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ABSTRACT

This thesis examines the issues of modeling and estimation of space-
time stochastic processes in the context of two physically motivated prob-
lems. These two problems are distinguished by the manner in which ob-
servations are made on the space-time processes involved.

The first problem involves a space-time process, called the signal
field, being propagated by a time-invariant spatial process called the
transmission field. Observations are made on the signal field via a
spatially fixed sensor and these observations are processed to estimate
the signal field and to infer the properties of the transmission field.
Extensions of the problem to the case of multiple signal fields with a
single sensor and the case of a single signal field with multiple sensors
are also considered. Applications of these space-time models formulated
here and the associated estimation and statistical inference results to
various physical problems are pointed out wherever appropriate.

The second problem deals with the estimation of a time invariant
spatial field via observations from a point sensor moving across it
in space. A novel approach of modeling the field with a stochastic dif-
ferential equation is proposed and the implications of this model for
field estimation are examined. Results are derived for field estimation
in both the cases of random and deterministic sensor motion. A novel
problem of optimal field estimation via sensor motion control is introduced
and solved explicitly in one special case.
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TITLE: Associate Professor of Electrical Engineering and Computer Science
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CHAPTER 1

INTRODUCTION

1.1 Motivation for our research

The theory of stochastic processes has played an important role in many

branches of science, engineering, economics, management and even the social

sciences. In the field of control and communication, its impact has been

especially vital. Ever since the pioneering work of Wiener in the forties

in applying statistical theory to this field [1]-[3], a tremendous amount of

research has been done on it over the last three decades. The publication

of Kalman and Bucy [4] in 1961 represents a major breakthrough in filtering

theory and is the starting point for the present day research in recursive

estimation via stochastic differential equations. At present, it can be said

that, in principle, the nonlinear estimation problem has been solved in that

it is well understood, and recursive and non-recursive (infinite dimensional)

solutions have been developed. In actuality, of course, the development of

implementable approximations remains an important research area. Recent pu-

blications such as [5]-[7] can be consulted for detailed expositions and

solutions to the general nonlinear filtering problem.

The success of the statistical theory in control and communication pro-

blems has inevitably led researchers to explore similar applications for the

theory in other fields. One field that has emerged recently in this explo-

ration is the modeling and statistical analysis of random quantities which

vary in space and time. Application to physical problems is no doubt the

prime motivation for considering this class of problems and physical examples

abound, as we shall point out, which demonstrate the importance of a

-9-



statistical theory in this field. Another main reason, from the view-point

of systems engineers, is to see if the ideas of modeling and statistical

inference for stochastic processes in time can similarly be applied to pro-

cesses in space and time. That is, since estimation theory concepts have

been so thoroughly developed for processes in time, we feel that it is time

to lay the foundations for a similar theory for processes which also vary in

space. These issues provide the primary motivation for this research. Our

goal is to understand the issues raised by space-time processes. It is, of

course, impossible to answer all of the questions that can be raised and

our intent, rather, is to take a fundamental step in extending stochastic

analysis and estimation ideas to space-time processes.

A word of terminology here. We will use the terms space-time stochastic

processes, random fields or fields interchangeably.

A space-time stochastic process can of course be viewed as a collection

of random variables indexed by a vector parameter. Many workers in this

field tend to view this vector parameter as multidimensional time. The

early work in this field has mostly taken this point of view [8]-[10], but

these authors were only concerned with certain mathematical analysis aspects

of the problems, and their problem formulations and results were not motiva-

ted by any particular class of physical applications. However, their work

does provide some fundamental understanding of the difficulties of multi-

parameter stochastic calculus. At present, Wong and Zakai [11]-[13] have

also adopted such a point of view and their efforts have been directed at

producing a multiparameter stochastic calculus. None of the authors who deal

with the concept of multidimensional time have so far given a good explana-

tion or an example of how the concept can be useful in practice. We feel that
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the results in the references on multiparameter processes cited above repre-

sent important but only very initial results in this area and do not form

a usable calculus for dealing with practical problems yet. In particular,

the artificial causality imposed on multidimensional time in these studies

must be eliminated or at least its implication must be thoroughly understood

before we can successfully apply their results to physically motivated

random field problems.

