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ABSTRACT

The basic problem of phase estimation for sinusoids of Gaussian

phase processes transmitted over channels with additive white Gaussian

measurement noise is considered. In high signal-to-noise ratio (SNR)
regions, where the classic phase-lock loop (PLL) is the optimal track-
ing filter, a unique frequency acquisition scheme is developed.

In low SNR environments, where the class PLL is not optimal,

Bucy's representation theorem is used to motivate novel approximations

to the exact conditional probability density function. This approx-
imation method is quite general and may be used in other nonlinear

problems of low dimension. The technique has the advantage of pro-

ducing positive approximate density functions which converge to the

correct density as the process driving noise strength goes to zero, or

as the order of the approximation becomes infinite. The approximation

method is applied to the design of phase estimators for first - and

second - order PLL problems. For a high-noise first-order problem

simulated, the first term in the approximation outperformed the classic

PLL -- the extended Kalman filter for the problem.

Thesis Supervisor:
Title:

Thesis Supervisor:
Title:

Thesis Supervisor:
Title:

Thesis Supervisor:
Title:

Wallace E. Vander Velde, Sc. D.
Professor of Aeronautics and
Astronautics

Alan S. Willsky, Ph. D.
Associate Professor of Electrical
Engineering

Donald E. Gustafson, Ph. D.
Technical Staff, C. S. Draper
Laboratory

Jason L. Speyer, Ph. D.
Professor of Aerospace Engineering
and Engineering Mechanics,
University of Texas



-4-

ACKNOWLEDGEMENTS

I would like to thank many people for their help, guidance and

friendship during my research, and only regret that the following list is

unavoidably incomplete.

First, thanks go to my advisory committee -- Wallace Vander Velde,

chairman, Jason Speyer, Don Gustafson, and especially Alan Willsky, who

did much to make my research both rigorous and rewarding. I would also

like to thank Sheldon W. Buck of the Draper Laboratry for giving my educa-

tion the practical perspective I missed at the Institute. Thanks are due

to the Draper Laboratory for their financial assistance and faith through

the years, in particular for their unselfish funding (through an independent

research and development grant) of the research which led to this thesis.

In addition, thanks to Margaret Flaherty for making the final preparation

of this report as painless as possible.

I also wish to thank my family and close friends for their support

throughout my marathon education. And finally, thanks to Becky, for

making it all worthwhile.



-5-

TABLE OF CONTENTS

CHAPTER 1

1. INTRODUCTION AND MOTIVATION 10

1.1 Introduction 10

1.2 History and Motivation 11

1.3 General Nonlinear Problem 13

1.3.1 Problem Statement 13

1.3.2 Extended Kalman Filter 17

1.3.3 Threshold and Acquisition Problems 18

1.4 General PLL Problem 19

1.4.1 Introduction 19

1.4.2 PLL-Extended Kalman Filter Equivalence 26

1.4.3 Brownian Motion Phase Process 28

1.4.3.1 First-Order PLL 28

1.4.3.2 Optimal PLL Gain 31

1.4.3.3 Cosine Cost Function 36

1.4.3.4 Concluding Remarks 38

1.5 Summary and Synopsis 38

2 ACQUISITION IMPROVEMENT FOR PLL's IN HIGH-SNR APPLICATIONS 41

2.1 Introduction 41

2.2 Compound PLL 42

2.2.1 General Description 42

2.2.2 Simple Implementation 45

2.3 Brownian Motion Phase Example 47

2.3.1 Problem Statement 47

2.3.2 Acquisition Range for First-Order PLL 47

2.3.3 Second-Order PLL 48

2.3.3.1 Design 48

2.3.3.2 Acquisition Performance 48

2.3.3.3 Noise Performance 49



-6-

TABLE OF CONTENTS (con't)

2.3.4 Compound PLL for Brownian Motion Phase Process

2.3.4.1 Design

2.3.4.2 Acquisition Performance

2.3.4.3 Noise Attenuation

2.3.4.4 Limitations

2.3.5 Performance Comparison

2.3.5.1 Summary of Equations

2.3.5.2 Graph Explanation

2.3.5.3 Results

2.4 General Technique

2.4.1 Generalization to Higher Order

2.4.2 Alternate Implementation

2.4.3 VCO Replacement

2.4.4 More Inner Loops

2.5 Conclusion

2.5.1 Summary

2.5.2 Remarks

3. THE REPRESENTATION THEOREM

3.1 Introduction

3.2 Bucy's Representation Theorem

3.2.1 Motivation

3.2.2 Notation

3.2.3 Conditional Expectation

3.2.4 Stochastic Processes

3.2.5 Representation Theorem

3.2.5.1 Problem Statement

3.2.5.2 P Construction

3.2.5.3 Conditional-Density Representation

3.2.6 Properties of the Conditional Density

3.2.6.1 Denominator



-7-

TABLE OF CONTENTS (Con' t)

3.2.6.2 Nonlinear-Measurement Formulation 76

3.2.6.3 Differential Density Forms 78

3.3 No Process Noise 80

3.3.1 Line ar-Measurement Problem 80

3.3.2 Phase-Measurement Problem 82

3.4 Summary 87

4. APPROXIMATION METHOD 88

4.1 General Approach 88

4.1.1 Introduction 88

4.1.2 Convergence of Density Approximations 89

4.1.3 Moment Generating Functions 92

4.2 Approximation Method 95

4.2.1 General Design 95

4.2.2 Possible Approximations 99

4.2.3 Backward Transition Density 103

4.3 Approximation Accuracy 107

4.3.1 General Considerations 107

4.3.2 Moment Approximations 107

4.3.2.1 Denominator Convergence 107

4.3.2.2 Moment-Approximation Bound 109

4.3.3 Cumulant Bound 111

4.3.4 Statistical Bound 112

4.4 Conclusion 114

5. THE FIRST-ORDER PHASE-LOCK LOOP PROBLEM 116

5.1 Introduction 116

5.1.1 Chapter Organization 116

5.1.2 Problem Statement 116

5.2 The Phase-Lock Loop 118



-8-

TABLE OF CONTENTS (con't)

5.3 Optimal-Filter Descriptions 112

5.3.1 Stratonovich 122

5.3.2 Mallinckrodt, Bucy and Cheng 124

5.3.3 Gaussian Sum Approximations 125

5.4 Sub-Optimal Filters 125

5.4.1 Mallinckrodt, Bucy and Cheng 125

5.4.2 Linear Minimum-Variance Filters 128

5.4.3 Assumed-Density Filter 131

5.5 First-Cumulant Filter 136

5.5.1 General Design 136

5.5.2 Sub-Optimal Filter Comparison 140

5.5.3 Accuracy of First-Cumultant Approximation 142

5.6 Static Phase Filter Performance 144

5.6.1 Approximate-Density Interpretation 144

5.6.2 Exact Performance 145

5.6.3 Filter Behavior When Signal Lost 146

5.6.4 Low-Noise Filter Performance 148

5.7 Higher-Order Density Approximations 150

5.7.1 First-Moment Information 150

5.7.2 Second-Moment Filters 152

5.7.3 Third-Moment Filters 159

5.7.4 Filter Comparison 160

5.8 Bessel -Function Filter 163

5.9 Conclusion 170

6. SECOND-ORDER PHASE-LOCK LOOP PROBLEMS 172

6.1 Introduction 172

6.2 Brownian Motion Phase with Unknown Carrier Frequency 173

6.2.1 Problem Statement 173

6.2.2 First-Cumulant Filter 175

6.2.3 Implementation of the First-Cumulant Filter 177



-9-

TABLE OF CONTENTS (con't)

6.2.4 Frequency Estimation 179

6.2.5 Phase Estimation 181

6.2.5.1 Phase Estimation from Joint Filter 181

6.2.5.2 Phase Estimation Only 184

6.3 Brownian Motion Frequency 187

6.3.1 Problem Statement 187

6.3.2 Classic PLL 188

6.3.3 Approximate-Density Filter 190

6.4 FM Problem 194

6.4.1 Problem Statement 194

6.4.2 Classic PLL Design 195

6.4.3 Approximate-Density Filter 196

6.5 Summary 202

7. CONCLUSIONS AND RECOMMENDATIONS 205

APPENDICES

A. Bessel Function Relationships 209

B. Linear Error Equations 212
B.l Classic PLL 212

B.2 Compound PLL 213

C. Stochastic Calculus 215

D. Steady-State Density for a 218

E. Third-Moment Approximate-Density Equations 222

REFERENCES 226



-10-

CHAPTER I

INTRODUCTION AND MOTIVATION

1.1 Introduction

This thesis is concerned with nonlinear estimation theory in general

and phase-lock loops (PLL's) in particular. We have concentrated on

those areas where phase-lock loops perform poorly (during acquisition

and periods of high noise) and have examined methods for the design of

filters with improved performance. Some of our results are quite general,

however, and have possible uses in other nonlinear filtering problems.

For a general class of nonlinear problems, we have developed an

approximation technique for the conditional probability density function

that makes no a priori assumptions about the shape or moments of the

density. The result is an approximate density function that can be con-

structed from a finite set of statistics which are functionals of the

measurements. We have applied this technique to the design of phase

estimators without making the high signal-to-noise ratio assumptions in-

herent in phase-lock loops.

We have also investigated the acquisition behavior of phase-lock

loops in the very-high signal-to-noise ratio area, and have found that

significant improvement is possible without degrading the filtering prop-

erties of the loop. Our technique uses a compound PLL to move the "small

sine" approximation in PLL design from the narrow band filtering loop

to a wider-bandwidth "phase-detector" loop. The linearized noise analysis

is barely influenced by this change, but the redistribution of filtering

tasks greatly improves acquisition performance, as discussed in the next

chapter.



-11-

1.2 History and Motivation

Perhaps the first person to propose a "phase-lock loop" was Bellescize

in 1932 (3], who applied the idea to the synchronous reception of radio

signals. After a rather slow beginning, phase-lock loops have steadily

grown in importance and today are some of the most widely used nonlinear

devices in this world of linear engineering.

The past analysis of "classic" phase-lock loops centered on the

optimization of the given PLL structure for a class of communications

problems. An excellent history of these efforts is contained in Ho's

dissertation [18], while Klapper and Frankle include a good, brief

history in their more accessible book [24]. As a general introduction

to PLL's, Viterbi's excellent book [41] is recommended.

In recent years a number of investigators have used estimation

theory to attack the phase-lock loop problem. Motivated in part by the

growing use of PLL's in noncommunications areas (eg. motor speed control),

researchers have been interested in improving upon PLL performance in

the high-noise regions not usually encountered in communications.

Mallinckrodt, et. al. (29] were perhaps the first of these researchers.

In 1970 they obtained some numerical results for the optimal nonlinear

filter for a Browian motion phase process transmitted over a channel with

additive Gaussian measurement noise. Their results provide a useful

benchmark for evaluating sub-optimal filters, but the incredible com-

plexity of their filter poses no threat to the simple PLL now available

as an integrated circuit.
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Subsequent work by Mallinckrodt, et. al. and their students [8,

10, 12, 16] has centered on extending the numerical results to a second-

order PLL problem and improving the computational speed of their point-

mass density approximation. Independent of their numerical studies, how-

ever, they [29] proposed a suboptimal filter - the "static phase" filter -

for the first-order problem that turns out to be one of the filters that

we derive from density approximations. This will be discussed in Chapter

5. Mallinckrodt, et. al. also first pointed out that the phase-lock

loop can be considered an extended Kalman filter, although it was not

designed as such. We demonstrate this in section 1.4.2.

In an attempt to obtain more useful sub-optimal filters, Gustafson

and Speyer [15] developed a linear filter that minimized the error

variance in the measurement space. This work resulted in a filter, a

substitute for the first-order PLL, that works quite well at all signal-

to-noise ratios. Moreover, upon closer examination, it turns out that

this linear minimum-variance filter is a type of "static phase" filter

and that it converges to the optimal filter as the process noise strength

goes to zero. We also discuss this in Chapter 5.

In [44], Willsky used the technique of assumed density filtering

to truncate the infinitely-coupled set of differential equations for the

Fourier coefficients of the conditional desnity in the first-order prob-

lem. His analysis resulted in a filter that slightly out performed that

of Gustafson and Speyer, but with a sizeable increase in complexity.

Recently, Tam and Moore (39] have applied the Gaussian-sum technique

of Sorenson and Alspach [2, 36] to produce a collection of filters that
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that converges to the optimal as the number of filters increases. Their

results have also been quite good, although their higher-order filters

become very complex, with occasional ad-hoc re-initialization required.

Thus, some of the biggest guns of nonlinear estimation theory have

been brought to bear on the PLL problem. They have shown that carefully-

designed sub-optimal filters can offer improved performance over classic

PLL's. However, no general method has been developed for examining and

analytically approximating the conditional density. In this thesis we

describe a method for approximating the conditional density that is

fundamentally different from the numerical approximations of [11] and the

Gaussian sum approximation of [2, 36]. We then apply this method to the

design of sub-optimal filters for the first- and second-order PLL problems.

1.3 General Nonlinear Problem

1.3.1 Problem Statement

The central problem that we consider involves a Gaussian phase pro-

cess e(t) transmitted over a noisy channel and received as z(t)

z(t) = A sin(w t + e(t)) + A(t) (1.1)
c

where A is a known amplitude, wc is a known carrier frequency, and n(t)

is a white Guassian noise process. Our problem is to estimate e(t) given

measurements i(s) for 0 < s < t.

This model is a very good one for a wide variety of communications

problems. A Guassian phase process is a suitable representation for a

number of modulation techniques and information processes, and the
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additive channel noise is an excellent model for most radio receivers.

It should be noted that we consider the Gaussian message spectrum to re-

fer to the process we are trying to estimate rather than "oscillator

jitter" or some other noise that corrups the process we are trying to

estimate. The message (0) will be modelled as filtered white noise, with

the filter chosen to provide the desired spectrum. This concept is famil-

iar to control engineers from the Kalman filter problem formulation and

to communications engineers as a shaping filter.

This problem belongs to the general class of problems where a Gaussian

state vector (x) propagates through the differential equation

x = Fx + Ga (1.2)

where ti(t) is a zero-mean white Guassian noise process with covariance

E[a(t)* (T )] = Q6(t-T) (1.3)

where 6 is the Dirac delta function, and e is positive semidefinite.

Several comments about notation are in order. We do not distinguish

between vectors and scalars, in general. We also have suppressed the

time dependence of all of our functions, except where necessary. Thus

x = x(t) = xt

where the subscript notation will be used whenever there is no danger

of confusion with vector components. We have also called "a" white noise,

in place of the (perhaps) more familiar "u". Our notation will facilitate

later conversion to an Ito calculus framework.
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Thus, we will also write equation (1.2) as

dx = Fx dt + G du

where

E(du du ] = Q dt

(1.4)

(1.5)

and u is a Brownian motion process.

We assume that the initial density for x is Gaussian with mean x0

and covariance P0 , which we denote by

x 0 ~ N(x0 O

Then the mean (Cx) and covariance (S) of x propagate through the equations

x = Fx

$ = FS + SF + GQG

We also assume that there is a measurement ( ) of x available:

i = h(x) + A

(1.6)

(1.7)

(1.8)

where h is a vector-valued function of x, and A is a zero-mean, white

Gaussian noise process with

E T
E(~~) C z)J R6 (t-T)

where R is positive definite.

(1.9)
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We also write

dz = h(x)dt + dn (1.10)

Finally, we assume that x0 , ut and nt are independent for all t.

Given all of these conditions, our problem is to estimate xt given

all of the measurements up to time t.

Thus, we want

p(x,tIzt0

where

zt = {z ; 0 < s < t}
0 s - -

This problem is quite straightforward: a finite number of parameters

totally specify the system and measurement. Only the solution is diffi-

cult.

If the measurement were linear in x, that is, if h(x) = Cx, we

would have a linear filtering problem and the solution would be given

by the Kalman Filter (see, e.g., Bryson and Ho [6])

t^p(x,tlzt) = N(x, P)

where

x = Fx + PC R (z-Cx) (1.11)

T T T-l
P = FP + PF + GQG - PC R CP (1.12)

Since h is not a linear function of x, however, things get more

complicated. The conditional density is not Gaussian, and no standard
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method exists for finding even a finite number of sufficient statistics

with which to create the conditional density.

1.3.2 Extended Kalman Filter

One standard way to obtain an approximate answer is to create a

Kalman Filter linearized about the current best estimate of the state x.

That is, define

H = (1.13)

xx

and use the filter

T T T-
P = FP + PF + GQG - PH R HP (1.15)

This is the so-called "extended Kalman filter" for this problem. It

is particularly relevant to us because it happens that phase-lock loops

are extended Kalman filters, as we demonstrate later in this chapter.

There is also a marked similarity between extended Kalman filters and a

linearized (realizable) version of the "MAP" estimator of Van Trees

(40, sec. 2.4] for general nonlinear filtering problems.

One often-mentioned "drawback" to extended Kalman filters is that

the gains (P) depend on the data (i) through H, a function of x. Thus

P is not precomputable, as it is for the regular Kalman filter. Actually,

in nonlinear problems the gains must depend on the data, and if there is

a drawback to this filter, it is that the dependence is through x rather
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than ( -h()), as would be the case for the real covariance equation

(see [19]). Extended Kalman filters occasionally "diverge" (the error

(x-x) increases) because the gains depend on ^ and not ( -h(*)). Gains

which are inappropriate for the real state make the filter respond in-

correctly to the data, causing the error to increase and the gains to

become even worse.

1.3.3 Threshold and Acquisition Problems

There are two primary causes of divergence. The first we will call

the "threshold phenomenon", after experience with nonlinear filters in

communications. If the noise strengths are low, the filter may work

quite well, since the feedback nature of the design will tend to keep

the error small and the linearization valid. As the noise gets stronger,

however, the performance may abruptly degrade when the filter can no

longer reinforce its own linearization assumption. The "threshold" is

that value of the noise at which the performance suddenly degrades.

The second area of poor performance is during "acquisition." Even

though the filter would work if the error became small (the noise is

weak enough to justify the linearization), the filter may not be able

to reduce a large initial error by itself.

When extended Kalman filters don't work well, what can be done?

For the PLL acquisition problem, we propose (in the next chapter) a

method of improving acquisition performance without sacrificing the noise-

filtering properties of the loop. We believe that this technique offers

significant advantages over the external acquisition aids that are

usually used.
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For the threshold problem, we propose a filtering technique that

avoids the linearization usually used to make the problem tractable. Our

method approximates the exact answer for our problem, rather than devel-

oping an exact answer for an "approximate" problem. In Chapter 3, we

develop the exact answer that we will need - Bucy's Representation

Theorem.

In Chapter 4, we derive our approximation method. In Chapter 5,

we investigate the 1st order PLL problem, comparing results from our

method with those of other researchers. Chapter 6 discusses the 2nd

order PLL problem, and Chapter 7 contains a summary and conclusion.

We begin by describing the specific phase-lock loop problem which

will dominate our investigation. We examine the classic PLL, demonstrate

that it is an extended Kalman Filter, and show that for the 1st order

loop one has to change the filter structure to improve performance.

1.4 General PLL Problem

1.4.1 Introduction

The general phase-lock loop problem we consider involves a Gaussian

state vector xt as in equation (1.2). The received signal is assumed to

be

= A sin(o t + 0 ) + A' (1.16)
c t

where t' is a scalar, A is a known amplitude, wc is a known carrier fre-

quency, 0t is the first component of the vector xt, and A' is a zero

mean white Gaussian noise process of two-sided spectral height "gr."
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Since A is known, we may assume "without loss of generality" that

A = 1. (If A / 1, we may obtain a measurement equivalent to ' by divid-

2
ing by A, thus rescaling the noise strength by 1/A .)

We now need to define carefully what we mean by "white Gaussian

noise." Specifically, we assume that the spectral density of A' is flat,

of height r, from W o -W to W + w (where L < w ) and negligible outside
c c c

that region. Then we can decompose A' (see Viterbi [41] Chapter II or

Van Trees [40] Chapter 2) into

n' = n cos W t + n sin w t (1.17)
1 c 2 c

where A and A2 are independent, zero mean white Gaussian noise processes

of strength "2r" (that is, a flat spectral density of height 2r from

-w to w). Then we may form i1 and i2 by multiplying ("heterodyning")

i' by 2 cos W t and 2 sin w t (respectively) and then low-pass filtering
c c

(to remove the "2 w " terms)
c

ty sin 6b(: = C:: + c: (1.18)
i2 Os 8 2

We refer to the vectors i and A as the baseband signal and noise re-

spectively

and (1.19), (1.20)

2 2
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Also, for some function 2, we may heterodyne by 2 cos(w ct +

and 2 sin(w t + 0) to obtain z and 1 respectively*, where

i: sin (0-)

+ (1.21)
Cos -) (Q

where

n = C cos59-fl sine (1.22)
I 1 2

A = A sin + n cosO (1.23)
Q 1 2

If 0 is "slower" than white noise, that is, at least one integration

removed from (e.g., 0 = f(i) but not = f(i)), then (see again Viterbi

[41] or Van Trees [40]) n and A may be considered zero mean white

Gaussian processes independent of each other and 0, with 2 sided spectral

height "2r." We will use these relations throughout this work.

It is worth stressing that the baseband measurements (1.18) fit

neatly into our formula for the general nonlinear problem (1.8) , with

sin 0
h(x ) = (, 0= (x )

\cos0/

We now want to restrict our phase processes to those realizable

with a voltage-controlled oscillator (VCO). This is a device whose

*The I and Q subscripts refer to "In phase" and "Quadrature", and will
assume more meaing in later chapters.
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output is a sinusoid at an instantaneous frequency proportional to the

input voltage. The output frequency for no input is called the "quiescent"

frequency, which we will assume to be equal to the carrier frequency. The

main reason for our constraint is to allow "optimal" phase-lock loops to

be constructed for our signals. It is, moreover, a very reasonable re-

striction, since most transmitters involve a VCO.

For the phase process 6, where xt is an n-vector, we have

6 = (xt 1 (1.24)

= Fx + G;1 (1.25)

From the VCO restriction F must have zeros in the first column:

0 -B-

F= (1.26)
.F'

O

where B is a l x (n-1) row vector and F' is an (n-l) x (n-1) matrix. Thus,

no function of 0 is fed back to the higher-order derivatives (since 0

is not availble at the VCO output, only sin( t + 0) or cos(w t + 0)).
c c

We remark that this model allows frequency modulation (FM) signal

forms, where

x = (-) and =-
xu

with

6 = W = (x)2 = (x) 1
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Then

= F'x' + G'' (1.27)

Given the measurement (1.18) and signal (1.25), we now construct

a PLL for our problem. Examining the in-phase measurement , we note

that if

then

sin(e-0) = e-e (1.28)

and we may consider the linear problem with "pseudo-measurement"

p = 0 + n (1.29)
p I

Now we take e=O, where 0 is the conditional mean from a Kalman filter

designed for the linear (pseudo) problem. Thus

S= (X) 1 (1.30)

x = Fx + PCT- i-e) (1.31)
2r

T T 1 T
= FP + PF + GQG -- PC CP (1.32)

2r

where

C = (1, 0, ... , 0) (1.33)

In reality, of course,

i - 0 = I = sin(-6) + n (1.34)
PII

We can now implement this filter, because of our restriction on F, in

a classic VCO loop as follows: We first form the gain vector K,

P 1

1 T l P
K =- PC 12 (1.35)

2r 2r.

(Pin
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and partition it into K and K',

K PK = --- = Q (1.36)
2r P 12

K'1'

_j P
ln

We also define

=

x2

x
(n)

Then the PLL (1.30 - 1.32) becomes

0 = Bx' + K z (1.37)
1'I

A - .(1.38)
x'= F'x' + K'z

We construct this filter in figure 1.1.

If the system matrix (F) is not time-dependent and we let the filter

gains (K) go to their steady state values, we can represent the "Linear"

Filter" in Figure 1.1 by the Laplace Transform of its transfer function

(A(s)), arriving at the diagram in Figure 1.2.

Using the low-pass filtering assumptions described above, we may use

the equivalent "Baseband" representation of the PLL, as in Figure 1.3.
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K' fo B
LINEAR FILTER

;E DETECTOR

I+1
I Fz +

LP L . . . _ _ .. . .. .. . . . _ _ .. .

Figure 1.1 Phase-Lock Loop*

We have added the labels "phase detector" and "linear filter" in their
usual places.

sin (w t + 0) + 6'sin(O - ?) +n
c a X A (s)

LP

-2 cos( c t + VC)

Figure 1.2 Laplace Form of PLL with VCO

*The "LP" after the multiplier refers to the low-pass filtering required
to remove the "2w " terms. The double lines in the diagram indicate
vector signals. c
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Figure 1.3 Baseband PLL

We note that the "order" of a PLL is the nurber of integrators in

the linearized model or, for our use, the dimension (n) of x. The order

of A(s) is seen to be (n-1) , with the VCO supplying the final integration.

1.4.2 PLL-Extended Kalman Filter Equivalence

Although it may not be obvious at this point, when the linearized

PLL is constructed as a Kalman filter (as above) , the actual PLL may be

regarded as an extended Kalman filter. This result was first noted in

Mallinckrodt, et. al. [29] and Bucy and Mallinckrodt (10]. It is not

widely recognized, however, so we give a brief demonstration here.

Using the baseband measurement (1.18), we define

^ = hT cos 0, 0, . . . ,.9
H (e) = -- (1-.39)

-sin 6, 0, . .. , 0

with

2r 0
R = (1.40)

(0 2r)
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Then for the extended Kalman filter gain equation (1.15), we need

PHT -HP = P
2r

, 0,

0 ........ 0

(1.41)

Thus the "covariance" equation decouples from the estimate equation, and

in fact the gains become precisely those of the linearized filter (eq. 1.32)

since

T -l 1 T
PH R HP =- PC CP

2r
(1.42)

The estimate equation for this extended Kalman filter is given by

T -l (1.43
= Fx + PH R [-h($)] 43)

cos 0 sin $ - sin e cos e

T -l 1 0
H R h(e) = - (1.44)

= 0

and

Cos

T -l. 1
H R z - 2r

- sin 0 z2

0

0

T .
C z

Thus

but

(1.45)

10
2r.

