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ABSTRACT

Sounds and murmurs have long been employed for qualitative diagnosis

of cardiovascular disease. However, quantitative diagnosis has been

hindered by the lack of understanding of the mechanisms of sound

generation and transmission in the human circulation. Clinical

phonoangiographic studies have shown that simple assumptions about low

frequency sound transmission through tissue surrounding an artery are

inadequate for obtaining meaningful quantitative diagnosis. Therefore,

a theory is developed which relates internal turbulent flow in diseased

peripheral arteries to the tissue vibration observed at the surface of

the skin by means of assumptions of similarity and local axial homogeneity

of the internal turbulence. It is found that the spectrum of pressure at

the wall of the artery is related to the spectrum of the pressure

at a no-displacement surface by a filtering factor approximately pro-

portional to W . This arises not because of frequency-dependent

volumetric absorption in the surrounding medium, as with ultrasound, but
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because of the manner in which stochastic signals add when observed.

In addition, the structure of the turbulent pressure field at the

wall of a rigid tube downstream of an orifice was studied. Dependence

of mean square pressure and spectral density of pressure at the wall

upon Reynolds number and diameter ratio was studied in the ranges of

physiological interest. It was found that the mean square pressure has

very strong Reynolds number dependence at low Reynolds number, and that

spectral density can be expressed as a one parameter (modified Reynolds

number) family of curves.

Thesis Supervisor: C. Forbes Dewey, Jr.

Title: Associate Professor of Mechanical Engineering
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NOMENCLATURE

a radius of curvature of a stenosis at minimum cross-section
(cm)

2 4
B(x,T) autocorrelation of pressure at the observer (dynes /cm )

c speed of sound in tissue (cm/sec)

d orifice diameter (cm)

D, arterial diameter (cm)

E(w) Spectral density of pressure at the arterial wall (dyne sec

cm

E(f) (E(w)/P )(U/d) nondimensional spectral density of pressure

f fd/U

f i(x, t) external force/volume (dynes/cm3)

H depth of artery beneath skin

2. longitudinal correlation length (cm)

L characteristic length of turbulent jet

Prms root mean square wall pressure (dynes/cm )

P(x,t) average normal stress (dynes/cm2 )

R(A,T) homogeneous space-time correlation (dynes 2/cm 2

Re Reynolds number = UD/V

Re jet Reynolds number u.d/V

Re modified Reynolds number Re (D/d)l.5

U mean flow in unobstructed portion of pipe

U convection velocity (cm/sec)
C

( (x,T) displacement (cm)

u. jet velocity (cm/sec)
J
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W(y1 , z ) weighting function (dimensionless)

x position vector (cm)

y, z dummy position variables (cm)

scale of W(cml )

TI lateral correlation length (cm)

A y1 - z1 (cm)

% ,Oj direction cosines

wavelength (cm)

X Lame''s constants
2

W(x,o) pressure spectral density at observer (dynes sec

p density (gr/cm3) 
cm

T time difference (sec)
2

dne sec
(W) force spectral density on line source 2

cm
frequency (radians/sec)

< > ensemble average
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Chapter I. Introduction

Arteriosclerosis is a term applied to a number of conditions in which

there is general hardening and thickening of the arteries. Atherosclerosis

is a form of arteriosclerosis in which there are localized accumulations

of material within or beneath the intimal, or inner surface of the arteries.

Over a periof of years these deposits become calcified atherosclerotic

plaques which can severely compromise the arterial diameter. Substantial

evidence also exists that the plaques are susceptible to hemorrhage and

local thrombosis.

Atherosclerotic deposits are found throughout the human arterial tree,

and although the mechanisms by which these deposits are formed remain

unidentified, it is known that there are particular regions of the

arterial tree which are predisposed to becoming sclerotic, including

the coronary arteries, the bifurcation of the aorta at the iliac arteries,

the carotids, and the femorals to mention a few.

Most commonly this condition is diagnosed by a method known as X-ray

angiography, which involves insertion of a catheter into the artery of

interest. X-ray opaque dye is released through the catheter and X-ray

cinematography is used to map the arterial lumen and the perfusion of

the subject vessel. However, this procedure has a significant risk of

morbidity and is non-trivial to perform (Willcutt, 1968). It is therefore

of substantial interest to develop noninvasive methods of diagnosing the

disease when clinically evident and perhaps more important, in the case of

subclinical disease, when angiography may not be warranted. A complete
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diagnosis is taken to be the prediction of flow rate through the artery as

well as the degree to which the lumen is occluded.

The stenosis can be thought of as a converging-diverging nozzle, or

an orifice, (Fig. 1). During systole, the blood immediately proximal to

the stenosis undergoes a rapid convective acceleration as it passes from

the unobstructed portion of the artery through the converging section of

stenosis. At the point of smallest cross-sectional area the mean flow

velocity is a maximum, and the hydrostatic pressure is a minimum. As

the flow passes through the diverging section of the stenosis the flow

separates from the walls due to its inability to overcome the adverse

pressure gradient. At the boundary between the high velocity separated

jet and the slower moving fluid in the recirculating separation zone, a

shear layer is created which is susceptible to shear instabilities. This

shear layer provides a source from which these instabilities can extract

energy from the mean flow.

This energy extraction process proceeds at a sufficiently rapid rate

that before systole has ended the instabilities break down into fully

turbulent motion provided the jet Reynolds number is high enough (the jet
u d

Reynolds number is Re. = -i- , where u. = mean jet velocity, d = jet
J V J

diameter, V = kinematic viscosity of the fluid. Smith et al (1972) has

observed turbulence in blood distal to stenosis at jet Reynolds numbers as

low as 450). The turbulence continues to extract energy from the mean

flow as the jet expands to fill the artery. Once the jet fills the artery

the turbulence is no longer able to sustain itself by extraction of energy



SKIN

__ 4 4 __

Fig. I. Idealized representation of a peripheral
stenosed artery below the surface of
the skin.
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from the mean flow because the artery Reynolds number (Re = Re 4 < 1000)
j D

is typically below the critical Reynolds number necessary to achieve

sustained turbulent flow in a straight pipe (Re ; 2000). At this point

inertial mixing processes dominate the production of turbulent energy and

the turbulent intensity rapidly decays.

Between the stenosis and the region where turbulence has significantly

decayed, the turbulent intensities can be quite large, and the wall of

the artery can be subjected to large fluctuating stresses imposed by the

turbulent flow.

It has long been known that systolic "sounds", or more accurately,

tissue vibrations, are often generated by the fluctuating wall stress at

the site of these partial occlusions, and can be detected at the surface

of the skin with an ordinary stethoscope (McKusick,1954). It was the

hypothesis of Lees and Dewey (1970) that since the quantitative nature of

these sounds (bruits in medical parlance) must be dependent upon the local

flow physics and local geometries at the site of these occlusions, one

might be able to recover the parameters of interest by quantitative

analysis of these "sounds" utilizing a first principles cause-and-effect

relationship.

Traces of the voltage time output of a pressure transducer at the

skin surface near an arterial stenosis are presented by Klitzner (1972).

The onset of the bruit is characterized by a deterministic (reproducible

from beat to beat) signature for the first 10 to 20% of systole. At that

time the signal becomes stochastic in nature, with a characteristic

crescendo-descrescendo intensity time profile. During diastole the signal
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is dominated by ambient noise not radiating from the artery. For further

description of bruits and the transduction process, see Klitzner (1972).

The spectral content of a typical bruit recorded at the skin surface at

peak systole is shown in Fig. 2.

In vivo studies correlating the power spectra of pressure fluctuations

at the surface of the skin with wall pressure fluctuations in a fully

turbulent pipe flow at high Reynolds number domonstrated remarkable

similarities (Lees and Dewey, 1970; Fredberg, 1970).

A discussion of turbulence in arteries and the methods by which

information can be extracted from the sounds they generate is given by

Lees and Dewey (1970). McDonald (1960) and NkKusick (1958) also discuss

the origins and diagnostic techniques of cardiovascular sounds and murmurs.

However, the physical mechanism by which the tissue vibration at the

surface of the skin is related to the internal turbulent flow has been

poorly understood.

Clinically, and with dog experiments, Gurll (to be published) has

in large confirmed the scaling laws derived by Lees and Dewey (1970).

However, predictions of the flow rate, carried out as prescribed by Lees

and Dewey (1970), were consistently low by a factor of two to four. It

was this curious result which threw into question the assumptions of

Lees and Dewey (1970) that a) the spectral distribution of energy

remained unchanged in transmission through the interlying tissue;

b) that a constant fraction of jet kinetic energy is converted into

turbulence independent of Reynolds number c) that the structure of the

turbulent pressure field was essentially the same as in fully turbulent

pipe flow.
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Fig.2. Spectral density of force induced in a stationary
transducer at the skin surface over a stenosed
carotid artery.
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It is the objective of Chapter II to study the physics of transmission

of these "sounds" from the arterial wall through the surrounding tissue to

the surface of the skin in order to clarify the ambiguities of interpreting

data obtained in vivo. While leaving the statistical description of the

turbulent pressure field as general as possible (i.e. without describing

the power spectral density of pressure at the arterial wall, E(w) , in

terms of flow parameters) it is intended to derive a functional relation-

ship between E(W) and ir(x,w) , the spectral density of pressure at the

observer point x , thus relating the physiological observable J(x,w) with

the desired unknown E(w) . A result of particular importance is that the

disturbances observed at the surface of the skin have much lower amplitude

high frequency components than the turbulent fluctuations themselves.

This high frequency attenuation is not to be confused with volumetric

absorption in the interlying tissue, as is the case in ultrasound, but is

caused by the manner in which stochastic signals add when observed. (In

the frequency range of interest for phonoangiography (< 1000 Hz) ,

volumetric absorption is negligible.) The effect predicted in Chapter II

reduces the error found by Gurll to within his scatter.

Sections III and IV report the procedure and results of an experiment

whose objective was to study the structure of the turbulent pressure field

at the wall downstream of a constriction. The principal objectives of this

experiment were to investigate the spatial dependence of the mean square

pressure at the wall and to obtain a universal description of the spectral

density of pressure at the wall as degree of obstruction and Reynolds number

vary.
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Section IV includes an interpretation of the experimental results of

Section III, while Section V includes a summary and discussion of the

implications of present findings upon the clinical phonoangiographic

procedure.
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Chapter II. Theory of Pseudo-Sound Transmission in Tissue

The problem of relating the quantitative nature of the tissue

vibrations at the skin surface with the flow parameters of interest, such

as obstructed diameter and flow rate, requires 1) the knowledge of the

stress field imposed on the wall by the turbulent flow, and 2) how this

stress field is transmitted to the skin surface. The first of these

subjects is discussed in later chapters dealing with the experiments which

were performed. The second subject is discussed in this chapter. The

objective of this chapter is to develop a theory which relates the stress

at a point at the skin surface constrained to no displacement with the

turbulent stress field at the wall of a diseased artery. With a very

simple physical model it is found that strong filtering occurs in trans-

mission of the stress field due to the stochastic nature of turbulent

excitation.

Procedure

In order to make the direction of the derivation clear, a brief

summary of the model and the principle assumptions is presented here.

The tissue surrounding the artery is modelled as an extended iso-

tropic elastic medium in which the turbulent pressure field is represented

as a distriuted source of force (Eq. 2.1). Noting that in the relevant

frequency range the wavelengths are long compared to other characteristic

lengths, the tissue can be treated as a stiffness-controlled medium

(Eq. 2.10) in which inertial forces (time derivatives) are negligible.

Representation of the source as a line distribution (Eq. 2.14),

assumption of similarity (Eq. 2.17), and small correlation length of the
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turbulent field (Eq. 2.24) permits the reduction of a sixfold frequency-

dependent integral (Eq. 2.13) to a single frequency-independent geometrical

integral (Eq. 2.22). The final result (Eq. 2.23) provides the desired

relationship.