Besides the work on multiparameter processes cited above, various re-

searchers have dealt with different aspects of space-time processes through

different approaches. First, there is the work on time-invariant spatial

processes using the correlation function approach which is analogous to the

traditional correlation function approach to temporal processes. The work

of Chernov [14], Tatarski [27], Wong [46] and so on are all based on this

approach. Using this approach, the authors above were able to characterize

the properties of the fields of interest. Yaglom [64] has also treated

rigorously the mathematical properties of random fields using the correlation

approach. A few other isolated attempts in dealing with space-time proces-

ses can also be mentioned. The work of Woods [50] has dealt with Markovian

random fields in discrete space and Ito [61] has attempted to establish a

general theory for homogeneous or isotropic random vector fields. On the

physical application side, the work of McGarty [62] on characterizing the

structure of random fields generated by a scattering medium should be

pointed out. All the work cited above has dealt mainly with characterizing

the properties of random fields. In the area of estimation and statistical

inference on random fields, a great deal still remains to be done. More

recently, some progress has been made in this direction. Notable among the
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work accomplished is that of Fishman and Snyder [21]-[23] in the area of

space-time point processes and that of Wong [24], (63] in recursive filtering

of two-dimensional random fields employing some of his results in multipara-

meter stochastic calculus. In addition, the work of people in the field of

statistical image processing should be mentioned. An image can be viewed as

statistical data defined on a two-dimensional surface [65], [66] and this

data is usually processed line-wise as a one-dimensional sequence of statis-

tical data using the well developed theory of estimation for stochastic

processes in time [67], [68]. Recently, however, Attasi [66) has developed

some results for modeling and recursive estimation of statistical data de-

fined on a two-dimensional discrete space with application to image processing

in mind. The work of Wong and Zakai on multiparameter stochastic calculus

cited earlier also has application to image processing as one possible

motivation.

At present, it can still be said that the modeling and estimation of

space-time stochastic processes is a very new topic and at this stage it is

not clear how such problems should be approached in general, in contrast to

estimation of stochastic processes in time. Therefore, we have taken the

point of view that instead of trying to formulate general hypothetical

space-time modeling and estimation problems, we should abstract some useful

and physically meaningful examples and examine the issues of modeling and

estimation of space-time processes in the context of these examples. This

point of view is precisely the starting point of the research reported in

this thesis. We note here that the work of Fishman and Snyder [21]-[23] in

the area of space-time point processes is aligned with the point of view that

we have adopted, while the work of Wong [24], [63] is more toward a general
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hypothetical formulation. The problems that we have considered in this

thesis, although abstracted, are motivated by physical applications. This

is unlike the cited work on multiparameter processes which may be useful

eventually but are far away from physical reality in their present form.

Of course, the solutions that we have provided to these problems do not

indicate in general what space-time modeling and estimation problems are

like. However, they do provide some insight into some aspects of space-

time modeling and estimation and indicate some of the difficulties that

arise in space-time estimation that never arise in estimation of stochastic

processes in time. Our work here should be viewed as an initial attempt in

taking a step toward developing a theory for estimation of space-time pro-

cesses. As such, we cannot expect our problem formulations and our results

to be very general. However, we feel that they are very basic, and many

extensions are possible to handle more complicated space-time problems. All

these will be pointed out in the remainder of the report.

We have restricted our work here to processes which vary in time and in

only one spatial dimension and even for such processes we have considered

the temporal and spatial variations separately. There are two basic reasons

for this: (1) in order to consider the multidimensional case, one would need

to use some type of multiparameter stochastic calculus; although a number of

results (such as those of Wong and Zakai) have been obtained, it is not yet

clear how to use such mathematical tools to formulate multidimensional space-

time estimation problems along the lines we have considered here; (2) many

of the important concepts of space-time estimation already arise in the one-

dimensional case we do consider, and we feel that a thorough understanding

of these is required before we introduce the further complication of several
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dimensions.

1.2 Structure of the thesis

This thesis deals with two main problems of space-time modeling and

estimation. These two problems are distinguished by the method whereby

observations are made on the space-time fields involved. In the first case,

considered in Chapter 2, observations are made via a spatially fixed sensor

and in the second case, considered in Chapter 3, observations are made via

a sensor moving in space. We describe these two problems in more detail

below.

In Chapter 2, we consider the problem modeled by a propagating space-

time field, which we call the signal field, being transmitted by a time-

invariant spatial field which we call the transmission medium. The signal

field is assumed to be generated by a source located at a fixed point in

space. Observations are made on the signal field as a function of time by

a sensor located at a fixed spatial point in the transmission medium and the

problems we are interested in are: (i) to estimate the signal field at the

location of the sensor using the observations, and (ii) to infer the pro-

perties of the transmission field using the observations of the sensor and

the estimates of the signal field. We give the complete solution to the

signal estimation problem and examine it under various special cases, such

as the case of linear time-invariant signal model in the steady state. To

infer the properties of the transmission medium, we compute the a posteriori

probability distribution of the travel time of the signal field from the

source to the sensor. Since the delay effect is the only influence we

assume the transmission field exerts on the signal field in propagating it

from the source to the sensor, the delay time is the only quantity concerning
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the transmission field that we can estimate. It turns out that the signal

