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R sum This paper presents a new database model, namely Fuzzy Semantic Model (or FSM). FSM
enables us to capture effectively the fuzziness and semantics of real-world and provides tools for its
formalization and conceptualization within a manner adapted to human perception and reasoning. One of
the novelties of FSM is that it authorizes an entity to be a member of several classes at the same time
and according to different degrees of memberships that reflect the extent to which the entity verifies the
attribute-based and/or semantic proprieties of these classes. The idea is to associate to each class a set of
semantic and attribute-based proprieties; each one has its own membership function. These functions are
then weighted in order to construct global membership functions that will be used as meant for assigning
entities to classes.

Mots Cl s: Fuzzy class, Fuzzy database, Fuzzy logic, Fuzzy semantic model.

1 INTRODUCTION
Since the seminal paper of [30], fuzzy logic has

experienced very successful applications in different
domains. The reason for this is simply the ability of
fuzzy logic to represent human perception of and
reasoning about real-world. Domains to which fuzzy
logic has been applied include operational research,
Artificial Intelligence, decision-making, pattern
recognition and computer vision, speech recognition,
control and system theory, robotics, databases, etc.

In database context, there have been several
tentatives to develop data models that support the
fuzziness and impreciseness of real-world [25][12]
[18][14][28][3][9][27]. However, most of efforts have
been oriented towards the extension of conventional
relational database models [6][11][8][22][7] and
towards the development of tools that allow for
imprecise querying most often in relational database
contexts [17] [2] [1] [4] [5] [15] [26] [29]. In addition,
almost all of these works introduce fuzziness only at

the attribute level and consider that each entity
belongs to one and only one class. However, in many
practical applications such as in biology and medical
sciences, archaeology and history studies, spatial data
representation and modelling, archives management,
cosmology research one may come across difficulty
in assigning an entity to a particular class, mainly
when this entity verifies only partially the proprieties
of several classes at the same time. Actually, assigning
an entity to exactly one class may introduce some
deformation of human perception of real-world and
may eliminate several substantial information, which
may be very useful in several applications.

In this paper we propose a new database model,
namely Fuzzy Semantic Model (or FSM) that
overcomes this limitation and authorizes an entity to
be a member of several classes at the same time and
according to different degrees of memberships that
reflect the extent to which the entity verifies the
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attribute-based and/or semantic proprieties of these
classes. FSM uses basic concepts of classification,
generalization, aggregation and association that are
commonly used in semantic modelling and supports
the fuzziness of real-world at attribute, entity, class
and relations intra and inter-classes levels. Hence, it
provides tools to formalize and conceptualize real-
world within a manner adapted to its perception and
representation by humans.

The next section presents the principles and
constructs of FSM and then section 3 concludes the
paper.

2 PRINCIPLES OF FSM
The space of entities, denoted E={e}, is the set of

all entities of the domain of interest. A fuzzy class K in
E is a semantic collection of fuzzy entities.
Mathematically, K is defined as a collection of ordered
pairs of fuzzy entities: K={(e, K(e)): e∈E; K(e) > 0}.

K is a characteristic or membership function and
K(e) represents the degree of membership (or d.o.m)

of fuzzy entity e in fuzzy class K. Membership
function K maps the elements of E to the range [0,1],
where 0 implies no-membership and 1 implies full
membership. A value between 0 and 1 indicates the
extent to which entity e can be considered as an
element of fuzzy class K. Intuitively, a fuzzy entity e
may be member of many fuzzy classes according to
different degrees of memberships.

The definition of a membership function is a
crucial step in all applications of fuzzy logic. In our
FSM, membership functions of fuzzy classes will be
defined as follows. As it is underlined above, a fuzzy
class is a collection of many fuzzy entities having
some similar proprieties. Fuzziness is thus induced
whenever an entity verifies only some or no one of
these proprieties. We note by PK={pi

K: K ⊂ E; i >=1}
the set of these proprieties for a given fuzzy class K.
PK forms the extent of class K. These proprieties may
be derived from the attributes of the class and/or from
common semantics. The extent to which each of these
proprieties determines the class K is not the same. In
fact, there are some proprieties that are more
discriminative than others. To ensure this, we associate
to each propriety pi

K a normalized weight wi
K

reflecting its importance in deciding whether or not an
entity e is a member of a given class K. To keep the
coherence of our model, we impose that Σiwi

K =1.
On the other hand, an entity may verify fully or

partially extent proprieties of a given fuzzy class.
Obviously, the fuzzy entity must first have at least one
of the class attributes or has characteristics, which are
in accordance with at least one of the semantic phrases
on which extent proprieties are based. Let Di

