++ + Social deficit*/** Social deficit in ASD 

Social preference test ++ + Social deficit* Social deficit in ASD 

Social recognition + + Social deficit* Social deficit in ASD, ID 

Open field test +++ +++ Hyperlocomotion* Hyperactivity in ADHD 

Homecage observation ++ + Hyperlocomotion* Hyperactivity in ADHD 

Various memory tests ++ + Cognitive deficits* Cognitive deficits in ID and ADHD 

Various attention tests + + Attention deficits Attention deficits in ADHD 

Various impulsivity tests + + Increased impulsivity Increased impulsivity in ADHD 

Self-grooming test +++ +++ Increased grooming  Behavioral perseverations in ASD, TD 

Hetero-grooming ++ + Aberrant grooming Social deficits in ASD, ID 

Self-barbering test  ++ + Hair-loss (barbering) Behavioral perseverations in ASD, TD 

Hetero-barbering ++ + Hair-loss (barbering) Social deficits in ASD, ID 

Open field test +++ +++ Increased stereotypies* Behavioral perseverations in ASD 

Aggression test ++ + Increased aggression** Aggression in ID, ADHD 

Marble burying test +++ +++ Increased burying Behavioral perseverations in ASD 

Homecage observation ++ + Increased stereotypies*  Behavioral perseverations in ASD 

Startle test +++ +++ Aberrant startle* Altered cognition in ADHD and ID 

Ultrasonic vocalizations + ++ Aberrant vocalization Social deficits in ASD, ID or CD 

 

* denotes the availability of similar tests in alternative model organisms, such as zebrafish (Fig. 2) 

** also see shoaling test and mirror biting test in zebrafish (Green et al., 2012; Miller et al., 2013) (Fig. 2D) 
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Table 3. Tests used to measure the neural development and behavior of young rodents 

(Homberg et al., 2015).   

Tests System measured Age of testing Referen-ces 

Simple Reflexes     

Pupillary constriction Sensorimotor PND12 to 

appearance 

(Crofton, 1992) 

Salivation  Sensorimotor PND2 to 

appearance 

(Crofton, 1992) 

Lacrimation Sensorimotor PND2 to 

appearance 

(Crofton, 1992) 

Acoustic startle Auditory, Motor PND6 to 

appearance 

(Fox, 1965) 

Forelimb grasp reflex Somatic, Motor PND2 to 

appearance 

(Blaney et al., 2013; Fox, 1965) 

Hindlimb grasp reflex Somatic, Motor PND2 to 

appearance 

(Amendola et al., 2004; Blaney et al., 

2013; Fox, 1965) 

Loss of crossed-

extensor reflex 

Somatic, Motor PND2 to 

disappearance 

(Blaney et al., 2013; Fox, 1965) 

Loss of rooting 

response 

Somatic, Motor PND2 to 

disappearance 

(Fox, 1965; Roubertoux et al., 1987) 

Vibrissae response Somatic, Motor PND2 to 

appearance 

(Amendola et al., 2004; Blaney et al., 

2013; Fox, 1965) 

Sensory and motor    

Reflex modification Visual, Auditory, 

Olfactory, Somatic 

PND 14-onwards (Wecker et al., 1985) 

Cliff avoidance Visual: depth 

perception  

PND 14-onwards (Fox, 1965) 

Visual placing test Visual, motor 

coordination 

PND14-onwards (Pinto and Enroth-Cugell, 2000) 

Olfactory 

discrimination 

Olfaction  After weaning (Brown and Willner, 1983)  

Swimming test Vestibular, 

Neuromotor 

coordination 

After weaning (Kalueff et al., 2004) 
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Negative geotaxis Vestibular, 

Neuromotor 

coordination 

PND2-onwards (Blaney et al., 2013; Fox, 1965) 

Surface righting  Vestibular, 

Neuromotor 

coordination 

PND 2-onwards (Amendola et al., 2004; Fox, 1965) 

Mid-air righting Vestibular, 

Neuromotor 

coordination 

PND2-onwards (Fox, 1965) 

Hindlimb splay Vestibular, 

Neuromotor 

coordination 

PND2-onwards (Broxup et al., 1989; Moser et al., 1988)  

Gait analysis Neuromotor 

coordination 

After weaning (Wooley et al., 2005) 

Rotarod, accelerod Neuromotor 

coordination 

After weaning (Van Raamsdonk et al., 2005) 

Horizontal rod test Vestibular, 

Neuromotor 

coordination 

After weaning (Kalueff et al., 2008a) 

Forelimb grip strength 

test 

Neuromotor 

coordination, 

muscle strength 

PND2-onwards (Blaney et al., 2013) 

Nest building test Neuromotor 

coordination 

After weaning (Kalueff et al., 2007b) 

Rope climbing test Neuromotor 

coordination, 

muscle strength 

After weaning (Kalueff et al., 2007b) 

Vertical screen test Neuromotor 

coordination, 

muscle strength 

After weaning (Kalueff et al., 2004) 

Self-grooming test Neuromotor 

coordination, 

muscle strength 

After weaning (Kalueff and Tuohimaa, 2004a, 2005a) 

Open Field Locomotor activity PND12-onwards (Alleva et al., 1985; Blaney et al., 2013) 
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Cognitive tests    

Olfactory 

conditioning 

Learning and 

memory 

PND6 onwards  (Sullivan and Wilson, 1995) 

Neonatal T-maze Learning and 

memory 

PND9-onwards (Nagy et al., 1976) 

Hebb Williams Maze Learning and 

memory 

After weaning (Hebb and Williams, 1946; Pritchett and 

Mulder, 2004) 

Morris water maze Learning and 

memory 

After weaning (Morris, 1984) 

Passive avoidance test Learning and 

memory 

After weaning (Cuomo et al., 1996) 

Active avoidance test Learning and 

memory 

After weaning (McNamara et al., 1977) 

Operant conditioning 

schedules 

Learning and 

memory 

After weaning (Cuomo et al., 1996) 

Homing test Learning and 

memory 

PND14-onwards (Alleva et al., 1985; Fox, 1965) 

Object recognition 

test 

Learning and 

memory 

PND22-onwards (Blaney et al., 2013) 

Social/ Emotional    

Ultrasonic 

vocalization 

Anxiety, sociability PND2-onwards (Bolivar and Brown, 1994; Scattoni et 

al., 2009) 

Elevated plus maze Anxiety After weaning (Cuomo et al., 1996) 

Black and white 

transition test 

Anxiety After weaning (Crawley, 1981) 

Social interaction test Anxiety, sociability After weaning (Crawley, 1981) 

Self-grooming 

analysis 

Anxiety, repetitive 

behavior 

After weaning (Kalueff et al., 2007a; Kalueff and 

Tuohimaa, 2004b) 

Suok test Anxiety, 

motorisensory 

integration 

After weaning (Kalueff et al., 2008a; Kalueff and 

Tuohimaa, 2005b) 

Social preference test Sociability After weaning (Ricceri et al., 2007; Silverman and 

Crawley, 2014) 
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