estimation problem and the delay time estimation problem are coupled. We

give the implementation of the overall problem of signal and delay time

estimation and examine some suboptimal approximate implementations. Then we

consider extensions of our problem, firstly to the case with multiple signal

fields due to multiple signal sources and a single sensor, and secondly, to

the case with a single signal field and an array of sensors. In both cases,

we consider the problem of estimating the signal field(s) and the correspon-

ding delay times involved. The signal estimation problem in both these

cases turn out to be much more complicated than that in the basic one-source-

one-sensor case and we draw upon some of the results in [37] on estimation for

systems with delays. The signal estimation and delay time estimation pro-

blems are coupled in both cases and the complete solution to the overall pro-

blem of signal and delay time estimation requires an implementation exactly

similar to the one-source-one-sensor case. We shall also illustrate our

results with some examples involving deterministic signals.

In Chapter 3, we consider the problem of estimating a time-invariant

spatial random field using observations from a point sensor moving across

the field. The field is assumed to vary in one spatial dimension and we

propose the novel approach of modeling the spatial variations of the field

using a stochastic differential equation. Reasons are given to motivate the

use of such a model which is really a spatial shaping filter, but we are

mostly concerned with the implications of such a model for random field es-

timation. We derive the equations for estimating the field using the obser-

vations of the sensor for the case in which the velocity of the sensor is

known perfectly and the case in which only noisy observations on the
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velocity and the position of the sensor are available. Our investigation of

the problem of random field estimation using observations from a moving point

sensor leads finally to a novel optimal control problem on the sensor. It is

natural to conjecture that the velocity of the sensor affects the accuracy

with which it can observe the field and hence the accuracy with which the field

can be estimated from the observations of the sensor. Therefore, it is natural

to consider the problem of designing an optimal velocity program for the

sensor so that different parts of the field can be estimated with the desired

accuracy. We solve this problem in the case in which the field and observa-

tion models are linear and in which the velocity of the sensor is known at

each time.

Chapter 4 concludes the thesis with recapitulations of what we have done

and what we think are good immediate extensions of our work. Finally, we will

give some thoughts on possible future directions for research in this new

area of random fields.

1.3 Contributions of our work

The major contribution of this thesis is the formulation of mathematical

models for certain physically motivated space-time process problems and in

indicating how the powerful techniques of stochastic analysis and estimation

can be used in their solution.

The problems we formulate and solve in Chapter 2 are basic models which

can have applications to such fields as wave propagation in a random medium

[14], [27], statistical fluid mechanics [28]-[30], seismic signal processing

[15], discrete multipath communication [16] and so on. Of course, in the

present form, our models are rather inadequate to handle any of the above

problems except in the simplest cases. However, we have taken the first step
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in building some very basic models on which extensions are possible to handle

the more complicated cases. Before the more complicated problems can be

faced, the issues raised by the basic models must be thoroughly understood.

This is precisely where the significance of the work in Chapter 2 lies.

The models we have formulated and the problems we are interested in

solving for the models in Chapter 2 are novel. They represent conceptualiza-

tions of some of the main problems in the areas of wave propagation in random

media and statistical fluid mechanics, and the abstractions of these problems

that we will study represent a new, initial attempt to apply many of the tools

of stochastic analysis and recursive estimation to abstract space-time models.

In the field of wave propagation in random media, Chernov [14] and Tatarski

[27] have treated the general theory, including turbulence effects, for both

sound and electromagnetic waves. They have dealt mainly with the physics of

the problem and have analyzed some effects the randomness of the media can

have on the propagating wave fields. The same remarks can be made of the

work summarized in the survey papers of Frisch [51] and Dence and Spence [52].

Soong and Chuang [48] have also considered this problem using the approach of

differential equations with random coefficients. However, none of the work

cited so far has dealt with the problem of estimating the propagating wave

field using noisy observations on the latter or of doing statistical inference

on the random medium using such observations. The models we have proposed and

the problems we have formulated are intended to answer some of these questions

that have not been touched on by the previously cited workers. The work of

people in the areas of radar and sonar communication [16], [31], [33], [53]

and seismic signal processing [15), [25], [26], [34] has actually touched on

the questions of estimating the wave field and of doing inference on the
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random medium. A good account of the theory currently used for estimating

the signal field and for doing inference on the random medium can be found

in Van Trees [16). This theory employs the frequency domain approach and does

not enable us to get on-line estimates of the wave field or to do on-line

inference on the random medium. In other words, the observations have to be

processed over a certain time interval before an estimate or an inference can

be made. The work on radar and sonar communication and seismic signal proces-

sing in the references cited above is all based on this theory. We will see

that the results in this thesis enable us to do on-line estimation and infe-

rence, i.e., an estimate or an inference can be made as the observations are

being processed.