Model

It is assumed that the origin of the bruit is a time stationary tur-

bulent pressure field at the wall of the artery. Because the turbulent

time scale is much less than systolic time scale the flow can be assumed

to be quasi-steady at systole (see Section 111.2). The artery is modelled

as a source region imbedded in a homogeneous, isotropic, elastic medium.

At a cross-section of an artery with internal turbulent flow, the pressure

at the wall in not well correlated over the circumference. For simplicity,

one can replace this circumferential pressure distribution by the

resultant force. This resultant force will be a random function of time,

and extending this idea, we replace the artery by a line source of forces.

It is further assumed that the turbulent field, while it is the

source that excites the surrounding elastic medium, is not coupled to its

motion; i.e.,the fluid motion within the artery is not significantly

effected by motion of the arterial wall.

Equations of Motion

Newton's law for a homogeneous isotropic elastic (non-absorbing)

medium with infinitesimal strains is expressed by Navier's equation

(e.g. Fung, 1965)

2 2 2

a + m)+ f. = p a (2.1)
3x 3 xm 1" t
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where ( (x,t) are displacements X and V are Lame's constants, p

is the material density, and f i(x,t) are the external forces. From

the divergence of (2.1) one obtains the dilatational wave equation,

1 221 2 x a 2C ^ 1 a1 (2.2)
c at i i 21 + X i

where

E = (2.3)

c2 = +X (2.4)
p

The stress in this system is given by

a. = 2p i.. + X 6 Skk (2.5)
i3 ij ij k

where e. is the strain tensor
ij

-= - [ + ] (2.6ij 2 +xax

Using (2.5) and (2.6) one can rewrite (2.2) in terms of the average normal

stress P ,

2 2A A
1 2 a2P 1 2U + 3(2
2 2 ax. 3x. 3 ax. (2.7)

c at 1 1 2y + X I

The summation convention for repeated indices is used here.
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where

= Y.2 (2V + 3 X) (2.8)
3 3

Consider a source region in an infinite medium. If H is a typical

dimension from the observer to the source, and A is a typical wavelength

then

__P 1 a2P (2
ax ax 2 2 0(r3) (2.9)
i i c at H

In this case 2 /H2 >> 1 , so (2.8) can be rewritten as the near field

**
approximation

- a (x,t) = 2+3 ) (x, t) (2.10)
ai ai 3 2p + A ax1

In the near field of the source (much closer than one wavelength) the

dilatational propagation speed appears infinite, and therefore the material

behaves as an incompressible medium. The kinetic energy in the near field

is "attached" to the source and cannot propagate because the near

field pressure and velocity are always out of phase; this guarantees zero net

energy flux through any closed surface surrounding the source.

Because near-field pressure fluctuations cannot propagate (Eq. 2.10

is elliptic) we refer to these sounds as pseudo-sounds.

Boundary Conditions

A typical geometry for a carotid or femoral artery is depicted in

**
Most of the energy in bruits is contained below 1000 Hz, which would
correspond to a minimum wavelength the order of a meter.
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Fig. 1. A pressure transducer is mounted in a rigid plate in contact with

the skin. Thus, the boundary condition at the skin-plate interface will

*
be ( = 0 , no displacement. If the curvature of the plate is small, the

method of images can be employed with the no-displacement boundary

condition to create an image source. Thus the problem can be treated as

two symmetrical (about the rigid boundary) sources in an infinite medium.

This will lead to pressure doubling at the skin surface.

Solution

The Green's function associated with Poisson's equation in infinite

space is (4lrx - l)~1 (Garabedian, 1967). Therefore, in the geometry

depicted in Fig. 3 the general solution to Eq. (2.10) is given by

af /Dy.i (yt)
P(x t) = E d (2.11)

-" x -x d|

where

^1 2y + 3X= 1E li
2y + X

and the integral (2.11) extends over three dimensions. The function f

now represents the original source, and its image source. Equivalently,

integration by parts of (2.11) yields

Cos 0 f ( Q,t)
P(x,t) = E 2 dx (2.12)

-- r

*
This is somewhat arbitrary, depending upon measuring device, e.g., a
pressure transducer with no displacement, or a displacement transducer
with a pressure release condition. Klitzner (1972) demonstrated that a
Hewlett-Packard 2050 heart sounds microphone (piezo-electric) in contact
with the skin provided a no displacement boundary condition due to the
large mechanical impedance of the microphone compared with the tissue
impedance. Thus while the skin is usually thought of as a pressure
release surface, a force is induced at the surface by a stationary transducer.
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where r = 1| - y and r - = os
axi Dy.

Forming the autocorrelation of the signal at the observer

< P(x,t) P(x,t + T) > = B(x,T)

"2 ~ rCos 6. cose'
B(x,T) = E 2 ,2 (2.13)

-co 1-cor r

< f (yt) f. (z,t + T)> } dy dz

where < > denotes a time or ensemble average, r' = |x - z ,

Cos ax. , and < f (yt) f (zt + T) > is the space-time

J
correlation. Fig. 4 represents the artery collapsed to a line along

the "1" axis. The stenosis is assumed to be located at the origin,

and H represents the depth of the artery below the surface of the

skin.

Representing the artery as a line source and its image, Eq. (2.13),

reduces from a six-fold to a two-fold integral over the original

source,

2 ( F cos 0 cos 0'
B(x,T) = 4E { 2 ,2

Jo o r 2r 1

(2.14)

< f i(ylt) f (zlt + T) > } dy1 dz 1 }

The factor of 4 arises because the image source causes pressure doubling

at the boundary. The function f (y t) now represents the force per

unit length.
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Because the jet is not axially homogeneous the remaining correlation

<f (y1,t) f (z1 lt + T)> is stationary but not homogeneous. Itt is very

convenient to assume that the inhomogeneous tensor can be split into

inhomogeneous and homogeneous parts in the following manner:

< f (yl t) f (z1, t + T) > = W(y1 ,z1 ) Ri. (A,T) (2.15)

where A = y 1 - z, and the tensor R. . is analogous to the space-

time correlation in homogeneous turbulence. Mollo-Christensen (1967)

has suggested general analytic forms for W(yi, z 1 ) . In this analysis

2 -(y + z)/
it will be assumed that W(y1 , z ) =a y, z e 1 , where

L is a characteristic decay length of the jet and a is a constant

with dimensions of inverse length; i.e. the jet builds up to a maximum

value at y1 = z = L , and then decays exponentially. The maximum

value will scale with a . Eq. (2.15) requires an assumption of local

axial homogeneity of the turbulence. That is, the characteristic

correlation length scale L (length scale of R i) is much smaller

than the jet decay length scale L (length scale of W ) . Therefore,

at any given point W(y1 , zI) is essentially constant over one correlation

length scale, and the flow appears to have local axial homogeneity.

Clearly the tensor R must obey laws of symmetry, being axisymmetric

about a unit vector X along the line source, and invariant with respect

to reflection into any point on the line source. The form of such a

tensor is given in Bachelor (1967)

In Section IV.3 it will be shown that L c V/u . To normalize W we

would usually set W(L,L) = 1, (which implies a = e/L) so that the
maximum value of <f (y ,t) f.(z],t + T)> is identical with the maximum

value of R (,T) ma the lemainder is scaled downward.
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R (A, T) = A A.A. + BXX. + C06 + DA Aij -i j ij ii i j

+ E A. A.
Ji

where A,B, etc. are arbitrary functions of A2 and A X . In the

model presented here, A = (&,0,0) and A (1,0,0) . In addition we

only consider stresses normal to the wall of the artery, so i,j = 2,3

only. Then the above equation simplifies to

Ri. (AT) = R(A,T)6 , i,j = 2,3 only (2.16)

R(A,T) is the homogeneous space-time correlation. Fig. 5 represents

a typical space-time correlation obtained in turbulent flows. Corcos (1964)

shows that the cross spectral density 1(A,w) , the temperal Fourier

transform of R (A,T) , can be approximately represented as a function of

the similarity variable - by
U
c

P(A,w) = (W)A( -J- ) cos U (2.17)
C Cc c

where O(w) is the force spectral density at the source, Uc is the

convection velocity which can be taken as a .61 times the center line

velocity of the flow (Clinch, 1969). The fractional value is not critical

to the argument so long as it does not vary widely. The data reported

by Clinch (1969) applies to fully developed turbulent pipe flow, and

reflects the fact that large eddies close in size to the pipe diameter

must convect with nearly the mean velocity, while small eddies close to

the wall (and the laminar sublayer), convect considerably slower. When
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\ a= uc T

Fig.5. A typical space- time correlation.
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the average over all eddies is taken, the convection velocity of the

pressure field must be a fraction of the centerline velocity of order

unity. The turbulent pressure field downstream of an orifice would be

expected to behave in a similar manner.

A is a monotonically decreasing function which takes into account that

the correlation decays. It can easily be shown that (2.17) follows from

the assumption R(A,T) = AR(0,T - A/U ) , i.e. that the eddies convect

and decay, where R(A,T) : r(A,w) and #(w) cos A : R(O, T - 4 ) are
U Uc c

Fourier transform pairs. Willmarth and Roos (1965) found that for

turbulent boundary layers the similarity hypothesis of Corcos is not
*

valid for g- > 3 . No similar criterion is available for pipe flow, but

by introducing an analogous displacement thickness for turbulent pipe flow,

and assuming u/U = (R - r)1 , the above condition becomes - > 100 R 'fU -

This excludes only a small part of the turbulent spectrum. Of course

this is a crude estimate at best, and the true limits of validity of the

similarity assumption will have to be demonstrated experimentally.

It is reasonable to fit data for A by an exponential (Willmarth

and Roos 1965) of the form

1A U
exp [- ] where £(w) - (2.18)

which implies that turbulence is a phenomenon that tends to erase the

fluid's"memory" as distance (or time) passes, and that large eddies stay

correlated longer than small eddies. Assuming that the homogeneous cross

spectral density (17) is valid, we apply these considerations to (2.14),

perform the temperal Fourier transform and obtain
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^2Cos 61 Cos '
=w 4 V) o o r r

6 W(y1,z )e AI/k cos ( )} dyy dz (2.19)1- ) y1 d 1c

i,j = 2,3

where w(x,w) is the power spectrum of the pressure observed at the point

x . Defining a correction factor C(x,w)

(x,a)L2
C(x,W) = - (2.20)

4E (W)

and changing coordinates

SLT (cos . cos 6!
C(x,W) = L2 Jdy1  r{ 2  ,2

o * r 2r '2

6 ij W(y1 ,y1 - A) e' cos ( -)} (2.21)

i,j = 2,3

The inner integral now represents the contribution to the signal at the

observer due to one correlation length centered at y1 . Clearly the

only part of this integral that contributes is the region over which the

signal is well correlated (i.e. when e AI/Z is of order 1) . The

outer integral represents the sumnation of all these contributions along

the line source. If we limit our attention to the frequency range given

by H 'EL << 1, then Eq. (2.21) may be asymptotically evaluated in
H L

this limit as
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C(x'u) - 2(t/H)LH 2 L cos 4cos 0 61C__x__)_=_2 4 - W(y1 ,y1 )dy1

1+ ( ) o Z r
U1 (2.22)

i,j = 2,3

This is because under these assumptions r : r' , and e 61 (the

geometrical spreading terms and W in (2.20) are nearly constant over one

correlation length scale). The integral in (2.22) is denoted by I and

is shown in Fig. 6 for - = 1 ( - = 1 implies that the observer is aboveL L

the point of maximum turbulent intensity).