0
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= Fx1+ PCT (1.46)X X+2rI

P = FP + PF + GQG - PC CP (1.47)
2r

just as in the PLL definitions. Thus, the PLL is an extended Kalman filter

for our broad class of problems (1.26).

One of the most interesting implications of this is that for the 1st-

order PLL problem (which we discuss in the next section), the PLL repre-

sents one of the few cases where the error density of an extended Kalman

filter is known. A second intriguing idea is that well-documented PLL

acquisition and threshold problems may explain extended-Kalman filter

divergence under conditions of poor initial conditions or too much noise.

1.4. 3 Brownian Motion Phase Process

1.4.3.1 First-Order PLL

In this section we wish to investigate the 1st-order PLL in detail.

This filtering problem is one of the most analyzed nonlinear problems and

indeed contains all of the basics with few added complexities. (It is

simple but unsolvable.)

The signal form we assume is a Brownian motion phase process:

= u (1.48)

E[ (t) L(T)] = q 6(t-T) (1.49)

with an initial density:

1
p(6) = - < < . (1.50)
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We also assume that we have the baseband phase measurements (1.18) and

(1.21).

The Kalman filter for the linearized problem has an error variance

that propagates as

P = q - P /2r

so that in steady-state

pot = qr

(1.51)

(1.52)

where the "OV" subscript is somewhat standard, and refers to the linearized

analysis.

The optimal gain is then

K = P ek/2r = g/2r

and the "linear filter" in figure 1.3 is simply

A(s) = K

(1.53)

(1.54)

We note that a PLL with any (positive) gain Ks will specify a linearized

error equation of

6 = -K S - K S + u
s s I

(1.55)

(1.56)

for

e= e-6

The steady-state (linear-predicted) error variance (P) is then given by
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2
P = 2

2K
S

where

2 2
cy = 2rK + q

S

(1.57)

(1.58)

The actual error propagates according to the differential equation

E = -K sin E - K n+ 6i (1.

so that the density for F satisfies the Fokker-Planck equation

P s 2 2-=- [K sin E] +-- -- p (1.'8t 3E s 2 2

In steady-state, this equation can be solved (see Viterbi [41]), for a

modulo-2 error 6, to yield

a cOS E
P (E) = e

27rI (a)
-'r < E < TT

where

2K
a = - (1.62)

2 P

and I (a) is a modified Bessel function (see Appendix A).

The actual error variance may be found from the identity (see, e.g.,

[1], p. 376)

a cos E
e = I (a) + 2 E I (a) cos KE

K=1K
(1.63)

to yield

59)

60)

(1.61)
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2 <x K I (a)
2 I (-1) K

3 J 1-+42 I (a) (1.64)
K=1 K 0

which is tabulated in Van Trees [40].

1.4.3.2 Optimal PLL Gain

In this section we will show that the optimal gain from the linearized

analysis is the overall optimal constant gain for the 1st-order PLL. Thus,

if one wants to improve performance over that of the PLL, the filter struc-

ture must be changed.

We consider the cost function f(E), where C is the phase error and f

is any positive, symmetric (about the origin) function that is monotonically

increasing on the interval [0, ']. In particular, such common cost func-

tions as

f() =2 (1.65)

and

f(c) = 2(1-cos e) (1.66)

are included.* Then, using the error density from equation (1.61), we

have

E[f(E)] = 2 f(-)p(E) de (1.67)

2
*The cosine cost function resembles E for small 6, but is insensitive to
modulo-27 errors. We will encounter it again in the next section and in
Chapter 5.
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we note that

(1.68)P(E)= - a sin E p(E)

so that the density is a strictly decreasing function of e on [0, 7T] for

a > 0.

We first examine the behavior of the center point, p(O), as a varies.

We have:

p (0) =e

27TI1 (ax)

Thus

(1.69)

cx
ap(0) _e a

a 27TrI () I (a) - I (a)
0 1

IOcx

where we have used the Bessel function relations in Appendix A. Now since

Tr cr

cos (e) ea Cos E dE < ea cos E de

0

because

cos (E) < 1

We have that

1 (cx) > 1 (cxI0 1

and therefore

3p(0) > 0
Da

0 < e < 7

(1.70)
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We next examine the behavior of p(E) at the endpoints + W.

fically

-a
3p(±1T) e 

Da 27TI O(a)

--I0 (a) I (c)

0 

<Thus, for a1 > 2 we have

p(C = 0, a 1) > p(E = 0, a 2)

(1.71)

(1.72)

p(E = +7r, a 1 ) < p(E = +tr, a 2 ) (1.73)

We also claim that there is a unique point s c (0, 7r) where

p(E = s, a 1 ) = p(E = s, a 2 ) (1.74)

There is at least one such "s" since the densities are continuous and

relationships 1.72 and 1.73 hold. We may solve for s explicitly as

a1 cos s
e
2iT I a )

a2 cos s
= e

211 IO 2)

so that

s= Cos-1  ln (1 0(a 1)/1 0 (a2

- a1 -a2)
(1.76)

s E (0, T)

The relationship between the densities is shown in figure 1.4, where

we have defined the areas A, B, and C as shown.

Speci-

and

(1.75)
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p(E)

-Ir -s

p(e,a1 )

p(e, a2 )

S 7r

Figure 1.4 Relationship between p(E, a1) and p (E, a 2
for a > a2

The areas are defined positive as

A = 2
0

B = 2

7r

C = 2
S

(1.77)

1T

p(, a 2 )dE + 2 p(E, a)dE

s

(p(, ( ) - p(e, a 2 IdE

[p(E, a2 l O 1 )]dE

(1.78)

(1.79)

and the unit mass in each density implies that

A + B = A + C = 1

so that

(1.80)B = C
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We can now show the monotonicity of E[f(C)] with respect to a.* We

de fine

A = E[f(E) 1all - E[f(6) 1CL2]
(1.81)

'r f
=2 / f() [p(s, a 1 ) - p(, a2) ]d6

for a 1 > O2

Then

A= 2 ff(E) [p(E,

- 2 f f(C)

a1 ) - p(s, a2 )]dE

[p(E, a 2 ) - p(s, a 1 ) ]dE

We see that

2 f

2 f

f(s) [p (s, C1 ) - , ( 2)]de < f(s)B

f(Es) [p (E "a 2 ) - p(E, L1)]dE > f(s)C

because of our restrictions on f (s).

Thus

(1.85)A < f(s) [B-C] = 0

*This approach was suggested by A. Willsky

(1.82)

and

(1.83)

(1.84)
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which means that

at > a 2 =J'E[f(E) al] < E[f(E) Ia2] (1.86)

And since a = 1/P (equation 1.62), where P is the linear-predicted

error variance, we conclude that

P1 < P2 =+E[f(t)P1 ] < E[f(E) P2] (1.87)

Thus, the Ks that minimizes the linear predicted variance (the Kalman

filter gain K with minimum variance P6O,) also minimizes E[f(E)] for the

wide class of cost functions we consider.

1.4.3.3 Cosine Cost Function

We now present a different proof of the monotonicity of the expected

value of the cosine cost function. We include this section, even though

the general case was proven in the last section, because it demonstrates

the type of manipulation of Bessel functions which we will find useful.

These functions arise naturally in phase measurement problems, and we

will encounter them again in later chapters.

We consider the function f(E)

f(E) = 2(1 - cos E) (1.88)

which is periodic (of period 21) and resembles the error-squared criterion

for small values of e. We begin by noting that

[ (o I 
E[f(E)] = 2 1 0 F (a) (1.89)
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where we have used the following relationship from the Bessel function

appendix (A).

I (cx)
E[cos n E] = n (1.90)

0

for
a cos E

p(E) = e

Then we have that

dF

da

I ( ) + I ( a) (I (21 )
0 0 2 1

2
0

(1.91)

Now, using Schwarz's inequality

E[cos E] 2 < E[cos2 E]

with

2 1
E cos E] = - (1 + E[cos 2 E])

2

we have

(Il(cx) 2

I (cx)
- 1 + I2a)_

- ( 02~

which becomes

I (a) + I (cx)I (a) - 2I (a) > 00 0 2 1 -

so that

< 0 (> 0)dot

(1.92)

(1.93)

(1.94)

(1.95)

(1.96)
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Thus, F is a decreasing function of a, and an increasing function

of P(= 1/a), and therefore the gain that minimizes P will also minimize

F.

1.4.3.4 Concluding Remarks

We have shown that the expected value of a cost function is a monotone

function of the linear predicted error variance in a first order phase-

lock loop for a large class of cost functions.

Mallinckrodt, Bucy and Cheng have previously claimed that the actual

error variance is a monotone function of the linear-predicted variance,

but they offered no proof [29], and Van Trees has plotted the densities

for different values of a (his A ) without discussing monotonicity [40).m

1.5 Summary and Synopsis

In this chapter we have defined the general nonlinear filtering

problem of interest to us. We have discussed why the usual "linearized"

filtering techniques fail and where we hope to improve upon their per-

formance. We have also described the "phase-lock loop problem" and exam-

ined some of the interesting features of phase-lock loops.

The second chapter discusses the PLL "acquisition problem" (see

section 1.3.3) in low-noise environments. We develop a "compound" phase-

lock loop which dramatically improves the acquisition performance of a

classic PLL without degrading its noise attenuation properties. This

chapter "stands alone" as the only chapter concerned solely with high-

SNR (signal-to-noise ratio) PLL acquisition and not with the general,

all-SNR, nonlinear filtering problem.
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The third chapter analyzes the "threshold problem" where extended

Kalman filters (or other linearized filters) do not work well. This

chapter discusses the nature of the complete solution to any nonlinear

filtering problem - the conditional density function. We outline a deri-

vation of one representation of this density (Bucy's representation

theorem) which we will approximate in Chapter 4. Chapter 3 closes with

two examples of the problem for which the representation theorem can be

solved completely - the no-process-noise case.

Chapter 4 proposes a new method for approximating the conditional

density function, as expressed in the third chapter, when there is process

noise. This method generates approximate densities which (like the real

density) are functions of the state x, time t, and measurement history

t
zO. The convergence of these approximate densities is discussed, and one

of the approximations (the cumulant expansion) is shown to converge to

the corrent density as the process-noise strength goes to zero (for any

order approximation) and as the number of terms in the approximation be-

comes infinite (for any process-noise strength).

In the fifth chapter we consider the Brownian motion phase process

(first-order PLL problem) introduced in section 1.4.3. The chapter begins

by analyzing sub-optimal filters proposed by recent researchers in the

area and noting "hidden" filter equivalences and high-SNR convergence

properties. Principally, however, this chapter demonstrates the appli-

cation of the approximate-density filtering technique developed in Chapter

4. Several approximate-density filters are designed and compared to the

PLL and the other sub-optimal filters. Computer simulations of several of
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of these filters are described for the high-noise (low SNR) area where

the PLL performance is poor. Finally, a modification of one of the approxi-

mate-density filters is derived and is shown to offer increased performance

with a modest increase in implementation complexity.

Chapter 6 applies the approximation method of Chapter 4 to the design

of sub-optimal filters for three phase-measurement problems usually solved

by second-order PLL's. The filters are shown to resemble the (infinite-

dimensional) optimal filter when the process noise strength is zero. Im-

plementation and approximation techniques are suggested for the filter,

and simplifications are discussed for cases which require only phase or

frequency estimation.

The last chapter (7) summarizes the unique contributions of the thesis

and suggests several areas for future research. A number of appendices

are also included for reference. In addition to the appendices containing

computational details, Appendix A discusses some interesting properties

of Bessel functions and Appendix C summarizes useful results in Ito

(stochastic) calculus.
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CHAPTER 2

ACQUISITION IMPROVEMENT FOR PLL'S IN HIGH-SNR APPLICATIONS

2.1 Introduction

The design of classic phase-lock loops for high signal-to-noise ratio

(SNR) regions is often frustrating because the procedure used to reduce

the steady-state error covariance also degrades the acquisition performance.

In general, the "noise bandwidth" of the loop [41], that bandwidth related

to the measurement noise that passes through to the phase estimate, is

proportional to the acquisition bandwidth. Wideband loops tend to acquire

better and pass more noise, narrowband loops tend to filter better but

take longer to acquire, or in some cases, acquire only a narrower range

of frequencies.

Classic PLL's often are designed, therefore, by compromising ac-

quisition and filtering performance. When the frequency uncertainty is

large enough so that a PLL that could acquire the signal would pass an

intolerable amount of noise, however, no single PLL can do the job, and

various acquisition aids must be employed. One method is to slew the VCO

with a voltage ramp until "phase-lock" (no cycle-skipping) is detected.

A second method is to change the bandwidth of the loop by changing loop

components. When the frequency uncertainty is quite large, it is reason-

able to use a bank of frequency detectors operating in parallel to esti-

mate the carrier frequency, then slew the VCO to the estimated value.

If the frequency ever shifts, however (e.g. if the receiving or

transmitting stations ever change velocities causing a doppler frequency
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shift), these schemes require "loss of lock" detection, the energizing

of the external acquisition aid or the switching of loop components, and

the subsequent lock detection and de-energizing of the acquisition system.

This takes time and makes the receiver quite complex.

We have investigated the possibility of using one wideband PLL as

the phase-detector for a narrowband PLL, so that the acquisition band-

width of the wideband loop can be combined with the filtering properties

of the narrowband PLL. This technique, which we describe in this chapter,

offers a significant advantage over other acquisition schemes for high

SNR applications. The improved acquisition performance is always avail-

able, without component switching or time delay, and without degrading

the noise attenuation properties of the narrow-band loop.

2.2 Compound PLL

2.2.1 General Description

The simplest implementation of our idea involves a modification to

the linear filter (A(s)) of the classic PLL (Figure 1.3), and a consequent

reassignment of variable locations (the phase estimate is not fed back

alone). The particular design philosophy, however, resulted from an

attempt to improve the phase-detector section of the classic PLL and ex-

tend the linear operating region to phase errors of more than 7 radians.

We thus may explain our concept by describing a "compound" PLL, where

an inner broadband phase-lock loop is used as an extended-range phase-

detector for an outer, narrow-band loop. If the initial frequency offset
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is within the capture range of the inner loop, it will track the signal

fed to it (the outer loop phase error) over a nearly unlimited range of

phase errors. Then the whole combination will operate linearly, even

though the frequency offset may be too great for initial acquisition by

the narrow-band loop alone (with a sinusoidal phase detector). Figure

2.1 demonstrates one realization of a compound PLL.

2cos (ct -olF t+

e = 0 - 6 = "phase error"

e = sin (w IFt+e)

e2 = sin (e-E)

Fig. 2.1 Compound Phase-Lock Loop

We have made two low-pass filtering assumptions here. The signal

out of the first phase detector is really
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e + sin (2w ct - w IFt + e + 6)

We assume that we can low-pass-filter this signal to remove the high fre-

quency term (or we can design the inner loop to respond only to the lower

frequency component e ).

The signal out of the second phase detector is really

e2 + sin (2w IFt + E +

We assume that this signal also may be low-pass-filtered to remove the

2w term. (The need to remove this e + term is the reason that W.fIF i

cannot be zero.) If these assumptions are justified, we may proceed to

the baseband model of Figure 2.2.

Fig. 2.2 Baseband Compound PLL

The basic idea behind this approach is to use a broadband filter

F (s) to quickly acquire and estimate C. By integrating the output (e)

of this loop we obtain an estimate of E that is linear over a wide range
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of phase errors, requiring only that the inner loop remain in lock. The

outer loop then performs the desired filtering of Z, as in the classic

PLL where g = sin E. Our construction here requires that the integrator

after the inner loop perfectly match the inner VCO integrator. We will

later describe an implementation that bypasses this unrealizable constraint.

The advantage of the compound loop approach is that the acquisition

properties of a broadband loop can be combined with the noise attenuation

properties of a narrow-band PLL.

2.2.2 Simple Implementation

An easier implementation of these ideas exists. Looking again at

the baseband compound loop (Figure 2.2), we see that the two feedback

integrators (for E and 0) may be replaced by one acting on the sum E

plus 0. This single integrator and sine nonlinearity may be realized by

a single PLL, as shown in Figures 2.3 and 2.4.

Fig. 2.3 Baseband Compound PLL
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We see that the feedback path and estimate location are quite different

from those of a classic PLL. We remark that one may be tempted to use

6, as an estimate of the error in 6, to improve the phase estimate 6.

Since 6 comes from the wideband loop gain F. (s) , however, E will in fact

be much noisier than 6 and should not be used to "improve" it. The

signal 6 should be used only to improve the acquisition and tracking of

the loop, not the phase estimate.

F Fe(s)/s

sin (ct + 0) X sin (e -') Fi (s)

LP

VCO
2 cos (Ockt + + +

Fig. 2.4 Compound PLL

We prefer to use the augmented feedback realization of Figure 2.3

in analyzing the compound loop, since it may be compared to similar clas-

sical loops with different signal paths.

However, we will propose a third filter structure (Figure 2.9) for

actually constructing our design. This final implementation replaces the

inner-loop VCO with sine and cosine modulators and an integrator to pro-

vide an accurate E as the output of the inner loop. The early imple-

mentations, especially that of Figure 2.4 may be practical for digital



-47-

communication or finite-time estimation, where drift due to integrator

offsets is small.

2.3 Brownian Motion Phase Example

2.3.1 Problem Statement

For a demonstration of our ideas, we consider the Brownian Motion

phase process of section 1.4.3 and consider the design of a classic

first-order PLL (as in section 1.4.3.1). When the carrier frequency is

known and the noise strengths q and r are small, the PLL becomes the

optimal filter, since the problem reduces to a linear, Gaussian one.

2.3.2 Acquisition Range for First-Order PLL

In all practical situations, however, wc is not known perfectly,

and the PLL must first "acquire" the signal before the linear model

becomes valid. We may examine the noise-free acquisition performance

of a first-order loop by considering the error equations for

6 = Awt (2.1)

where Aw is the error in our knowledge of c . The loop is shown in Fig.

2.5.

+sin( )

Fig. 2.5 Acquisition Model
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The equation for E becomes

= AW - K sin (6) (2.2)

If IAWI<K, then an equilibrium points exists where C = 0, and the loop

will "lock". If IAwt>K however, the loop cannot acquire the input signal.

2.3.3 Second Order PLL

2.3.3.1 Design

PLL designers often use a second order loop because of its improved

acquisition performance. The block diagram for such a loop is shown

in Figure 2.6, where F(s) = K(l + a/s).

Fig. 2.6 Baseband Second Order PLL

The noise-free error equation for this loop is:

* + d
E: + K -d + a) sin C=0

2.3.3.2 Acquisition Performance

This equation has not been solved, but Viterbi [41] shows that

the (noise-free) acquisition range is infinite. Viterbi also develops

(2.3)
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an approximate formula for acquisition time (time until cycle-skipping

stops) that is reasonable for low-noise environments:

1 Aow 2
t - - -sin AG) (2.4)

a K

where

tL = acquisition time (sec.)

AO = initial phase error (rad.)

Aw = initial frequency error (rad/sec)

As a -+ 0, the formula is accurate only for AWI>K; for |AWj<K in

the first order loop, acquisition is immediate.

As Viterbi points out, although the frequency acquisition range is

infinite, the acquisition time (proportional to (Aw) 2) may be prohibitively

large. Furthermore, if the integration is imperfect (i.e. if a is really

a ), the acquisition range is finite.
s + E'

2. 3. 3. 3 Noise Performance

We may examine the linear error equations of this second order

system (with noise) to determine the penalty imposed by the added in-

tegrator (for a Brownian motion phase process) . We let

E

x = ) (2.5)

then

[ -l 1 -K (2.6)
= a o0 o 1 a K n '.6
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The steady-state phase error variance (see appendix B.1) becomes:

P = r(a+K) + q/2K (2.7)

This equation may be minimized with respect to K by choosing

KO = -9- (2.8)
2r

which is the same gain as for the classic first order loop. We see also

that the optimal "a" is 0 (which would produce a first order loop), and

that P increases linearly with "a" ("a" must be non-negative for a stable

loop).

2.3.4 Compound PLL for Brownian Motion Phase Process

2.3.4.1 Design

We design the compound loop for this problem as follows. We choose

a first order loop for the inner loop for convenience (F (s) = K 1).

The outer loop is designed as an optimum linear filter for the phase

process described and is thus also a first order loop. Recalling Figure

2.4, we may show the complete loop as in Figure 2.7 (where the single

VCO input is not 0 alone).

2.3.4.2 Acquisition Performance

We can associate this loop with the classic second order loop to

determine its acquisition performance. The time until e. stops skipping

cycles is given by

t -- (AW - sin AO) 2  (2.9)L K K (2 1
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6 +

O+e

Figure 2.7 Compound PLL for Brownian Motion Phase Process

from equation 2.4. Since K1 >> K2 by design, as K2 -+ 0, this equation

is valid only for IAl '> K1 . For jAwl < K1 , acquisition is instantaneous.

As will be shown, the ability to relate acquisition performance to e.

(and not E) is quite beneficial. We remark that tL for the compound loop

will refer to time until "linear operation," or frequency-lock. There

will be a small additional delay while phase-lock is achieved by the inner

loop, responding as a linear filter to the phase input. In regular PLL's,

phase- and frequency-lock are nearly simultaneous for low-noise cases.

2.3.4.3 Noise Attenuation

We next examine the phase error variance of the compound loop. The

linear equations are

forx[J - 6 1 OU

x= x + (2.10)
K -K 10 K 1
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From appendix B.2 we find the steady state variance to be

P =--- + rK + - (2.11)o 2K2  2 2K

We see that P is minimized for

o q *
K = J--=K (2.12)
2 ~2r

a

K, = o (2.13)

Thus, K1 is optimum when it is as large as possible. Here, the acquisition

time is decreased by the same action that decreases the error variance.

The classic loop has the opposite characteristics: the acquisition time

can only be decreased by increasing the error variance.

2.3.4.4 Limitations

There are practical reasons, however, for not letting K1 get too

large. The noise threshold (TI) of a PLL is that value of phase error

variance (P in the classic loop) at which the effects of the noise

noticeably degrade performance over the predicted linear operation. Often,

2n is chosen as 0.25 rad2. The important parameter in determining linear

operation, however, is the variance of the signal fed to the sine non-

linearity - E in the classic loop but ei in the compound case. We can

find the linear predicted error variance of e. by associating the compound

loop variables with their classic counterparts in equation 2.7. We then

have, in steady state:
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Pe. = rK + + rK (2.14)
ei l 2K 1 2

We note that the K that minimizes P . is

K' = /'= K (2.15)
12r

O

Thus, if P, with K = K and "a" near zero in equation 2.7, is close to

fl, then P will be also, even with K, = K', and no acquisition improve-

ment is possible.

If the minimum phase error variance is much less than the threshold

0

constraint (P << 71), however, then we may choose a K1 >> K that still

results in P < Tl (our criterion for linear performance). There exists
e.

:1

a maximum K that still results in P < T1, where K is chosen to minimize
1 e. - 2

0 1

P (i.e., K2 = K ). We can find this maximum K1 from the larger root of:

K2 + (K - ) K +-q = 0 (2.16)
1 2 r 1 2r

(which is a restatement of equation 2.14 with P = r .

As P + 0, P + rK , and K approaches:
8e. 1 1lmax

K T 1

1 r
max

Thus, we see that fl forms a ceiling for P and therefore for K . This
e.1

1

means that the noise parameters of the problem (how far P is below fl)

impose a limit to the improvement that may be realized by using a conpound

loop.
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2.3.5 Performance Comparison

2.3.5.1 Summary of Equations

We summarize the pertinent equations in Table 2.1 for AG = 0 (in

the acquisition equations).

Table 2.1 Second Order Filter Performance for
Brownian Motion Phase Process

Classical Loop (2nd Order)

Acquisition Time

Phase error variance
and Sine Noise Level

Compound Loop

Acquisition Time

Phase error variance

Sine Noise Level

Minimum Error Variance

1 Aw 2
t - (--)

L a K

P =r(a+K) + q18A2K

t ~ - (-)
L K K

2 1

P =rK + 0 +
0 2K 2K1

P =rZK + + rK
e. 1 2K

P =

2.3.5.2 Graph Explanation

In order to appreciate the improvement possible with the compound-

loop technique, we plot the normalized acquisition time (without noise)
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versus the steady-state phase error variance (with noise) in Figure 2.8

for two values of P .

O

For the classic loop, we first pick K=K to minimize P and then

vary a/K. We see that the "improvement" in tL is quite slow beyond

a/K = 1/2, but that the penalty in phase error variance at this point

is only 1 db. This value for a/K also represents a damping ratio of

0.7, and is used quite frequently in practice.
O

Next, using a/K = 1/2, we increase K above K to see a much "faster"

improvement in tL versus P 0 .
2

For the compound loop, we choose fl = 0.1 rad . as our linearity

constraint, to be somewhat more conservative than the .25 mentioned

0

earlier. We use K2 = K for minimum P, and then select K as large

as possible such that P e< T. This results in a very low tL for a

negligible increase in P above P . This is the furthest left point
oO

on the compound-loop curve. We also increased K2 above K and plotted

t versus the resulting P, but the improvement is slow, and P i > fl

for this section of the curve. This technique is not recommended in

general.