In the field of statistical fluid mechanics, problems of transport by a

random fluid flow are even less well understood than the wave propagation

problems above. The main difficulty is that random flows are usually turbu-

lent, and turbulence is far from being well understood. The models we have

proposed in this thesis only represent the case of a steady random flow.

In [28], Monin and Yaglom have only discussed some basic statistical ideas

for inferring the nature of a random turbulent flow but no concrete results

are presented. References [29] and [30] also examine some statistical

characterizations of turbulent flows using moment equations or spectral

functions but do not deal with statistical inference on the flows. What we

are trying to do in this thesis is to take a first step in abstracting a

simplified model consisting only of a steady random flow and to understand

thoroughly the signal processing and statistical inference problems associated

with this model. The foundation that we lay in our work here will hopefully

enable future researchers to build more complicated models for physically
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realistic types of flows and propagation effects.

The work in Chapter 3 is a mathematical formulation of a class of random

field estimation problems which has already been carried out in practice. It

is motivated by such applications as microwave sensing of atmospheric tem-

perature and humidity fields using observations from satellites [17],[19]. We will

elaborate on the Nimbus-5 system considered in [17] and [18] in Chapter 3.

The measurement of the gravity field of the earth via instruments carried in

a ship travelling horizontally [69] also falls into this class of random

field estimation problems. The work on random field estimation currently

being carried out in practice, such as [17]-[19], does not employ stochastic

differential equation models for the fields of interest. Thus, our work

appears to be the first to examine the issue of random field estimation via

a dynamical model for the field, although the use of a dynamical model for

various random fields has by now been proposed or investigated by other

researchers [19], [20]. In [19], McGarty proposed the idea of fitting a

state variable model to the power spectra of the data on the constituent

densities of the upper atmosphere of the earth. In [20], workers at the

Analytic Sciences Corporation, Reading, Mass., have examined the idea of fit-

ting state variable models to gravity anomaly data for the earth. We

derive the equations for estimating a random field modeled by a stochastic

differential equation in both the cases of random and deterministic sensor

motion, and consider some special cases of the dynamical field model in

greater detail. The really novel contribution of our work is the introduction

of optimal control theory into this area of random field estimation, calling

attention for the first time to the idea of optimal field estimation via sensor

motion control. Although we have only examined one case of sensor motion
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control in this thesis, we believe that we have proposed an idea which will

lead to much further research in the future. Also, we feel that our proposed

suboptimal field estimation system when sensor position is not known exactly

has promise for future applications in this area.

We should remark here that our work in Chapter 3 is similar in spirit to

some of the current work on image processing [65], [67), [68] in which an image

is scanned line-wise and processed as a random process in time. The statistical

information of the image is usually assumed to be given in terms of the mean

and the two dimensional auto-correlation function. From this information, a

dynamical model for the evolution of the signal (image) along each line is

developed and estimation techniques for processes in time are applied to pro-

cess the image. This is very similar to our work in Chapter 3 but we have

considered many additional features of the problem of estimating a time invariant

spatial field observed via a moving point sensor than is considered in the

image processing literature. Of course, our problem formulations and our

results in Chapter 3 do not have much applications to image processing but the

analytical similarities with the latter are worth pointing out.

As stated earlier, the research in this thesis is based on the concept

that with our present understanding of space-time problems, the modeling and

estimation of space-time processes should be examined in the context of parti-

cular examples instead of in a general hypothetical framework. Our work

therefore contributes to the understanding of space-time problems in the con-

text of the examples we have studied. We believe that our concept of such an

approach to space-time problems is a fruitful one and hopefully this concept is

also one of the contributions of this thesis!
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CHAPTER 2

SPACE-TIME ESTIMATION VIA OBSERVATIONS FROM SPATIALLY
FIXED SENSORS

2.1 Motivation and the basic model

This class of problems is motivated by such topics as wave propagation

in a random medium and transport of material by a steady fluid flow. Our

basic formulation of this class of problems is as follows. We have a

"propagating space-time field", which we call the signal field, being trans-

mitted by a time-invariant spatial field called the transmission field. The

signal field is generated by a signal source located at a fixed point in

space and observations on the signal field are made as a function of time by

a sensor located at a fixed spatial point in the transmission medium. The

problems we are interested in are: (i) to estimate the signal field at the

location of the sensor using the sensor observations, and (ii) to infer the

properties of the transmission field by estimating its influence on the

signal field.

The formulation proposed above models the following situations.