Discussion

The approximation with which one goes from (2.21) to (2.22) limits the

region of validity of the result to high frequencies, but the simplicity

gained makes the physics of the result (2.22) quite clear. In a stiffness

controlled system (i.e. as given by Eq. 2.10), an excitation of length

scale L will produce a region of significant stress and strain also of
U

length scale of order Z . In the turbulent flow 2. = 1(w) cc

thus C(xw) c (2.22) which implies that low frequencies (large P.) are

detected at the observer much more readily than high frequency (small L)

excitations, as one should expect. Thus the spatial decay in the elastic

system evidences itself as a low pass filter in the frequency domain.

This is a first order effect that must be taken into account in analyzing

spectra of bruits radiating from constricted arteries.

Looking at the interesting limits of these results, as Z -- o we

find that C -+ o , which should be expected. As H/L -+ co the artery looks

like a point force, thus the power falls off like H (see Eq. 2.12).
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Fig.6. Intensity integral I for X /L = 1 .
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As 2(w) /H -+ 1 , the asymptotic approximation (2.22) is not valid,

i.e., when one is very close to the source (closer than the smallest

excitation length scale) there should be no frequency correction because

there is no appreciable distinction in spatial decay of the different

excitation length scales. Clearly, as H/D becomes 0(1) the line source

also becomes a questionable model. The exact solution for a cylindrical

source has been obtained and is given in Appendix A. It demonstrates the

same basic result with the addition of a lateral correlation length

scale, rj

(xW) - (Z/H)(n/H)2E I' E(w) (2.23)

1+ (T)
c

In this result n as well as Z tend to be proportional to W~1

(Willmarth and'Roos, 1965), so the overall correction factor should be

approximately proportional to w-2 . I' represents another geometrical

integral, and E (w) represents the wall pressure spectrum at the wall of

a cylinder (as distinct from $(w) , the force spectrum). The apparent

contradiction of (2.22) and (2.23) is resolved by the detailed computation

of the collapse from a cylinder to a line source which reveals that E(w)

and $(w) are related by a factor of n , so that Eqs. (2.22) and (2.23)

are in agreement for H/D >> 1 , and the overall correction between the

wall pressure spectrum and the spectrum at x is approximately proportional

-2
to (-2

The low frequency limit below which this model is invalid is given by

U

0(1) . But since .M) cc , the model should be valid for
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f(H >> 1
~ dT

where f =

this type.

While

spectrum of

mathematica

features of

It has

factor must

approaches

f( ) >> 1

fd
-U7

(2.24)

is the nondimensional frequency relevant to flows at

(See Chapter III.)

this final assumption (2.25) is at variance with part of the

interest in some in vivo cases, it represents an essential

1 simplification and should not destroy the qualitative

the model.

already been mentioned that when H/Z(w) << 1 the correction

be unity, which implies a form of the correction factor which

1 as f( ) goes to zero and approaches 1/f2  as

It is not clear what the exact analytic form of this function

should be in the region where f( -) = 0(1) . The exact solution could

be obtained by evaluation of a fourfold frequency dependent integral of

Eq. (A.8) over the surface of a cylinder. However, it is felt that an

emperical or experimental approach is more appropriate.

For clinical application the two asymptotic results can be combined

to provide an emperical correction function. A correction of the form

C(w) 1 2
1+ M) n(M) 2 2H

H H d

(2.25)

has been found to correct Gurll's predictions of arterial velocity to within

the scatter of his data, and therefore probably represents a reasonable

approximation to the exact correction function. a2 is a constant of order

unity. This correction function will be discussed further in Section 5.1.
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Chapter III. The Experiment

III. The Experiment

The previous sections provide an estimate of the relationship

between the spectral density of pressure at the skin surface when held

motionless and the spectral density of pressure at the arterial wall.

In order to complete the phonoangiographic objectives of determination

of parameters of the flow from sounds at the skin surface, one must

relate the spectral density at the wall of the artery to the flow para-

meters and geometries. This is accomplished by experimental procedures

described in this section.

3.1 Experimental Objective

The task of correlating the quantitative nature (spectral density

and rms value) of the disturbances at the tissue surface with the para-

meters of interest (d/D and U) is greatly simplified by the knowledge

of the relation of pressure fluctuations at the wall of the artery to

the fluid dynamic parameters of the flow. For this reason an in vitro

experiment was undertaken, the objective of which was to measure the

turbulent wall pressure fluctuations downstream of an orifice under

known conditions. From these data, scaling laws can be developed which

can adequately permit prediction of the root mean square and spectral

pressure distribution downstream of a stenosis in a human artery. In

addition, one obtains a clearer understanding of relevant physics of

the problem.

To this end one must preserve dynamic and geometric similarity

in the experimental flows. These similarity considerations are discussed

in the following section.
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3.2. Similarity Considerations

In designing any experiment, one must identify the relevant non-

dimensional parameters of the flow. Once all of these parameters have

been identified the experiment can be designed such that the experimental

range of these parameters coincides as closely as possible with the range

of interest. In this way one can scale up the experimental results to fit

the real world (in vivo) problem.

Assuming that the arterial compliance does not significantly alter

the internal turbulent flow, the spectral distribution of the turbulent

pressure fluctuations at some point on the wall a distance z downstream

of the orifice can be expresses as:

E(W) = F[f, fH, D, d, U, p, y, z, stenosis shape] (3.2.1)

where f is the heart rate and U is the peak systolic velocity

(see Fig. 7). By means of the continuity equation the jet velocity u
2 2

U1TD 2 und2
could have been specified instead of U , since 4 = uThe

shape of the stenosis is not quantified at this time because there are

many families of shapes that one might study. This will be discussed in

later sections.

If the power spectral density of the pressure is expressed non-

dimensionally, it cannot be a function of any parameters with dimensions.

Thus

=_() F[ , , , D , stenosis shape] (3.2.2)

p2 U3D f H(322)

This is a sufficient set of parameters to uniquely specify the flow, and

all other parameters can be formed from them. For example, from the



z 0

Fig. 7. Idealized geometry of a stenosed artery.
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parameters of Eq. (3.2.2) one can form the so-called Wormsley parameter

for pulsatile flow

2f
D___ fD H UD

4v c U f M V (3.2.3)

The parameters as represented in Eq. (3.2.2.) may not be in the form which

is most meaningful physically. The experiment itself will hopefully lead

to new parameters which will reveal the physical mechanisms at work in a

clearer manner. Of course, these new parameters are just combinations of

the old ones of Eq. (3.2.2).

If attention is restricted to that part of the cardiac cycle when

the velocities are high and the rate of change of velocity is small (peak

systole), then turbulent frequencies will be high (since the frequency

scales with the velocity in turbulent flow) compared with the heart rate

f , and f/f >> . This implies that the heart rate is not an important
H H

feature of the turbulent flow, at least for the period of large arterial

velocity. Equivalently, during systole eddies are created, cascaded down

the energy ladder, and dissipated, before the mean velocity has changed

appreciably. Hence the physical laws which govern the eddy motion should be

independent of cardiac frequency. By assuming that the flow is quasi-

steady, and using maximum systolic velocity as the relevant velocity scale

in the unobstructed portion of the artery, one can adequately model the

physics occurring at systole by a steady flow experiment. Therefore the

dependence in Eq. (3.2.2) on the parameter f/fH will be ignored, and all

experiments referred to in this work will be steady flow experiments.

However, it should be noted that the stability of the jet and the

transition from laminar to turbulent flow at the beginning of systole,
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when velocities are rapidly changing with time, will in fact be dependent

not only on the fundamental frequency fH, but also on its harmonics,

which must be sumed in a Fourier series to represent the velocity-time

profile. It has been noticed that the amplitude-time traces of a bruit

observed in vivo tend to have regular deterministic upbeats and oscilla-

tions for the first ten percent of systole. In addition, the very low-

frequency components of the flow can be sensitive to changes in velocity

during systole, but these components do not contain a significant amount

of energy. By restricting attention to the period of peak systole this

problem is minimized.

Up to this point little has been said about stenosis shape (other

than the diameter ratio d/D). Assuming an axially symmetric stenosis,

the most important characteristic of the shape of any stenosis is the

radius of curvature, a , at the minimum cross-section, normalized by the

diameter at that point, d (see Fig. 8). Using an inviscid model and

assuming that the curvature of the streamlines varies linearly from zero

at the center line of the flow to a value of a~1 at the stenosis boundary,

one can show that the velocity at this cross-section is a decreasing

function of the distance y from the stenosis surface. This is required

in order for the centrifugal acceleration of the fluid to be balanced by

the radial pressure gradient. The resulting expression is

1 2v(y) a exp[- (dy - y )] (3.2.4)

which leads to

v(y = 0) e d/4a (3.2.5)
v(y = d/2)



v (y)

--- -- -

Fig.8. Velocity profile for inviscid flow through
a converging channel.

d
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Therefore the velocity near the lip is larger than the centerline

velocity by an exponential factor of d/4a . Because the jet separates

from the stenosis wall, a shear layer is created at the interface of the

separated jet and the region of recirculatory flow. It is this shear layer

that becomes unstable and causes the jet to become turbulent. The stability

of this shear layer will be dependent upon the velocity gradient across

the layer, which in turn depends on the velocity excess at the stenosis

lip as compared to the centerline. Therefore, the radius of curvature

of the stenosis lip can be a critical design parameter, whose neglect

could'lead to exponential error as regards stability and incipient

turbulence.

There are two conditions under which the radius of curvature can be

neglected as a variable of the problem: a) when a = 0 , or b) d/4a << 1

The condition that a = 0 implies the use of a sharp edged orifice. By

ensuring extreme sharpness at the lip, no ambiguity will exist in normalizing

data from different orifice plates. The condition that d/4a << 1 implies

that the radius of curvature is large enough so that the velocity excess at

the stenosis lip is small and is a very weak function of d/4a . However,

if d/4a is of order 1 or greater, and is not held fixed, one can expect some

difficulty in normalizing data and relating it to in vivo observations.

However, this line of reasoning is a bit idealistic, and some ambiguity

still remains regarding this point. Stenoses found at autopsy tend to be

close to the condition d/4a << 1 if one neglects small scale roughness.

However, this roughness can have very small local radii of curvature, which

could lead to high velocity gradients locally. In this work the stenoses

were designed such that d/4a << 1 , which lead to velocity ratios (Eq. 3.2.5)
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in the range 1.1 to 1.2. Thus, radius of curvature should not be an

important parameter in these experimental results. However, in comparing

these results to in vivo observation one should bear in mind that the surface

roughness at the stenosis throat could lead to transition to turbulence at

a lower value of Reynolds number than that found in this work. At Reynolds

numbers significantly above the critical Reynolds number the surface

roughness should not significantly alter the spectral nature of the

turbulent pressure fluctuations at the wall.

The velocity profile at the entrance to the stenosis must also be

considered. In vivo flow through major arteries is a developing flow

(neither a fully developed parabolic profile, nor a plug flow). This

arises because the flow is unsteady. During each systolic period vorticity

diffuses into the flow from the walls. If the time available for this

diffusion process were much less than D 2/V the flow would appear to be

uniform. If the characteristic time is much greater D 2/v the flow becomes

parabolic. This effect is usually discussed in terms of the Wormsley

parameter

D2
4v

In the coronary arteries a becomes as low as 3, while in the major

arteries, such as abdominal aorta or femorals, a is as large as 15.

Therefore the physiological flows of interest are, in general, developing

flows. The experimental entrance length in the steady flow experiments

was designed to have a similar type of developing flow.