The normalization of tL /(Aw) by (l/2r) 3, if seemingly arbitrary,

is done only to avoid the necessity of plotting different curves for

different noise strengths. We regret the loss of physical "feel" that

inevitably accompanies such normalization. We note that the asymptotes

(for large P0 ) for the compound-loop curve and the classic-loop, constant

a/K curve are the same for the two values of P shown. Thus, a rough

estimate of the improvement possible for any P may be quickly obtained.
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2.3.5.3 Results

The results are very impressive for these low-noise cases

-3 2
(P < 10 rad .) . Considering the minimum-P points on the compound-

82--5
loop curves, we see that for P = 10- 5, the compound loop achieves a

factor of 109 improvement in acquisition time over a classic loop of equal

P0, and a 28db improvement in P over a classic loop of equal tL. At

-3 5
P = 10 , the improvement margins are 10 and 15 db respectively.

One further improvement in the compound loop that is now shown

on the graphs is the frequency range of "instantaneous acquisition"

(no cycle-skipping). As P k - 0, we may choose K1 >>K2 , and the tracking

dynamics of the compound loop become those of a first order loop. Thus,

for |Awj<Kl, acquisition is essentially instantaneous. For the classic

second order loop with a<<K, or for the first order loop (with a=0),

the range is |Awl<K. Since K MK2 (for similar noise filtering), and

K1 >>K 2, the compound loop's quick acquisition range is much larger than

that of the classic loop.

Thus, for a Brownian motion phase process and for low values of

P e, the second-order compound PLL offers clear advantages in acquisition

time and range over classic loops with similar output phase error vari-

ance.

2.4 General Technique

2.4.1 Generalization to Higher Order

The generalization of this technique to higher-order phase pro-

cesses is straightforward (see Figure 2.4). We would, in general, advocate
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a first order "inner loop" (F (s) = K ) for simplicity, and an outer

loop designed as an optimal linear filter for the phase process. K1

would then be made as large as possible such that the variance at the

sine nonlinearity would be below some acceptable constraint level.

This would result in a loop of order "n+l" for an "nth" order

problem, but this seems a small price to pay for the increased performance.

2.4.2 Alternate Implementation

We now construct another implementation of the compound loop that

avoids the "perfect integrator" assumption. By using a normal integrator

and sine and cosine modulators we can duplicate the function of the inner

loop without using an extra integrator to obtain '. In this manner we

have access to the e that is fed back in the inner loop, removing the error

caused by two different integrators (one realized by a VCO) producing two

"e's". This design is shown in Figure 2.9 and may be compared to Figure

2.1. We have used a first-order inner loop (F (s) = K ) for simplicity.

The strengths of the noises shown are as follows:

E(A (t)A (T)) = E{A (t)A (T)} = 2r 6(t-T) (2.17)

EA 3(t)A 3(T)} = 2r 6 (t-T) (2.18)

The strength of A3 coincides with that used for the compound loop analysis

in earlier sections of this chapter.

The signal "sin(s-e) " follows from the identity

sin (x-y) = (sinx)cosy - (cosx)siny (2.19)
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Figure 2.9 Alternate Compound Phase-Lock Loop

This allows us to avoid using an intermediate frequency, and also per-

mits the subtraction of sinusoids to be carried out at baseband. We note

that the sine and cosine modulators also operate at baseband.

2.4.3 VCO Replacement

The elimination of the inner-loop VCO is quite beneficial, and

we are led to wonder if the outer-loop VCO may be similarly replaced.

It does not seem advantageous at this time, for the following reasons.

The VCO is used to transform the signal "e" into the signal "2 cos(o t +
c

0)." We could add 0 to W c, integrate the sum and then pass it through a

cosine modulator, but this has two drawbacks. First, the integrator output is
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growing with time, and second, the cosine modulation must occur at w
c

The signal 2cos(o t + 6) also could be obtained from the identity
c

2cos(w t + 6) = 2 cos W t cos 0 - 2sin ) t sin 0
C c c

where sin 0 and cos 8 come from modulators and sin w t and cos w t from
c c

a VCO operating on W . The principal drawback here is that the subtraction
c

must be performed at carrier frequency which, like carrier-frequency mod-

ulation (eg. sin(w t + 6)) , calls for more expensive components and more
c

critical adjustments then similar operations at baseband.

We therefore conclude that it is impractical to replace the outer-

loop VCO at this time. We may, however, replace the inner-loop VCO be-

cause we are operating on a baseband signal of finite range - the outer-

loop phase error (6).

2.4.4 Mlore Inner Loops

The reader may wonder why, if one inner loop is so valuable, we

don't add another, "inner-" inner loop to our designs. The reason is

that it wouldn't help. Without noise, one inner loop could have "infinite"

bandwidth, and no improvement in acquisition performance would be necessary

(or possible) . With noise, however, we are limited in the amount that

we can open up the bandwidth of the inner loop. If we open the bandwidth

up to our linearity constant, there will be no room for improvement by

any inner-inner loop. Thus, one inner loop provides as much acquisition

improvement as possible, with the least complexity.
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2.5 Conclusion

2.5.1 Summary

We have shown that the acquisition performance of classic phase-

lock loops may be greatly improved in low noise environments. The im-

provement may be achieved without penalizing the noise-attenuation pro-

perties of the PLL, and the amount of improvement increases as the mini-

mum phase-error variance decreases.

2.5.2 Remarks

The name "compound PLL" was chosen for our original implementation

concept of placing one PLL inside of another. This follows the term-

inology of Klapper and Frankle [24 ch8] who describe various combinations

of FM detectors, FM feedback systems and PLL's inside of FM feedback

loops (FMFB). These cascaded filters are distinguished from "multiple"

loops which incorporate parallel internal filters. The section of com-

pound loops does not, however, mention a PLL inside of a PLL.

Biswas and Banerjee [5] do consider such a design, but they augment

the inner VCO by "injecting" the beat signal (at w IF). They mention, in

passing, a "double phase-locked loop (DPLL)" that does not have this

feature, but in their use the filters F. (s) and F (s) are designed dif-

ferently. In particular, they make no attempt to obtain a wider-bandwidth

phase-error estimate .
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CHAPTER 3

THE REPRESENTATION THEOREM

3.1 Introduction

In this chapter we begin an investigation of the full nonlinear

filtering problem discussed in Chapter 1. We are specifically interested

in the threshold problem - the breakdown of filters based upon linearized

analysis in regions of high noise. We will attempt to obtain workable

approximations to the exact answer (the conditional density function)

instead of exact solutions to the approximate problem. We will postpone

the approximation stage of design from the problem to the solution.

What would be an optimal nonlinear filter? The conditional proba-

bility density function represents the complete solution to our problem.

This density would allow one to compute both an estimate that minimized

the expected value of any chosen cost function and the value of that

minimum cost.

In the linear filtering problem, the conditional density is Gaussian,

and we can determine the complete density by computing the conditional

mean and covariance as functions of the measurement history, time, and

the original density of the state. The Kalman filter does precisely that.

In nonlinear problems, however, the differential equation for the

conditional mean depends on the conditional covariance, the covariance

depends on the third moment, etc. [19]. The moment equations become

an infinite chain and must be approximated. (The Kalman filter obeys

the same equations, but the zero value of the third central moment of a
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Gaussian density "breaks" the chain.)

But we want the conditional density, and the moments are only one

way to express it. For problems "on the circle", where the state variable

is a phase angle between -Ir and IT, the density is a periodic function,

and the Fourier coefficients become a more useful set of statistics than

the moments. Unfortunately, the differential equations for these vari-

abiles are also infinitely coupled for the nonlinear measurement of in-

terest in the PLL problem (see section 5.3.1).

There are expressions for the conditional density itself, however.

The moment equations can be obtained from "Kushner's equation" [19],

a partial differential equation (for the conditional density) that is simi-

lar to a Fokker Planck equation with a data-dependent forcing term. This

equation is usually too complex to solve.

Kushner's equation can, in turn, be derived from another representa-

tion of the conditional density, an integral Bayes' rule type of formula.

It is this expression that we will approximate.

3.2 Bucy's Representation Theorem

3.2.1 Motivation

We begin by deriving the basic formula, sometimes called "Bucy's

Representation Theorem", which was first stated in 1965 by Bucy [7]

and proven by Mortensen [32] (see Kailath [22] for a discussion of the

development of the theorem). Our derivation will generally follow

Wong [45], with a slightly different emphasis and notation.

The principal result of this chapter, the representation theorem,

is not original, but we have two reasons for including it. First, this
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form of the conditional density is seldom noted by engineers, in part

because of the difficulty in stating the theorem without recourse to

measure-theoretic notions. We intend to offer a derivation of the theorem

(and an explanation of the relevant mathematical concepts) that is straight-

forward and easy to understand.

Secondly, in our approximation method, we will use some mathematical

operations that may seem strange to someone unfamiliar with the repre-

sentation theorem, but otherwise interested in phase-lock loops. By

deriving the theorem in this chapter and carefully defining the opera-

tions involved, we hope to make the justification for our approximation

method (in the next chapter) more understandable.

We begin our derivation by introducing some notation and reformula-

ting the problem. In general we follow Wong [45], with the most ob-

vious difference being the interchange of x and z to conform to this

author's conventions.

3.2.2 Notation

Let us consider a probability space (Q, A, P) where Q is a (non-

empty) set of elements w, A is a G-algebra of subsets (A) of Q, and

P is a probability measure. We define a (real) random variable as a

measurable mapping of (Q,A) into (R,R) where R is the real line and R

is the Borel a-algebra. If P is another probability measure on (M, A),

we say that P is absolutely continuous, or differentiable, with respect

to P (PO << P) if P(A) = 0 implies that P (A) = 0 for all A in A. P

and P are singular (Pp ) if there exists an A such that P(A) = 0 and
00
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P (Q-A) = 0. We call P and P equivalent (P = P ) if P << P and

P0 << P.

If P is differentiable with respect to PO, then the Radon-Nikodym

theorem [45, p. 210] provides that there exists a unique A-measurement

function A such that

P(A) = JA()P 0 (do) (3.1)

A

and we write

A = - (3.2)
dP0

This A is called the Radon-Nikodym derivative of P with respect to P .

The converse of the theorem (see Rudin [34], p. 23) allows us to define

a measure P by specifying A and P0.

If Q = R, A = R, and P .is absolutely continuous with respect to

the Lebesgue measure, then there exists a non-negative Borel function

p(x), x E R, such that

P(A) = fp(x)dx for A c R (3.3)

A

and p(x) is called a probability density function.

We may write

dP (
-p (3.4)
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This leads to an alternate notation for A. If P and P are both abso-

luately continuous with respect to the Lebesgue measure, then

A = (3.5)

PO

and A is called a likelihood ratio. This terminology derives from the

use of density ratios in detection theory. Currently, however, the term

"likelihood ratio" is used for many Radon-Nikodym derivatives that are

unrelated to detection problems.

We denote the expectation of a random variable x by

Ex = fx(W)P(do) (3.6)

We call IA and indicator function for A if

IA(W) = 1 for W E A

= 0 for w % A

3.2.3 Conditional Expectation

If 8 is a sub-0--algebra of A (BCA) , then we denote the conditional

expectation of x with respect to B by

E Bx or E(xIB)

and define it by the relations

a) E x is measurable with respect to B (3.7a)

b) EIA (E x) = EIAx )V A E B ( 3. 7b)
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Now we wish to show that the restriction of A to B is the conditional

expectation (given B) of A, i.e.,

dPB E B d (3
0 dP

dPO 0

or

A B E A (3
0

This follows from equation (3.7, b.) since

E I x = E I (E x)
0OA 0QA 0

AEB

.8)

.9)

(3.10)

(3.11)

(3.12)

then for all A in B

P(A) = E i A = E I (E A)
0 A 0OA 0

and by definition, since P << P
0

PB(A) = E I A A

since

PB(A) = P(A) A E B

Equations 3.11 and 3.12 imply that

B B
E IAA = E0I (EBA) A E B

0 A 0 A 0

or simply that

A = EB A
0

(3.13)

(3.14)

(3.15)
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which is just equation 3.9.

We next want to demonstrate a very valuable result for conditional

expectations and Radon-Nikodym derivatives:

E E Ax
E0

E x = (3.16)
E BA

0

For A £ B, we have by definition (and equation 3.7 b.) that

8
EI x = El AAx = El E BAx (3.17)

A 0 A OA0

and also

EI x = EI E x =E I A (E x) (3.18)
A A 0 A

So that equation 3.17 and 3.18 imply that

B B B
E I E Ax = E I A (E x) A e B (3.19)

0 A 0 A

or simply

EB Ax = AB E Bx (3.20)
0

which, with equation 3.9, is equivalent to equation 3.16.

Equations 3.9 and 3.16 will be most useful in what follows.

3.2.4 Stochastic Processes

We now introduce some notation for stochastic processes. We let

t
x be a stochastic process, and sometimes write x0 for {x 0<s<t}. We

also distinguish between the a-algebras A and A(xt) by defining
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A = the smallest a-algebra with respect to which x is

measurable

A(x t) = the smallest a-algebra with respect to which xt
is measurable

In this chapter, we will be concerned with the time interval [0, 1],

and we will denote A by A . If A and 8 are two a-algebras of subsets

of Q, we refer to the smallest a-algebra containing both A and B as

AvB.

3.2.5 Representation Theorem

3.2.5.1 Problem Statement

We now are ready to consider a general nonlinear filtering problem

with additive Gaussian measurement noise. We consider two vector-valued

(nxl) stochastic processes x and v on a probability space (Q, A, P) .

t t t.
We assume that, under P, x and v are independent, x0 is a Markov pro-

0 00

cess, the components of v are independent standard Brownian motions, and

(xt t) x dt < oo (with probability 1) (3.21)

0

We also define the process

t

z = f x ds + v (3.22)

Here we are dealing with a non-Guassian xt, but later we will re-

formulate our results to conform to our earlier notation, where we have

a nonlinear transformation h of a Gaussian xt. We may consider xt the

signal, vt the measurement noise, and zt the measurement. The assumptions
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are those usually satisfied in filtering problems. The integral con-

straint on Xct orresponds to a finite-energy requirement, and cannot

be dispensed with, while the independence of the components of ut can

usually be relaxed.

We define the a-algebra A by
t

A A v A
t st zt

and we let A = A be the algebra of the probability space (0, A, 1).

We will want the expectation of some function of xt conditioned on all

of the measurements up until time t. Thus we want to evaluate

A
tzt

E [f (x) z I = E tf(x
t 0 t

As a first step, we construct a new measure P0 by defining the Radon-

t t
Nikodym derivative dP /dP. Under this Po' xO and z will be independent,

00 0

and z will be a standard Brownian motion. This is a consequence of

Girsanov's theorem (see Wong [45] page 228), and is quite important

in what follows.

3.2.5.2 P Construction

We define P on (Q, A) by constructing the Radon Nikodym derivative:

dP0  1 1

= exp {- X dvt - xtdt} (3.23)

0 0

where the first integral is an Ito integral whose existence is guaranteed

by constraint 3.21 (see McKean [31]). We claim that P has the following

properties
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- P is a probability measure

- under P , z has independent Brownian motions for components
0' 0

tt- under PO, x and z are independent
0 0

- The restriction of P to A is the same as the restriction of
P to A .

x

The proof of these claims is detailed in Wong (45, proposition 5.1,
A A

p. 232]. The last point should be stressed: P x = P x. Thus the density

for xt (assuming one exists) is the same under P or P0 . We will make

use of this in our approximation method.

To complete Wong's proposition 5.1, we further claim that

- P << P0

1 1

- A = = exp { xtdz t -t xxdt}

0

In equation 3.24 the first integral is an Ito integral (under P ).

see that P and P are equivalent measures, and thus we can, using A

or A , obtain P from P0 and vice versa, or more importantly:

E[f(x t)] = E0 [Af(x t

We now define

A
At =E 0 t A

(3.24)

We

(3.25)

and, as Wong shows

t t

A = exp {Ix dz x xxds)t s s 2 s s
0

(3.26)
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where the difference between At and A is only in the upper limit of the

integrals. We see that equations 3.25 and 3.9 imply that

AA A
A = = At (3.27)

dP t
0

3.2.5.3 Conditional-Density Representation

We are now ready to provide an "answer" to our filtering problem.

Using equations 3.27 and 3.16 we may write

A
Azt E0z t t

E f(xAt A (3.28)

E At
0 t

since A zt <At'

We want to rewrite equation 3.28 in such a way that we may infer

the conditional density from it. To do this, we note that, from equation

3.7 b.

A A A v A(xt)
E (A t f(x)) = E 0[E0zt t f(x t) (3.29)

which, since f(x t) is measurable with respect to Azt v A(xt) , becomes

A A A vA(x )zt zt zt t
E0 (A t)) = E0 [f(xt)E A t (3.30)

For future reference, we identify

B = Azt v A(xt) (3.31)

and
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Ut( , z ) = E A (3.32)
t 0Ct

where At is given by equation 3.26.

We now note that for any random variable y that is A(xt )-measurable

A A
E zty = fy dP zt (3.33)

n
But since P is restricted to Azt (and using R for Euclidian n-space),

A A
E0zt Jy zt (dxt) (3.34)

n
R

which becomes

EAzt= fy P(dxt) (3.35)
0 ~n

R
A A

t xt xt
since xt is independent of z under P0 , and P 0 Pt. Now if P is

absolutely continuous with respect to the Lebesgue measure, xt has a

density denoted by

=P p(x,t)

and

A
zt

E 'y = y p(x,t)dx (3.36)

0 n
R

Thus, equation 3.28 may be rewritten

A~ f (xt)U (xt,z t) p(x,t)dx
zt n

E f(x) = R (3.37)

U (xtfz ) p(x,t)dx
Rt t
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The usual expression for the conditional expectation would be

E Ztf(x ) = f(x)(x,t zt)dx (3.38)
t n0

R

Thus, by comparing equations 3.37 and 3.38, we may infer that the con-

ditional density is

t
t t (xt, zO) p(x,t)

p (x, tizt0 0 3 9
0 f U (xt z) p(x,t)dx

R

where Ut is given by equation 3.32.

We note that since p(x,t) is the a priori density for xt, equation

3.39 is a type of Bayes' rule, providing the ratio between the conditional

and a priori densities for xt . In this context, At (equation 3.26) is

t t
a type of "density" for the process zO conditioned on the process x0 '

t t
The expectation in U is over x conditioned on x and with z fixed.

t 0 t 0

Jazwinski [19] provides an intuitive argument along these lines.

3.2.6 Properties of the Conditional Density

3.2.6.1 Denominator

We want to examine some of the properties of this representation

of the conditional density (equation 3.39). The denominator in the

expression is

W t E zt t E BAtp (x,t)dx (3.40)
t 0 t

n

First, we note that
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dA = A x dz , A (3.41)
t t t t 0

or
t

A = + A x dz (3.42)
t s s s

0

Thust
A

Wh = 1 + E zt A xTdz (3.43)
t 0 s s Ss

0

Now, we want to bring the expectation inside the Ito integral above.

Mortensen [32] first developed a "Fubini" theorem for Ito integrals, and

Marcus [30] proves a Fubini theorem for conditional expectations. A

combination of these results allows us to write

t A T
W = 1 + Et (Ax)dz (3.44)

0

Since A x is A -measurable, and since zt is independent of A
s s S S s

[see Wong [45], p. 300], we have

t A
=1+ f Es T)dz (3.45)

0

Now since A C A , equation 3.16 implies that
zs S

A A. A
zs T = s zsT
E0 A x (E 0 sA)(E x) (3.46)

0 s s 0 s s

By defining

A
x =E x (3.47)

S S

we see that



-76-

t

W s+ W x dz (3.48)
t f s s s

which is solved by

t t

W = e { RTdz - - J 'x ds} (3.49)
t s s 2 0 s s

0

Unfortunately, this representation of the denominator is not help-

ful in trying to estimate t. The expression (3.49) finds its greatest

use in detection theory, where it provides the hint of using the best

estimate of an unknown signal (in the "unknown signal" problem) in

precisely the same place in the likelihood-ratio as the known signal

(in the "known signal" problem), as shown by Kailath [20].

It is an interesting result for filtering also, and we have

included it for two reasons. The first is that the type of manipulation

performed in order to bring the expectation inside the integral in

equation 3.44 is the same as that needed to use our approximation method.

The second reason for including this derivation is that it demon-

strates that the denominator produces an Xs term, which appears in

Kushner's equation for the conditional density [191. This makes Kushner's

equation a partial integro-differential equation with a stochastic driv-

ing term. We will shortly discuss a less complex partial differential

equation (first derived by Mortensen [321), which describes the propa-

gation of the numerator of the density.

3.2.6.2 Nonlinear-Measurement Formulation

Before that, however, we wish to return to the notation of Chapter

1, and formulate the equivalent of equation 3.39. We assume that
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dx = Fx dt + G du (3.50)

dz = h(x)dt + dn (3.51)

We also require that

t

T Rh )(x R 1h(x )ds < co (3.52)

with probability 1 for all finine t. Then the conditional density for

xt is (see Jazwinski [19]).

8
(E A ) p(x,t)

p(X,tIz ) = (3.53)

E zt
0 t

where

=Azt v A(xt) (3.54)

and t t

At = exp { (xs)R dz 1 h T(xs)Rlh(x )ds} (3.55)
ep sh - s 2 s

0 0

We note that the conditioning in B is on the state xt and not the

measurement h(xt ).

In the expressions for the conditional density (equations 3.39

and 3.53), the only term that we need to compute from the data is Ut'

Ut (xt z t) = A (3.56)
tt 00 t

Since we know the a priori density for xt from the dynamics (3.50), and

since the denominator Wt (in 3.57)
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W= U (x, zt) p(x, t)dx (3.57)
t ft 0

Ru

can be computed from knowledge of Ut and p(x,t), U t represents the "new

information" in the measurements. It is Ut which changes the shape of

p(x, tlz0 t) away from that of p(x,t). It is U t, therefore, that we will

approximate in the next chapter. Before then, we want to consider the

possibility of exact solutions for the conditional density. To do this,

we first examine differential forms for p(x,tj z) and Ut. p(x,t)

3.2.6.3 Differential Density Forms

The integral expressions 3.39 and 3.53 appear to offer little hope

of exact solution. Even in the linear, Gaussian case, when the Ito

integral
t

x Tdz
s s

0

is Gaussian under P , the second guadratic term in the exponent of
0

A t'
t

1 fTd-1 x Tx ds
2 s s

0

is unknown.

Since many control engineers prefer differential forms for filters,

one is motivated to exanime differential forms for the conditional den-

sity in the hope that they will appear easier to solve. Kushner's equa-

tion is such a form [19]

_^ T -l1dp = L(p)dt + (h th t) R (dzt-h tdt)p (3.58)



-79-

where

ht = h(xt
t t

P = p(x,tIz0)

and A
fit = E tht

Here, L(p) is the Fokker-Planck operator associated with the dynamics

(eq. 3.50); that is, the a priori density for xt satisfies

3p (x, t)
'd~lt = L(p(x,t)) (3.59)

Along with the general difficulties of solving a "forced" Fokker-Planck

equation, Kushner's equation contains Rt terms which are integrals

over the density p(x,tjzt). It is fortunate, but not widely recognized,

that these Rt terms come from the normalizing denominator Wt, and that

Kushner's equation can be simplified.

If we define

It t
V(x,tI z) = Utt' z0) p(x,t) (3.60)

then
t

V(xt; zO
zt 0 (.1p(x,t zO W (3.61)

where

Wt f V(x,t; zt)dx (3.62)
n R0

Mortensen [32] showed that (see also Wong [45])
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T -l
dv = L(V)dt + Vht R dz (3.63)

This equation (3.63) is somewhat easier to analyze than (3.58), but

clearly no general solution is available. We note that equation 3.48

implies that

dW =W R dz (3.64)
t

Using equations 3.63 and 3.64, we may take the Ito derivative of the

ratio V/W to obtain (see Jazwinski [19), p. 115)

V T -l 1 V T -l
d(-) = - h R dz + - L (V) dt -- R dz
W W W W t t

(3.65)
V T -l V T -1

- - h R R dt + -1 RR A dt
W t t W t t

Since P = V/W and since W is not a function of x and may be taken inside

of L( ), equation 3.65 reduces to

dp = L(p)dt + (h -f tTR' (dz t-9 tdt) (3.66)

which is equation 3.58.

Thus Mortensen's equation is consistent with that of Kushner,

while being somewhat easier to analyze. The only general nonlinear case

where a solution is available, however, is when the process noise strength

(Q) goes to zero. We consider this next.

3. 3 No Process Noise

3. 3.1 Line ar-Measurement Problem

Bucy and Joseph [9, p.51] first pointed out that when the process

driving noise went to zero and the state at time "s" became a measurable
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function of the state at time "t", the representation theorem provided

an explicit formula for the conditional density. This result will be

used to show that our approximation method converges as the process

noise strength goes to zero. In this section we wish to demonstrate the

phenomenon for two simple problems.

We recall that (from equation 3.32)

A v A(x )t zt t
Utt, zO) E0 A (3.67)

Now if h(x ) is a measurable function of xt, then At is a measurable

function of Azt v A(x t), and

t
Ut (xt, zO 0 t (3.68)

To demonstrate this result, we consider the scalar linear system

dx = 0

dz = x dt + dn (3.69)

p(x 0) ~ N(0, Q)

Then from equation 3.68 and 3.55,

t tp(x,t)
p(x,tIz0) o (3.70)

Atp(x,t)dx

where
t t

At = exp { x dz x2dT (3.71)

0 0
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so that 2

p(x,tlzt ) = 1 /2P
0 2nP,

where

P
t

x =
t R

Jdz

Pt = QR
tR + tQ

By taking derivatives of St and Pt we arrive at the more familiar re-

lationships:

P
( - )(

t R t t

and

-tP = -
t R

Equations 3.75 and 3.76 are the Kalman Filter equations for this problem.