(1) The transport medium is a dielectric material with random time-invariant

properties and the signal that propagates through it is an electromagnetic

wave. Alternatively the transport medium is a random time-invariant material

medium and the signal is a sound wave. In both these cases, it is of inte-

rest in practice to estimate the properties of the medium by processing the

observations on the signal. The processing of seismic signals to estimate

the structure of the subsurface of the earth [15],[25],[26] is a good

example. In this type of applications it is important to obtain estimates

of the signal itself because [26] the signal is the impulse response



of the earth and knowing the impulse response enables us to deduce the

structure of the subsurface of the earth. This area of application is of

great importance to geologic exploration such as oil prospecting. Simi-

larly, the estimation of the random refractive index of the atmosphere

using electromagnetic waves as signals [27] is also an important area of

application.

(2) The transport medium is a steady fluid flow and the signal is some

material transported by the flow. This problem is important in fluid me-

chanics where scientists have been trying to understand the nature of many types

of flows, especially turbulent ones. Recently statistical techniques have

been introduced into this area to help in characterizing the random nature

of these flows [28]-[30]. In [28], Monin and Yaglom suggest introducing

a dye into experimentally produced flows to help trace the structure of the

turbulence and they discuss some statistical ideas for doing inference on

the flow using observations on the dye. All these show that our problem

formulation is in line with the ideas of people in the area of statistical

fluid mechanics. Our model based on a time invariant random field might

be too simple to deal with the many practically important types of flows,

but we feel that understanding and solving the statistical inference pro-

blems for this abstracted model is a necessary first step before tackling

the more complicated ones.

In the class of space-time problems discussed informally above, the

signal estimation problem and the statistical inference problem on the

transmission field are the two problems of interest. Depending on the

application we have in mind for the basic model formulated above, the
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primary problem of interest might be either one or both of the problems.

In the remainder of this chapter, whenever appropriate, we will point out

specific possible applicatiornof the results of either problem.

Since observations are made on the signal field, we can view the sig-

nal estimation problem as a problem of direct inference on the signal

field and the inference problem on the transmission field as being indirect.

We can look at the time invariant spatial transmission field as an infor-

mation source on which no direct observations are possible. However, it

exhibits itself through its influence on the signal field which is being

transmitted. By processing our observations on the signal field, we want

to "estimate the influence" of the transmission field on the signal field

and thereby infer some properties of the former. Therefore, it is very

important in building our basic model here to specify exactly what the

influence of the transmission field on the signal field is. We shall assume

here that the only influence of the transmission field on the signal field

is a pure transport, i.e., the propagation of the signal from the source

to the sensor involves only a pure time delay. We could, of course, assume

more complicated models for the influence of the transmission field on the

signal field, e.g., the case in which the transmission field modulates

the amplitude of the signal field in addition to transporting it. However,

we shall be more modest at this stage and consider only the case of a pure

propagation time delay.

The basic model formulated above involves only one signal source and

one sensor. In later sections of this chapter, we shall extend our model

to the case of multiple signal sources and one sensor and the case of one
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signal source and multiple sensors and indicate possible applications for

such extensions of our model.

We admit that the basic model and its various extensions we have given

above may be too elementary to handle any real physical problems. However,

our intent in this thesis is not to apply our models to any specific real

application but rather to understand thoroughly the signal processing and

statistical inference aspects of such models in order to assess their po-

tential usefulness. With the groundwork that we lay in this thesis, future

researchers would be able to build on our models and possibly apply them to

actual situations. We shall only indicate, whenever appropriate, possible

applications we have in mind for our models and our results.

2.2 Mathematical formulation of the basic model

DIRECTION OF
SIGNAL
PROPAGATION

As

SIGNAL SOURCE TRANSMISSION SENSOR

AT s=O FIELD AT s>O

FIGURE 1: THE BASIC MODEL

We have chosen to consider here a time-invariant transmission medium

which is a random field in one spatial dimension. As stated earlier, a

usable multidimensional stochastic calculus would be necessary in order

to deal with variations in more than one spatial dimension. The
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transmission field is characterized at each point s' by a unique random

velocity v(s') which is the speed with which the signal propagates at

that point in the medium. We assume that v(s')>0 for all s'>0 so that

signal propagation takes place constantly in the direction of increasing

s. A sensor is fixed at some point s>O in the field. The input to the

transmission field is a signal field generated by a source located at s=0.

The situation is depicted in Figure 1.

The signal generated by the source is modeled by an Ito diffusion

process, i.e., the signal $t is given by

dt =a($t,t)dt + '($ t d , t>O
tj t d

$0 = random with given distribution, (2.2.1)

S=0 , t<0

Here, (-,-) is an n-vector and T is an n-vector of independent standard

Wiener processes, i.e.,

E{dltdnl'} = Idt (2.2.2)

The functions a(-,.) and y(.,.) are assumed to satisfy conditions for the

existence and uniquencess of $.