K be the
basic domain of extent propriety pi

K values and Pi
K is a 

subset of Di
K, which represents the set of possible

values of propriety pi
K. The partial membership

function of an extent propriety value is Pi
K, which

maps elements of Di
K into [0,1]. For any attribute

value v ∈ Di
K, Pi

K(v) = 0 means that fuzzy entity e
violets propriety pi

K and Pi
K(v) = 1 means that this

entity verifies fully the propriety value. The number v
is the value of the attribute of entity e on which the
propriety pi

K is defined. More generally, the value of
Pi

K(v) represents the extent to which entity e verifies
propriety pi

K of fuzzy class K. Accordingly, for any
fuzzy entity e, the global d.o.m K(e) for a fuzzy class
K is equal to Σi wi

K Pi
K(v), i.e., a weighted sum of the

partial membership functions.
The definition of functions Pi

K is not the concern of
this paper since our major objective here is to
introduce the fuzziness at the class level. We just
mention that several techniques have been proposed in
the literature and all of them apply to our model and
can be used to determine partial membership functions
as those based on similarity relations [6][7], those
based on possibility distributions [25][17][18] or those
based on evidence theory [24].

This way of defining membership functions may
apply better to attribute-based extent proprieties.
However, analysts and/or experts may provide
membership functions of extent proprieties that are
based on semantic phrases.

One particular case may hold when the extent
proprieties are crisply defined. In this case, for any
fuzzy entity e the global d.o.m K(e) for a fuzzy class
K is equal to Σi wi

K bi
K where bi

K is a boolean variable
defined in such a way that a value of bi

K = 0 indicates
that the entity violates the ith propriety pi

K of class K,
and a value of bi

K = 1 indicates that the entity verifies
this propriety. In the rest of this paper we consider that
extent proprieties are not crisply defined.

The basic constructs of the FSM are extensions of
the Unifying Semantic Model (or USM) (see
[20][21][19]) itself is an extension of traditional
semantic models; especially SDM [10], IDEF1X [13],
NIAM [16], and OSAM* [23] and which are here
enriched with new concepts enabling the database
system to support fuzziness of real-world. They are
illustrated and discussed in the following paragraphs.

2.1 Fuzzy Entities
A fuzzy entity is a natural or artificial entity that we

cannot be assign to an exact class. In other words, a
fuzzy entity verifies only some extent proprieties of
one or some classes. Classic entities are a particular
case of fuzzy entities because they are assigned
exactly to one class. Here, however, all entities of real-
world (fuzzy or not) are referred to fuzzy entities. The
legitimacy of doing this is that fuzzy paradigm
supports well exact entities by associating 1 for the
d.o.m relative to their exact classes, and 0 for any
other d.o.m (i.e. other classes).
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2.2 Basic Classes
2.2.1 Fuzzy Classes

A fuzzy class is a semantic collection of fuzzy
entities. Each fuzzy class is uniquely identified with a
name. The elements of a fuzzy class are called
members. Each class has a list of characteristics or
proprieties, called attributes. Some of these attributes
along with other common semantic phrases are called
the extent and form the set PK defined above. To be a
member of a fuzzy class K, a fuzzy entity e must
verify (fully or partially) at least one of the extent
proprieties, i.e., K(e) > 0.

We should note that FSM fuzzy classes are well
and exactly defined because even that their extent
proprieties may change over time; they keep the same
identity (or name). In this paper we suppose that these
proprieties are constant over time. However,
incorporation of temporality in FSM formalism is in
process and will be the concern of a forthcoming
paper.

There are seven types of fuzzy basic classes in
FSM formalism (Figure 1):

1. A complete fuzzy class K (Figure 1.c) is a
fuzzy class that all its members have a
d.o.m equal to 1; i.e., K(e) = 1 ∀  e ∈ K.

2. A non-complete fuzzy class K (Figure 1.d)
is a fuzzy class that at least one of its
members has a d.o.m strictly inferior to 1;
i.e., ∃ e ∈ K such that K(e) < 1.

3. A strong fuzzy class K (Figure 1.e) is a
fuzzy class whose members can exist on
their own, i.e., they are not depending on
other classes.

4. A weak fuzzy class K (Figure 1.f) is a
fuzzy class whose members depend on the
existence of other (strong and/or weak)
classes for their existence.