3.3.2 Phase-Measurement Problem

A second example, of more interest to us, concerns the system

de = 0

sin 6

dz =
Cos 6

from Chapter I, wi

p (6) = 1
2 7

dt + (al)

(dn2/

th

-7T<0 <r

We have, from 3.68 and 3.55, that

p(O,tlzt) = 2Tr t
0 1 Td

2 Tr f Ata
_-Tr

(3.72)

(3.73)

3.74)

3.75)

3.76)

(3.77)

(3.78)

(3.79)

(
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where

t

At =exp{- (sin 0 dz1 + cos e dz2t2rJf 2
0

t

- f (sin 2e + cos 26)dT}

0

At texpx sin e +y cos -L t}
t = 4r

t

xt dz2

0
t

yt = d
0

p(e,tI z )

p(6,t z )
0

x sin 0 + y cos6

TrIO t
e

27r1 0  , t + Y )
at cos (6-s
e
2Tr1 (act

a / 2 + y2t t t 
(3.85)

St /tan t/yt

This result was first noted by Kailath (21], who derived it from the

likelihood ratio for the detection problem. Mallinckrodt, et. al. [291

(3.80)

where

(3.81)

(3.82)

Thus

(3.83)

where

(3.84)
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later rederived it, although without reference to the Representation

Theorem.

This density form is the same as that of the 1st-order PLL error

density (equation 1.61), and seems somewhat "natural" for this problem.

(See also J. T.-H. Lo's recent paper [28].) The densities, however,

represent two very different results. The PLL error density comes from

a steady-state analysis of the error in a chosen filter structure - the

PLL. The density above (equation 3.84), however, is the data-dependent

conditional density of the state, when there is no process noise, and

may be used to obtain the optimal filter structure.

We want to demonstrate that this filter approaches the regular PLL

design for this problem for large t. We note that

t
t +sin dn

t 2r 2rt J 1
0

where the mean of the second term is zero and its variance is

1--- 0
2rt

as t - o. Thus

X + sinG

t 2r

and similarly

yt 4 cos 
t 2r
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as t + C, so that

5 + 0 (3.86)

a-+ t/2r (3.87)

We next need to obtain the differential equations for at and St'

Taking the Ito derivatives of a and S as functions of xt and yt we have

1 1 i dz1da = dt + (--'T t (3.88)
4ra 2r Cos dz 2

l _= _ cosS Tdz 1

2ra -sin S dz2
(

But letting S = 9 in the "in-phase" and "quadrature" baseband signals

(equation 1.21), we have

da = dt + - dz (3.90)
4ra 2r Q

dS = 1 dz (3.91)
2ra I

We recognize that this is just a phase-lock loop with a data dependent

t
gain K(z '

0

t 1
K(z ) = __ (3.92)

0 2ra

ttand for large time t,

K(z ) + 1/t (3.93)
0

It is interesting to examine a PLL design for this problem. Given

that q=0, we have that
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2
P = - P2/2r with P (0) = 00 (3.94)

or

P = 2r/t (3.95)

so that

K = P = 1 (3.96)
2r t

Thus, the optimal filter approaches the classic PLL for large t,

but out.performs the PLL for small t by using a data-dependent, rather

than just time-programmed, gain. This is to be expected in nonlinear

filters, since the nonlinear measurements provide some information

about the value of a given measurement history that linear measurements

do not.

We now want to examine the differential equation for the Fourier

coefficients of the conditional density. We consider the expansion

00

p(61zt) = [l + 2  (a sin ne + bn cos ne)] (3.97)

n=1

Using Kushner's equation (3.58) with L(p) = 0 and

s in nG\ 1
E I n ( n) (3.98)

cos nO/ b

we have

a dz - a, dt

d =T-H (3.99)
n dz 2- b dt
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where

b - b a + a
ni ~l- a a n1 - a b
2 1 n 2 n 1

H = (3.100)
n

an+1 - an-1 -a b bn-1 + n+1 - b b
___1_ nni n1l-b
2 2

For our density, moreover, we know that

an n(a) sin n (3.101)
b 0cos n

as functions of a and , satisfy equation 3.99. This will prove useful

in computing sub-optimal filters when q y 0.

3.4 Summary

In this chapter we have laid the ground work for the rest of this

thesis. We have derived an expression for the conditional density that

we will approximate in the next chapter. We have used this expression

to solve the phase-lock loop problem for a constant-phase system and

have shown how the optimal filter differs from a phase-lock loop. Let

us now proceed with the general approximation method.
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CHAPTER 4

APPROXIMATION METHOD

4.1 General Approach

4.1.1 Introduction

In this chapter we will develop an approximation to the conditional

density function (equation 3.53) which we will later use to develop sub-

optimal filters for the phase-tracking problem. The approximation method

is quite general, however, and may be used in other nonlinear filtering

problems with additive Gaussian measurement noise. We will therefore

retain the general problem format in this chapter.

We recall that (equation 3.53)

t
t Ut (xt, z) p(x,t)

p(x,t IzO) W 410 Wt

where

W = f ut x1z t) p(x,t)dx (4.2)

R

8 t
Ut E e (4.3)

B = Azt v A(xt) (4.4)

zt Tl l tT1

= hT R dz -- h R h ds (4.5)
t Of s s 2 0 s s

h = h(x ) (4.6)
S S

We remark that p(x,t) is the (known) a priori density for xt, and that

Wt is a normalization parameter which is independent of xt. Intuitively,
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we see that if we develop an approximation Ut to Ut and compute a nor-

malization Wt from Ut and p(x,t), then the approximate density

U p(x,t)
p(x,ttz ) = t (47)

Wt

should converge to the real density as Ut -+ U . We will discuss con-

vergence more thoroughly in the next section.

The approximations that we will propose for Ut are motivated by

the fact that Ut (equation 4.3) is an expectation of an exponential of a

random variable ( t). Thus Ut is a "moment generating function" [23]

for the conditional density

While this density for t is, in general, nearly impossible to find, any

given moment of Ct is straight-forward (if tedious) to compute analytically

t
as a function of the transition density for xt and the measurements zO'

Our technique will involve approximating the moment generating

function with finite sums of moments, or exponentials of finite sums of

cumulants, of C . (We stress that these are not the moments and cumulants
t

of xt conditioned on zO, but rather the moments and cumulants of t

t
conditioned on xt and zO under the P measure.) We then approximate

Xt 0 0

the conditional density for xt by dividing our approximate numerator

by the normalization from the integral of the approximate numerator.

4.1.2 Convergence of Density Approximations

Before describing our approximation method, we want to discuss

density approximations, and convergence, in general. The numerical
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density approximation of Bucy and Senne [1 results in approximate den-

sity values at a finite number of points (x ) in the state space for a

t
given sample path z 0. Our method, however, like the Gaussian sum approach

of [2] and [36], will develop a continuous function of x at time t for

t
a given sample path zO. Thus, like the actual condtional density, our

approximations will be functions of x, t, and, through zO, a sample point

(w) in the probability space.

t
We will approximate Ut(x t, z ) in equation 4.3 by a series of functions

tt 0

Utn which will converge pointwise in x, t, and w. We will then construct

an approximate numerator

V = U p(x, t) (4.8)
n tn

and denominator

W = f V (x,t,o)dx (4.9)
n JK

R

which will define the approximate density

V (x,t,w)
p (x,t,w) = n (4.10)

n W (t,&)
n

For one of our approximation methods, we also will be able to de-

monstrate pointwise (in t and w) convergence of the denominator W . This,

along with the numerator convergence, may be shown to imply pointwise

convergence of pn in equation 4.10. (See Rudin [33], page 43, where the
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convergence of the ratio of two convergent sequences* follows from

Theorem 3.3 c. and d.).

Unfortunately, we have been unable to prove the uniform (in x) con-

vergence of our numerator or density approximations, in part because of

the infinite domain (Rn) for x. Our approximate densities, however, like

the exact density, are differentiable (in x and t) and therefore con-

tinuous, and, since we do not expect to encounter pathological cases,

2 n
stronger convergence (e.g. L in R for x) may in fact be provable. The

well-behaved nature of the (Gaussian) a priori density p(x,t) also may

help in demonstrating stronger results.

The pointwise convergence in o implies (see Wong [45] p. 20 or

Egoroff's theorem in Rudin [34) p. 72) convergence in probability (P or P ).

We have, in general, been unable to demonstrate stronger convergence

(e.g. quadratic mean) in o for the numerator or density approximations,

although it too may be provable. In section 4.3 we discuss bounding

techniques for the numerator errors that may lead, in specific problems,

to more useful results.

Before discussing the specific approximation technique for our con-

ditional moment generating function Ut (equation 4.3), we want to examine

the properties of "regular" moment generating functions. We depart

slightly from our problem formulation, and introduce a new random vari-

able (y), to avoid confusion with the rest of this chapter.

*The convergence only holds for the denominator not equal to zero. In our
case, wn > 0 for n sufficiently large, and the convergence will hold.
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4.1.3 Moment Generating Functions

In this section we describe some of the properties of moment gen-

erating functions, moments, and cumulants which we will find useful.

We assume that we have a random variable (y) with finite moments, that

is

E [yn < (4.11)

for all n < o. Then the moment generating function $ (u) is a well-defined

convex function of u [231 given by

$(u) = E[euyJ (4.12)

We also define the the log-moment generating function l(u) by

$(u) = ln $(u) (4.13)

$p(u) is a convex function of u, since

2 2
= $'' = W (4.14)

2 2

and

{E[yeuyj} 2 < E[y2 euy] E[eUY] (4.15)

or

( )2 < ' (4.16)

by the Schwarz inequality. Thus $' > 0 and $ is convex.

From the definition of $(u) (equation 4.12) we see that the nth

moment of y may be computed from
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E[n [ dn4 u) (4.1

du u=0

Then #(u) may be written as a Taylor (or Maclaurin) series [1, p. 880]

n
in u about the point u=0, where the coefficient of (u /n') is the n th

moment of y.

2

4(u) = #(o) + $ u + V' U + (4.1

U=-0 1U- u=

<x> n
unu
n'

n=0

with

y = E[yn (4.19)

y10 = 1 (4.20)

If we define the partial sum

N n

# (u) = 
n u

N (u)!
n=0

then the remainder (V) is given by

N+1 N+1 Vy
u N+1 v

= 4 #n (N+)e

for some V with

(4.21)

(4.22)

0 < v < u

7)

8)

(4.23)
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We may also consider a Taylor series for the log-moment generating

function $(u). We write

Co n
X u

$(u) = (4.24)

n=l

where

= n ln E[eUY] (4.25)
n dun du u=0

The X 's are called the cumulants, or the semi-invariants, of y [23 and
n

38], and $ is sometimes called the "cumulant generating function." The

cumulants have the important property of being invariant under a change

of origin, except for the first cumulant, the mean. The n th cumulant

can be expressed in terms of the first n moments by

X, = y 1 (4.26)

2 2
X 2 1 = PP (4.27)

3
3 P 3-p 2 1 + 2p3 (4.28)

3 2 2 4

k= pg - 4y3 1 - 3p 2 + 1 2y2 1 - 6p 4 (4.29)4 4 31112 2 2V 2=1 4131 (.9

The formulae for the higher-order cumulants become quite tedious. Kendall

and Stuart [23] tabulate them up to 10'

We see that is the mean of y, X2 is the variance (C)2 3 is

4
the 3rd central moment, and X4 is the 4th central moment minus 30. For

a Gaussian density, all of the cumulants after the second are zero. The
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cumulants for an arbitrary density thus represent a measure of the "non-

Gaussianness" of the density. In this respect, X3 becomes an un-normalized

coefficient of skewness, and 4 becomes an un-normalized coefficient of

Kurtosis [23].

Since equation 4.24 is a Taylor series, we may form the partial

s um $

N n
A Xu

n, (4.30)
'N n.

n=1

and the remainder P

N+1 [N+l1
u d i(u) (4.31)

IM N (N+l) d N+1[du

for some v with

0 < v < u (4.32)

4.2 Approximation Method

4.2.1 General Design

t
We now propose a general method for approximating Ut xt, zo). We

recall from equation 4.5 that

c= J Rl dz - h ds (4.5)
t Oj s s 2 s s

Then t is a random variable, since it is At measurable. Furthermore,

by the constraint (equation 3.52) needed to guarantee the existence
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(finiteness) of the Ito integral

h TR 1dz

SSCf

we have that

E [G ] < 00 (4.33)
0at

Therefore we may construct the conditional moment generating function

B B Bu~t
# (u) E eu.

Then

U (xt, z ) = B (1) (4-35)

or

8
U (x I zt) = () (4.36)
t t 0

for the conditional cumulant generating function $ (u).

We can now approximate Ut by the partial sums of the moment and

cumulant generating functions. In other words, we form

N B n

(u) = (4.37)

n=0

where

yP = E [n] (4.38)

or
N B n

B n u
$N(u) =7 nn (4.39)

n=0
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B
where we form the conditional X 's from the relations 4.26 to 4.29.n

B B
The pointwise (in u) convergence of #NB (and $N) is guaranteed by

N N

equation 4.33, and we are only interested in the point u=1. Since we

can approximate Ut (xt, z ) and since we know p(x,t), we can form an

approximation for p(x,tlzt) as in equation 4.7 that will converge (point-

wise in x,t, and W) to the correct density as N + oo.

We want to stress again that yn is not a moment of the conditional
n-

density p(x,tIzt), but rather a (conditional) moment of the log of the

Radon-Nikodym derivative

A A
dP t/dP t

0

which will be useful in approximating the conditional density.

To demonstrate how the approximate densities can be computed, we

B
examine the moments y . While in general

n

E8 Ct
E0 e0

is impossible to find, each of the moments ypn is a straightforward, but

t
tedious, functional (of xt and z ) to compute. For example, in

0

B A tV A(xt) tTl- t Tl(.0
= Ez v -th R dz - h R h ds] (4.40)

1 0 0 s s 2 0 s s

the second term may be written

Az v A(x ) t _ t A(xt) T -i
E t - f hT R h ds] = - ~- f [h ThR h Ids (4.41)

0 2 f s s 2 ofE0 s s
0

because the integrand is only a function of x s, and xs is independent of
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zt under P0. (Strictly speaking, we also need a modified Fubini theorem
0 0

for conditional expectations as discussed by Marcus [30 1, but this follows
A A

from our definition 3.7 b.) Also, since P x = 0 X (as discussed in

Section 3.2.5.2), we have that

A (xt) A (xt)
E [f(x )] = E [f(x )] (4.42)

0 s s

for any function (f) of the state xs

The first term in equation 4.40 may be written as

A v A(x ) tt A(x )
E zt t [ h R dz ] = E -t [h ] ldz (4.43)0t rfthTR dz f [ R d

0 0

by the same justification as in equations 3.44 and 4.41. Thus

t A (x )t A(x ) (4-44)
t -1 1 E t T( -l

y E [h(x )] R dz - - E [h ( )R h(x )]ds
1= s s 20.ss

We note that the expectations are over xs conditioned on xt for 0<s<t.

These expectations therefore are determined by the a priori transition

density for x (specified by the dynamics, equation 3.50), independent

t
of the measurements z0 '

The results of the expectations in equation 4.44 will be functions

B t
of s and x . P will then be a known function of xt and zO; therefore

we can compute density approximations as

B

p (xtjzt) = e p(x,t) (4.45)
f 1 dx
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[1 + y ] p(x,t)
p x il t 1 (4.46)

1 x 0  [1 + y p(x,t)dx

Higher order approximations will involve products of integrals

which must be expressed as iterated integrals before the expectations

can be taken. For instance, p 2 will contain a term of the form

I = E [ h TR 1dz 12 (4.47)
0 f s s

which can be written

8 t t T -l T-1
I = E [ dz R h hTR dz] (4.48)

0 0 s sr r

and finally

= f dzT R E (t [h(x )h (x )] R dz (449)

0 0

so that the expectation may be evaluated as a function of s, r and xt'

Higher order terms become tedious to compute, but the expectations are

always over the known density for xs s x r , etc., conditioned on xt'

Thus, we see that the moments for t conditioned on 1 can be com-

puted even when the moment generating function cannot. The computation

leads to analytical formulae for approximate conditional densities.

We now investigate the relative merits of the different approximations

that are possible.

4.2.2 Possible Approximations

In this section we want to investigate the relative merits of the

possible expansions for Ut. The first expansion that one might consider
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is the partial sum of moments (equation 4.37) evaluated at u=1.

N B

#N(u) = n(4.50)

u= n=0

This series converges for large N, but for small N there is no guarantee

that

$N (1) > 0

even though

$ (1) > 0

by definition. Clearly our approximate density should be positive.

A less obvious drawback to the moment series is that the partial

sum in equation 4.50 does not approach the known correct answer (for

fixed N) as Q -+ 0 (see section 3.3.1). An expansion in terms of functions

of central moments does converge, however, since the central moments

(n > 2) all go to zero as the variance does. We are thus led to consider

the cumulant expansion of equation 4.39.

We propose approximations to Ut of the form

N B

U =exp (4.51)
tN n.n=1

where X is the n'th cumulant. Since the cumulants are functions of
n

the central moments (for n > 2) and since, for Q = 0, any function of

x becomes a measurable function of x , we see that

A = 0 n > 2 (4.52)
n
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BB
whenever Q = 0. We recall that X, = yi, and for Q=0

B B
X = E = 4.3
1 0 t t

Thus

U = U = e (4.54)
tNt

and the cumulant series of a N converges to the correct answer, as

Q +0.

The cumulant approximation is positive by definition (equation

4.51) and converges to Ut as N -+ o. Thus, for small Q, the cumulant

series appears to be a better way to approximate U t than the moment ex-

pansion. For large Q, the situation is less clear.

A third possible expansion may be obtained by noting that

g B Ct E0 B t-E \ t
EB e t = e fEe e t) (4.55)
0

We can thus approximate Ut by

EB N B
O t n

U = eE (4.56)
tN

n=0

where VB is the n th central moment. This expansion, like the cumulant
n

series, converges for any N as Q + 0, as well as converging (for any Q)

as N -+ 0. While it is not clear that U is positive for every N, we

note that
B
E0  t

U =e > 0 (4.57)t0
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E C

U e 0  t > 0 (4-57)

tt

EC

U =e > 0 (4.58)
ti

B B

U =e 0 t [1 + -] > 0 (4.59)
t 2

2

where equation 4.58 follows from V = 0 and where equation 4.59 follows

from the fact that the variance is guaranteed to be positive.

A final, less obvious way to approximate Ut is motivated by a

Hermite polynomial expansion for the Radon-Nikodym derivative At (equa-

tion 3.55). McKean [31 p. 36] demonstrates that

A = e t = H (A, B) (4.60)

n=0

where A is the "intrinsic time" given by

A = T R 1h ds (4.61)
0s s

B is the Ito integral

B = f h R 1dz (4.62)
0

and H is the n'th Hermite polynomial
n

n2 n 2

H (r, s) =exp s (4.63)
n n. 2r/ 3sn 2r
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Thus we may approximate Ut by

N

Ut = E [Hn(A,B)] (4.64)

tN 2n=0

This expansion appears difficult to examine in detail, and we will not

use it in the rest of this work.

We see, then, that there are several ways to approximate U . In

general, we prefer the cumulant method (equation 4.51) because of its

positivity and convergence properties. Because of the complexity of

these approximations, it appears that the most useful terms will be those

of low order, in particular, N=l. We therefore want to examine in detail

the density p(xs xt), for s <t, which we will need for the first moment

and cumulant.

4.2.3 Backward Transition Density

The expectation for the first moment and cumulant approximations is

of the form

A(x)
E t [h(x )] = h(x ) p(x sx )dx (4.65)

s R sst s

where we see that we need the "backward" transition density

p(xs Ixt) for s < t

From Bayes' rule we have
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p(x tx ) p(x, s)

s t p(x,t)
(4.66)

Thus, we can obtain the needed density from knowledge of the usual for-

ward transition density and the a priori state density at times s and t.

If the initial density for xt is

p(x, 0) = N(0, P ) (4.67)

and we have the dynamics of equation (1.2)

x = Fx + Gu (4.68)

then

p(x, t) = N(xt' Pt

where

x = Fx

T T
P = FP + PF + GQG

If we let #(t,s) be the transition matrix for F, that is

t

xt = $(t,s)xs + f #(t,G)Gu(a)da
S

then

x = #(t,s)x
t s

P= #(t,s) P5 # (t,s) + P/

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)
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where

Pt/s = f (t,G)GQG # (ta)da

This means that the forward transition density is

p(xtlx s) = N(#(t,s)xs t/s

and using Bayes' rule (equation 4.66) we have that

p(xs xt) = N(xs/t' /t

where

T -lxs/t s/t # (t,s) P t/sxt

and

-l T -1 -l
Ps/t = # (ts)Pt/#(t,s) + Ps

Using the matrix manipulations familiar from the discrete Kalman filter

(see e.g. , Bryson and Ho [6] p. 357) , we may write

x s T T + P - t
5 5/ (') W ,),s (,S t/sI t

(4.80)

and

T T -
Ps/t =s -s (t,s) [#(t,s)P # (ts) + Pt/s (t,s)ps

which, because of equation 4.74, become

- T -l
xs P s (ts) P1 xt

(4.81)

(4 .82)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)
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and

T -1
P = P - P # (t,s) P1 #(t,s)p

s/t s s t s
(4.83)

In addition, if F is not a function of time and Pt has a steady-state

value

P =P =
t s

then the above equations may be written

(4.84)

T -l
xSt= P4 (t,S) P xt(4

P = P-PT (tS)P-1 (ts)p (4
s/t

These equations simplify still further if xt is a scalar. Then

xs/t = $(t,s)xt (4

.85)

.86)

.87)

and

P = 2 (ts)Pt/
s/t t/s

-l 2(t,s)P + p t/s
P t/SP

Using equation 4.74 we then have

P~ 1 =P -
s/t t/s P

so that

Ps/t t/s

(4.88)

(4.89)

(4.90)
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4.3 Approximation Accuracy

4.3.1 General Considerations

One of the advantages of our approximate density approach to filter-

ing is the availability of an approximate density with which to compute

estimates, minimum costs, and parameter optimization studies. These

computations, however, are only as good as the density approximation

itself, and we are thus led to consider the overall accuracy of the

moment and cumulant truncation methods.

In general, we know that the numerator approximations converge

pointwise in x, t, and W. But we would like to know, quantitatively,

how good the numerator approximations are, and how much improvement

each additional term is likely to bring, especially for the critical

first few terms. It is difficult to say anything quantitative about

this convergence in general, but we will discuss some bounding methods

that may prove useful in individual problems.

4.3.2 Moment Approximations

4.3.2.1 Denominator Convergence

The moment approximation converges, pointwise in x, t, and W, to

the correct moment generating function U t (equation 4.3). Thus, our

approximate numerator VN

N EB K

VN E OK t p(x,t) (4.91)

K=1
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converges to the correct numerator, V. We now demonstrate that the

denominator WN

WN = V dx (4.92)

R

also converges, pointwise in W and t, to the correct denominator. From

equation 3.37, we know that the exact denominator is

Ezt e t (E e t) p(x,t)dx (4.93)

but A
N zt K

I VNdx 0 (4.94)

K=1

Thus,

N zt K
E Ct

WN = Ei 0 K! (4.95)
K=l

converges pointwise in W and t just as the moment sum in the numerator

converges pointwise in x, w, and t. Both numerator and denominator re-

present partial sums in the moment expansion for the moment generating

function. The only difference is that the numerator expectations are

conditioned on the a-algebra

B = Azt v A(xt) (4.96)

while the denominator is conditioned on Azt alone. The pointwise conver-

gence of the numerator and denominator therefore guarantees, as discussed
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in section 4.1.2, the pointwise (in x, t, and w) convergence of the

density approximations for the moment expansion method.

4.3.2.2 Moment-Approximation Bound

Next, we discuss a method for bounding the remainder in the Taylor

series expansion for the-moment generating function. Adapting the re-

mainder in equation 4.22 to the conditional expectations used in our

approximation, we have

1 8 N+1 v (
N (N+l)! E0

for some v such that

0 < v < 1

Now for N even we have

a 1 8 N+2 v(
- R_ (N+ E [C e ]> 0 (4.98)

so that RN is an increasing function of v. Therefore

1 8 N+l (4.99)
R'N -<(N+1)! E0

which may be written (using equation 3.16)

1 8 N+1 8 R < ( E C ] E [e] (4.100)
N-(N+1) !O

Now since E [e I is the actual numerator, we may define a "normalized"
0

remainder as
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REB C 8

s = 0 N (4.10SN =8~ C-
E 0e E 0e
E0 E0

where # is the N'th moment approximation given by equation 4.50. Then
N

s < 1 E BCN+1 (4.10
N- (N+1)!

so that

E s < 1 E N+l (4.10
N- (N+1)!

for N even.

A more useful measure of the overall approximation accuracy may be

2
found from the average value of sN, where

s2 _ 1 l
N (N+1) !

2 [E BN+1 2

L)

2)

3)

(4.104)

(4.105)

Jensen's inequality provides that

[E BN+1 2 < E C2N+2

so that

2 1 2 E 2N+2
N- (N+1)!

(4.106)

for N even. The usefulness of these bounds (equations 4.103 and 4.106)

of course, is determined by the ability to evaluate or bound the expecta-

tion of C for a particular problem. If the expectation can be evaluated
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or bounded by some function of t (independent of x and w), the bound

will represent uniform convergence in x and convergence in mean (for

equation 4.103) or mean square (equation 4.106) for w, in place of the

convergence "in probability" mentioned in section 4.1.2.

4.3.3 Cumulant Bound

The cumulant bound (R in equation 4.31) corresponding to equation

4.97 is, in general, somewhat more difficult to evaluate because of

the difficult formulae relating the higher-order cumulants and moments.