It is felt that nonuniformity of the entrance flow is not a critical

factor in the flow because the convective acceleration in the converging
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section of the orifice tends to flatten nonuniformities in the entrance flow

profile. Vorticity in the entrance flow is reduced by a factor of d/D

at the jet because the circumferential vortex lines are shortened by the

same factor d/D (following Helmholtz's vortex laws). Thus, while some

variation in the velocity profile at the jet may exist as a result of the

upstream nonuniformity, it is felt that these variations are unimportant.

The effects of eccentricity of the stenosis were not studied in this

work. However, it is felt that this is not a major factor because the

turbulent jet will tend to spread and fill the entire arterial cross-

*
section before it has convected many diameters downstream.

Another interesting design consideration occurs because of similarity

requirements. The free stream Reynolds number at systole is about 1000

or less in the arteries of interest. This is a low Reynolds number in

terms of familiar turbulent phenomena. The question arises, how does one

maintain a low Reynolds number in the model while maximizing to turbulent

pressure fluctuations at the wall in order to increase the signal to noise

ratio? The pressure fluctuations scale roughly as pU2 , and U = VRe D~1

This implies that one should increase the kinematic viscosity V while

decreasing the diameter D , with a resulting increase is the rms pressure

and flow rate. The limiting considerations for increasing the viscosity

are

1) non-Newtonian behavior

2) pump flow rate

3) pressure drop (Ap ~ p U2 because most of the

pressure drop occurs at the stenosis).

*
Anomalous phenomena such as the Coanda effect are exceptions to this state-
ment. Robbins and Bentov (1967) showed that the wall can produce a stabili-
zing effect on wall jets.



-45-

4) dissipation heating - APQ A p U2Q ~ U

5) cavitation

6) transducer size

The dissipative heating becomes important because of the temperature-

viscosity relation of most fluids. (This will be discussed in III F).

The limiting small value of the tube diameter is set by the size of

the pressure transducer. This will be discussed in Section III D.

Cavitation also becomes a serious limitation. Because the pressure

at the orifice throat becomes very small for small values of d/D ,

cavitation, or equally bad, expansion of very small bubbles in the working

fluid, radiates sound which can render results meaningless. This was

in fact encountered in the experiment with high flow rates and large area

reductions.

Weighing these tradeoffs the experiment was designed as follows:

Fluids: Dow Corning 210 H silicone oil 100 cs

Dow Corning 200 silicone oil 20 cs

Tube diameter: ID = 3/4 inch (1.91 cm)

Once the diameter and viscosity are fixed the design process follows simply

from the similarity laws.

It should be noted that increasing v and U and decreasing D has

the beneficial effect of increasing the frequency range.of the experiment

because f - U/D for turbulent phenomena. This higher frequency range

allows data collection in the audio band without the use of frequency

modulated equipment, and also simplifies data analysis because it decreases

the required averaging times.
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3.3. The Fluid Loop

Fig. 9 depicts the fluid system loop used to provide flow through the

test section. A reservoir acts as a capacitor and supplies the pump. The

exit from the pump flows into a tank enclosing a given mass of air. The

function of this tank is to provide an "air spring", or compliance to

filter out fluctuations in the pressure and flow generated at the pump,

thus acting as a low pass filter. The fluid flows from the capacitor into

the settling chamber-flow straightener by way of a flexible tube. This

flexible tube serves a two-fold function since it does not transmit axial

compressional waves in the wall, and helps to decouple the test section

from the rest of the system, the object being to isolate the test section

from unwanted structural vibrations generated at the motor or pump. The

settling chamber-flow straightener and test section are rigidly mounted to

a vertical steel I beam. The return from the test section to the reservoir

is again via flexible tubing. The I beam is mounted on vibration

isolators which are in turn mounted on the floor. Lead weights were

bolted to the I beam to increase its inertia and decrease its resonant

frequency.

The system is depicted in lumped parameters in an analogous circuit

diagram in Fig. 10. The system as shown has three independent energy

storage elements, two capacitors, and the fluid inertance (thus three state

variables exist). The dominant resistance in the system is the stenosis,

so the resistance in nonlinear due to the nonlinear pressure-flow relations

in turbulent flow. The actual experimental system was found to be over-

damped for all flow rates and stenoses. Upon starting the pump and thus

charging capacitor c2 , and also upon stopping the pump and running off
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Fig.9. The experimental fluid loop.
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energy stored in capacitor c2, no oscillations of pressure or flow were

observed. All pressure and fluid levels exhibited exponentially decaying

response to step function inputs.

The settling chamber-flow straightener and test section are shown in

Fig. 9. The settling chamber-flow straightener consists of an unobstructed

settling portion followed by a honeycomb aluminum grid. Following the

grid there is a severe reduction in area which reduces the fractional jet

kinetic energy in any disturbance relative to the kinetic energy in the

mean flow. The narrow portion of the flow straightener leads to a thin-

walled brass tube 5/8" (1.59 cm) I.D. (See Fig. 11) . 30 cms downstream

from the flow straightener the brass stenoses are attached by soldering.

Each stenoses is fitted with a groove to permit an "O"-ring seal with the

3/4" (1.91 cm) I.D. plexiglass tube which surrounds it. Because the

"O"-ring seal is a sliding seal, the pressure transducer mounted in the

plexiglass tube can be moved to different distances downstream of the

stenosis. The mounting of the pressure transducer into the plexiglass

tube is discussed in Section D.

The stenosis shape is shown in Fig. 12, with dimensions shown. The

additional dimensions are shown below:

% area reduction d/D d(cm) L(cm)

55 .67 .765 1.14
64 .602 .554 1.46
72 .521 .358 1.57
82 .423 .193 1.84
91 .305 .071 2.73
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Fig. 11. Mounting of the stenosis in the test section.
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As mentioned before, these stenoses were designed to have d/4a approxi-

mately constant and substantially less than unity.

The flow rates were calculated by means of a pump calibration. The

pressure-flow characteristic of the pump was measured for different values

of the tachometer voltage (Fig. 13) with a stopwatch and bucket. Then,

knowing the pressure in the capacitor tank and the tach voltage, one can

simply calculate the flow rate.
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3.4. The Pressure Transducer

1. Description

The pressure transducer used in this experiment was a modified Bolt

Beranek and Newman, Inc., miniature pressure sensor, model 377 (see Fig. 14

for dimensions). The transducer incorporates a Helmholtz resonator such

that the diameter of the active sensing area exposed to the flow is small.

The specifications of the crystal (lead zirconate) and associated

electronics are as follows:

Sensitivity -114.5 dB re 1 volt/y bar (1.88 -v

Pressure range <100 PSI

Rise time <3p SEC

Resonant crystal frequency >100 KHz

Output impedance 1500 ohms

Vibration sensitivity <.002 PSI/g

Noise level <l0pV rms in 10 KHz band

The transducer housing contains both the piezo-electro crystal and

the first stage of signal processing (a unity gain field effect transistor

circuit).

2. Size Considerations

The measurement of pressure in a turbulent flow is sensitive to the

size of the transducer used. In order to resolve a spatial scale that is

convecting past the active transducer surface, the transducer must be

smaller than that length scale. When the transducer is of the same

order or larger than the length scale to be resolved, the transducer output

represents a spatial average of the pressure field, and does not accurately
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represent the pressure at a point. The effect of finite size of flush wall

mounted transducers in turbulent boundary layer flows has been studied

extensively by Corcos (1963) and Willmarth and Roos (1965). As a result of

these studies, correction factors for finite transducer size have been

developed. However, these corrections are dependent upon the structure of

the turbulent boundary layer field and some ambiguity exists in applying

these corrections to other types of flows.

The simplest way to avoid this ambiguity is to ensure that the active

sensing area of transducer is smaller than the smallest turbulent length

scale of interest, thus eliminating the need for finite transducer size

corrections. Willmarth and Roos (1965) showed that measurements of

the present type will not be subject to large error if the highest frequency

of interest is less than U/dt , where U is a characteristic convection

speed, and dt is the diameter of the active sensing area of the transducer

(.010 in). In the present experiment U/dt - 20 KHz , whereas the highest

frequency component of the wall pressure fluctutation which is of interest

is 3Khz. Therefore no finite transducer correction was used. Some error

always exists, the magnitude depending on wd /U . When Wd /U < 1 ,t c t c

Corcos' (1963) correction formula can be used. If wd t/Uc << 1 , the error

becomes small enough that it need not be considered (Willmarth & Roos,

1965). Equivalently, in this experiment the finite transducer size should

not become important until

f =fd d (3.4.1)f =-- =-- 40(341
~ U dt

Another possible source of error arises if the pressure is measured

at a recessed port, as is done with this transducer. Franklin and Wallace

(1970) found that errors arise in measurement of the static pressure at
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the wall of a turbulent flow if one uses recessed ports. Reynolds stresses

at the mouth of the port change the static pressure from what one would

observe at a solid boundary by an amount of the order of the shear stress

when the hole diameter is of the order of 250 viscous length scales

(VVpiff) . In the present experiment

d
d+ - t 0(1) (3.4.2)

Thus the pressure port is smaller than the viscous sublayer (-- = 5)

and is not subjected to Reynolds stresses. Therefore errors of this

nature are not expected.

3. The Helmholtz-Resonator

The Helmholtz resonator provides a convenient method for reducing the

active sensing area of the transducer, but also introduces a resonant

frequency into the overall transducer response. The origin of this

resonance is mechanical sharing of energy. The energy oscillates between

kinetic energy of the fluid in the resonator throat and the compressional

potential energy due to the compliance of the fluid in the cavity and the

crystal (it was found that fluid and crystal compliance were of the same

order). The height of the resonant peak is limited by the viscous damping.

Below resonance, the system is stiffness-controlled, resulting in a one

to one correspondence between the pressure at the resonator throat and the

pressure at the crystal-liquid interface. Above resonance the system

response must fall off due to the combination of mass controlled response and

breakdown of the lumped parameter model. It is important to ensure that

the resonant frequency occurs above the highest frequency of interest
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because resonant response tends to be variable. Therefore, the larger

the resonant peak, the farther one would like it from the frequency range

of interest. The calibration procedure and results are discussed in the

next section.
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4. Calibration Procedure and Results

Before calibrating or using the transducer, all gas bubbles must be

removed from the resonator cavity. The smallest bubble would greatly

increase the compliance of the Helmholtz resonator system, and thus

decrease the resonant frequency. The purge was accomplished by submerging

the transducer tip in the working fluid (silicone oil) and then reducing

the ambient pressure to the vapor pressure of the oil. This procedure

removed all dissolved and undissolved gases from the resonator. After

allowing the resonator to "boil" for one hour, the ambient pressure is

returned to atmospheric, whereby the vapor cavity in the resonator becomes

insignificantly small. Such a procedure was followed before each use of

the transducer. Surface tension prevents bubbles from entering the cavity

during mounting procedure.

The actual calibration procedure was accomplished by rigidly attach-

ing the transducer to a fixed body (see Fig. 15). Then a container of oil

is raised to submerge the transducer tip to a depth h . Then the oil bath

is oscillated and swept through the frequency band of interest. The pressure

at the tip of the transducer is simply related to the acceleration of the

fluid by the relation:

p = p a h (2.4.3)

Thus by suitably instrumenting the oscillating bath a calibration can

be performed. The details of this procedure will not be discussed. Those

interested are referred to the Ph.D. thesis of Victor Nedzilnitsky (M.I.T.;

to be published) where a detailed account of this procedure is described.
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These results were double checked independently by comparing the response

of the transducer with the response of a similar transducer whose response

characteristics were determined by means of pistonphone calibration.