5. A compact fuzzy class K (Figure 1.a) is a
complete and strong fuzzy class.

6. A non-compact fuzzy class K (Figure 1.b)
is a complete and weak fuzzy class.

2.2.2 Domain Classes
A domain class (Figure 1.g) is the space to which

all attributes' values are mapped. Operations between

attributes are possible only if their values map to the
same domain, or eventually, to overlapping domains.
The elements of a domain are all of the same datatype.
Here, we keep the same datatypes defined in the USM,
which are: integer, count, measure, currency, real,
scaled, boolean, enumerated, name, text, datatime, and
bit or byte-string (see [19] for the descriptions of these
datatypes).

2.2.3 Fuzzy Entity-Class
A fuzzy entity-class is a new entity that cannot be

assigned to any pre-existing fuzzy class. Therefore,
this entity is transformed into a (compact) fuzzy
entity-class containing initially only one element with
a d.o.m equal to 1. A fuzzy entity-class can evolve to
form a new fuzzy class whenever some new similar
entities are introduced. It can also be eliminated
whenever new attributes' values and/or semantic
proprieties are discovered enabling it to be assigned to
one or many other pre-existing fuzzy classes.

2.3 Members
As it is mentioned above, the elements of a fuzzy

class are called members. They may be also termed
occurrences or instances. Each fuzzy class K may
have any number of three types of members:

• True-Member: is an entity e with a d.o.m
equal to one, i.e., K(e) = 1.

• Pseudo-Member: is an entity e with a
d.o.m greater than 0.17 and strictly
inferior to 1, i.e., 0.17 ≤ K(e) < 1.

• Weak-Member: is an entity e with a d.o.m
strictly less to 0.17 and strictly greater to
0, i.e., 0 < K(e)< 0.17.

A true-member is a member of one and only one
class. Pseudo and weak members are at least members
of two fuzzy classes.

2.4 Relationships
Four types of relationships are defined in FSM

formalism. They are depicted in the following
paragraphs.

2.4.1 Propriety Relationships
A propriety relationship associates a fuzzy class to

a domain class. Each propriety relationship defines an
attribute (see 2.5). We distinguish two types of
attributes: (i) simple attributes, which are defined by
themselves (Figure 2.a), and (ii) derived attributes,
which are obtained from other attributes (Figure 2.b).
As it is defined in USM, propriety relationships are
always binary and they are always seen only from the
point of view of the entity class (i.e. only entities can
have attributes [19]).

2.4.2 Decision Rule Relationships
Two new relationships for defining fuzzy classes

(a) (b) (c) (d)

(e) (f) (g)

Figure 1: FSM basic classes symbols
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are introduced in FSM formalism. The first is a
semantic decision rule relationship (Figure 2.c), which
is a semantic phrase used to decide whether or not a
fuzzy entity is a member of a specific class. The
second is a propriety decision rule relationship
(Figure 2.d), which is an attribute-based decision rule
used to decide (through a binary comparison, for
instance) whether or not a fuzzy entity is a member of
a given class. Decision rule relationships are in fact
an implementation of the extent set PK. Any fuzzy
class must have at least one decision relationship. But
there is not any limit number of decision relationships
for a given class. However, one prefers to have a
moderate number of decision relationships in order to
keep the model comprehensive.

2.4.3 Membering Relationships
The membering relationships relate fuzzy entities

to classes. Along with the member's typology, three
types of membering relationships are defined. A true
membering relationship (Figure 3.a) is binary and
relates one entity to exactly one fuzzy class. Pseudo
and weak membering relationships (Figure 3.b) relates
entities to one or several fuzzy classes. The letters T, P,
and W in Figure 3 refer respectively to the terms True,
Pseudo, and Weak, and the values in the parenthesis
are the different d.o.m.

2.4.4 Interaction Relationships
An interaction (or association) relationship relates

members of one fuzzy class to other members of one
or many fuzzy classes. The interaction relationship
may be of binary or higher order and is identified
uniquely with a name. The association relationship
creates attributes for relating each participant member
to each of the other participant members. This permits
to consider the interaction relation from the viewpoint
of any participant member. It may also require (Figure
4.b) or not (Figure 4.a) the creation of new attributes
that describe the interaction relationship. In the former
case, a new (obligatory weak or non-compact) fuzzy
interaction class is generated. The d.o.m of members

of a fuzzy interaction class is equal to the product of
the related members. For example, a member e of a
binary fuzzy interaction class K generated by
associating two members, say e' and e'', of two fuzzy
classes, say K' and K'', has a d.o.m K(e) equal to

K (e') K (e''). When the binary fuzzy interaction
class requires no new attributes, the class name may
be omitted since the relation is totally identified by its
two members' attributes. An interaction relationship
may relate one member to other members of the same
fuzzy class and forms a recursive interaction
relationship (Figure 4.c).