The travel time t of the signal from the source at s=0 to the sensor

at s>Q is given by

S

t = (2.2.3)
s v(s')

0
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and is a random variable. Assuming that we know the probability distri-

butions of the random variables v(s), for all s, we can, in principle,

compute the a priori probability distribution of t s. We suppose that the

source starts generating the signal at time t=O, and thus the signal field

first arrives at the sensor at time t=t . Since the transmission field
S

only transports the signal field from the source to the sensor, the signal

xt at the location of the sensor is a delayed version of the signal from

the source, i.e.,

xt =t-t (2.2.4)
S

The sensor makes noisy observations on the signal and these are modeled as

dzt = h($t-t ,t)dt + dwt (2.2.5)

S

where h(-,-) is jointly measurable with respect to both arguments and wt

is a standard Wiener process independent of T and of #0. Thus wt is

independent of # . If we assume w and t to be independent also, then
t t 5

wt and $t-t will be independent. This assumption will be made. We

S

define here the cumulative observation G-field:

Z = Y{z , O<T<t} (2.2.6)
t T _

The problems we are interested in are now:

(i) To estimate the signal xt using the observations Zt'

(ii) To infer the properties of the transmission field using the

observations Zt and the estimates of xt'
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We are interested in deriving on-time recursive solutions to the

problems posed above. Our mathematical formulation of the problem is such

that it is well suited for recursive solution. We shall see that our so-

lution employs the now well established theory of estimation for continuous

time processes via stochastic differential equations.

Note that some similar problems of processing space-time random pro-

cesses have been considered by Baggeroer [31] via the frequency domain

spectral function approach. The frequency domain approach was first

originated by Wiener in the estimation of temporal processes in the forties

and was not replaced by the present time domain approach until the break-

through of Kalman and Bucy [4] in 1961. In the area of space-time signal

processing, the frequency domain approach appears to be the only approach

employed so far, as a sample, e.g. [31]-[34], of the vast literature will

show us. Our work here therefore appears to be among the first to take

a time domain approach.

To infer the properties of the transmission field, we have to estimate

its influence on the signal field. Since the only influence of the trans-

mission field on the signal field is a pure time delay, the quantity ts is

the only variable we can estimate concerning the transmission field. We

shall see that we can recursively compute the a posteriori probability

distribution of ts, from which we can compute recursively the minimum mean

square error estimate of t . Under various special situations the delay
S

time estimate does enable us to estimate more about the transmission field.

For instance, if the transmission velocity v(s) is a constant, then equation

(2.2.3) reduces to
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t =s (2.2.7)
S v

Assuming that s is known, we can then estimate the velocity v. Alterna-

tively, v could be known and constant and we then can estimate the distance

s between the source and the sensor. The latter case is important

especially in radar/sonar communication problems [16] in which delay time

estimates are used to estimate the distance from a target. Delay-time

estimates are also very important in the processing of seismic signals [15].

We shall see that the delay time estimation problem and the signal

estimation problem are coupled. In the next section, we shall present the

complete solution in the case of a continuous range of values of t s. Then,

in Section 2.4, we examine the case in which ts takes on only a finite

number of possible values.

2.3 Solution for a continuous range of ts

In this section, we present the solution to the signal estimation and

delay time estimation problems formulated in the previous section for the

basic model. We first deal with the signal estimation problem and present

two solutions, one via a stochastic differential equation representation

for the estimate and the other via a "multiple-model" approach. Then, we

deal with the delay time estimation problem and discuss the implementation

of the above results. Finally, we examine the behaviour of our results

under special conditions, e.g., the case of linear time invariant signal

model in the steady state, and we investigate suboptimal approximate

implementations of our results using an assumed density approach. Some
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examples involving known signals will also be worked out. Throughout this

section, t is assumed to take on a continuous range of values and the a
5

priori probability distribution of ts is absolutely continuous with respect

to the Lebesque measure on the real line.

2.3a Dynamical Representation of the Signal Estimate

We are interested here in deriving the equation for generating the

minimum mean square error estimate of the signal #t-t conditioned on the
S

observations. We have defined the cumulative observations Zt in equation

(2.2.6) and the estimate t-t of the signal $t-t is given by
S S

#t- = E{O Z- } z (2.3a.1)

t-t t-t
S S

We shall use the ^ notation for the minimum mean square error estimate of

any random variable given the observations Zt

E E- Zt} (2.3a.2)