We concentrate, therefore, on the error in the first cumulant approxima-

tion

B

EBe = e 0(4.107)
0

We consider the normalized error

8 C E0
0

A = (4.108)

E0
e

If we define E by

E - (4.109)

then

A B E - 1 (4.110)
0

Now it is possible to write

2 8 (2 (4.11A = (Ee) - 2EBe + 1 (4.111)
0 0

B 25 B (
< E e - 2E e + 1 (4.112)
-0 0
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by Jensen's inequality. Then we have, finally,

E A2 < E [e2 - 2e + 1] (4.113)
0 -0

This bound, like those in equations 4.103 and 4.106, depends on

the ability to compute the expectation on the right. For the 1st order

PLL problem which we discuss in the next chapter, we will demonstrate

how E0 A2 may be bounded in the case where C is bounded.

4.3.4 Statistical Bounds

Because the general bounds of sections 4.3.2 and 4.3.3 are difficult

to evaluate, we now consider a somewhat different approach. We recall

that the numerator Ut is a (conditional) moment generating function for

a random variable (Ct ) with unknown density but with computable moments

and cumulants. It seems reasonable, therefore, to bound the error in a

finite cumulant approximation by that error achieved for a "worst-case"

density for C. Here a "worst-case" density is one in which the higher-

order cumulants have the greatest effect.

Recalling that the cumulants of order greater than two are a measure

of the "non-Gaussianness" of the density (section 4.1.3), we consider the

least "Gaussian" density - the uniform density. Our argument here is not

rigorous. One cannot find a density with the "highest" cumulants, and

clearly the uniform density, being symmetric, will have only even cumulants.

Nonetheless, we feel that by picking auniformdensity of the same vari-

ance as that of the real density we may obtain a conservative estimate

of the approximation error. The uniform density may not be the worst
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"conceivable" case, but it should be the worst "practical" case. We

let

p(y) = for ly < a (4.114)
2ar y

for a random variable y. Then

and

E[e ] = - [e _ e-a)
2a

E[y] = 0

2
E[y2 a 2

3

(4.115)

(4.116)

(4.117)

We now approximate the moment generating function (equation 4.115)

by the second cumulant approximation

(4.118)
E [e] e 2/2

Then we can define a per cent error in this approximation as

PE = E[e. - e . 100

E[ey ]

(4.119)

This equation may be written as a function of a by using equations 4.115

and 4.117

F 2/2

PE()= 1l - 23 G e I 100
35- C - 3~c

. e - e_

(4.120)

which is evaluated in Table 4.1 for a few values of C.
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Table 4.1 Percent Error in Second Cumulant
Approximation for Uniform Density

PE (%)

0.1 .0005

0.2 .008

0.3 .04

0.4 .12

0.5 .30

1.0 4.3

1.414 15.8

2.0 60.4

3.0 418

The error is very small for low a, but increases rapidly beyond

T = 1. We stress that this is the error in a second-order approximation

(cumulant) for the case when the random variable is uniformly distributed.

This is expected to be an upper bound on the approximation error for our

variable C.

This analysis illustrates the type of bound one might get by con-

sidering the statistical nature of the problem. A tighter bound would

be more useful, but having an error indication as a function of the

(observed) variance is, by itself, an interesting result.

4.4 Conclusion

We have developed a general approximation method for the conditional

density function based on Bucy's representation theorem. The recommended

cumulant version of our method produces a positive approximation density

which converges to the correct density as the process noise strength goes
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to zero and as the number of terms in the approximation becomes infinite.

This method, unlike numerical approximation schemes, produces a set of

statistics which are functionals of the current state and past measure-

ments. These statistics are then used to specify completely an actual

density function which, in place of the exact conditional density,

can provide "optimal" estimates and "minimum" costs.*

In the next chapter we apply this method to the design of sub-

optimal filters for the first-order phase-lock loop problem. We show that

the first cumulant approximation produces a filter (first proposed by

Mallinckrodt, et al. [29]) which outperforms the PLL (the extended Kalman

filter) for this problem.

*"Optimal" and "minimal" with respect to the approximate density.



-116-

CHAPTER 5

THE FIRST-ORDER PHASE-LOCK LOOP PROBLEM

5.1 Introduction

5.1.1 Chapter Organization

In this chapter we consider the Brownian motion phase problem first

discussed in section 1.4.3. We begin by examining the results of recent

researchers in this area, first analyzing (unrealizable) optimal filters

and then realizable sub-optimal designs. For some of the sub-optimal

filters, we bring out relationships not noted before, including "hidden"

filter equivalences and high signal-to-noise ratio (SNR) convergence

properties. We then show that the first cumulant approximation (of the

last chapter) leads to a filter, first suggested by Mallinckrodt, et. al.

[29], that outperforms the extended Kalman filter for this problem - the

PLL. We investigate the accuracy of this filter and higher-order approxi-

mations and note the difficulty of obtaining estimates and the generally

slow convergence to the optimum. Finally, we examine a modification of

the first cumulant filter that offers increased performance at a slight

increase in complexity.

5.1.2 Problem Statement

We consider the Brownian motion phase process (0 t) first encountered

in section 1.4.3. We let

dO = du (5.1)

where
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E [du 2 = q dt

We assume that the baspband measurements of equation 1.18

z 1 sin 0 dn 1
d =dt +

(Z2) (Cos e) dn2)

are available, and we sometimes use the notation

dzy 
d1

dz = and dn =

\dz2 2

where the noise strength for n is given by

2 r 0 d t
0 2r

E [dn dnT]

We will also use the quadrature measurements (from equation 1.21)

dz

dzQ)

sin (e-e)

Cos (e-$)/

dn

+d /

for some estimate $. The noise strength for the quadrature baseband noise

is given by

[ n d/n 2r 0
E l2
[\(dnQ ('O( 2 r)d

(5.6)

(5.2)

(5.3)

(5.4)

(5.5)
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t
Our problem is to estimate 6 given z ; more precisely, we wish to find

t 0

the conditional density

p(,tjzt)
0

5.2 The Phase-Lock Loop

The phase-lock loop is commonly used to estimate 6t for this problem.

The loop resulting from the linearized analysis is a first-order PLL as

discussed in section 1.4.3.1. This loop is the extended Kalman filter

for this problem (see section 1.4.2) and, as such, represents a useful

performance benchmark. We will consider three representations for the

first-order PLL.

The first representation is the most common, where the PLL generates

a phase estimate through the equation (see equation 1.54 and Figure 1.3)

d = K dz1  (5.7)

where

K= P evr (5.8)

and

P =2 2rg (5.9)

This P is the linear-predicted phase-error variance and represents a

useful noise parameter for the problem.

The second loop representation comes from the extended Kalman-filter

interpretation of the PLL. Equation 5.7 may be written
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cos0 sin e
dO = K dz- dt (5.10)

-sin cos /

A third representation for the first-order PLL may be found by con-

sidering the "rectangular coordinates"

x sin 6
x = ~I 1(5.11)

x =Co=x2 cos 0/

By taking the Ito derivatives of x and x2 as functions of 0 (in equation

5.10) we obtain

-2
x 1 xy 1X2 _x1 x2

d ( = -(: dt + K 2 dz -j dt (5.12)
2 2 x2) .. 1 2 1 .. I 2)

These three representations all describe the same filter, and will be

useful in what follows.

It is worthwhile to examine the actual performance of this filter.

We recall that the steady-state error density of the PLL is given by

(see equation 1.61)

1
- cos E

p(s) = e (5.13)

27r I0

for

C =0-0 
(.4
(5.14)
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and that the gain K that minimizes P (P k = minimum P) also minimizes

the actual error variance (equation 1.64) and the expected value of the

cosine cost function (sections 1.4.3.2 and 1.4.3.3). In particular, for

the density above (equation 5.13), the (minimum) expected cost is

E[l-cos E] = 1 - /P (5.15)
1I0 (l/P e)

This is a well-behaved function of Pak, going from 0 at P 2, = 0 to 1 at

P a= 0. (The upper bound on this cost function is 1 - the value it

attains for a uniform error density.)

If the phase measurement were linear with the same noise strength,

then the conditional density would be Gaussian, and the modulo-27T error

density would be a "folded-normal" (see (43] or [4])

P = [1 + 2 e cos nE] (5.16)

n=l

The expected (cosine) cost would become

E [l-cos 6) = 1-e-P 2 (5.17)

We plot these two cost functions (equation 5.15 and 5.17) versus P

in figure 5.1. In most communications applications, P is usually much

less than 1, and the actual PLL performance is only slightly worse than the

linear prediction. For very high Pa, however, the PLL outperforms its

linear prediction for the cosine cost function.



1 2 3 4 5

Figure 5.1 PLL Actual and Linear-Predicted Performance vs. P
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This is a somewhat surprising result. For the more usual error-

squared cost function, the actual PLL performance is always worse than

the linear predicted variance (P 0 ), as shown by Galdos [141 (using the

method of Snyder and Rhodes [35]). For the cosine cost function, however,

there is a point at which the PLL, with its nonlinear measurement, per-

forms better than the optimal linear filter with a linear phase measure-

ment. Thus the linear-predicted performance is not a lower bound on

the optimal filter performance for all value of P e, although it remains

a practical lower bound for most reasonable values of P .

5.3 Optimal-Filter Descriptions

5.3.1 Stratonovich

Stratonovich [37] was the first to describe the optimal filer, rather

than the optimal PLL. He examined the (conditional) cosine cost function

t
Efl-cos (0t~ t )z0i (5.18)

and noted that the optimal estimate (6 t) that minimized this function was

given by

= tan~ 1 (a/bl) (5.19)

where a1 and b are the conditional estimates of the sine and cosine, that

is

E Zt (5.20)b( Cos t
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The minimum cost is therefore

1 - a1 + b2
11

He then derived the stochastic differential equations for a1 and b1

as part of the general set of Fourier coefficients for the conditional

density. If we define

00

t 1p(O, ti z0) = - 1 + 2 a sin nO + b cos nO]0 2TE n n
n=1

(5.21)

whe re

(5.22)
an sin nO t

b cos ne 0
n E t -

then

d = -n q dt + 1 H dz - )dtj
b 2 b 2r n b

where

(5.23)

b - b
n-1 n+1

2~~ a 1a n

a -~ a n~

2 1 n

a +a a
n-l n+1 -ab

2 n 1

b + b
n-1 n+1 -b b

2 1 n

H =
n

with

(5.24)
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a0 = 0

b0
bo = 1

We recognize the matrix H from the no-process-noise analysis of section
n

3.3.2. These equations represent an infinite-dimensional optimal filter

for the Brownian motion phase problem and cannot be truncated because

of the coupling of each nth set of coefficients to the (n-l)th and

(n+l)th equations. We are therefore led to consider approximate methods

for computing the conditional density.

5.3.2 Mallinckrodt, Bucy and Cheng

Mallinckrodt, Bucy and Cheng [29] performed the first large-scale

effort to analyze the Brownian motion phase problem from the viewpoint

of estimation theory. They approximated the (smooth) conditional density

by approximately 100 point masses in the state (phase) space. This

approximate density was propagated numerically through the dynamics

(by the Chapman-Kolmogorov equation) and measurements (by Bayes' rule)

in a rather complex (and slow) computer program, which was used in

digital simulations.* These Monte Carlo simulations showed what the

minimum variance was, but otherwise provided little insight into the

problem. Later work by the authors and their students [8, 10, 12, 16]

has centered on improving the computational speed of the optimal filters

for the first- and second-order PLL problems.

*For propagating the complete density, see also Levieux [25-27].
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5.3.3 Gaussian Sum Approximations

In [39], Tam and Moore apply the Gaussian sum approach of Sorenson

and Alspach [2, 36] to the design of phase estimators for this problem.

They concentrated on simplifying the ad hoc reinitialization required

in this method and developed a class of estimators that performed optimally

as the nurber of Gaussian densities in the sum became large. When only

one density was used, their filter became the extended Kalman filter, and

therefore the PLL, for this problem. For two densities in the sum, their

filter performance was close to that of the Fourier coefficient filter

of Willsky [44).

This approach, like the point-mass method of Mallinckrodt, et al.,

produces a density which numerically approximates the conditional density,

resulting in a complex filter which performs well. These methods, however,

do not offer simple parametric approximations to the conditional density

and do not readily provide insight into the structure of the optimal

filter.

5.4 Sub-Optimal Filters

5.4.1 Mallinckrodt, Bucy and Cheng

In addition to their numerical studies (as discussed in section

5.3.2 above), Mallinckrodt, et al. [29), proposed a sub-optimal filter

of the form

x x/ dz\
d( = - ( dt + 1 1 (5.25)

2 2r z
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1 = tan (x/y) (5.26)

for the case when q0. The authors claimed that this filter, which they

called a "static phase filter," performed well, although they did not

include any simulation results. The structure of the filter was motivated

by that of the no-process-noise (q=O) optimal filter discussed in section

3.3.2.

Mallinckrodt, et al., also described a general static phase filter,

where (changing their notation)

= -f dt + g (1) (5.27)

(Y) dz 2,

f 0 as q + 0

and

^-l0 = tan (x/y) (5.28)

for arbitrary positive gains f and q. Since any constant multiplying x

and y will not affect the phase estimate 0, we may assume, without loss

of generality, that g = 1/2r.

They also demonstrated that any static phase filter may be regarded

as a phase-lock loop with a data-dependent gain. To show this, we define

v = 2 + y2 (5.29)

= tan 1(x/y) (5.30)

Then the Ito derivatives of a and B as functions of x and y (in equation
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5.27) produce (see Appendix C).

l 1
da = (- - fa)dt +- dz (5.31)

4ra 2r Q

d = dz (5.32)
2ra I

where dz and dz are given by equation 5.5 for e=S.

Thus, all static phase filters may be regarded as phase-lock loops

with data-dependent gains

K = --- (5.33)
2ra

This concept, first discussed in [291, is interesting. It means that

bandpass filters around the carrier frequency (w c), which may be imple-

mented with low-pass filters on the baseband signals (such as the static

phase filter in equation 5.27), may be considered "special" phase-lock

loops if some care is taken in viewing the estimate. For instance, when

looking for a sinsoid synchronized with e, we should take (using equation

5.28)

A 2 2 (5.34)
sin e = x/ x + y

and not

sin e = x (5.35)

as is usually done.

It is also interesting that the data-dependence of the gain (a) is

in the quadrature (cosine) measurement "channel" i . The quadrature channel
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is often used in phase-lock loops to provide "lock" and "loss-of-lock"

indications, but the static phase filters show how to use to provide

information about the quality of the measurements. This is an intuitively

pleasing idea, since 6 results from the correlation between the carrier-

frequency measurement i' (in equation 1.16) and the filter estimate of

i', sin(w t + e). We next examine a static phase filter which was de-
c

rived in a much different way.

5.4.2 Linear Minimum-Variance Filters

In (15] Gustafson and Speyer demonstrated that the first-order

phase-lock loop problem could be viewed as a state-dependent noise problem

in the "measurement space". To see this, we define

xy sin 6

(5.36)

x2) cos e

whe re

de = du

as in equation 5.1 and dz is given by equation 5.3. Then we may take

the Ito derivative of x1 and x2 to obtain

x1 x1 x2

d = - (: dt + du (5.37)
2

x 2 2)1

with

dz = dt + dn (5.38)

x2)
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For state-dependent noise systems with linear measurements, as

above, one can derive the optimal linear filter (the linear filter with

the minimum error variance) as was done in [15]. In steady-state this

filter becomes

d = (- )dt + K dz j dt (5.39)
2 ^

where

K = [rq(rq + 1) - (5.40)
2r 21

is obtained from the solution to a Riccati equation. We also pick

A-le = tan (x 1 /x 2) (5.41)

The authors called this filter (at carrier frequency, rather than at

baseband as shown) a "linear, minimum-variance unbiased quadrature filter,"

which they abbreviated LQF.

The LQF may be rewritten as

x 1 x 1dz 1
d- f dt + K (5.42)

x2 2 d 2

where

f rq (5.43)
2r
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Then an equivalent filter (one with the same phase estimate) may be

obtained by defining

(5.44)
2 rK(2 x(2)

where

d = - f y1dt + -- (5.45)

$ 2) (2) 2 dz2)

0 = tan (y1/Y2) (5.46)

This is a static phase filter with a gain f (chosen to minimize the

measurement space error variance) which goes to zero as q does (for con-

stant r). Thus, this filter should approach the optimal as q + 0, and

the simulation results in [15) seem to support this.

The analysis in [15], however, indicates that the LQF has an actual

phase error variance that is approximately 6% above P for very small

P . The actual PLL performance (equation 1.61) is also slightly worse

than P k, although apparently less than 6%. Thus the LQF (and possibly

other static phase filters) does not outperform the phase-lock loop for

all values of PR ,although it does converge to the optimal filter as

q+0.
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5.4.3 Assumed-Density Filter

In [441, Willsky presented results for a sub-optimal, nonlinear

filter that closely matched the performance of the LQF for high P k9 and

approached that of the (optimal) PLL for low P 0k. We derive a baseband

version of this filter and show that it does converge to the classic PLL,

for low P , in form as well as performance.

We recall first the Fourier coefficient equations of Stratonvich

(equation 5.23), where the a 's and b 's form an infinite set of coupled
n n

differential equations. We can truncate these equations by assuming that

the conditional density is a folded-normal density (see equation 5.16),

so that the Fourier coefficients become

2 sin nS
= e -n 2 , i 

( 5 .4 7 )
b ( cos n)

where is the mean, and y the variance, of the normal density which

generates the folded-normal.

We then use a and b to solve for y and , so that all the higher-

order coefficients may be written as functions of a1 and b. Specifically,

we write

sin a1 (5.48)
cos 2 /232 b

Va 1+ b 1

and
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e = a + b  (5.49)

Using these identities (equations 5.48 and 5.49), the differential equations

for a1 and b1 may be written as

a a K K2a

d = - a dt + 1 ( (dz - )dt) (5.50)
b 2 b2rK K

b b) K11)2 3) a)

where

K = (l-e-2y) - a2 -Y) 5.51 a)
2 l

K2 = - ayb1(l-e ) (5.51 b)

K = (1-e) - b (1-e ) (5.51 c)
3 2 1

This Fourier coefficient filter (FCF) with

-1.e = tan (a /b1 ) (5.52)

worked well in simulations, as reported in [44] and later in this chapter,

marginally outperforming the LQF design of [15]. Also, since the con-

ditional density becomes Gaussian as P +0(, and since the normal and

folded-normal densities converge as the variance approaches zero, the

FCF performance approaches that of the optimal PLL as P +0.

We now want to demonstrate that, for small PV, the FCF approaches

the PLL in form as well as performance. We begin by showing that

y=P for small P . First we obtain the Ito derivative (appendix C) of

eY, as a function of a1 and b in equations 5.49 and 5.50, as
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d(e ) = -q e dt + - e (1-e ) 2 dz (5.53)
2rQ

+ - (1-e ) dt
4r

where (see equation 5.5)

dzQ = e (al, bl)dz (5.54)

= cos(6-O)dt + dn

Equation 5.53 is stable for e < 1, which is the expected range of e

considering the cost function interpretation of the true Fourier coefficients

discussed in section 5.3.1. Next we obtain the Ito derivative of y, as

a function of e- (above) as

dy = q dt - T (1-e )2 dz -- (l-e-) dt (5.55)
r Q 4r

For small P , we expect the phase estimate to closely approximate

the actual phase. Therefore, to order E (for E = 6-6)

sin = S

cos S = 1

Thus, the quadrature measurement (dz in equation 5.54) contains no phase

information. Since, for low noise, the variance of the dn9 term also

becomes negligible (with zero mean), we may assume that

dz, ~ 1 dt



-134-

and that the y from equation 5.55 (a random variable) is "quite close" to

a yd from the deterministic equation (cf. equation 5.55)

q = g - 1 ) e _d 5 (5.56)
d 2r 4r

The meaning of "quite close" (above) is uncertain. We have been unable

to show the mean-square (or any other) convergence of y to yd because of

the nonlinear differential equations involved (5.55 and 5.56). Nonethe-

less, we believe this discussion, while not rigorous, provides useful

insight into the low-noise operation of the FCF.

Now, since we expect yd to be small for small P , we let

e d = 1 + y (5.57)

in equation 5.56 to obtain

2
Sd (1+Y

4 = r Y (5.58)'d 2r 4r d

2
or, to order yd

d

y= q - (5.59)

which is precisely the equation satisfied by P (see equations 1.51,

1.52, and 5.9). Thus, for small P

Yd 6 (5.60)

and y is reasonably close to yd'

Next, we examine the filter structure for small P . We let
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e = 1-2yd (5.61)

and, using equation 5.57 and 5.61 (with y=yd) the FCF gains (equations

5.51 a-c) become

2
K1 = y(1-a )

K2 =-a 1b y

K 3  y (1-b )3 1

where

a + b2 = e -Y -Y1 1

The gains above become, to order y,

2
K yb 1

(5.62 a)

(5.62 b)

(5.62 c)

(5.63)

(5.64 a)

(5.64 b)

(5.64 c)

K2 = -a1 b y

K = Ya 1

Thus, the FCF becomes (using equations 5.50, 5.60, 5.64 a-c and y=yd

_ a 
= -

, )

-a )b a

2 dz- dt
a (b

bd
dt + pe 1

-a b

By making the obvious associations

x

x
2

a

d

(b

(5.65)

a\

b)
(5.66)
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we see that the PLL (equation 5.12 with K from equation 5.8) and the FCF

(equation 5.65) are identical for small P .

The convergence of the FCF to the PLL as P -0 is satisfying, since

the FCF performance is good for large P as well. The only drawback

to the FCF is its complexity when compared to the simple static phase

filters. In addition to the complexity of the gains themselves, the

filter states mulitiplying the: measurements require Wong-Zakai correction

terms in implementation or digital simulation of the FCF (see appendix

C). Since the filter gains (equations 5.49 and 5.51) are composed of

4 4 7
terms like a1 and b1 , the correction terms will be of the order of a1

7
and b1 , and the FCF becomes significantly more difficult to implement

than the static phase filters.

5.5 First-Cumulant Filter

5.5.1 General Design

Using the approximation method of Chapter 4, we now develop a sub-

optimal filter for the first-order PLL problem. We begin by considering

the log of the Radon-Nikodym derivative (A t) given by equation (4.5)

tt

T -l1 T -l1
C= h R dz - h R h ds
t 2

For the baseband measurements (equation 5.3) this becomes

T t
1 t /sin e s ( dz1  1 t 2  2+ cos2  ds (5.67)t 2 r 0 Cos es dz2 4r 0 si s s
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t/ sinO T
/ = -- s dz t (5.68)

t=2r d'Cos s 4r
0 c S)6

Now since any term in C that is not a function of e can be factored

out of the numerator and denominator of the conditional density (equation

3.53), we may write the conditional density for all baseband measurement

problems as

E e p(et)
p(6, tlzt) = (5.69)

0 Azt
0 e

where

C - (sin 0 dz + cos 0 dz ) (5.70)

For the first cumulant (and moment) filters (as in section 4.2.2) we

need

E - - t [(n s T dz (5.71)
0 2r C' -Cos e 9 t

The forward transition density for 0t is

P(OtIs) = N(Os, q(t-s)) (5.72)

This density may be "folded" to obtain the modulo-27T phase density

00 2
-n2q (t-s)

pt(6 [1 + 2 e2 cos n(t -s)] (5.73)

n=1

If we let the a priori density be uniform
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p(6 ) = p(e ) = 1
t s 2Tr

-7r < 0 < Tr
s -

(5.74)

then from Bayes' rule

P(O P~ le =Ps P~ je (.5p(t) t s

Therefore, we can evaluate the expectation in equation 5.71 as

sine6s

E 6tScos
so that

E C' = x, sin t y cos et

where

x
Y

1
2r

t 2 a t-s)
e2

0

(5.76)

(5.77)

dz1
s

dz 2 /
s

(5.78)

x x\
d = - }Jdt

~y y

1 /dzl
2r 

(5dz.27

We form an approximate density by using the first cumulant approxi-

mation

E8 et
0

E B
*0t (5.80)

(5.79)

-q(t-s) sin t

2

Cos 
t)
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the a priori density (equation 5.74), and the normalizing denominator

e - det

to obtain

x sin et + y cos et
t

p(G,tIz0) ~ (5.81)

2T 1 0/2 + y2

We obtain a phase estimate from this density

sin f sinS
t! t 1es

E ) z = ) (5.82)
cosO 00 cos S

where

a = x2 + y (5.83)

S = tan ~(x/y) (5.84)

so that

0 (a)I sin 
S

L a- = S (5.85)e=tan'
1 [ I 0 a( cos S

-l1
= tan - ( /y) (5.86)

This estimate is the same as that obtained by the static phase filter in

equations 5.25 and 5.26, and the filters are therefore identical. This

filter, as a static phase filter and because of the cumulant interpreta-

tion of the approximate density, converges to the known optimal filter
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for the case where q=0.

5.5.2 Sub-Optimal Filter Comparison

We now compare the performance of the first cumulant (static phase)

filter to that of other suboptimal designs. The Fourier coefficient (FCF),

state-dependent noise (LQF), first cumulant (approximate density filter

or APDF), and phase-lock loop (PLL) filter were all simulated. We used

a fourth-order Runge-Kutta integration routine, with a time step of 1/100 th

of the PLL time constant (1/K), to minimize the effect of the discretiza-

tion. We ran the filters for four runs of 500 time constants each and

discarded the data from the first twenty-five time constants (in each run)

to avoid "start-up" transients. This resulted in 1900 "effective" degrees

of freedom, as in (15, 29, 39], for a 3% predicted standard deviation in

the computed error variances (see [15] and (39]). The same pseudo-noise

sequences were used for all of the filters.

We compared the filters for P = 1 rad.2 (q=1, r=l/2), where the

PLL degradation (over its linear-predicted performance) is near maximum.*

The computed averages for the error-squared and cosine cost functions

are listed in Table 5.1, along with the percent improvement in each filter

with respect to the PLL. As an indication of the optimal filter per-

formance, the results of Tam and Moore [39] for their 6-density filter

and Mallinckrodt, et. al. [29], for their point-mass filter are included,

*See Van Trees [40] and section 5.2.
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along with the per cent improvement relative to their PLL simulations.