2.5 Attributes
As it is underlined above, a propriety relationship

relates a fuzzy class to a domain class. This
relationship creates an attribute associated to members
of the fuzzy class. Attributes may also be created
through interaction, composite (see 2.7) or grouping
(see 2.8) relationships. Each attribute has a unique

Figure 2: FSM propriety and decision rule
relationships

simple attribute name
(a)

derived attribute name
 (b)

S   <semantic phrase>

(c)

P   <propriety value>

(d)

Figure 4: FSM interaction relationships

(b)

(a)

(c)

(b)

Fuzzy entity e

T(1)

Figure 3: FSM membering relationships

Fuzzy entity s

P(0.3)

Fuzzy entity r

P(0.35) W(0.12) P(0.35)W(0.15)

(a)
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datatype and may be single or multi-valued. Values
may be exactly defined or not. Accordingly, an
attribute value may have one of the following natures:

• SingleValued: means that the attribute
cannot have more then one value in a
given time.

• Unknown: means that we cannot decide
which is the value of the attribute among
several plausible values.

• Undefined: means that there is not any
defined value that can be assigned to the
attribute.

• Null: means that we cannot even know
whether the attribute's value is unknown
or undefined.

• MultiValued: means that the attribute can
have different values.

In FSM formalism, attributes as entities are
affected with fuzziness. That is, these attributes are
allowed to take imprecise values. As is underlined
above, in this paper we do not intend to focalize on the
representation of fuzziness at attribute level since it
has been well discussed in most of fuzzy database
literature (see, for e.g., [6][25][17][18][7][24]).

Each attribute has a name and many other
characteristics. Several ones of these characteristics
are enumerated in [19]. In the following list we just
add two new ones, which are not defined in USM:

• Exact/Fuzzy: An exact attribute is a single
or multivalued. Otherwise (i.e. undefined,
unknown, or null) is a fuzzy attribute.

• Relevant/Not-Relevant: In FSM, it is not
necessary that a member has all the
attributes of his fuzzy superclass (see

2.6). Attributes that are not obligatory are
said to be not-relevant ones. Note that this
propriety must be seen from the point of
view of members and not classes.

2.6 Class Relationships
FSM supports two types of inter-classes

relationships: generalization and specialization. The
generalization relationship relates a fuzzy superclass
to one or several simple or composed fuzzy subclasses.
Such relation advocates that all members of the fuzzy
subclass are members of its fuzzy superclass with the
same d.o.m., i.e., for any entity e of a fuzzy subclass
S, the d.o.m of e relatively to the fuzzy superclass P of
S is P(e)  = S(e). Any generalization relationship
creates implicitly a specialization relationship, which
relates a fuzzy subclass to a fuzzy superclass. The
same fuzzy class may be the subclass of one or many
fuzzy superclasses. A specialization relationship
advocates that the fuzzy subclass inherits all the
attributes of its fuzzy superclass(es).

A fuzzy subclass may be attribute-defined,
semantically-defined, set-operation-defined or roster-

defined. An attribute-defined fuzzy subclass (Figure
5.a) has one or several attributes' values that are in
accordance with some discriminative values that
characterize perfectly the members of the fuzzy
superclass. A semantically-defined fuzzy subclass
(Figure 5.b) verifies one or several semantic phrases
used as decision rules for determining the members of
the fuzzy superclass. Both of attribute and
semantically-defined fuzzy subclasses inherit all the
attributes of their fuzzy superclasss. A set-operation-
defined fuzzy subclass may be defined as the
difference (Figure 5.d) or the set-intersection (Figure
5.e) of two or more fuzzy classes. Members of
difference fuzzy subclass of two fuzzy superclasses
are those that are members of the first fuzzy superclass
that are not members of the second fuzzy superclass.
Members of a set-intersection fuzzy subclass of two or
several fuzzy superclasses are members of each of
these fuzzy superclasses. The set-intersection fuzzy
subclass inherits all the attributes that are common to
all the participant fuzzy superclasses while the
difference fuzzy subclass only the attributes of the first
fuzzy superclass will be inherited by the fuzzy
subclass. A roster-defined fuzzy subclass is simply
defined by an explicit enumeration of its members
(Figure 5.c). These subclasses inherit all the attributes
of their superclass.