The curves of Fig. 16 represent inverse frequency response calibrations

hence resonance appears as a depression in the curves. The difference in

absolute level of the two curves is attributed to an error in the depth

of the probe in the oil bath. When the error is compensated for, the

following overall sensitivity is obtained

-114.5 dB re 1 volt/p bar

or

1.88 V volts/p bar

As can be seen, a resonance occurs at approximately 5KHz and 10 KHz ,

respectively for the two different viscosity oils. The resonant peak clearly

depends upon fluid damping. Since the resonant peaks are relatively small

(highly damped system) and are above the highest frequency of interest

(3KHz) their presence does not pose a problem in data reduction.

5. Transducer Mbunting

The transducer, as shown in Fig. 14, is threaded to allow for easy

mounting and dismounting. The transducer is mounted in the test section as

shown in Fig. 17. A brass mounting plate is built into the tube wall. The

inner surface of this brass plate is tangent and flush with the inner radius

to within .002". The transducer is screwed into this mounting plate with

the active sensing area flush with the inner radius.
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3.5 Artifact Checks

1. PumpNoise

The transmission of noise from the pump to the test section is

the limiting factor in determining the maximum signal to noise ratio

possible for any flow condition. Below or at critical Reynolds number,

when the turbulent pressure fluctuations are vanishingly small, the signal

from the pressure transducer can be amplified and shown to consist solely

of conducted pump noise (S/N = 0). As the flow conditions are changed so

that the turbulent wall pressure fluctuations become larger, the S/N

becomes larger. In the cases where the S/N is thought to be large, a

simple check can be performed to test this hypothesis.

One can shut off the pump and run the experiment from the charged

capacitor for a short time. Comparing signals immediately before and

after pump shutdown showed no difference in total intensity or spectral

distribution, indicating that pump noise was not contributing a significant

amount of energy to the signal.

2. Vibration Sensitivity

Another possible source of error is that a significant fraction of

the transducer signal could be due to vibration of the tube wall accelerating

the transducer. To estimate the fraction of the transducer signal caused

by acceleration sensitivity a dummy transducer was mounted in the test

section. The real transducer was rigidly attached to the dummy transducer.

In this configuration the real transducer is subject only to vibration,

with no pressure fluctuations present at the active sensing port. Upon

running the pump, it was found that the transducer output in this configura=

tion, normalized by the signal obtained when the transducer is properly
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mounted and exposed to the same turbulent flow, was less than -60 dB.

Thus vibration response can be neglected.

3.6. Viscosity-Temperature Calibration

The viscosity of the working fluid should be fixed and well known for

any one experiment. In the flow loop described in Section III C, the rate

of increase of viscosity of the working fluid depends on the power being

dissipated in the fluid loop, the volume of fluid in the loop, the specific

heat, and the viscosity-temperature relation of the fluid. Since temperature

does not change significantly over the period of data sampling, or spatially

through the loop, the temperature of the fluid provides a convenient running

measure of the viscosity if the temperature-viscosity relation is known.

This relation was measured for the working fluids with a Saybolt-Tag

thermostatic viscometer. The results are shown in Fig. 18. The solid line

represents the manufacturer's claimed viscosity-temperature relation.

3.7. Data Collection and Processin

The scheme used for data collection is depicted in Fig. 19. A unity

gain field effect transistor circuit is incorporated in the transducer

assembly so that the piezo-electric crystal drives into a high impedance

without intermediate transmission lines. The transducer output is connected

to a Princeton Applied Research 113 preamplifier, 110 megohm input impedance

in parallel with 15 picofarads. The output of the first preamp leads to a

high pass filter circuit. Since the signals of interest are heavily weighted

towards low frequency, the high frequency part of the spectrum can be lost

below noise in the tape recording process. Therefore the signal is filtered,
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or "pre-whitened" so that the high frequency side is boosted relative to

the low frequency side. This allows the entire spectrum to be recorded

on tape without as much loss of high frequency information. Of course, the

effect of this filtering is corrected in a later stage of processing.

The high pass filter leads to another PAR 113 preamp, which in turn

leads to a Tandberg 3000x tape recorder. The overall system response from

the first preamplifier through the tape recorder is shown in Fig. 20, which

is a gain-dependent normalization of the output voltage of the tape recorder

divided by the input voltage to the first preamplifier.

The output of the tape recorder is again connected to a PAR 113

preamp, whose output can be connected to analysis equipment. The

amplifier high pass 3 dB rolloff point is set at 30 Hz. This provides

6 dB/octave attenuation, and restores the spectral distribution of energy

to its condition before prewhitening.

Rms measurements were made on a B&K 2607 measuring amplifier,

bandwidth 22.5 Hz - 22.5 KHz . This measuring device permitted averaging

times of up to 15 sec.

Spectral analysis was accomplished with a Federal Scientific model

UA-15A Ubiguitous Spectrum Analyzer, and Model 1015 Spectrum Averager.

The amplitude calibration of the spectrum analyzer as outlined by the

manufacturer was found to be faulty. Spectra of white and filtered noise

were graphically integrated to determine if the rms value so measured

agreed with the rms value of the same signals measured with a B&K true

rms meter and a B&K measuring amplifier.

It was found that the integrated spectra did not sum to the proper

rms value. By carefully plotting and integrating the spectra of signals
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of known power spectral densities it was determined that the output of

the spectrum analyzer was low by a constant multiplicative factor. This

attenuation was accounted for in the data reduction.

The effective bandwidth of the analyzing filter was found by plotting

the response to a pure tone input signal as its frequency changed. It was

found that the effective bandwidth of the analyzing filter was 16 Hz when

the analyzing bandwidth was set at 5 KHz.
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3.8 Previous Investigations

A number of investigations of various aspects of relatively low

Reynolds number flow through constricted tubes are reported in the

literature. The emphasis in most of these reports is placed on develop-

ment of pressure-flow characteristics, while to a lesser extent

separation and reattachment data, visualization studies, and pressure

fluctuation data are reported. In addition there have been a number

of investigations into the origin of vascular murmers.

Among this body of literature, one of the earliest and most

definitive reports, by Johansen (1929), was intended to provide data for

use in orifice plate flowmeters. To a large extent the remainder of the

relevant work in the area of flow through constricted tubes is found in

the medical literature and was motivated by desire to understand flow through

constricted arteries.

The relevant conclusions and observations reported in this body of

literature will be briefly reviewed and divided into two categories:

1) flow through constricted tubes, and 2) origin and onset of vascular

murmers.

1) Flow through constricted tubes. Johansen (1929) performed a

series of flow visualization and pressure drop studies on flow through a

sharp edged circular orifice in a pipe. From these visual studies he

provides an excellent qualitative description of the sequence of events

that occur as the jet Reynolds number increases. These qualitative

descriptions will be summarized because of their relevance to the present

work:
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Re < 10

Re 30

Re. 100

Re. 150

Re 250

Re. 1000

Re. 2000

Axisymmetric, laminar, steady flow,

no separation.

Separation begins to occur, laminar steady

Separation region becomes longer, laminar

steady flow persists. A permanent

stationary captured eddy appears.

Separation region extends 5-6 diameters

(maximum value), laminar, steady flow,

becomes unstable to external disturbances.

Regularly spaced instabilities begin to

appear at the boundary of the jet.

Ring vortices convect approximately 5 pipe

diameters, then become unstable and break

down into general turbulent motion.

Fully turbulent, separation region rapidly

decreases to approximately 1 diameter.

Johansen also stated that "the phenomena described occurred with all

sizes of orifice, and in the same order, though not quite at the

same (jet) Reynolds number. The value of (jet) Reynolds number for a

given event or type of flow was found to increase progressively as d/D

was increased".

Young and Tsai (1970), performed pressure drop measurements and

visualization studies for steady flow through a smooth (as opposed to

sharp) edged circular orifice. The data shows the tendency for the

separation region to grow with increasing Re. for Re < 1000, but does
J3 j
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not extend enough in Re to see the separation region attain a

maximum value and then become smaller. They report transition to turbulence

at Re = 1200 - 1400 , which is similar to the range reported by

Johansen.

Golia and Evans (1973) performed visualization studies on the onset

of separation and the separation region downstream of a circular smooth

edge orifice, and studied the effects of varying the radius of curvature

of the orifice lip. Their experiments extend to Re up to approximately

1500, and show a similar increase in length of the separation region as

reported by Young and Tsai. The data appears to be relatively insensitive

to changes of orifice radius of curvature for their experimental range

1/4 < d/4a < 1 . They did not observe turbulence.

Back and Roschke (1972) studied reattachment of a jet downstream of a

sudden expansion for a wide range of jet Reynolds numbers, and found the

maximum reattachment length of 8 diameters at Re = 300 . Beyond this

Reynolds number the reattachment length rapidly decreases to a minimum

value of about 2 diameters.

Some of the most relevant work done in related areas unfortunately is

also the most disappointing. Rouse and Jezdinsky (1966) performed a series

of experiments on the structure of the turbulent wall pressure field down-

stream of a sudden expansion in area in a circular pipe. They measured

the rms pressure as a function of downstream distance, and wall pressure

spectra at the point of maximum intensity for 3 diameters ratios.

Qualitatively their rms pressure versus d/D findings look quite similar

to the findings reported in this research (Section III) both in amplitude

and downstream scaling. Unfortunately Reynolds number is not reported, so
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their data cannot even be plotted with the current rms data in Section

III.

Rouse and Jezdinsky also report lateral and longitudinal correlations

of the pressure field, not reported in the present research. Unfortunately,

the spectral data reported by them is rendered useless by the fact that

the transducer sensing area is not specifically noted. They quote "1/8

piezometric openings", which if intended to be the size of the active

sensing element, would correspond to d t/Uc >> 1 , which implies huge

errors in the spectral measurements. (See Section 111.4.2.)

Maybe (1972) studied the wall pressure field in general separated

flows, including a sudden enlargement in a pipe. He quotes a general

result for separated flows

0.1 < rms 0.04
12 <
fpu

which is consistent with the findings reported in Chapter III for high

Reynolds number only. Unfortunately the rms and spectral results of

Maybe are subject to question because he does not report Reynolds number

or transducer size. As with Rouse and Jezdinsky (1966), Maybe's rms data

as a function of X/D qualitatively agrees with findings in the current

research.

Fricke (1971) performed a series of experiments on the turbulent wall

pressure field in separated flows. Fricke concludes that wall pressure

fluctuations in subsonic separated flows are an order of magnitude higher

than those beneath a boundary layer. Unfortunately, Fricke also fails to

report Reynolds number.

Other related investigations have been performed by Robbins and
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Bentov (1967), and Young and Forrester (1970),

2) The Origin of Vascular Murmurs. The earliest work in the area

of vascular murmurs was done by Bruns (1959) who felt that periodic

vortex shedding was responsible for the observed sound, and Rushmer and

Morgan (1960), who observed that vascular murmurs have a broad spectrum

and do not have discrete frequency tones as would be expected from vortex

shedding.

Yellin (1966) was the first investigator to study pressure fluctua-

tions within the confined jet, and the first to appreciate that vascular

"sounds" are not sounds at all; rather they are tissue vibrations which

are perceived as sound by the pressure transduction process (see Chapter

II). He also points out that the dominant mechanism for vibrating the

surrounding tissue is the collision of turbulent eddies with the wall. By

placing a pressure probe into the jet flow downstream of an orifice, rms

and spectral distribution of the signal from the probe were obtained.

Off-axis measurements showed a peak rms value occurring as far as 14

diameters downstream. The data reported were consistent with the broad

spectral nature of turbulent spectra.