The following steps will be taken in the derivation of our result. We first

derive a dynamical representation for the randomly delayed diffusion

process t-t . Then, a fundamental martingale representation theorem of

S

Fujisaki etc. [5] is applied to derive the representation for the estimate

$t-t
S

A word of notation is appropriate here. We let (0,F,P) be the basic

probability space on which all random variables are defined. Let
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{F } t be an increasing family of sub-a-fields of F that describe all

events in time at the signal source at s=O. Thus, in particular, the

processes $t and It are adapted to the family {Ft t>. To describe events

at the sensor, we construct the increasing family (Bt t>0 of sub-a-fields

of F such that

Bt = G V a{$ , O<T<t) Va{{W:t (W)<TIT<t} (2.3a.3)
t t T-t -- s - -

S

The notation A v M denotes the smallest a-field generated by the union of

the a-fields A and M. The increasing family (Gt t>0 of sub-a-fielcof

F describe events at the sensor which are not delayed versions of events

at the source. We will define G to be the a-field a{w T, O<T<t), where w
t T-

is the observation noise in equation (2.2.5). With the above construction,

both $t-t and wt are adapted to {t t>0*
S

We now proceed to derive the semimartingale representation for $t-t*
S

This representation is necessary in order for us to be able to make us of

results in filtering theory. To derive this representation, we introduce

a unit-jump process t defined by

0, t<t

0 = s (2 .3a .4 )

ttt
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LI t

S

FIGURE 2: THE UNIT-JUMP PROCESS $

Then, we can write

#t-t =t t-t 
(2.3a.5)

S S

Note that this is just purely a mathematical device. If we make use of only

equation (2.2.1), the defining equation for t, then we can only get the

semimartingale representation for #P for t>t . However, we want the
t-t s

s

representation for #t-t for all t>O. By writing #t-t as in equation

S s

(2 .3a.5), we can derive the semimartingale representation for #t-t for all
S

t>O if we have the semimartingale representation for $t. Theorem 2.1

below gives us the required representation for 4$t. Note that $t is adapted

to (Bt }t>0

Theorem 2.1: The unit-jump process 4t can be represented by the stochastic

differential equation
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(2.3a.6)d$) = X dt + dm
t t t

where mt is a martingale on {Bt }t> and

t Pt (t) ftP (T)dTl (l-t
S t S

A 
(2.3a.7)

= pt t

Pt (t) is the a priori probability density of ts
s

This result is not new [36], [54] and can be easily verified using the

Doob-Meyer decomposition theorem [35]. The verification is carried out in

Appendix 1 for the sake of completeness. With this representation for t

and the defining equation (2.2.1) for t, we can apply the Doleans-Dade, Meyer

change of variables formula [36] to obtain the following representation for

4t-t for all t>O. The proof is given in Appendix 2.

s

Theorem2.2: The signal $t-t is represented by
S

t-t tO + t- t t-t s

dm ~m (2.3a.8)
+ [$, , $ '$ ,t-t 5 )]J

s dT) t-t

$t- denotes the left-continuous version of Pt
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Remark: Equation (2.3a.8) is nothing more than

# = d + $ (a($ ,t-t )dt + ,t-t-)dTt ) (2.3a.9)
t-t O t t- t-t s - t-t s -t-t

This is actually what we intuitively expect the representation (2.3a.8) to

say. Since $t-t has a jump at t=ts, the $0 term represents the contri-

S

bution due to the fact that t might be the present instant.
5

We are now in a position to derive the filtering equation for generating

the estimate t-t . Before doing that, we will review some relevant results

S

in filtering theory important for our derivation.

We will use the martingale approach in our derivation of the estimation

equations. One of the main results that we need here is a martingale re-

presentation theorem for observation models of the form (2.2.5). The theorem

was first proved by Fujisaki etc. [5] for the case of square integrable

martingales and we shall state it below.

Theorem 2.3: Given the observation model

dzt = h tdt + dwt , te [OT] (2.3a.10)

where wt is a standard Wiener process and h (w) is a (t,w)-measurable

tt
process such that] Elh ti2 dt <Oo* Assume that for each S C [0,T], the

a-fields, G{h u w, 0<u<s} and a{w -w , s<u<v<T}, are independent. Let
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Z = cY{z , O<T<t} (2.3a.ll)
t T - -

Then, every separable square integrable martingale (p tZ ) is sample

continuous and has the representation

t

y - E{y } = f 4dv (2.3a.12)

0

where (V t,Z ) is the innovations process given by

A

dv =dz - h dt (2.3a.13)
t t t

and ( t'z t) is a process satisfying

fT

E t dt < 0o (2.3a.14)

Using this result, our desired filtering equation can easily be

derived. Many authors, for instance (6], have used the martingale repre-

sentation theorem above to derive estimation equations for processes des-

cribed by semimartingales. We need not go through the derivation again

but will just state the result we need.