Fuzzy subclasses of a common superclass may be
equal, mutually exclusive or overlapping. Equal fuzzy
subclasses represent fuzzy subclasses that have
synonym names and have exactly the same members.
Mutually exclusive fuzzy subclasses are those in which
members of the first fuzzy subclass cannot be

Figure 5: FSM inter-class relationships

(d)

-

(a)

{<attribute  value>}

A

(b)

{<semantic phrase >}

S

(c)

{<attribute id>}

Enum

(e)
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members of the other fuzzy subclasses. Those fuzzy
subclasses that can have some common members are
said to be overlapping fuzzy subclasses.

Finally, we just mention that generalization and
specialization relationships may be defined on any
basic fuzzy class, and that they do not have names and
do not generate any new fuzzy class.

2.7 Composite Fuzzy Classes
A composite fuzzy class is a fuzzy class that has

other fuzzy classes as members. It is uniquely
identified with a name. If the members of a composite
fuzzy class are subclasses of the same fuzzy
superclass, they are said to be homogenous.
Otherwise, they are heterogenous. Composite
relationships are not generalization or specialization
ones. Indeed, the utility of composite fuzzy classes is
to maintain general attributes that describe common
proprieties of all the members of a fuzzy class (or
subsets of a fuzzy class). To avoid redundancy, the
members of a composite fuzzy class are kept defined
at their initial fuzzy classes but we associate to this
composite fuzzy class a multivalued attribute called
contents, which permits to identify all of its members.
Composite fuzzy classes may be defined on any basic
fuzzy class and can be generalized or specialized.

A composite fuzzy class may be defined basing on
a collection of attributes, a collection of semantic
phrases or simply by enumerating its members. Those,
which are defined on a collection of attributes, share
the same values for a subset of attributes (Figure 6.a).
These attributes are called fuzzy selection attributes of
the composite fuzzy class. Fuzzy selection attributes
form also the attributes of the composite fuzzy class
and they constitute the identifier of the members of
this composite fuzzy class. Those that are defined on a
collection of semantic phrases verify one or several
semantic phrases, which serve as decision rules for
determining the members of the composite fuzzy class
(Figure 6.b). These phrases are called semantic
selection phrases of the composite fuzzy class. A
composite fuzzy class can be also defined by the
enumeration of its members (Figure 6.c). These
members may be homogenous or heterogenous.

Finally, we remark that each member of a
composite fuzzy class may have their own attributes in 
addition to the common ones.

2.8 Grouping Fuzzy Classes
A grouping fuzzy class is a collection of members

from other fuzzy classes. We may distinguish two
types of grouping fuzzy classes: aggregate or grouping
fuzzy classes. A member of an aggregate fuzzy class is
an heterogenous collection of fuzzy classes, in which
each member (or aggregate) is composed of one
member from different fuzzy classes that are called
components (Figure 7.b). A grouping fuzzy class is an

homogenous collection of members (or groups) from
the same fuzzy class that is called component (Figure
7.a). In both cases, members of the grouping or
aggregate fuzzy class are unique collections of the
component class(es). In other words, the addition or
the elimination of one member from the collection
creates a new group or a new aggregate.

Groupings and aggregates are nor generalization or
specialization of fuzzy classes neither a composition
of one or more fuzzy classes. In addition, they are
weak ones and fuzzy subclasses, superclasses and/or
composite fuzzy classes may be defined on them.
Moreover, each grouping fuzzy class has at least a
multivalued attribute called contents that refers to the
members of each of its groups.

3 CONCLUSION
In this paper we have presented a new fuzzy

semantic model that permits to formalize and
conceptualize real-world within a manner adapted to
human perception of and reasoning about this real-
world. FSM is useful in several real-world

Figure 6: FSM composite fuzzy classes

{<fuzzy selection attribute name>}

(a)

Sel-A

(c)

{<id attribute name>}

Enum

{<semantic selection phrase>}

(b)

Sel-P

Figure 7: FSM grouping fuzzy classes

Agg

(b)

Grp

(a)



SETIT2004

applications in which the assignment of an entity to
exactly one class may introduce some deformation of
human perception of real-world and may eliminate
several substantial information that may be very useful
in several of these applications. One of the novelties
of FSM is that it authorizes an entity to be a member
of several classes at the same time and according to
different degrees of memberships that reflect the
extent to which the entity verifies the attribute-based
and/or semantic proprieties of these   classes.

Currently, an implementation of FSM is in process.
Furthermore, an elaboration of an extended fuzzy
semantic querying language is also in process. In
future time, we intend to add the temporal dimension
to our FSM in order to handle the evolution of facts
and of human perception of real-world across time.
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