The PLL linear-predicted performance, exact performance (using the density

of equation 5.13), and simulated performance are included for comparison.

E[E ] (rad. ) E[l - cos El

Actual % Improve- Actual % Improve-
ment ment

PLL: Lin Pred. 1.0 .393

Exact 1.604 .554

Simulated 1.648 (Ref.) .567 (Ref.)

FCF 1.437 12.8% .506 10.8%

LQF 1.456 11.7% .511 9.9%

APDF 1.498 9.1% .525 7.4%

Results from (39]

PLL Simulated 1.586 (Ref.) .547 (Ref.)

Optimal 1.374 13.4% .490 10.8%

Results From (29]

PLL Simulated 1.614 (Ref.) N/A

Optimal 1.395 13.6% N/A

Table 5.1 Sub-Optimal Filter Performance Comparison

These results indicate that the Fourier coefficient filter performs

marginally better than the LQF, ard that both are much better (considering

the possible improvement) than the PLL. The APDF performs slightly worse

than the LQF and FCF, but also much better than the PLL. The APDF per-

formance is encouraging; it means that the first cumulant filter outper-

forms the extended Kalman filter for this problem.
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At this point we are led to consider two questions: Can the static

phase filter performance be analyzed, and can it be improved upon? The

rest of this chapter trys to answer both of these questions. We conclude

this section on the first cumulant filter with a demonstration of one of

the bounding techniques discussed in chapter four.

5.5.3 Accuracy of First-Cumulant Approximation

In this section we use the cumulant remainder to bound the cumulant

approximation as mentioned in section 4.33. Our goal is to demnstrate

how it is possible to use some of the bounding methods even when the ex-

pectations required cannot be evaluated.

We recall that

E A < E [e - 2e + 1] (5.87)
0 -O

where B

B e E0
Ee0-
0 = (5.88)

0
e

and

S= -E B (5.89)
0

For this problem, we may replace G by C' and ( becomes

t sin e sin e
1 s - 2(ts tH
2r 0 - e y dz (5.90)

0 Cos e8 cos e

We see that
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A6
E A8t =0

0

and

A t - )q (t-s)
Eet 2=1 + e-q(t- - 2e 2

0 2r Jj
0

Cos (et s) *ds (5.92)

because under P

r
E[dz dz ] 2:

0

2 
4 dt

Thus, we may write

E At E2 <2
0 - m

2 t + 1 -qt + 2 [1-e-qt/ 2

m 2r 2rq rq

(5.93)

(5.94)

(5.95)

where we have bounded the cosine in equation 5.92 and taken the integral.

We may now write

E Aet _2 22 <a 2

0 -im

and then

E < E [e - 2e + 1]o - 0E0

(5.96)

(5.97)

Now since conditioned on A t is a Gaussian random variable with zero

mean (equation 5.91) and variance a2 (equation 5.92 and 5.96), the right-

hand side in equation 5.97 equals

(5.91)

where



-144-

22 22
E [e -2e + 1]

2
which is a monotonically increasing function of a2. Thus

2 2
2a -a /2

E A < 1 + e m - 2e m (5.98)

2
where a is given by equation 5.95.

m

For very small t

Y2 2t
m r

and 2 2

+ e m - 2e ~ a2  (5.99)
m

This bound is hard to evaluate qualitatively. Clearly, for very

small t, the cumulant approximation will be a very good one, and we may

place high confidence in the filter. For larger t, the bound becomes

larger, but the filter performance is still very good, as shown by the

simulations.

Thus, despite the lack of a tight bound, we know that the first

cumulant filter performs well, and we are led to examine other ways of

predicting and analyzing that performance.

5.6 Static Phase Filter Performance

5.6.1 Approximate-Density Interpretation

This section investigates several aspects of static phase filter

performance. Unlike the density accuracy that the last section considered,

the filter performance (error variance or expected cosine cost function)

is the subject here. While we are concerned here with static
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phase filters in general, we begin by recalling that the first cumulant

filter creates the approximate density

x sinO6t + ycos 6t
p(e,t z ) = e (5.100)

00 /2 2)2,FIO0( x + y)

Using this density, the conditional cosine cost function becomes

2 2
t 1

E[l - cos(O-e)1z01 = 1- (5.101)

/2 2I ( x + y

Thus, the filter states x and y may be used to provide an estimate

of how well the filter is tracking. The accuracy of this estimate, of

course, depends on the accuracy of the cumulant approximation, which,

as discussed in the last section, is hard to determine. We now consider

a similar performance indication for a general static phase filter that

does not have this limitation.

5.6.2 Exact Performance

This section presents a technique for obtaining the actual value

of the cosine cost function for a general static phase filter. We

consider the nonlinear, two-state error equations

dc = 1 (sin E dt + dn ) + du (5.102)
2ra

1 1
da = [-fa + -]+ -+ - [codt + t + dn ] (5.103)

4rf 2r Q

for

E = e - e
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which we obtain from equations 5.1, 5. 31, and 5. 32.

Now by averaging over the noise dn

-1- 1 1
da = [-fa +- (-) dt + - cos c dt (5.104)

4r a2r

where

=E(

and assuming that a goes to a steady-state*, we have that

1-cos E = 1-2rfa + - ( (5.105)
2c

This means that by computing an average value for a and 1/a in actual

filter operation, it is possible to obtain

1 - cos E

through equation 5.105 without using the actual phase e. The next section

demonstrates a useful application of this result.

5.6.3 Filter Behavior When Signal Lost

We now examine the behavior of a static phase filter when there is

no signal present, that is, when

dz 1 dn

(5.106)

dz2

This situation might arise if the actual currier frequency were much dif-

*We have been unable to completely justify this assumption, but "evidence"
that the density of a approaches a steady-state is given in appendix
D.
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ferent from the heterodyning frequency used to obtain the baseband

measurements. In this case

d = - fdt + 1 ()1(5.107)

which describes a Gaussian system with zero mean and a steady-state vari-

ance of

x x v 0
E ()OI= Q (5.108)

where

V= 1 (5.109)
4rf

Since x and y are zero mean, independent Gaussian random variables,

a is Rayleigh distributed, with

2
-a~ /2v

p ( a) = -ae 22 > 0 (5.110)

so that

E [3] = (5.111)
2

and

E = (5.112)
a2 2

with v given by equation 5.109 for any f.
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We note that if one uses the performance estimating technique of

equation 5.105, then

1-cos E = 1 + [ - 4rf v =1 (5.113)

Thus the static phase filter can detect a signal loss using the a. and

1/a averages suggested by equation 5.105.

5.6.4 Low-Noise Filter Performance

The two-state error equations 5.102 and 5.103 may be used to obtain

low-P convergence results, as was done in [15] for the LQF. For very

small P , the variance of dn becomes negligible, and

cos E 1 (5.114)

so that equation 5.103 may be written

a = - 4 + 2- (5.115)

which becomes, in steady-state

fa - -- (5.116)
4ra 2r

The error equation (5.102) becomes (where sin e

1 = (E +n + nj (5.117)
2ra I

For any constant a, the error variance is minimized (as was done

for the PLL by the optimal Kalman filter gain K, in equation 1.53) by

choosing
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= K - (5.118)

2 ra

or

L = - (5.119)

This means the optimal f (from equation 5.116) is

2
0 e0% ___

f =-- + -- (5.120)
2r 4r

which becomes

f 0 = + q (5.121)
=j2r 2

As was mentioned in section 5.4.2, in [15] Gustafson and Speyer

found that the LQF had a 6% degradation in error variance over the PLL

as P + 0. The static phase filter with gain f0, however, will exactly

approach the PLL as Pe + 0.* Unfortunately, this filter (with gain

f 0) does not perform as well as the LQF static phase filter for high

P .V

We simulated the LQF, APDF, and static phase filter with gain f0

on one of the four 500 time-constant noise sequences used to evaluate the

sub-optimal filters in section 5.5.2. The results are listed in Table

5.2. The absolute accuracy of these numbers is not as great as that of

*We note that the LQF was designed to have the lowest error variance
(of any static phase filter) in the measurement space, but not, ap-
parently, in the phase space.
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table 5.1, but the relative ratings should be reliable.

E[E ] E[l - cos El

PLL 1.9728 .6462

APDF 1.5869 .5483

LQF 1.5277 .5297

f0 Filer 1.5950 .5454

Table 5.2 Static Phase Filter Comparison

These results indicate that the f0 filter performs worse than the

LQF but about the same as the APDF for P = 1 rad.2 Apparently none

of the gains (f, as a function of r and q) provides optimal performance

for all P , and we are led to consider modifications of the static

phase filter to improve performance.

Two such modifications are considered in this chapter. The first

uses the higher-order density approximations of the last chapter to im-

prove the accuracy of the density shape. The second uses a modified,

nonlinear damping gain f(a) in place of the constant f of the static

phase filters.

5.7 Higher-Order Density Approximations

5.7.1 First-Morent Information

Now we investigate the advantages and disadvantages of adding more

terms in our density approximation. We consider densities using the

first, second and third moments of C', combined in a variety of ways, to

create cumulant, central moment, and moment approximate densities (see

section 4.2.2).
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We recall that the first moment of C' is

8'EB x sine + y Cos e(512
E0 lt 1 t t (5.122)

for

1t

= -- (sin e dz1  + cos 6 dz) (5.123)
t 2r s 1s 2

0 s s

and

l l'/dzy

d 1 - . dt + (5.124)

yy y dz2

This was used (see section 5.5.1) to create the first cumulant approxi-

mate density

a~ cos (O-8

p(O,t Izt) = e (5.125)
0 2TrIO l(

for

a, = x1 + y1 (5.126)

l= tan' x 1/y (5.127)

We note that the Fourier series of this density is

o

P(e,trz;) = 1 + 2 cos n(O-l)j (5.128)

n=1

(see the Bessel function appendix A), and the optimal phase estimate*

*We use the term "optimal phase estimate" to denote the Stratonovich
estimate, with respect to the approximate conditional density, as dis-
cussed in section 5.3.1.
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-l 1 1 0 ) sin Sl (5.129)
tan I 1 / 1 ) csn (a

The first moment may also be used in a moment approximation, where

B BI
E e ~ l + E C (5.130)

which leads to an approximate density (not necessarily positive) of the

form

p (e , tI z) = [1 + 2a% cos (0-,) (5.131)

which is a finite Fourier series with optimal phase estimate

0 = tanl(X/y) - (5.132)

Thus the first moment and cumulant filters lead to different density

functions but the same phase estimate, and therefore the same performance.

5.7.2 Second-Moment Filters

We now investigate the second moment of C'. We have that

(5.133)

E 0(C = - t E (sin 0 dz1 + cosTd z2T) (sin 0 dz ls+cos 0sdz2s

Using the technique of section 4.2.1 and trigonometric sum and difference

formulae, we may rewrite this moment as

EB 2t A (e ) (5.134)

E ( = 0 1 2E [cos (eT - - s T( +es)]dz1 dzls

A( )t
+ E [sin (0 +0s) + sin(0 -e )J]dzlsd2
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A(et)
+ E t [sin (e +e ) + sin (e -6 )]dz dz

T s T s 1T 2s

+ E t [cos (e +e ) + cos (8 -e )]dz2T dz2s

We recall (equation 5.75) that 0 given 0t is a "backward" Brownian motion

with mean 6t and variance q(t-s) . Thus $_ and + , conditioned on 8 t , are

Brownian motions with

S=T - (5.135)
- T S

c=0 6 + (5.136)
+ T s

and

N(O, q[2 max (T,s) - (T+s))

+ ~ N(26t, q[4t - (T+s) -2max (T, s)]

(5.137)

(5.138)

There fore

sin $ e [2 max (T, s) - (T+s)J ]E lo = e 2

[\cos

sin #+ - [4t - (T+s) - 2 max (T , s)
E le = e 2

-os $t

I/sin 20t

cos 2e

where we have used the folded-normal density as in section 5.5.1 to

evaluate the expectations.

This means that

and

(5.139)

(5.140)
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t t - 1 [2 max (T, s) - (T+s)] (5.141)
E (C' ) 2 ff 2 (dz dz +dz dz

+ 8r 2 - [ t T )z is 2T 2s

,[-I[4t-(T+s)-2 max (T,s)J
+ Cos 20 elte 2(dz 2Tdz 2-dz 1Tdz )I

(dz 1dz2s-dz2T dzls+ sin 28te -[4t - (T+s) -2 max (T, s)]

which may be written

03 2
EO(C') = c + x2 sin 20t + ycs 20t

dc = 9 (xy dz1 + y1 dz2)

dx2= -2qx dt + (x dz + y dz
2 -2qy2dt 2r 1 z2 + l

dy = -2 qy dt + 1(y dz xd

(5.142)

(5.143)

(5.144)

(5.145)

and x1 and y1 are given by equation 5.124. We note that Wong-Zakai cor-

rection terms are required for simulating or implementing these equations.

However, because of the independence of n1 and n2 ' 2 needs no correction

term and the terms for y2 cancel, so that only 6 needs a correction (of

-1/2r) . Thus the filter states to be implemented become

1X 1
i + y z ) - T

2r 1 1 1 2 2r

Sc- 2qx2 + 1- (x2  + +
-2 2 2  2 2 1 1)

92 2q2 +2r 1 2 l1

(5.146)

(5.147)

(5.148)

where
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This new information may be combined with

2 2 2 2
Bx + y y1-x

(E C') 2 + x1y1 sin 2et 2 cos 2et (5.149)

to evaluate the conditional variance of C' as

E (C' - E C)= sin 2 + V cos 20t (5.150)E0 (- 0 ) =V 1 + V2 sin

where
2 2

x + y

V = c- (5.151)
1 2

V2  22 1y 1  (5.152)

2 2

3 = y2 - (5.153)
3 2 2

Then the numerator of the density in the second cumulant approxi-

mation may be written as

ae cos 2- + cos2(6-62) (5.154)
Ul = e122

t

where a1 and S are given by equations 5.126 and 5.127 and

= V 2 +V2  (5.155)
2 2 3

1 -l
S2 = tan V2 3 (5.156)

(Sinde V does not multiply a function of et, it may be factored out of

the numerator.) Unfortunately, this function (equation 5.154) of 6 is

very difficult to analyze. It is an exponential Fourier series* and we

*See Lo [28] for a discussion of these series.
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need the regular Fourier coefficients

I/sin 0 t

E ios z05(Cos 6

for our optimal estimate. Since no straightforward way to evaluate the

integral

7 sin e
U' dO

-f (cos t)
ct

exists, we atterpted instead to search for the approximate mode of Ug
t

as our phase estimate.

We define

F(O) = al cos (0-S ) + 2- cox 2(0-S2) (5.157)
11 2 2

and take

= -a sin (-) a sin 2(0-2 0 (5.158)ae1 1 2 2

Now by assuming that 0 ~e , we let

sin (0-Sl) 0-S (5.159)

sin 2(0-S ) 2(0-S ) (5.160)

cos 2(0-S ) 1 (5.161)

so that equation 5.158 may be solved for

a2 sin 2(S S 2 ) (5.162)

a1 + 2a2 cos 2(S -S2
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A filter using this estimate (called A2C) was simulated (see

section 5.7.4) with poor results. The added density information in a2 and

2 did not result in a better phase estimate after our 
approximations

(equations 5.159 - 5.161) were made.

There are other ways to use the second moment information, however.

The moment approximation for the numerator would be

B - B lB 2
E e ~ l + E + E0(C') (5.163)

where the right-hand side equals

c x y
1 + -+ x sin + y cos 6 + X sin 2O + Y cos 2e

2 1122

While the normalization will make this density

t 1
p(e,tlz0) 21 [1 + a sin 6 + b cos 6 + a sin 26 (5.164)

0 27iT 11 2

+ b2 Cos 26]

for

a1 = x /(l+c/ 2 ) (5.165)

b 1 = Yl/(l+c/2) (5.166)

we see that the phase estimate, which depends on a1/b1 , will be un-

changed from the first moment filter. Thus, the second moment changes

the density shape but not the phase estimate for the moment approximations.

A third way to use the second moment is in the central moment ap-

proximation, where
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C' Et 1 1 2
E0 e e [1 + E E (5.167)

Here, the right-hand side becomes

a 1Cos (6-Sy V a t2
e [1 + 1+ 2 cos 2(6- 2e 1 2 2 2

where V1 , U2 and 2 are the same as those in the cumulant approximation.

This results in an approximate density function of the form

t
p (0, t z 0

caycos (-1) 2
e [t1Co A + - - cos 2 (0- 2I ) A + 2 2

27rT[I (a~ )A + I2 (a~ ) cos 2(~-
0 1 2 12 1 12

for
2 2

1 c 1 1

2 2 4

The phase estimate for this density is equal to

a=tan 1/al/b

where

a2
a1 = AI1 (O1)sin 1 + -(I3 (t) sin A1 + I1 (a) sin A2)

bi = AI1 (a )cos 1 + (13 (ol ) cos A1 + I1 (a) cos A2)

A, = 3f3 - 2 2

and

A2 = 26 2 - 1

This filter, after a start-up transient, performed identically to

(5.168)

(5.169)

(5.170)

(5.171)

(5.172)

(5.173)

(5.174)
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the first cumulant filter, as shown in section 5.7.4 (where this filter

is called 2CM). The explanation is that c (in the second moment) grew

rapidly with time, so that the filter (through A) put increasing weight

on the first cumulant terms (those due to a1 and S ) in equations 5.171

and 5.172.

5.7.3 Third-Moment Designs

13 3
We also examined the effects of the third moment EB (') on the

moment and cumulant approximate densities. The third moment (see ap-

pendix E) is of the form

13 3
E (?') = 6 [x sin e + x cos 0 + x sin 3e + y cos 30] (5.175)

Ot s c 3 3

Thus, in the third moment approximate density, the third moment has

components (x and x ) in the first Fourier coefficients, resulting in a
s c

phase estimate of

-1x 1+ x
6= tan1  l (5.176)

y+ x
1c

In simulating this filter, it was observed that the k and kC equa-
s c

tions could be simplified by consideration of only the dominant gains

(as discussed in appendix E). The simulation results reported for the

third moment filter are in fact for the simplified third moment filter.

As discussed in section 5.7.4, this filter slightly outperformed the

first moment filter.

We next consider the effect of the third central moment on the

first term in the cumulant expansion. The third cumulant approximate
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numerator would be of the form

Ut = exp{Oa' cos (e-S') + cos 2(-2 + cos 3(O-3)} (5.177)

where a' and S' have components from the first cumulant (a1 and S3) and

the third central moment. By assuming that the single angle term

(a' cosO(-')) is dominant, we may form the approximate density

mcs(O-R')I1

p(= tzt_ e (5.178)' O27rIO (1'

with phase estimate

e= ' (5.179)

This filter (called A3C in section 5.7.4) was also simulated with gener-

ally poor results.

We remark that the third central moment could have been used in a

central moment approximation, but it would not have affected the A term

in equation 5.168, and hence the eventual convergence to the first

cumulant filter. We now describe the actual simulation results for

these higher-order density approximations.

5.7.4 Filter Comparison

We have shown how to generate approximate densities for the first-

order PLL problem. The moment approximation method leads to a Fourier

series representation for the conditional density. The cumulant approxi-

mation leads to a less-workable exponential Fourier series, and the

central-moment approach creates a hybrid density shape. The moment and
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and central moment densities may be solved for the "optimal" phase

estimate, while we have found it necessary to approximate the higher-

order cumulant phase estimate.

We remark that, in this problem, the optimal estimate and minimum

cost are determined by the first Fourier coefficients a1 and b (see

section 5.3.1). In our moment approximation method, the nth moment

affects the Fourier coefficients up to order n, so that it is possible

to use the first n moments in a partial-sum approximation for the first

Fourier coefficients. (Actually, only the odd moments directly affect

the first Fourier coefficient; the even moments affect the "constant"

in the Fourier expansion, however, and enter the first coefficients

through the normalization process.) Thus, it may be possible to obtain

a finite-sum approximation to the optimal filter performance by examining

the higher order moments in more detail.

We concentrate, instead, on examining the improvement in filter

performance obtained by adding the first few moments and cumulants. The

first-cumulant (APDF, also the first-moment filter), approximate-second-

cumulant (A2C), second-central moment (2CM), third moment (3M), and ap-

proximate-third-cumulant (A3C) filters were simulated on one of the

four 500-time-constant noise sequences used in section 5.5.2. The re-

sults are shown in Table 5.3. (We remark, as in section 5.6.4, that the

absolute accuracy of the numbers in Table 5.3 is not as great as that

of Table 5.1, but the relative ratings should be reliable.
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2
E[E ] E[l-cos E]
(rad.

PLL 1.9728 0.6462

APDF 1.5869 0.5483

A2C 1.7923 0.6034

2CM 1.5866 0.5482

3M 1.5845 0.5478

A3C 2.4315 0.7637

Table 5.3 Higher-Order Approximate Density Filter Comparison

We see that the approximate second-and third-cumulant filters per-

form worse than the first-cumulant filter, the second central moment fil-

ter performs almost the same as the first cumulant, and the third-moment

filter slightly outperforms APDF. To verify the third moment filter

performance, we tested it on all four noise sequences, resulting in a

mean-squared error of 1.495 and a mean cosine error of 0.524 to compare to

the first cumulant filter's 1.498 and 0.525, respectively, from Table

5.1. These results, like those for the 2CM filter, are very close to

those of the APDF, but the 3M filter, unlike 2CM, did not produce the

same estimate (for each sample path) as the APDF after the start-up transi-

ents died down.

We conclude that the errors in obtaining phase estimates from

the higher-order cumulant approximations outweigh the increased accuracy

of the density approximation. The convergence of the second-central-

moment-filter apparently means that this expansion is inappropriate

for the conditional density for this problem, and that the first cumulant

alone is just as good. We have been unable to determine if this convergence
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is inherent in the central-moment approximation method, or is only true

for the first-order PLL problem.

We also note the moment approximation' s slow convergence to the

optimal filter (as the number of moments increases) . Since the first

moment improves performance about 9% over the PLL (in error variance),

and the possible improvement is only about 13.5%, it is not surprising

that the additional moments improve performance very slowly. In other

nonlinear problems where there is more room for improvement, the benefits

of more terms in the approximation should be more apparent.

5.8 Bessel-Function Filter

We see that: the higher-order cumulant approximations lead to

density functions from which it is difficult to obtain phase estimates,

and that the moment approximations, while generating simple phase esti-

mates, converge very slowly to the correct conditional density. We

also recall that the LQF of [15] is a static phase filter, with a dif-

ferent gain f, which outperforms the first cumulant static phase filter.

We know that the exponential cosine density form is well suited to this

problem and now consider how we obtain better density approximations by

modifying the gain f.

We consider a type of static phase filter with nonlinear damping

f(a), that is, we let

x x dz
d (Y)= -f (a) ()dt + -- (d 2 (5.180)
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= + y (5.181)

= tan ( (5.182)

and form the approximate density

a cos (8-6)
p(,tI z ) 2aIo() (5.183)

We now demonstrate that by careful choice of f(a), we can make the

differential equations for the first Fourier coefficients (a and B ) of

our approximate density match those of the true density. For the true

density, we recall, from equations 5.21 to 5.24, that

a nn 2 qa n H na1
d t + dz- dt (5.184)

2 b2rb

where

bn-l - n+l a n-l + an+1 b
2 in 2 n 1

H = (5.185)
n

a - a b + b
n+1 n-1 -a b n-l n+l - b b

2 1 n 2 1 n

For the approximate density, we have

a sin n
n

= gn(a) cos n (5.186)

n

where we introduce the notation
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I (W)
g ( a) n (5.187)

n(IO 0

We want to obtain the Ito derivatives of the approximate-density

Fourier coefficients (a and 8 ) as functions of the statistics x and
n n

y (in equation 5.180). From the no-process-noise analysis of section

3.3.2, where a and b were the same functions of x and y as a and 8
n n n n

here, we may infer that

a a n x a n 3y dx
n

d + (ITO) dt (5.188)
(n DB3x 'S3yj dy)

where

n/3xan/ay
a n/x n/ay= 

(5.189)

a6n/3x 3 3n/Dy.

and

1 ^ al (5.190)
(ITO) = r Hn

where H is the matrix H evaluated at the approximate-density coefficients.
n n

Then for our approximate density,

a n ^ l ^ a(a) H t + -- H dt] (5.191)
n 2r n

n) 61

We also note that, after much simplification,
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(x) n-1 gn+1n'l + 1n a(n:)(5.192)

Thus, the differential equations for the Fourier coefficients of

the approximate density become

= - t f (a) gn-1 + n+ 1 a19 n t

n (5.193)

1 t
+ fn [dz -(S d

and we see that this would equal equation 5.184 if

gn n+1g 1  n (a) = 2 (5.194)

This equation will not hold (for all n) for any f(a), but by choosing

f (0) = S+g2 ( (5.195)
2 a (1+g2 (0 - 1 (00) (a))

2 91 gn

we may obtain

dt + 2r [dz dt] (5.196)

as desired. Unfortunately, this also implies that

(5.197)

I n g n + 1 2 9 n d + [
2 + g r1n(nd + n
q 2r
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Thus, the first Fourier coefficients propagate in the same manner

as the optimal pair, with correct damping and coupling to the higher-

order terms. Unfortunately, the higher-order terms are improperly damped,

so that even the first Fourier coefficients are incorrect. Nonetheless,

this density should closely approximate the conditional density, especially

as P + o and the density becomes uniform, where the higher-order co-

efficients become negligible.

The damping function f(a) (equation 5.195), divided by q, is plotted

in figures 5.2 and 5.3. We see that, for very small a1,

f(a) -+ q/2

while for very large a, f (a) becomes linear in a. This function should

be easy to approximate, while the lack of filter states multiplying dz

in equation 5.180 means that no Wong-Zakai correction terms are required.