Sacks et al. (1971) performed a series of dog experiments to determine

the conditions for onset of vascular murmurs. By implanting a square-edged

circular orifice plate assembly in the aorta of dogs, and inserting a

catheter tip microphone in the flow downstream of the orifice, he measured

the onset of turbulence-induced pressure fluctuations. The data were

fitted by the equation

(Re) = 2384 (d (3.7.1)
j cr D
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with reasonably good agreement. As noted by Sacks, this result is

consistent with Johansen's (1929) observation that the critical value of

Re. for some event to occur was found to increase progressibely as

d/D was increased. However the threshold criterion used to determine onset

was not specified. Therefore Sacks' data actually represents an iso-

intensity criteria for low intensity, but since the onset of turbulence

occurs rapidly as Re. is increased, Sacks' estimates probably only

slightly overestimate the critical Reynolds number for that orifice

geometry. However, the onset of turbulence-induced pressure fluctuations

in the flow, as reported by Sacks, and the onset of detectability of

vascular murmurs are not the same problem. This is discussed in

Section 5.2.
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Chapter IV Experimental Results

The results of the experiments will be discussed in three sections

A) Normalization of rms measurements

B) Normalization of spectral measurements

C) Interpretation of A and B

The objective of Section C is to coalesce the scaling laws demonstrated

in parts A and B into a meaningful understanding of the relevant physics.

4.1 Normalization of rms Data

The root mean square wall pressure downstream of a stenosis was

measured at different distances from 5 stenoses over a wide range of

Reynolds number. The result of these measurements are presented in

nondimensional form in Figs. 21-25. It was observed that the distance

to the peak of the rms wall pressure tends to increase as the Reynolds

number decreases. In addition, the decay of intensity in the downstream

direction following the peak is much steeper at high jet Reynolds number.

At high Reynolds number it was found that the peak rms pressure normalized

by the jet kinetic energy/volume tended to become indenendent of

Reynolds number.

The value of the rms pressure at the downstream position where it

attains its maximum value is plotted as a function of jet Reynolds number

in Fig. 26. At low Re. the peak rms pressure has desparate Re.

dependence. In addition, at low Re. , the diameter ratio d/D , is also

important, with small d/D producing a larger rms pressure. At high

Re. both Re. and d/D become unimportant, and the total root mean square

pressure scales as a simple fraction of the jet kinetic energy per unit



- I I I I I I I I

0 0

Rej
K 1752
o 1472

- .670
D

55% AREA REDUCTION

2 4 6 8 10 12 14 16 18 20 22
X / D

Fig. 21. Rms
with

wall
55%

pressure vs. downstream distance
area reduction.

A

a.
V

C-'

710-3

10



2 4 6 8 10 12 14 16 18 20 22
X / D

Fig. 22. Rms wall pressure vs. downstream
with 64% area reduction.

distance

N-.A

V



\ -

v

V

10
2 4 6 8 10 12 14 16 18 20 22

X / D

Fig. 23. Rms
with

wall pressure vs. downstream distance
73% area reduction.



2 4 6 8 10 12 14 16 18 20 22
X/ D

Fig.24. Rms
with

wall pressure vs. downstream distance
82% area reduction.

10-2

A

a.
v

N
10 3

- 410



-62

A -

V

Rej
o 803
o 11 41

d
D .305

91% AREA REDUCTION

10
2 4 6 8 10 12 14 16 18 20 22

X / D

Fig.25. Rms wall pressure vs. downstream distance
with 91% area reduction.



10-

55
-- 73

E 10-3
A 91

Q55 /0 AREA REDUCTION
o 550

-64 0 5 5 %-
o 64 %
- 73 %
A 80 %

-4_ 73 90%-900

82

10- 5
1000 2000 3000 4000 5000 6000 7000 8000

R1 ud
Rej = a d

Fig. 26. Spatial maximum of rms wall pressure vs. jet Reynolds number and area reduction.



-84-

volume

p I = 4 x 10-2 (1 P u
rms max 2 j

(4 .1.1)

By cross-plotting, a correlation can be found to normalize the low

Reynolds number rms data. It was found that by plotting normalized rms

75
pressure as a function of Re.(D/d)' one can obtain a universal curve,

as shown in Fig. 27.

The position at which the peak rms pressure occurs is also of interest.

It was found that the characteristic distance for this peak value to occur

could be normalized by jet diameter. The results of this normalization

are shown in Fig. 28. The implication of this result will be discussed

in Section 4.3.

4.2 Normalization of Spectral Data

The power spectral density of the turbulent wall pressure fluctuations

was measured at the downstream distance corresponding to the maximum rms

value. Thus each of the spectra in this section represents a spectral

decomposition of the total energy of each point in Fig. 26. These data are

presented in Figs. 29, 30, 31, 32, and 33 for different degrees of area

reduction.

It was observed that the total rms pressure was independent of Re

for high Re. . Likewise the spectra obtained in this experiment were found
J

to become independent of Re. for high Re. . Therefore, high Reynolds

number data was studied first to obtain the simplest scaling laws for the

spectra.

It was found that the following scaling laws normalized the data
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2 dE(w) p -d
U

(4.2.1)
U

fd

The rms value was used to normalize the spectra, rather than

2
p u. , because of the very strong dependance of the rms pressure on Reynolds

number at low Reynolds number, which would make it difficult to put all

the spectra on a single sheet of paper. Using the above normalization

facilitates comparison of spectral energy distribution for flows with

disparate Re. .

If one defines

E(m) = E () U (4.2.2)
p d

f fd

~U

then

E(f)df = 1 (4.2.3)

The results of this normalization are shown in Figs. 29-33 for 5 diameter

ratios.

A composite spectrum can be made by plotting spectra from all stenoses

where the Reynolds number has become high enough so that the spectral shape

is independent of Reynolds number. The shaded area in Fig. 34 represents

the region in which 10 spectra from 4 stenoses lie, and is the universal high

Reynolds number spectrum.

For lower Reynolds numbers a spectral normalization was made more
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difficult for two reasons. First, at lower Reynolds numbers the integrated

intensity becomes quite low, as demonstrated in Fig. 26 and therefore

ambient and pump noise limits the accuracy and quantity of data. Secondly,

the low Reynolds number data was obtained at low flow rate, which in turn

implies a low characteristic frequency of the turbulent flow (f ~ K ) .

Low frequency makes signal processing more difficult for a given degree of

accuracy.

However, the following observations were made from the existing data:

1. The high frequency tail of the spectra becomes steeper

as Re. decreases.
J

2. The value of Re. at which Re becomes an important factor

in spectral shape and depends upon d/D .

By cross-plotting the spectra for different diameter ratios it was

found that the modified Reynolds number

Re = Re. (D/d) '5  (4.2.4)

would reasonably normalize the spectra with different diameter ratios.

For engineering usefulness these spectra were fitted with a one

parameter family of curves of the form

a sin(IT/Y)
E(f) = (4.2.5)

where a = a(Re) , y = y(Re) . This family depends upon Re only, and

integrates to unity. The question now arises of how to fit the existing

data with this family of curves since a large degree of scatter, or

variance exists in each low Reynolds number spectrum at low frequency.

The variance of the measured rms pressure is smaller than the
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variance of the measured spectral density at an arbitrary frequency since

integration is a smoothing process. Therefore, one can fit a curve through

the low frequency scatter by fitting the one parameter family at high

frequency and ensuring the proper integrated intensity. For example, the

actual individual spectrum and the empirical correlation (Eq. 4.2.5) fit

well at high frequency, and have the same total area beneath their

respective curves. Therefore at lower frequency the empirical result

should also be a good approximation to the spectrum.
*

The parameter a(Re) of Eq. (4.2.5) is tabulated in Table 1

Table 1

a Re

53 3000

5.45 4000

1.74 5000

0.78 6000

.5

The slope of the tails of the spectra was found to be a weak function of

Re in the experimentally observable range. Furthermore, large scatter

made an accurate correlation of y with Re difficult. Therefore the

*
The smallest value of Re at which reasonable signal-to-noise ratio
could be obtained was Re = 3000 . It should be noted that since

1.5 2.5
Re = Re.(D/d) = Re(D/d) , a diameter ratio of D/d = 2

(approximately a 75% area reduction) and Re = 3000 would correspond
to a free stream Reynolds number Re 530 , which is well within

the physiological range of interest.
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correlation of y with Re was found by cross-plotting, and was fitted with

a linear approximation. Since a more detailed fit would convey a sense of

accuracy that, in fact, does not exist in this data, the following correla-

tion was used

y(Re) = - 2.5 x 10~4 Re + 5.08 3000 < Re < 7000

(4.2.6)
y(Re) = - 10/3 Re > 7000

The one parameter family of spectra is shown in Fig. 35, and is intended

only as a useful engineering approximation to the truth.

4.3. Interpretation of Experimental Results

The objective of this section is to look at the results presented in

the previous section, and to attempt to infer a qualitative description of

the flow.

Rms Data

The dependence of peak mean square pressure on jet Reynolds number,

as shown in Fig. 26, demonstrates that turbulent velocity fluctuations scale

with jet velocity, at least at moderately high jet Reynolds number.

(Re . > 2000). As mentioned earlier, when Re . < 2000 the mean square

pressure has very strong dependence upon Re. since the rms pressure can

jump two decades as Re varies from 1000 to 2000.

One of the most interesting aspects of the rms pressure behavior is the

distance required for p2 to reach a maximum value. This is represented

by L , is shown in Fig. 28, and leads to the following empirical law,

L -3 x 10 (4.3.1)
d Re.

J
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But this result further simplifies to

Lu.
= 3 x 10 (4.3.2)

Figure 36 represents a replot of Fig. 28 with different coordinates.

This is an amazing result when one considers that Lu./V is

independent of geometry (either d or D) . It implies that if some of the

jet kinetic energy is converted to turbulent motion (the amount depending

on geometry), the processes which control the redistribution of this

turbulent energy and its subsequent decay are not affected by the walls;

before the eddies have a chance to interact with the walls, they have

decayed due to inertial eddy-eddy interaction.

This geometry is similar in that respect to grid-induced turbulence in

a wind tunnel, where the walls do not influence the turbulent decay. The

fact that u is the relevant velocity again implies that the magnitude
J

of the turbulent velocity fluctuations scale with u. .
J

Unlike wind-tunnel turbulence, the observed decay does not go like

x~ , but falls off more rapidly (Batchelor, 1967). Even if the turbulent

intensity in the pipe did follow such a law, the turbulent wall pressure

-1
fluctuations would be expected to decrease faster than x due to the

formation and growth of a boundary layer which acts as a buffer between the

wall and the turbulent core.

A comparison of the characteristic length for the wall pressure

fluctuations to reach a maximum to the reattachment length would be of

interest. Back and Roschke (1972) report reattachment data in the Reynolds

number range relevant to this work. Their data was obtained from fully
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developed laminar flow passing through a sudden expansion. Other reattach-

ment data can be extracted from the visual studies of Nichols (1972) and

Johansen (1929), but may be subject to large error. Many other investigators

have studied reattachment at lower Re. , where L is found to be an

increasing function of Re .

The limited amount of reattachment data in the appropriate Reynolds

number range does not permit conclusive scaling of the two length scales

mentioned above. The only conclusions that can be made from the data avail-

able is that the reattachment length is always smaller than the distance

required for wall pressure fluctuations to reach a maximum value, with the

difference decreasing as Reynolds number increases.

It was also observed that the characteristic decay length of the wall

pressure tends to scale with the length L , although this was not quanti-

fied. As the jet Reynolds number increases, L becomes shorter and the

jet decays more rapidly. This is consistent with the model used in

Chapter II for the spatial distribution of intensity, i.e. Eq. 2.15 where

W(y1 z1) cyc ze (y1+ zl)/L, which implies at maximum intensity at

Y, = z, = L , and a decay rate proportional to L

Spectral Data

The spectral data normalizes well for high Re. . The scaling laws

of Eq.(4.2.1) implies that: 1) the magnitude of the turbulent velocity

fluctuations scale with u. ; 2) eddy size scales with d ; and 3) eddies

convect past the wall at a velocity proportion to U . Thus

f - U/d .
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Because intensity falls off so rapidly with Reynolds number, it is

difficult to obtain data at low Re. due to poor signal/noise ratio.

For Re. on the order 1000 or less the spectral energy distribution becomes
J

narrowed. However, it appears to be difficult to identify Re. by

spectral shape alone.

Spectral energy distribution and its integral, the total rms pressure,

become Reynolds number dependent at approximately the same Reynolds number

(1000 < Re. < 2000) . As Re. decreases the effective bandwidth and
J .

total intensity decrease, but the total intensity is more sensitive to Re.
J

than is the spectral shape.
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Chapter V Conclusions

The conclusions drawn from the theory and experiment will be discussed

in three sections: A) Implications for phonoangiography; B) Onset of

vascular murmurs; and C) Estinates of wall shear stress.

5.1. Implications for Phonoangiography

Lees and Dewey (1970) hypothesized scaling laws for the spectral

distribution of energy in a bruit. Neglecting Reynolds number and tissue

transmission effects, they showed that based on these scaling laws useful

information could possibly be extracted from analysis of bruits. The

so-called phonoangiographic equations derived were tested by Gurll (to

be published) in a series of dog experiments. Gurll exposed and banded

major arteries in a number of dogs to produce localized constrictions.

Both the unobstructed and obstructed diameters were measured. Flow rate

through the artery of interest was measured with an electromagnetic flow

meter. After closing the animal, tissue vibration at the skin surface was

measured with a Hewlett Packard heart sounds microphone. Gurll performed

spectral analysis on these induced bruits and compared his result with the

predictions of Lees and Dewey (1970). Gurll found good qualitative agree-

ment with these scaling laws. However, when flow rate was predicted using

the phonoangiographic equations of Lees and Dewey it was found that these

predictions were systematically low by a factor of two to four. As shown

in the previous chapters, the scaling laws used by Lees and Dewey require

modification, and tissue transmission does introduce an important modifica-

tion.
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The motivation of the present research was to understand "sound"

generation and transmission phenomena, with application to extraction of

relevant physiological measurements from physiological observables.

Pursuant to this objective one must look at the results presented in the

previous chapters dealing with the structure of the pressure field at the

wall of a constricted tube, and look at the theory of sound transmission

with an eye towards identifying characteristic phenomena or behavior that

can be used to generate new quantitative relations for phonoangiographic

equations.

With this in mind we shall first qualitatively describe what the

spectral distribution of energy should look like in a bruit, and then

briefly describe the spatial distribution of intensity at the skin surface.

From Eq. (2.20) we showed that the physiological observable f3(x,w)

could be expressed as the product of E(w) , the spectral density of

pressure at the arterial wall, and c(x,w) the transmission correction

function,

Tr(x,w) = c(x,w) E(w) (5.1.1)

It was hypothesized that the frequency dependent part of the correction

function could be approximated as a combination of asymptotic limits

c(x,w) c (2.20)

For turbulent pipe flow at high Reynolds number the longitudinal

correlation length L(w) : O(Uc/f), and the lateral (circumferential)

correlation length n 2 X/5 (Clinch, 1969). Therefore we shall assume
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c(x,w) M 1 (5.1.2)

1+ 2f 2

where 2 is a constant of order unity.

For simplicity we shall assume high Reynolds number, where Reynolds

number is unimportant, and E becomes

E(f) =0'7 (5.1.3)
1 + 0.50 f3.3

Then from 5.1.1,2,3

_C&g) = 1 - - 1 2 (5.1.4)
3.33 22H

1 + .5 f33 1 + f2 2(

In terms of dimensional variables this becomes

7(x,W) 1 3.33 2 (5.1.5)

1 + .5(Y) 1 + 62

This is a particularly simple and convenient representation of the spectral

density of a bruit. It says that the spectral density at the skin

is the product of two functions, each of which has a clearly defined break

frequency, i.e., a frequency at which the power law changes abruptly. We

designate these frequencies as

f =U
1 H (5.1.6a)

f 1.2U (5.1.6b)
2 d

Since S is of order unity and for every case conceivable H > d one

would expect
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f1 < f 2  (5.1.7)

The frequency fI represents the frequency at which a correlation

length of the turbulent pressure field equals the depth of the artery below

the skin surface. The frequency f2 represents the break frequency in

E(W) , as shown in Fig. 35. Fig. 37 is a sketch of the expected spectral

shape of a bruit as observed at the skin surface. If Reynolds number effects

are included the slope of the high frequency tail, and f2 are slightly

variable. At low frequency (f < f1 ) the spectrum is flat. At intermediate

frequency (f < f < f2) the slope becomes -2 . At high frequency

(f > f2) the slope becomes -2-y (= - 5.3 when Re =

At the skin surface the spatial distribution of intensity can have

distinctive characteristics and can provide useful information. Thinking

of the artery as a truncated line source of length L , one can imagine

that if H/L >> 1 the iso-intensity contours will be similar in shape to an

ellipse with ratio of major to minor axis C >> 1 . If H/L = 0(1) the

ellipse will become rounder, and C will be of order unity but greater

than 1 . If H/L >> 1 , the artery appears to be a point source, and the

contours of iso-intensity become a circular (C = 1) . This can be expressed

functionally as

g= , 0 (5.1.8)

Incorporated in this equation is the fact that ( is a strong function of

H/L for H/L < 1 , and is a very weak function of II/L for H L > 1

Therefore when H/L < 1 , C is a direct measure of H/L , and since

L = const/u (Eq.(4.3.2)) C is a direct measure of Hu .
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Before leaving the subject of spatial intensity distribution it should

be noted that the use of multiple transducers or a phased array of trans-

ducers for the purpose of scanning the artery with a device of high receptive

directivity cannot succeed. The reason is that in the range of wavelength

of interest in phonoangiography

k L << 1a

where k = 21T/X and La is a typical array dimension. Since the wave

lengths in the tissue are much larger than any practical array size, the

array will be omnidirectional.

At this point it is advantageous to collect facts that lead to equations

that might be solved for u, U, D, d .

a) A frequency exists at which the power law behavior of the wall

pressure fluctuation spectra changes (Eq. 4.2.5). This occurs when

f~d
af =a (Re) - = 1 (5.1.9a)

~ u

b) A frequency exists at which the transmission function changes

power law dependence. This occurs when the depth of the artery approaches

the correlation length, or from Eq. (5.1.2) when

fiH1 = 1 (5.1.9b)
'IT

c) The slope of the spectrum at high frequency, is a unique function

of Re

Y = y(Re) (5.1.9c)

d) The spatial distribution of energy at the skin surface is a

unique function of the depth of the artery, and the effective length
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of the excitation region. This may be expressed in terms of shape factors

of iso-intensity contours in the form of Eq. (5.1.8).

g(Hu,C) = 0 (5.1.9d)

e) The amplitude of the spectrum at the skin surface or its integral,

the mean square pressure can be measured

I= E(w) c(x,w) (5.1.9e)

or

p = 7rtdw = E (w) a(x ,w) d
rms o o

f) The continuity equation applies. The flow through the orifice

is equal to the flow downstream

ud2 = UD2 (5.1.9f)

Before proceeding one must also collect reservations and qualifications to

the use of the preceding equations.

a) Equation (5.1.9c) is not well conditioned for inversion of Re

for high Re since y is a weak function of Re . Small errors in

measurement of y could lead to large errors in estimation of Re

b) The transmission break frequency f2 of Eq. (5.1.9b) occurs at

very low frequency, on the order of 10 Hz, so unsteady effects (i.e.,

harmonics of the heart rate) might become important at these low frequencies.

Also ambient noise such as room noise, muscle tremor, other physiological

noise sources may make it impossible to make a meaningful measurement at
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that low a frequency. Note that for coronary arteries 2(w)/H << 1 , so

f will not exist. Furthermore, Eq. (5.1.2) represents nothing more than

an educated guess of system transmission, and is unconfirmed by experiment

Therefore Eq. (5.1.9b), which follows from Eqs. (5.1.1), (5.1.2), and

(5.1.3) is unconfirmed.

c) Eq. (5.1.9d) is not well conditioned for inversion when H/L > 1

Small errors in measurement of 4 would lead to large errors in estimates

of H/L or Hu . Note that for coronary arteries H/L > 1 always.

Reservations aside for the moment, we observe that there are six

equations (nonlinear) in only five unknowns. Therefore, one of the equations

is redundant, but this might allow us to eliminate a single observation

that is difficult to perform or measure, or subject to large error, and still

solve the system of equations for all five unknowns (assuming that the

system can be inverted). Therefore as a preliminary conclusion we state

that total noninvasive diagnosis is possible if one is willing to work

hard enough at it. The practicality of suchaa procedure is another question.

At this point one looks for reasonable engineering tradeoffs to make the

procedure simpler and more reliable. This can be accomplished by leaving

out any of the six equations which are ill-conditioned for inversion,

difficult to measure, or suspect for any other reason. In their stead one

can supply reasonable guesses for unknowns that are not of primary interest

and are reasonably well known, (such as H or D) , from previous angio-

graphic studies on that patient, from experience, or other methods.

Consider the following examples:

A. If the break frequency f1 is unobservable and Re cannot be

obtained from inversion of y(Re) with sufficient accuracy, this leaves

Eqs. (5.1.9a,d,e,f). Guessing D , the unobstructed arterial diameter
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leaves four equations in four unknowns.

B. If one does not want to do amplitude calibration, if H/L > 1

causes Eq. (5.1.9d) to be impractical, and y(Re) is not well conditioned,

but one is willing to do analysis with very long averaging times to resolve

fl , this leaves Eqs. (5.1.9a,b,f) . Guessing H and D leaves three

equations in three unknowns u , U , d

C. If H/L > 1 so that surface contours are unattractive, if the

low frequency break point cannot be resolved, and if y(Re) cannot be

accurately inverted, this leaves Eqs. (5.1.9a,e,f) . Guessing H and D

leaves three equations in three unknowns u , U , d

This last approach seems especially attracitve since it avoids all of

the serious pitfalls, and could be applied to deep arteries.

In this case the accuracy of the final predictions of the three unknown

quantities would depend upon the accuracy of the estimates of H and D

Three possible approaches for estimates of H and D are:

a) Data from a previous angiogram of that patient could provide esti-

mates of H and D with reasonable accuracy.

b) Morphological studies. Raines (1972) reports that the arterial

diameter at a specific location in the lower arterial tree varies minimally

from patient to patient in a group of 24 patients of normal height and weight.

c) Simple ultrasonic techniques can easily identify the depth and

internal diameter of many of the major arteries of the body with good

accuracy.

Of these three possibilities, the last is certainly the most reasonable

since it is a direct, simple, accurate, noninvasive measure of H and D

for the particular artery of the patient.
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In summary, phonoangiography could in principle provide a complete

noninvasive diagnosis ab initio without any additional inputs.

In practice, with minimal input of information obtained by ultrasound,

it appears that phonoangiography could provide a useful clinical tool to

the clinician. The phonoangiographic equations are derived in Appendix C

for the case where H and D are assumed known.

5.2 Onset of Vascular Murmurs

As shown in the experimental results of Section III, the onset of

turbulence induced pressure fluctuations occurs at vanishingly small values

of mean square pressure (Fig. 26). Since any signal could be amplified in

the absence of noise, one might conclude that the criterion for onset of

detectability of vascular murmurs could be the same as the criterion for

onset of pressure fluctuations. However, in all real systems the limiting

factor in detectability is the signal to noise ratio. To detect a specific

signal, that signal must be distinguishable from the ambient noise and

noise introduced in the detection and amplification system. Establishment

of a nominal threshold rms wall pressure would permit prediction of onset

of detectability of a vascular murmur in a particular artery by means of

Fig. 26 and an estimate of transmission loss (see Section II). The ambient

noise in the location of that artery would also have to be estimated [a

coronary murmur could be masked by heart sounds, while a femoral murmur of

the same intensity might easily be detected]. However, this is not a

practical procedure. The estimate of Sacks et al. (1971) in Eq. (3.7.1)

is an oversimplification of the onset of detectability of vascular murmurs,

even though it is a reasonable approximation for the onset of turbulent flow.
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Many clinicians follow the rule of thumb that if a vascular murmur

is audible, the artery must be at least 60% obstructed. This estimate is

consistent with the experimental results found in this work, and probably

represents as good a rule of thumb as possible which does not rely on

detailed computations or unreliable premises.