Thus, this filter (with nonlinear gain f(a)) is only slightly more com-

plex than the static phase designs.

This filter (which we call the "Bessel filter") was simulated on

the same noise sequences as the filters listed in Table 5.1, and the

results are shown in Table 5.4. We see that the Bessel filter performs

very well, with the average errors falling in the small region between

the LQF and the FCF.

Considering the approximate density that the Bessel filter defines

(see equation 5.183), we also computed (during the simulations) the

average value of

I (ce)
1 - 1

10 a)
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E [E ] (rad. 2) E[l-cos E]
% Improve- % Improve-

Actual ment Actual ment

PLL (Simulated) 1.648 (Ref.) 0.567 (Ref.)

APDF 1.498 9.1% 0.525 7.4%

LQF 1.456 11.7% 0.511 9.9%

BESSEL 1.444 12.4% 0.508 10.4%

FCF 1.437 12.8% 0.506 10.8%

Table 5.4 BESSEL FILTER PERFORMANCE

as an indication of how well the filter could predict its "mean cosine

error." For comparison, the analagous quantity

1- a + b
1

was computed for the FCF (see section 5.4.3). These results, along

with the actual performance on the same simulations, are shown in Table

5.5. We see that theBessel filter is accurate in its "self-analysis,"

being slightly less optimistic than the FCF, and very close to its actual

performance.

E[1 - cos E]

Predicted Actual

Bessel 0.501 0.508

FCF 0.492 0.506

Table 5.5 Predicted and Actual Performance
for the Bessel Filter and FCF
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5.9 Conclusions

This chapter has investigated the first-order phase-lock loop problem

in detail. We first examined the PLL, the optimal, infinite dimensional

filter, and certain practical sub-optimal designs. Then the approximation

method of chapter 4 was used to generate several approximate densities

for this problem, with encouraging results. The first-cumulant approxi-

mation produced an exponential cosine density which seemed to fit the

problem well. The higher-order cumulants produced exponential Fourier

series, however, which could not be used to generate better phase esti-

mates. The moment equations, on the other hand, produced regular Fourier

series which easily provided phase estimates. Unfortunately, the addition

of the extra moments resulted in a very slow improvement in filter per-

formance.

Nonetheless, two facts about the first-cumulant density stand out.

First, the first-cumulant filter outperforms the classic PLL - the ex-

tended Kalman filter for this problem - for high P . As a test of our

general approximation method, it is considered significant that the

first term outperforms the extended Kalman filter. Secondly, a very

similar filter to the first-cumulant filter, the linear minimum-variance

filter of [15], performs better with only a slighly different gain. This

indicates that the first cumulant filter does not make optimal use (i.e.,

pick the best parameters) of its own filter structure. Indeed, we found

it easier to significantly improve performance by modifying the first-

cumulant filter (designing the Bessel filter) than by taking more terms

in the approximation series.
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2
In the first-order PLL problem we considered, however (P = l rad.2

the first term in the moment and cumulant approximations improved upon

PLL performance (error variance) by about 9%, where the possible im-

provement is only 13.5%. In other nonlinear problems were there is more

room for improvement, the higher-order approximations may be more useful.

For the PLL problem, we found the approximation method to be more useful

in providing clues about practical, sub-optimal filter structures than in

completely specifying those structures.
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CHAPTER 6

SECOND-ORDER PHASE-LOCK LOOP PROBLEMS

6.1 Introduction

Encouraged by the good performance of the approximate density filters

in the first order phase-lock loop problem (Chapter 5), we now design

first-cumulant approximate density filters for three phase-estimation

problems usually "solved" by second-order phase-lock loops [40]. These

problems consider more complicated, but more realistic, phase models than

the first-order problem (Brownian motion phase), while retaining the

baseband measurements of chapters one and five. The first problem (sec-

tion 6.2) adds carrier frequency uncertainty to the Brownian motion phase

model of the last chapter. The second problem (section 6.3) models the

phase as the integral of Brownian motion, and the third problem (section

6.4) is a general FM (frequency modulation) problem often encountered

in communications.

We note that for all three of these problems, no exact (nonlinear)

analysis for the PLL operation in noise exists to compare with Viterbi's

result (section 1.4.3,1) for the first-order PLL. Only in the linear

case (high signal-to-noise ratio) have closed-form solutions (Kalman

filters) been obtained. For the special case when there is no process

noise, however, frequency estimation results have been obtained as solu-

tions to parameter estimation problems [41]. By their nature, our

approximate densities are closer to the infinite-dimensional parameter

estimation result than to the linearized PLL.
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6.2 Brownian Motion Phase with Unknown Carrier Frequency

6.2.1 Problem Statement

In this section we consider the problem of a Brownian motion phase

process transmitted at a carrier frequency with a (stationary) Gaussian

density. This problem is an extension of the first-order problem we

considered in the last chapter to a more realistic filtering situation.

In practice, the carrier frequency is not known exactly (or more precisely,

the local oscillator - VCO - frequency cannot be matched perfectly to

the carrier), and a frequency difference exists between the real carrier

and the carrier estimate we heterodyne by to obtain the baseband measure-

ments (section 1.4.1).

If we model the carrier frequency as a Gaussian random variable

2
with mean W and variance a' and then heterodyne by n , the difference

c c
2

frequency becomes a zero mean random variable with variance G . We may

model this signal with the state equation*

0 1 0 1
d = dt + du (6.1)

The measurements are given by

z 1 sin e t dn 1

d = dt + (6.2)
z2) Cos et 2

*Throughout this chapter, "W" will refer to the frequency state and not

a point in the probability space (0, A, P) as in Chapter 4.
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where u, n1 and n2 are as in section 5.1.2, and w is a Gaussian difference

frequency with density

p(W) = N(0, C2) (6.3)

We remark that the associated linear system (with linear phase

measurement) is observable but not controllable. The uncontrollability

is because of the lack of an input to the frequency derivative. This

means that the input noise does not get to the frequency (w) , and perfect

frequency estimation is possible with an infinite observation interval.

As discussed in section 5.5.1, the important term in the Radon-

Nikodym derivative for this baseband measurement problem is

c' 1 sines dz + cos e dz (6.4)
t r f s 1 ss 2 /)

0

The actual conditional density may then be written as

(E e ) e
p(e, W, tIz 0) 0 (6.5)

0 ~ W

where

B = A v A(e , W) (6.6)

and

Wt= fE e ee 1 dodO (6.7)
t T o 0
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We note that it is possible to modify a first-order PLL to improve

its acquisition performance, as was discussed in section 2.3.3, by adding

an integrator and forming a second-order loop. This method works very

poorly in high-noise situations, however, and we do not pursue it here.

Instead we will discuss a "bank" of PLL's at different frequencies in

section 6.2.5.1.

6.2.2 First-Cumulant Filter

From the system model (equation 6.1) we may write

e = 6 + W(t-s) + (u t-u ) (6.8)

= 60 + W(t) + ut (6.9)

where ut and W are independent Gaussian random variables. Thus, the

density for 6s conditioned on 6t and w (for s < t) is Gaussian with

p(6s et, W) = N(Ot - w(t-s), q(t-s)) (6.10)

The expectations needed for the first cumulant approximation (section

4.2.2) become (from the folded-normal identities of equation 5.47)

sin [ sin (0 -Lo(t-s))[cs :) ' t -e 2(t s) t6. 1
E Co~s etW e2Cs( Wts)(.1

Now using the approximation

Ct E0t
E e ~ e (6.12)
0
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we form the approximate density

x(w) sin 8t + y(U)) cos 8t20
tte- 2 2

P (0, W, t zt) = e We /2 (6.13)
1 0 Wi1

where

T O 2 2
W x(W) sin 0 + y(o) cos 0 -W /2(W = e e dwd6 (6.14)

t -I(t-s)

1 2
x(W) -e 2[cos w(t-s)dz1  + sin w(t-.s)dz2  (6.15)

2r 2

y = e [cos w(t-s)dz2 - sin w(t-s)dz 1 (6.16)

where we have used equation 6.11 and standard trigonometric identities

to obtain x(w) and y(w) from E B'. We may also write equations 6.15
0t

and 6.16 as

x-/2 to x dzy

d = dt + 1 J (6.17)

y -W -q/2) Y) 2r dz 2

for any chosen (fixed) o. We comment that these equations will generate

the exact conditional density (at any chosen o) when q=0.

Care must be taken in interpreting this density as a "function" of

W. The value of the density will change as o varies, and this is the

type of functional relationship guaranteed by the conditional expecta-

tion in equations 6.5 and 6.12. Unfortunately, however, the density

requires an infinite number of statistics to specify its value for

all o. That is, for any finite number (n) of frequency values
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o. (i=1,2, .. , n), the value of
1

to=op (e, c, t Iz0)

11

may be obtained by keeping the 2n filter states x(w and y(o ), where

each x and y are evaluated for all time with fixed o=o . In order to

obtain a continuous function of o, therefore, we need an infinite number

of evaluation points w .

For the case when q=O, equation 6.13 specifies the exact value of

the conditional density at the chosen o. This result is usually used

in "m-hypothesis-test" problems, where o is assumed, a priori, to be

one of m values w., and a filter state pair x(to.) and y(w.) is constructed

at each possible w.. By its nature, the density (equation 6.13) is much

more difficult to examine when o is a continuous random variable.

6.2.3 Implementation of the First-Cumulant Filter

We now discuss various implementations of the approximate density

filter for any value of q (i.e., not necessarily q=O). The filter states

(equation 6.17) may be obtained in three simple ways for any chosen o .

The most straightforward implementation is suggested by the realization

that equation 6.17 is a static phase filter at a frequency o. instead

of at "baseband" (see chapter 5). Thus we consider implementing the

regular static phase filter

d (a dt + dz (6.18)
2 X) 2r

(Y) y,
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where dz results from heterodyning the carrier-frequency measurement

dz' (see equation 1.16) by w3 + W . instead of w alone. This results in
C 1 c

a bank of n static phase filters (one at each o.) which requires n

heterodyning operations. Alternatively, equation 6.17 can be implemented

directly at each ., which requires only one heterodyning operation.

The third implementation is suggested by the impulse response of

the filter states in equations 6.15 and 6.16. This method also has the

advantage of requiring only one heterodyning operation. We define

xs (i t - (t-s) sin w(t-s)

1 2 
(6.19a)-e dz

cr Cos W(t-s) 1

s(w) t - (t-s) sin ((t-s)
=1- e 2dz (6.19b)

y (W. i rCos W(t-s) 2s

so that

x(w. = x c(W.) + y s(W.) (6.20a)

y = y (W.) - x (o.) (6.20b)

Then we note that these states may be obtained from the Laplace

transforms (see, e.g., Hildebrand [17))

- t W.

22
L{e 2sin LO.t} = 1(6.21)

1 (a 2  2

t s +
L{e 2 cos W.t} = 2 (6.22)

(s + q)2 + 
2

2 i
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We show the complete filter forms in figure 6.1.

While this type of filter would be needed at each w for which we

wanted to evaluate the approximate density, certain savings in imple-

mentation are possible. The filter forms are all identical, only the

parameters change, so that the filter computations may be efficiently

time-shared in digital implementations. Also, for analog or digital

implementation, the values of x(-w ) and y(-o ) are available from dif-

ferent coirbinations of x (w.), x (W.), y s(.) and y (w.). Using equations
S 1 c 1 s 1 c 1

6.19 and 6.20 we have

x(-w.) = x (W.) - y (W ) (6.23a)

y(-w.) = (W.) + x s(W. (6.23b)

This means that, for a symmetric bank of filters about w = 0, n four-

state (equations 6.19 and 6.20) filters will provide (2n-1) density evalu-

ation points (assuming one filter is set at W =0).

6.2.4 Frequency Estimation

Next we examine some techniques for obtaining phase and frequency

estimates from the approximate density filters. The marginal (approxi-

mate) density for the frequency is obtained from

p (W, tIz ) = p1(6,w,tIzt)de (6.24)

Using equation 6.13 and the Bessel function appendix (A) we find that

t 0 x + y2()e/
P1 (W,tiz0 W_' (6.25)
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x s(W)

y c(Co)

Figure 6.1 Laplace Form of Filter
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where

00 2 2 -w2 /2
W1= W0  2) + y2  ) e /2 2 do (6.26)

This density is, of course, awkward to analyze. For the case when

a2 + o, however, the density reduces to

p (to,tjz) = I x2 (W) + y2(w)) (6.27)

f I x2 ) + y2 (w) d-o00

which is a monotonic function of the magnitude

F(w) = x2 ( + y (o) (6.28)

Thus, the maximum a posteriori (MAP) estimate of the frequency may be

found by maximizing F(O). For the case with q=O, this estimator (the

optimum) matches that from the parameter estimation analysis of Viterbi

[41 P. 2721. Regrettably, this is still an infinite-dimensional filter

for continuous o.

6.2.5 Phase Estimation

6.2.5.1 Phase Estimation from Joint Filter

We now examine phase estimation for the approximate density filter

of equation 6.13 with qO and a2 #. We approximate the smooth a priori

density for o with n point masses, each at a different frequency, and
-2 /2G

2

each weighted (relatively) by e * The phase density then becomes

p(e,tIz ) = f p(6,w,tz)do (6.29)
0

1 n t= - E p(8,otltz ) (6.30)
i=l
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where

2 2
x(W.) sin 0 + y(a.) cos -03 2/20

p(eo ,tIzt) ~ e

K 27r I 0 2 +y

(6.31)

(6.32)

2 2n -w /20
K= Ee

i= 1

Each x(O) and y(w ) is obtained by a filter of the form of equation

6.20.

The phase estimate for this density is obtained from

0 = tan

where

a sin Iz)d

1b n i=1 -f os

(6.33)

(6.34)

which becomes, using equation 6.31

a n I(x2 2 )

b 2TKn i=E 11=1 I X2(W.) + y2 ()

-W2 /202 
i

1 W
(6.35)

This may be simplified slightly by ignoring the constant 2WTnK term which

is cancelled in the ratio a1/b1 in equation 6.33.

The sin 6 and cos 0 estimates (a1 and b ) are composed of weighted

sums (equation 6.35) of the sin 0 and cos 0 estimates of the individual

a 1/b 1



-183-

filters (at each w.). The weightings contain both a priori (exp -

W /2 2) and a posteriori (I /IO) information, but it is the a posteriori
1

"adaptive" weighting that makes the filter interesting. The weighting

term Il/IO is a function of the same statistic (F(w) in equation 6.28)

which is used to compute the most probable frequency. Thus, this filter

uses the estimate of

2 2
x (W.) + y (w.)

1 1

from the quadrature channel of each static phase filter (see section

5.4.1, where this statistic was called "a") to judge how "reasonable"

the phase estimate from that filter (at w.) is. This filter bank should

outperform a classic PLL, which has no way of sensing a frequency offset

in high noise.

One may wonder why we can't compare this bank of filters to an

analogous bank of PLL's, also spread over the range of possible frequencies.

That is, why not use (2n-1) PLL's, arranged at + . (and W, = 0) for

i = 2, ... , n, and weight each phase estimate by

2 2

e
2 2

n -o./ G
1 + 2 E e

i=2

to obtain an overage phase estimate? (The filter bank would be symmetric

about o=0 because the difference frequency had a zero-mean Gaussian a

priori density.) The reason for not using such a scheme is that a

classic PLL at o., if closer to the real frequency, would have a "bal-

ancing loop" at -o. which was further from the real frequency. Since
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the classic loop has no way of updating its error covariance prediction,

both loops (at +w. and -o.) would have the same weighting (above), and

the net performance would not change noticeably. The bank of static

phase filters can update the relative weightings; a bank of PLL's cannot.

6.2.5.2 Phase Estimation Only

There is an alternate method for obtaining a phase estimate in this

problem when we are not interested in simultaneously estimating frequency.

Using the conditional density formula (eq. 6.5) and integrating over the

frequency, we obtain the marginal phase density

C t
tEep(e, t~z0 ) =0 (6.36)

W
t

where

c =2t v A(e ) (6.37)

W = E e dO (6.38)t 0

Our goal is to create a first-cumulant approximation for the a-algebra

C

C
C t E
E e ~e (6.39)
0

We recall from equation 6.8 that

o = 6 - W(t-s) - (u -u )
s t ts

(6.40)
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where w is a Gaussian random variable, independent of ut. This means

that 0s given 0t is a Gaussian random variable with mean 0t and variance

2 (t-s)2 + q(t-s). We therefore have that

sin s - a2
(t-s) 2 _ (t-s)[i 1 2 2

E L = e

cos 0 t

so that our approximate density becomes

It 1 x sin 0 + y cos 0
pi(0,tizO) - e

W
1

where

2

a (t-s)2 t-s)
t 2 2

2r

y

W = 2TrIO( + 2)

e = tan1 X/y

sine t

cos 0
(6.41)

(6.42)

(dz1

sdz2 /
S

(6.43)

(6.44)

(6.45)

This filter is (of course) independent of w and the infinite-

dimensional problems of the filter of equation 6.13. Unfortunately,

the above filter is still infinite-dimensional, since x and y cannot be

computed as the outputs of a finite-dimensional linear system (for all

t) . For any fixed t, we can compute x(t) and y(t) , but we cannot com-

pute these states as functions of time from any finite set of derivatives

A2
and the measurements. The reason for this is that e for A = t-s is

not separable. That is, we cannot write
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x t
f(t) f g(T)dz (6.46)

for any f and g. (We could do this for the first-order PLL problem, where

2
the static phase filter was the same as this filter with G = 0.) We

can approximate x and y by a sum of separable functions by finding f.

and g. such that
J

2
U 2

--a(t-s) n
2

e ~ Z f.(t)g.(s) (6.47)
j=1 3

While we do not pursue this course here, it remains an interesting avenue

of investigation.

We note that, for q=0 (where this is the optimal phase filter),

the impulse response of the above filter (equation 6.43) resembles that

of a dispersive delay line. Such a device has been used, in a much

different way, to estimate the frequency in this problem (see Viterbi

[41, p.283]). The operation of delay lines is usually limited to very

high frequencies with short delay times, however, and such devices may

2
not be useful for all values of 2

Finally, we want to compare this phase estimator (equation 6.43

with G2 3 0, q 3 0) to the static phase filter of chapter 5 to examine

how the frequency uncertainty has affected the approximate density

filter. We first note that the frequency uncertainty filter (equation

6.43) converges to the static phase filter as U2 -+ 0, a reasonable

property. We also see that the only difference between the filters
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(when C2 # 0) is the faster decay with time in the impulse response of

the frequency uncertainty filter. While the static phase filter dis-

counts old data by a factor of exp (-qA/2) where A = t-s, the frequency-

uncertainty filter uses the function exp (-qA/2 - 2 A 2/2). The filter

of equation 6.43 realizes that the frequency uncertainty makes old data

less reliable than the Brownian motion alone does, and the filter com-

pensates by throwing away the old information faster than before. The

reasonable nature of this result, which comes from the approximation

method itself rather than as a consequence of a design assumption, is

further evidence of the value of the approximation technique.

6.3 Browrnian Motion Frequency

6.3.1 Problem Statement

We now examine a simple frequency modulation problem considered

by Bucy, Hecht and Senne [8], While the problem itself is not very

realistic, it is interesting because it generates a very familiar

second-order PLL as a solution (in the low-noise region). The phase

is modelled as the integral of a Brownian motion frequency, that is

60 1 60
d = dt + du (6.48)

W 0 0 W 1

where

E[du2] = q dt (6.49)

and we assume that we have the usual baseband measurement (dz) of

equation 6.2.
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One reason for considering this phase model is that it represents

a "slower", more realistic phase than the Brownian motion process con-

sidered in chapter 5 and the last section (6.2). This more realistic

phase is obtained, however, by modelling the frequency as a Brownian

motion, with an ever increasing variance, which is a poor assumption

in general. (Brownian motion phase is not as disturbing since the modulo-

27 nature of our phase message translates a Gaussian phase with infinite

variance into a uniformly distributed random variable on the circle.)

We note that a first-order Markov model for the frequency, which we

consider in section 6.5, is better suited to most problems.

6.3.2 Classic PLL

Our main reason for considering the model of equation (6.48),

however, is that it generates a second-order phase-lock loop with a

0.707 damping ratio (a value often used), To see this, we consider a

Kalman filter designed for the dynamics of equation (6.48) with a linear

pseudo-measurement (see section 1.4.1)

dz = edt + dnI
pI

where dn is the in-phase noise of equation 5.5. The linear-predicted

PLL error variance then propagates as

, 0 1 - 0 0 - 0 01
P = 0 P + P :i0+ 0 01 (6.50)

- 1/ 2 r 01 t

0 0
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which is solved in steady-state by

2[2r3 1/4

p =

(2rg) 1/

(2rq) 1/2

3 3 1/4
[2 rq I]

The extended Kalman filter (PLL) may then written as

d 0 1~ b K
d =dt + dz

W 0 0 W K 2

(6.51)

(6.52)

where

Kl (2q/r) 1/4

K 2 L(q/2 r)1/
(6.53)

and

dzy = sin (6 6) + dn (6.54)

as in equations 1.21 and 5.5

For the very-high signal-to-noise ratio case, we may diagram the

linear system (with the "small sine" approximation as shown in figure 6.2.

Figure 6,2 Linear 2nd-Order PLL



-190-

This filter has a transfer function of

0(s) Kl(s + K2 /K (6.55)
. 2

z (s) s + K s + K
p 1 2

with a damping ratio* (C) of

2- 1/2

22 1 1 72-(6 56)

As discussed in Van Trees [40, p. 48 and 67], this is a very common

design for PLL's.

6.3.3 Approximate-Density Filter

We now derive a first-cumulant approximate-density filter for

this problem. We will use the approximation

8

p1(ew,tiz) - eW p(6,wt) (6.57)

where

t sine T
= - - s dz (6.58)

0 (cos 0S

8=Azt v A(e tw ) (6.59)

We note that Wt is not constant for all time in this model as it was

in section 6.2 -

*This C is, of course, unrelated to any of our Radon-Nikodym derivative
terms t and C(.
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We first examine the a priori density for e and w. This density

is Gaussian with zero mean and covariance P, where

. 1 l 0 0 " 0 01]P + P + [: (6.60)

The solution to this equation is

3
P qt + t2 P (0) + 2t P (0) + P (0) (6.61a)

11 3 22 12 11

2
P (t) = + P (0)t + P (0) (6.61b)
12 2 22 12

P (t) = qt + P (0) (6.61c)

We also note that the transition matrix for the dynamics (equation 6.48)

is

1 (t-s)

$(t,s) = (6.62)

0.1

The first step in obtaining our filter is to find the backward

transition density

p(s' Ws|6t' It) for s < t

needed in the expectation of C'. This density is Gaussian with mean

and covariance (see section 4.2.3 and equations 4.78 and 4.79)

m = P T (t,s) P -1 t (6.63)
s/t s/t t/s(W)
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-1 T -l -l
P = #T (ts) P_ 1#(t,s) + P (6,64)

s/ t/s s

where the forward transition covariance Pt/s may be found from equations

6.61 as

t-s)2/3 (t-s)/2

P t/s = q(t-s) (6,65)

S(t-s)/2 1

Since we are interested in a filter for steady-state phase and

frequency processes, and for ease of computation, we let the initial co-

variance P(0) become infinite (its "steady-state" value) , which makes

P- 0 (6.66)

in equation 6.64 without otherwise affecting the transition densities.

(However, this will affect the a priori density term p(O,w,t) in our

approximate density, which we will consider shortly.) Letting the co-

variance become infinite is convenient, but not necessary in our method.

It is equivalent to assuming that we have no a priori state information,

and therefore our filter will be an approximate maximum-likelihood esti-

mator.

We may now solve equation 6.64 for Ps/t, finding (after much sim-

plification)

(t-s) 2/3 -(t-s)/2

Ps/t = q(t-s) (6.67)
s/t-(t-s)/ 2  1

Then equation 6.63 may be solved for the means( 01 -(t-s) /e6s/t t (6.68)
Ws/t 0 1] t)
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We now use these results in a folded-normal density (equation

5.47) to obtain

sin ) 3 sin (t -w(t-s))

E L ( t tj eL 6t
cos 6 Cos (e -o(t-s))_- o s - -j t

(6.69)

so that we may write

E ' = x(w) sin e + y(o) cos e
0 t t t

(6.70)

where

t - (t-s) 3

x(w) = e 6

t - (t-s) 3

y( ±) = e 6

(cos o (t-s)dz + sin w(t-s) dz ) (6.71a)
s s

(cos w(t-s)dz
2 5

- sin w(t-s) dz ) (6.71b)
5

-l
Now since we assume P = 0 for all t, we have that our approximate

t

conditional density is

p (6,w,ttzt) -
x) sin e + y() cos

Wi = -TT (6.73)f e sine + y (w) cos 0 6 dO

Phase and frequency estimates (approximate maximum-likelihood estimates)

may be obtained from this filter in the same way as in sections 6.2.4 and

where

(6.72)
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6.2.5. This filter is doubly complex, however, since it is simultaneously

infinite-dimensional in W and not separable in t and s. We note that no

phase-only estimate is possible (in the manner of section 6.2.5.2), be-

cause of the infinite variance of the frequency which we assumed

(P 22(0) = 00) in order to obtain Ps/t (in equation 6.67).

Finally, we note the overall similarity of this filter to that of

the frequency-uncertainty problem of section 6.2. In this filter

(equation 6.71), the log of the weighting function

e -qA3/6 for A = t-s

decreases as the cube of the time difference. We recall that the fre-

quency-uncertainty filter (with an unknown but constant frequency) had

a A2 decay, while the original static phase filter of chapter 5 de-

creased with A only. Here, the approximation method recognizes that a

changing frequency makes old data even less reliable than the uncertain

frequency of section 6.2.

6.4 FM Problem

6.4.1 Problem Statement

We complete this chapter by analyzing an approximate density filter

for a standard frequency-modulation (FM) problem (see, e.g., Van Trees

[40 p. 94]). This problem has recently been examined by Tam and Moore

[39], who obtained Gaussian-sum approximate filters for this system as

well as for the first-order PLL problem as discussed in section 5.3.3.

The phase is modelled as the integral of a first-order Markov frequency
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process. That is

6 0 1 0
d = dt + du (6.74)

( 0 -f W 1

where

E[du2 qdt (6.75)

and we use the baseband measurements as before (equation 6.2). This

problem is reducible to that of the last section (with f=O) but yields

much different results (for f/O). The main advantage of this model is

that the frequency variance has a finite steady-state value, unlike that

of section 6.3.

6.4.2 Classic PLL Design

We first note that a classic phase-lock loop can be designed for

this problem as in section 6.3.2. The results are summarized below

for completeness (see, e.g., Van Trees (40, p.94] for details). The

filter equations are

e 0 1 e K

d = dt + dz (6.76)

W 0 -f W K 2

where

(6.77)
LK 2j 2r L '1
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and the linear-predicted error variance becomes (in steady-state)

P = [4r 2 f2 + (32 r 3 q)1 2 1 1/2 - 2rf (6.78a)

11

P = P /4r (6.78b)

12 11

fP2

- 1 P3 (6.78c)
22 4r 8r2 k£1

The filter structure of this loop is the same as that of figure 6.2 ex-

cept that 1/(s+f) replaces (1/s) in the w signal path and, of course,

the gains are different.

6.4.3 Approximate-Density Filter

We now design a first-cumulant approximate density filter for this

system (equation 6.74). We first consider the covariance equation for

the dynamics

0 1 0 0 0 0

P = P + P + (6.79)
0 -fj 1l -fJ 0 qj

We are interested in two solutions to this equation. The first is the

solution for Pt/s, that is, a solution for Pt given that P = 0

(for t > s) . This is found to be

(6.80)

A - [3-4e-fA + e -2fA -fA 2
2 3  2 2

2f 2 2f
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for

A = t-s > 0 (6.81)

The second covariance we want is that for the steady-state system,

that is, Pt for large t. If the initial conditions for P22 and Pl2 are

equal to their steady-state values (q/2f and q/2f2 respectively), then

the variance Pt may be written

Co q/2f2

p = j(6.82)
t q/2f2 q/2f

where we let P (0) go to o to represent the a priori uniform phase

density (module 2fT). (Strictly speaking, we will want to use the identity

0 0

P = [ (6.83)
0O 2f/q

-1
for time s, which will be true if we compute Ps for P (0) < 0, and

s 11
-1

then take the limit of Ps as P (0) + 0.)
s 11

We note that the transition matrix for the dynamics of equation

6.74 is

1 1 -fA
f#(t,s) = (6.84)

0 e f

We now may obtain Ps/t (as in section 6.3.2) from equation 4.79
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-l T -l1-
P = #T (ts) P 1#(ts) + P 1  (6.85)
s/t t/s s

Using equations 6.80, 6.83, and 6.84, and after much simplification, we

find that

q - ( 3 -4efA + e-2fA q (-efA 2
2 32

f 2f 2

Ps/t = (6.86)

_ '1-_ -fA 2 __ -fA
f 2 2f

2f

Similarly, we use equation 4.78 for the mean

s/t t

SP T (t(s) P ( 1 (6.87)
o / s/t t/s t)s/t/t

and equations 6.80, 6.84, and 6.86 to obtain

TI1 - (1-e- ) e
s/t f t

-fA (6.88)
( /o 0 e ( t

Thus, since (e , w ) conditioned on (, ) is a Guassian random
s s t t

variable with mean given by equation 6.88 and variance given by 6.86,

we may take the (by now) familiar expectations to obtain

(P ) l-
sin s 1 s/t sin (0t f tEICs S)~ Jett = e ~2 [o ( 1 -e-fA W(.9EL 0 J L -e (6.89)
cos6 cos (0t f-
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This means that the first-cumulant approximate density (using the steady-

state a priori density including the uniform phase) becomes

2x(w) sin e + y(Lo) cos e -(w /2)q/2f
e e

(6.90)

where

7T 2

ex(W) sin e + y(w) cos e -(w /2)q/2fde do

t -(P ) /2t

x -2r e

t -(P )/ 11 /2)

y (M 2r ofe

(6.91)

(6.92a)

1-efA 1-efA
(Cos f ]dz1 + sin O [ ]dz)

(6.92b)

-fA -fA
(Cos [e ] dz -sin W [ 1 ]dz 1)f 2f 1

q fA -2 fA
(P A - (3-4e + e

St11 f 2 2f3
(6.93)

and

A = t-s (6.94)

The statistics x(w) and y(w) contain integrals of complex functions

of s and W, and therefore will be difficult to approximate. Nonetheless,

some interesting facts about the filter may be obtained by a simple ex-

amination. We let

x( ) = xs + x P9

p (8,o~jtI z~t

1 0

00

Wi =

(6.95a)
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y (M) = ys + yk

where

x f (s,t, O)

dz

yS f (st,W)

and

for

x Tf (s It~o)

y f (s,t,) I dz

f (s,t,w) = e Ps/t 11 /2
(Cos O

sin a)

and

- (Ps/t 11/2
f (s,t,w) = e

-sin -e fA T

fcs')

We want to divide the integrals from 0 to t into two regions, one

where A is "small" (T to t) and one where A is "large" (0 to T). Then

for small A we have that, to order A3 *

(P ) A3
s/t 3

(6.100)

*
Interestingly (Ps/)st11

2
= 0 to orders A and A.

(6.9 5b)

(6.96)

(6.97)

1-e -fA
f

- -eA
(6.98)

(6.99)
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and to order A

fA
1-e = A (6.101)

f

Then we may approximate

Cos A sin o A
s t - A36.02

(::)Tf e A -sin w A cosWA dz (6.102)

which is very similar to the Brownian-motion-frequency filter derived in

section 6.3. For large A however,

(P ) A (6.103)
s/t 2

1-e fA 1(61411 fA

1-e _1 (6.104)

f f

and

x cos - x + sin -Y
(6.105)

yk cos - y - sin - x

where

( =) e f2 ( (6.106)
(Y) dz2)

Thus, the recent information (small A) is treated like that of the

Brownian motion frequency filter with a A weighting, while the old data
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is treated, for phase estimation, like that of the static phase filters

with A weighting. It is interesting that the old data is not used for

frequency estimation, however. To see this, we examine the statistic

F(W) (see equation 6.28) for the old data states x and y.. We have that

2 2 -2 - 2
F ( ) = x (1 + y ( ) = x + y (6.107)

which is independent of W!

This filter, unlike that of section 6.3, recognizes that the older

data does not contain useful frequency information. (The filter of

section 6.2 is designed for a constant frequency, and the old data is

useful in that case.) Finally, we note that if we let q + 0 in the filter

of equation 6.92, we obtain the (optimal) static phase filter first en-

countered in section 3.3.2. This is because we defined the initial fre-

quency covariance to be equal to its steady-state value

P =q/2f (6.108)
220

so that setting q to 0 removes all frequency uncertainty, and the problem

reduces to the no-process-noise phase estimation problem discussed

earlier.

6.5 Summary

In this chapter we have applied the first cumulant approximation

method to the design of sub-optimal filters for three second-order PLL

problems. We have shown that this method produces complex but intuitively

pleasing filters which converge to the optimum as the process-noise
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strength goes to zero. The implementation of these filters awaits

further investigation and will require certain approximations. If fre-

quency estimation is desired, a bank of filters spanning the range of

possible frequencies will be needed. In addition, for the filters with

inseparable functions of s and t, the impulse response of each filter

will have to be approximated by a finite number of separable functions

in the manner of equation 6.47.

Despite the implementation difficulties, we feel that these fil-

ters represent practical approaches to phase and frequency estimation in

high-noise environments. Clearly, in low-noise applications, there is

little reason not to use the classic PLL, which approximates the optimal

linear filter after acquisition. (If acquisition in low-noise areas is

a problem, we suggest considering the compound PLL structure of chapter

2.) For high-noise applications, however, the infinite-dimensional

bank of filters (e.g. that discussed in section 6.2) is closer to the

optimal (q=0) parameter estimation result than the compact but poorly-

performing PLL.

This facet of our approximation method will be, we suspect, typical

of most of its applications. The approximate filters generated by the

methods of chapter 4 are closer to multiple-hypothesis testing detectors

than to filters generated for the linearized problem. This is not

surprising, since the same likelihood ratio used in the hypothesis tests

is used in the representation theorem on which our approximations are

based. We therefore believe that the ability to interpret the approximate
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density filters as modifications of the linearized filters (e.g. the

static phase filters as "special" PLL's as discussed in section 5.4.1)

will be the exception rather than the rule. We do not consider this

to be a drawback to our method at all, since if the noise is low, the

linearized filters will probably work quite well, while if the noise is

high, there is no reason to expect the linearized filters to work at

all. It is in the high-noise region, where the linearized filters break

down, that alternate filters are needed, and it is here that we expect

our method to help, both by directly providing useful filter structures

and by giving a great deal of insight into the characteristics of the

particular nonlinear filtering problem being considered.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

We have considered a class of nonlinear filtering problems char-

acterized by a Gaussian state, nonlinear measurement, ard additive white

Gaussian measurement noise. Much of this thesis has been devoted to

first- and second-order phase-lock loop problems, both because they are

examples of the general class and because they are interesting in their

own right. A particularly interesting feature of these phase-lock loop

problems is that PLL's are extended Kalman filters, and represent practi-

cal performance benchmarks for any other nonlinear filter. We have been

concerned with two aspects of these problems where the usual linearized

analysis (and the PLL) breaks down: acquisition in low noise and state

estimation in high noise.

Our major contributions have been:

1) For high signal-to-noise ratio applications, we have developed

a technique, the compound PLL, for greatly improving PLL acquisition

performance without significantly affecting the (optimal) loop noise

attenuation.

2) For the general problem with high noise, we have developed

a method for approximating the conditional density function that requires

no a priori assumptions about the shape or moments of the density. This

technique results in an approximate density, constructed from a set of

statistics which are functionals of the measurements, which may be used
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to obtain state and performance estimates.

3) We have applied this general method to the design of phase

estimators without making the low-noise assumptions inherent in PLL's.

For the high-noise case simulated, the first term in our approximation

resulted in a filter which out-performed the PLL.

4) In the course of applying the approximation method to the first-

order PLL problem, we have examined several sub-optimal filters and com-

pared them to the phase-lock loop. We have noted "hidden" filter equiv-

alences and discussed low-noise convergence for some of the designs.

We have also developed a modification of the approximate density filter

in 3 (above) that offers improved performance at a slight increase in

complexity.

The common thread through our analyses has been the avoidance of

the linearizing assumptions usually used in nonlinear problems. This

has allowed us to "use" the nonlinear properties of one-phase-lock loop

to improve the acquisition performance of another loop for the compound

PLL. It has also allowed us to generate approximate-density filters

for the full nonlinear problem that are free from Gaussian prejudices.

This has been both a blessing and a curse: some of the approximate den-

sities for the first-order PLL problem seemed quite reasonable for the

problem, but unfortunately we were unable to obtain good phase esti-

mates from the unfamiliar density forms. We expect more of these

problems as other non-Gaussian densities arise in nonlinear estimation.

This leads to a discussion of future research topics which have

been suggested by this thesis:
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1) The compound loop analysis is relatively complete, we feel, for

phase-lock loops. Simple acquisition aids, however, will always be in

demand for linearized filters that need to be brought into their linear

performance range. The acquisition problem has hardly been solved in

such a general context.

2) The approximation technique is still fertile ground for develop-

ment also. It should be possible to strengthen our convergence results

for the approximations. It also seems possible to obtain tighter per-

formance bounds on the use of approximate-density filters.

3) We hope it will prove possible to simplify the first-cumulant

approximation so that problems of higher dimension may be handled more

easily. It seems reasonable that the Gaussian state and first-cunulant

method may be combined to obtain differential equations for the filter

states directly. We now use two distinct steps to obtain these states:

a backward conditional expectation followed by a forward integration.

4) As discussed above, the approximate densities are useless with-

out a methodology for obtaining state and performance estimates. In

nonlinear filtering in general, we believe there has been too much em-

phasis on mean and convariance estimation, due to our Gaussian upbringing,

and not enough emphasis on other density statistics that may better fit

the problem. We hope this thesis kindles such an interest.

5) Finally, we hope the approximation method, whether simplified

or not, will be tried on other problems where the noise is high enough

and the nonlinearity strong enough to make extended Kalman filters ill-
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suited to the task. For these problems, where the payoff is high, we hope

to see approximate-density filters perform well. Also, in these problems,

the benefits of the higher-order approximations may be more apparent.
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APPENDIX A

Bessel Function Relationships

At several places in this thesis (e. g., sections 1. 4. 3.1, 3. 3.2, and

5.5.1) we use density numerators of the form

a Cos(-)
u =e (A.1)

or

x sin e + y cos 0 A.2)
u= e(A2

for

tan x/y (A.3)

x2 2 (A.4)

Bessel functions arise naturally when integrating these numerators.

We define the modified Bessel function I n(a) for any integer n
n

(including zero) as (see Abramowitz and Stegun [l])

1 c 0a cos 0
I (a) = - 7 cos(n e)e dO (A.5)
n 2Tr _

This is a positive function, for any positive a, with

I (0) = 0 n/0 (A.6)

I (0) = 1 (A.7)
0

(A.8)I (a) = I (a)
n -n
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Several interesting relationships follow from definition A.5. In parti-

cular, we have the recurrence relations

I (a) - I (() = I (a) (A.9)
n-1 n+1 a n

dI (a)n
da

dI (a)
n
da

dI (a)
n
da

-I la) - n I (a)a. n
(A.10)

(A.ll)=I (a) + I (a)
n+l a n

1 (I (a) + I (a))
2 n-1 n+l

(A.12)

Also, since

11 = I1(a)

from equation A.8, we have (using equation A.ll)

dI 0 (a)
-= I (a)

da 1

For convenience, we also will define the Bessel function ratio

I (a)

g (a) = I
0

which is a well-defined function of positive a with

g (0) = 0

g (0) = 1

n0

and

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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and

lim gn () =1 n:/O (A. 18)

We may derive recurrence relations for g from equations A.9 and A.12 as

gn- -g n1 a2n ) (A.19)
n1 n+l a (Ct

and

dg (a) gn(a) + g+ (a) (A.20)

d nn 2 n + ~ 9 1 M n ( a )

Finally, we remark that, in addition to [l], Watson [42) and

Erdelyi, et al. [13), are excellent references on Bessel functions.
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APPENDIX B

Linear Error Equations

B.1 Classic PLL

In section 2.3.3.3., we define the state

E
x =

y

(B.1)

where 6 is the phase error and y is the output of the a/s integration in

Figure 2.6. This state propagates according to the differential equation

(B.2)

The convariance of this system therefore propagates as

1= -2KP - 2P
1l 11 1

P= aKP - KP
12 11 12

2
+ q + 2r K

2

- 2raK 
2

P22 = 2aKPl2 + 2ra K

This may be solved for the steady-state covariances

Pl2 = - arK

and

P1 1 = -P 1 2 /K + q/2K + rK

is the ij th element of the 2x2 covariance matrix for the vector

(B.3)

(B.4)

(B.5)

*P. .

x.

(B.6)

(B.7)

P22

-K -l 1 -K

x = x +
aK 0 0 aK n



-213-

so that

P = r(a + K) + q
2K

where P is the phase error variance.

B.2 Compound PLL

To obtain the error equations for

E =66

(B.8)

(B.9)

in the compound loop (section 2.3.4.3), we find it useful to consider

A

e as a second state variable, although the variance of E is of no in-

terest. We consider the error equations

= -K E + u
2

E = K (5- + n')

If we let

x =

then

(B.10)

(B.ll)

(B.12)

(B.13)k 0 K 2 + 1 0 tnit= Ex :~, + [':1n
T K -aK an of 0 K i n A

The convariance of this system propagates as

11 = -2K2 P12 + q (B. 14)



-214-

l2 = K2 22 + K1P11 - K1Pl2 (B.15)

f2 =2K P - 2K P + 2rK2  (B.16)
22 1 12 1 22 1

The steady-state covariance is therefore

P =' - i (B.17)
12 2K2

P = Pl2 + rK1 (B.18)

= + rK
2K2 1

K2
K2 - (B.19)

11 K 22 12

= - + q+ rK
2K2 2K1 2



-215-

APPENDIX C

Stochastic Calculus

Several processes and filters in this thesis obey equations of the

form

t t
x= Jf(x )dT + f g(x,)du (C.1)

which we write

dx = f(x)dt + g(x)du (C.2)

where

E[du duT] = Qdt (C.3)

These are not ordinary integral and differential equations, but Ito

(stochastic) equations. The presence of a function (g) of x multiplying

the Brownian motion separates these equations from those of the usual

calculus, and special care must be taken in dealing with them. This

appendix will not attempt to justify any of the rules we will present,

but only list them for reference. The reader is referred to Wong

[45], Jazwinski [19], or McKean [31] for details.

The first "problem" with stochastic equations is that the chain

rule does not hold. That is, for a twice-differentiable scalar function

($) of the vector x, the derivative of 4 is not just

T

but instead
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d$ = (2k) T dx + tr (g(x)QgT (x)$ }dt (C.5)
a x 2 xx

where "tr" denotes the trace of the matrix argument and

($ ).. = - 2@ (C.6)
xx 13 ax.Dx.

1 J

The second difficulty in analyzing equations of the form of (C.2)

is that implementation or simulation of stochastic differential equations

requires "Wong-Zakai" correction terms in order to compensate correctly

for the difference between ordinary "white noise" (Wiener) integrals

(where g is not a function of x) and the stochastic integrals in our

analysis (see Wong [45] p. 161, or [46] or [47]). This means that the

Ito equation for the scalar x

dx = f(x)dt + g(x)du (C.7)

with

E[du 2 = (1)dt (C.8)

is simulated (e.g., a Runge-Kutta integration routine) or implemented

by the equation

x = f(x) - [g(x) x + g(x) (C.9)
2 Dx

where ni is implemented by Gaussian "white noise" (noise with a flat

spectral density of unit height over the frequency range of interest).

For digital simulations with an integration step size of A, 6 is

approximated by a piece-wise constant (for interval lengths A) function
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of time. The value of this function over each interval is obtained

from a sequence of independent, zero-mean, Gaussian random variables with

variances of 1/A.

The vector correction terms are more awkward. For a vector x de-

scribed by the Ito equation C.2 with Q (equation C.3) equal to the

identity matrix, the ith component of x is implemented by

.= f. (x) - E g(x) --k + Zg..(x) . (C.10)
2jK I xK L

where each Gi. is obtained as above.
J



-218-

APPENDIX D

Steady-State Density for a

We want to justify our assumption that a goes to a steady-state

value in equation 5.104. First, we show that a2 goes to a steady-state.

We then argue that all of the even moments of a go to steady-state, al-

though no general formula is available. (This is the missing link in

our proof.) Finally, we point out that if all of the even moments of

a positive random variable go to steady-state, then the density of the

random variable (and therefore all functions and moments) goes to a

steady-state value.

In equation 5.29 a is defined as

2 22
ax= x + y2 (D.1)

where x and y may be written as

t
= e-f(t-T) d2 (D.2)

for

sin e
dz= dt + dn (D.3)

cos e)

We cannot obtain E[X] directly because of the square root, but

we may write

Ea 2 ef[ 2 tT E[dzl dz1 + dz2 dz ] (D.4)
4r T s T s
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Now we may write

dz dzi = sin6 s sine dsdT + sin6 s dsdn
s T T

+ sin T dTdn1 + dn1
S S T

dz2 dz2 =cos escos O dsdT +
s T

cos s ds dn2

+ cos dT dn2 2 2 2
s s S T

Since n is a Brownian motion process, we have that

2 t 1 e -f[ 2 t-T-s] {E[cos (0 -e
4f r2 

T s

+ 4r 6(T-S)}dTds

Also, since 6t is a Brownian motion, we may use the folded-normal density

relations (equation 5.76) to obtain

- IT-s
E[cos (6 -6s H 2

Thus

E [ 2 -f [2 t-T-s] e
dTds

+ 1 (1-e-2ft

which may be written (since T and s are interchangeable above)

(D.5)

(D.6)

(D.7)

(D. 8)

(D.9)
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2 [ f [2t-T-s q (T-s2~ [ e-I qi s d,
2r 2' f

1 (1-e-2ft
2rf

Equation D.10 is solved by

2 1 l-e- 2ft
E[ -2r2 2f(f+q/2)

-t (f+q/2) -e

f 2-(q/2)2

+ (1-e-2ft)2 rf

for

f $ q/2

and by

E [(12 2
2 r2

l-e-qt _ t e-qt

q q
+ l-e-qt

rq

f = q/2

In either case, (equation D.11 or D.13)

lim E [a ] = 1 + A
t-)o 2r 2(2f) (f 4 ) 2rf

2

which becomes, for f=q/2

2 1 1
lim E [a = +
t-+ 2r2 q22 rq

(D.10)

-2 ft
(D.11)

(D. 12)

for

(D.13)

(D.14)

(D.15)

(D.16)
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We cannot evaluate the density for a

P (a, t)

2n-1
or the odd moments, E[a ], because of the square root in equation

D.l. But we know that the second moment goes to a steady-state value

2n
(equation D.15) , and we suspect that all even moments, E [a 1, also go

to steady-state, although no general formula is available. If this were

proven, it would be sufficient to guarantee that P (a,t) went to steady-

state. To see this, we define a new random variable

y = a2 (D.17)

which is a well-defined one-to-one function of a since at is non-negative.

We assume that all of the moments of y (all of the even moments of a)

E[yn ] = E[a2n ] (D.18)

go to steady-state values. Then clearly p (y,t), the density for y,

goes to a steady state, since it may be formed from the inverse Fourier

transform of the characteristic function of y, which is specified by

all of the moments. This means that

P a(a,t) = 2aP (a 2, t) (D.19)
a y

must go to a steady state also, since the change of variables formula

is independent of t.
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APPENDIX E

Third-Moment Approximate-Density Equations

This appendix evaluates the third moment

E (C') = E
8r 0

(E.1)

tsin

co s

T . TS T sin e
t2 dzt t3 dzt

6t 2 t os)t 3

for the first-order PLL problem approximate-density filters (see section

5.7.3). After carrying out the multiplications in equation E.1, we obtain

integrands of the form (cosine also)

sin (t + e + e ) dz.
1 2 3 t

dz.
t
2

dzK

Since e t is a Brownian motion (conditioned on et for t <t) with

(E.2)p(t e ) = N(Ot, q(t-t1))

we have that

p(6 t -+ tt2 t3 t) = N(t, q[t-t1-t 2 -t 3-2 max (ti, t2) (E.3)

+ 2 max(t1 , t3 ) + 2 max (t 2, t 3H

and

p(et + t+ et lt) = N(3t, q(9t-t -t 2-t3-2 max (ti, t2) (E.4)
1 2 3'1

- 2 max (t2, t 3) - 2 max (ti, t 3)M
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Using equations E.3 and E.4

identities (for p($) = N(m, y))

~sin

E =e

cos $

and the folded normal

sin m

cos m

we find (after much simplification) that

(E.6)
13 3
E ( ) = 6 [x sin t + x cos t + X3 sin 30t + y30 ts t c t

cos 30 t

dx
5

as dt + -[(x + x ) dz +(x 2) dz2 s 8r 12 21 2 11 - 22 1

+ L (y 1 + y )dz
4r 11 22 1

dx cdt + [ (x + x dz + (x -x dz22 c 8r 12 21 1 22 11 2

+ 1 (y+ y2 2 )dz2

dx - dt +  [ [(x2 2 -x) dz +
dx dt+- 8 2 11 1

dy-9 y t+1 r(
dy3  2 3dt + r (x 2 2 1 1)dz 2

with the "intermediate states"

dx =2qx dt + x dz
- 2qxr 

dx -2qx dt +-1xdz
12 12 2r 1 2

(x 1 2 + X2 1) dz2 ]

x12 +x 21)dz ]

(E.5)

where

(E.7)

(E. 8)

(E.9)

(E.10)

(E.11)

(E. 12)
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dx 2qxldt + y dz (E. 1
21 2 1 dt2r 1d1

dx -2qx dt + -y dz (E. 1
22 22 2r 1 2

dy = 1 dz (E.1
11 2r 'l 1

dy2 1  dz (E.1

e familiar

dx = - a x dt + 1dz (E.1
1 2 1 2r 1

dy1 = - a y dt + 1 dz2  (E.1

The computer simulations of these states require Wong-Zakai cor-

3)

4)

5)

6)

7)

8)

rection terms as discussed in appendix C. Using the above differentials,

we actually simulated

dx 1
x = s -1x

s dt 4r 1

dx
it c 1 y
c dt 4r 1

dx

3 dt

dy
3

3  dt

dx11
x= 1 1
11 dt 4r

dx12

12 dt

and th

(E. 19)

(E.20)

(E.21)

(E.22)

(E.23)

(E.24)
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S dx 2 1  
(E.25)

21 dt

= dx 2 2  1 (E.26)
22 dt 4r

dy1 1  1

dy 22  1 
(E.28)

22 dt 4r

and

dx
= 1 (E .29 )

1 dt

9= 1  (E.30)
1 dt

In our simulations, the y1 1 and y 2 2 states grew much faster than

any of the x.. states, so that the equations for x and x could be
13 s c

simplified to (cf. E.7 and E.8)

dx = - a x dt + 1 (y + y )dz (E.31)
s 2 s 4r 11 22 1

dx = - ax dt + A (y + y )dz (E.32)
c 2 s 4r 11 22 2

The simulated states became

dxs
k s 1 (E.33)
s dt 8r 1

dx
= c 1 (E.34)

c dt 8r 1
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