5.3 Estimate of Mean Square Shear Stress at Arterial Wall

The fluctuating stress at the arterial wall downstream of a stenosis

is thought to be a possible cause of post stenotic dilation as well as

continued development of atherosclerosis (due to shear dependent mass

transfer rate and/or injury to the arterial wall). The experiments

reported in this work clearly define the nature of the fluctuating normal

stress, but no measurements of shear stress were attempted. However, it

is not unreasonable to expect the mean square shear and mean square pressure

to related to one another at the boundary of a turbulent flow. This is

plausible because a) they both must depend upon the same flow parameters

(Reynolds number, geometry, etc.) and thus must be dependent, or b) they

are both caused by "collisions" of eddies with the wall, and on the average

the normal force and shear force during such a collision will depend on the

eddy trajectory and each other. Burton (Ph.D. thesis to be published, "The

Connection Between Intermittent Turbulent Activity Near the Wall of a

Turbulent Boundary Layer With Pressure Fluctuations at the Wall", M.I.T.

Acoustics and Vibration Laboratory) found in turbulent boundary layers (with

and without pressure gradients) that the ratio of the mean square pressure

and mean square shear was a constant that did not vary considerably from point

to point or flow to flow; given by
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T
.06 (5.3.1)

Prms

This relation would be expected to hold true to within an order of

magnitude for turbulent flows in general, and therefore permits estimates

of root mean square shear stress. Thus for a typical stenosed artery,

D = 5 mm, 85% obstructed, U systole = 50 cm/sec we would expect (from

Fig. 27) the maximum systolic values of rms pressure and shear to be

prms Puj (2.5 x 103 ) ~ 35 dynes/cm2

T = 2 dynes/cm2rms

Similar calculations could easily be repeated for other values of the

parameters.
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Appendix A: Exact Solution For a Cylinder of Finite Diameter

Eq. (2.13) expressed the autocorrelation of the pressure at a point

in an extended medium as a result of a distributed source of force. The

procedure followed in Section II assumed a line source distribution. In

this appendix a cylindrical source, of radius p , will be considered.

The autocorrelation is given by Eq. (2.13)

cosO cosO'
B(x,T) E JCO0dy d z 2 r2 ('t)fj(z t + T) > } (A.1)

-co -cor r'

where fi (y,t) is the force/volume in the ith direction. On a cylinder,

f can be expressed as

f (y 2 +y2 _p2 Y A2f1(yt) Pw(-,t) (y2 + y3 - p (A.2)

/2 2

where p,(y,t) is the instantaneous wall pressure at the point y on the

cylinder caused by internal turbulent flow. The delta function constrains

the source to the surface of an infinite cylinder of radius p . The term

Yy 2 + y3  represents the projection of the normal force in the ith

direction. Note that the center of the cylinder is at y2 = y3 = 0

Then

^2 cose i cos y z. < p (y,t) p (z,t + T)
B(x, T) = E j AdAldA2  r2  ,2 2 21/2 2 21/2 >

(y2  3) (z2 +z 3

(A.3)
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where dA and dA2 are elements of area on the cylinder. Let pw ,

the turbulent wall pressure be represented as

p,(y, t) = p,(yl, y, t) (A.4)

where y is the circumferential angle. Then the space-time correlation

is given by:

<p (y,t) pw(z,t + T)> = <pw 1,y,t)p (z1,C, t + T)> (A.5)

where ? is also a circumferential angle.

Assuming angular dependence is separable, the correlation becomes

pw(yt)pW(z,t + T)> = O(y,C) <pw(O,O,t) pw(A,0,t + T) (A.6)

where W is given by Eq. (2.15), and O(y,C) is a circumferential

correlation function, of the form

O(yC) = e (A.7)

if angular dependence is homogeneous. The parameter n is the

circumferential correlation length. This assumes no convection in the

circumferential direction.

From this point one assumes local axial homogeneity and similarity

to describe p (O,Ot)pW(A ,0,t + T) , and the calculation follows as in

Section II. After similar aysmptotic approximations as performed in

Section II, the result becomes

_ =X,,) (Z/H) (I/H) E I E(w) (A.8)

1 + ( 2
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where I' represents a complicated two-fold geometrical integral. Note

the dependence on the circumferential correlation length n .

If the cylinder were allowed to be close to the skin surface the

asymptotic approximation would be inappropriate ( «() 1) and the
H

resulting integral would be a four-fold frequency dependent integral.
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Appendix B: Effect of Transducer Size at the Skin Surface

As discussed in Chapter III, if a pressure field has spatial varia-

tions, attempts to measure the pressure at a point actually represents

spatial averages over the area of the active sensing surface of the trans-

ducer. If frequencies are associated with the spatial variations (as

with turbulent pressure fields) the transducer size limits the frequency

response of the measuring system. This is discussed fully by Willmarth and

Roos (1965).

The question that arises in physiological measurements is whether a

finite transducer at the skin surface alters frequency responses in a

similar fashion. For example, it is conceivable that the spatial varia-

tions in pressure at the arterial wall, when sensed at the skin surface,

produce a pressure field with fine spatial structure.

Consider a semi-infinite elastic medium with a distributed source of

force in a region R (See Fig. 38). Assume a cooidinate system center

at 0 , and assume that a finite rigid disc of radius r is used to sense

force.



SURFACE S r

FORCE
TRANSDUCER

Excitation of a finite transducer
by a source region.

Fig. 38.
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Let

from origin

from origin

to center of transducer

to any point on surface

_' = vector from origin to any point on surface S

vector from origin

vector from origin

=-v dA

y

=dS (y')

to any

to any

dwI

point in region

point in region

F(x,t) = force exerted on stationary pressure transducer on rigid

surface S If dS(y) is an element of area on the surface then

(B.1)

where K(x,y) = response Kernel = K(x - y)

K(x - y) =

1 x - 2

2 > 2

Forming the autocorrelation function of F

<F(x,t)F(x,t + T)> = dS(y) dS(_'){K(x-y')K(x- )<P(,t)P(y',t + T)>}

(B.3)

Due to appropriate Green's function and pressure doubling

f.(v,t) cos8
P(y,t) = 2E dv (B.4)

x vector

vector

V =

w =

dS (;)

(B.2)

F(x,t) = P(y,t)K(x,y) dS (y)
is
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where E represents elastic constants as in Chapter 2, and

cose.
I

ydr = - v -

dx. _
1

F(x,t)F(x,t + T)> = ds(y) f ds(y')f dv fdw{

4E2 < fi (vt) f (w, t + T)>}

Eliminating y' and w

^2
<F(x,t)F(x,t + T)> = 4E fds(y) dS(C)J dv fA dA {

Iy-A12 Iy+- Z i 

y-A121YCVA2

- < f (v,t) f (v + A , t + T)> }

Taking the temporal Fourier Transform

IT (x,w) = 4E SdS(y)J dS()vd JdA {
-_2 2

r(v,A,w) }

where F(v,A,w) is the cross spectral density, and 7 f = spectral density

of force. Applying the same line model as before, with the same assumptions

(see Chapter II)

Then

(B.5)

(B.6)

(B.7)

(B.8)

KQx-y) K (x-y'1) Z

,ZY2 l,_ 2
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r(v1 , A,, w) = $() e- % cos(-) W(v,v + A) (B.9)
C

which is the Corcos similarity hypothesis.

Asymptotically, as Z/H becomes very small, Eqs. (B.8) and (B.9) can be

evaluated, and become

L) ( K(x-y)K(x-y-C)

f(x,w) = 4E2 ((/L2 SdS(y) v { 2 W }

1 + (-i) |y-v|2 I,~v2 ijvv
C

(B.10)

But the integrals are independent of frequency. Therefore the frequency

dependence is the same as that found in Chapter II for an ideal point trans-

ducer.

This should not be unexpected because

a) Integration is a smoothing process.

b) The dipoles have sufficient beam width that the pressure at

the two points on the transducer have nearly the same source

function (i.e., the pressure at the two points depends on

nearly the same region in the source.
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Appendix C: Formulation of Phonoangiographic Equations

In Chapter five it was suggested that the most reasonable set of

equations for phonoangiographic procedure would be continuity, frequency

scaling, and amplitude scaling. In addition, the depth of the artery, H,

and the unobstructed diameter D would be obtained by other means. In

this appendix the actual phonoangiographic amplitude scaling equation will

be derived and used to solve for the unknowns, u, U, d

In Chapter II it was shown that

42

J(x, W) = - c(x, W) p(W) (2.20)
L2

Assuming X(w)/H << 1 , it was also shown that

c(x, W) = 2(L/H)LH I (2.21)

1 + (-)u
c

The following observations are made:

p(w) a E(w) iD (C.1)

= const (C.2)
u

C

and from Fig. 7

3
I(H/L) 1 (C.3)

2 1+H/L
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As suggested in Chapter II, we set a = e/L . From empirical results

(Chapter IV)

Lu 3 x 10 4

V

and from Clinch (1969)

U2
iz a U2

f2

Then the spectral density of pressure at the skin surface becomes

K U2 D E(w)

f2H3 
u1 + Hu

3 x 10 V

(4.3.2)

(C.4)

(C.5)

where K is a constant to be determined empirically in vivo. K can

include the system gain and elastic constants. Assuming high Reynolds

number, from Fig. 37

2 2
E(w) = E(f) -_ = .

U U

and, at high Re from Eq. 4.1.1

2 2 4p a p u

Then with continuity (C.5) becomes

SKp2d3u5

0.70

fd3.3
1 + 0.5 ( )U

(C.6)

(C. 7)

(C.8)
f2H +H 

fd3.33
f2H3D(l + Hu )(1 + 0.5( )

3 x 10 v
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Clearly it would be difficult to solve (C.8) for u due to the complicated

nonlinearity. If we restrict our attention to carotids or femorals, then

= Hu <1 (C.9)
L 3 x 10 4V

Clearly, for deep arteries the converse argument can be made that

>> 1 ,which also leads to simplification. Then Hu/ 3x 10 V can be
L

ignored with respect to unity with small error. Thus

7= K p 2 _d 3u 5.3(C.10)
3.33

2 3 fd
f2H D (1 + 0.5(T) )

Arbitrarily, we perform the amplitude scaling of the spectral density at

a frequency, defined as f 3 , which falls above the transmission break

frequency, but below the break frequency in the wall pressure spectrum.

This is easily done by measuring the amplitude at the point where the

spectrum of the bruit has a slope of -2 . Then (C.9) becomes

K 2d3u5
3 f H3D (C.11)

3

Then, with continuity

ud2 2 (C.12)

and frequency scaling

f2d (C.13)

U
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a simple set of equations is obtained. Letting

2A = Kp (c.14)
f H D
3

2
where K,, p, f3 , H , D are all known, the system can be solved:

d = A1/2 D5 5//2r f ) (C.15)
2 3

U A1 /2 D5 7/2 ,-1/2 (C.16)
2 3

u A1/2 D f7/2 d-2 ,-1/2 ( (C.17)
2 3

which are the phonoangiographic equations to be applied in the clinic.
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