Theorem 2.4: Given the semimartingale (yt , F t) where

dyt ftdt + dm , t E [0,T] (2.3a.15)

such that
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(i) (Mt ,F ) is a martingale,

(ii) (f t,F t) is an adapted measurable process with

Elft <0 , Ef IftI dt < "

Assume observations zt to be given by equation (2.3a.10) with the same

assumptions as in Theorem 3. Then, the minimum mean square error estimate

yt = ElytlZt}
(2.3a.16)

is given by

y +d
dyt = f tdt + E~ t-y t) (h t-h ) + --- <m w>t Z }.t

(2.3a.17)
(dzt-htdt)

Remark: The first step in the derivation of this result consists of

showing that the process

yI = y- Jt t 0
0

f dTT
(2.3a.18)

is a martingale on {Zt t>0 and therefore by Theorem 2.3 we have

t

1t - IJ0 1=f
(dz -h ds)

s s s

The rest of the proof consists of showing that
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d
CD = E (y -y ) (h -h ) + -- <mow> IZ (2.3a.20)

The result also assumes that <m,w>t is differentiable in t. The notation

<-,-> t denotes the joint variance process of two martingales [36].

Application of the above results immediately leads to the recursive

filtering equation for the signal #t-t and this result is given below.
S

Theorem 2.5: The estimate t-t
S

= E{#t-t t of the signal #t-t given
S s

the observations Zt is generated recursively by the following filter:

d# = (p #j t(1-$t ) + E($) a( ,t-t) Zt) dt
t-t t 0 ti t- tt s5

(2.3a.21)
- dv.

where Vt is the innovations process given by

dV = dz - h(# ,t)dt
t t t-

The initial condition is

t-t t=0 =0

(2.3a.22)

(2. 3a.23)
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Proof: It is easy to show, in spite of the dependence on the random

variable ts, that the process

t

t t-t -s0
is a martingale on {Zt t>0.

tt t>
t

-
0

0

EX $0 + $ T-ts ,T-ts)!Z T}dT
5

(2.3a.24)

Thus, by Theorem 2.3, we have representation

q dV (2.3a.25)
s s

The rest of the proof goes through as the proof of Theorem 2.4 to give us

= E{($P -j )(h($ ,t)-h($ ,t))Dt E{ t-t s t-t s Hh t-t s t)h t-t s r)

where vt is the B t-martingale given by

dvt = O ' Vt

We will now show that

<v,w>t=o

+ d<vw>
dt t t

We have

E{<v,w> t <vw> } = E(v t2-vt t2 t t )B 1

= EIv w -v w B 1
t2 t2 t t t
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for t1<t2 * Since we have assumed that the observation Wiener noise wt

is independent of the signal t therefore wt is independent of vt.

Thus,

E{(v -v ) (w -w ) B 1} = E{v -v I Ew -w 1 1 =0
t2 t t2 t ty ttl t t t t

since Ew tt-w t = 0. Thus, by (2.3a.29),

E{v tw t 1t = v w

implying that vtwt is a B t-martingale and hence

v w = 0
t t

-V t

(2.3a.30)

(2.3a.31)

(2.3a. 32)

But this implies equation (2.3a.28) and so equations (2.3a.24), (2.3a.25)

and (2.3a.26) give us the filter

d# = E{ x + $ a ($ ,t-t ) Ztldt
t-t t 0 t- t-t s t

Ss

A A

+ E{( (t-t -t-t ) (h($ t-t ,t) - h(# t-t , t))1 Zt '.

- dx)

t

The first term on the right can be simplified as

(2.3a.33)
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E{ J01 Ztl = E{Pt (l_ t) 0Zt'

= t (l- t)E{#0 Zt, t=T}P(T<ts<T+dT Zt

= pt f (4t )E(# OZt, t s=T)?(T<t s<T+dT IZt) (2.3a.34)

t

because for t s=T<t, t =1 and so the integrand is zero. Now, for

t =T>t, we have $t=0 and note that

E{# 0 Zt, t s=T = E{# 0} (2.3a.35)

since Zt contains no measurements on the signal t-t given that ts>t.
S

Thus,

EAt Zt = t E{#0 P(t s>t Zt

to t E 0 51- t

= ptE # (lt t) (2.3a.36)

where

$)tit E{t ZtI

= P(t <t Z ) (2.3a.37)
5- t

is a quantity we will examine in Section 2.3c in connection with the esti-

mation of t s. Putting equation (2 .3a.36) into (2.3a.33) gives us the

result (2.3a.21). Equation (2 .3a.23) for the initial condition is easily
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verified since the a priori probability measure for ts is absolutely conti-

nuous with respect to the Lebesque measure on the real line. U

It is interesting to note the first term p E{# } (1-$^ ) on the
t 0 tlt

right of the filter (2.3a.21) of Theorem 2.5. The quantity $0 is the ini-

tial value of the signal, i.e., the "signal front". The first term thus

shows that whenever p t 1-1tt)/O, i.e., whenever the a priori probability

of arrival p tO and the a posteriori probability that the signal has arrived

A

$t~t <l, the filter takes into account the possibility that the "signal

front" is arriving at the present time t.

Equation (2.3a.21) of Theorem 2.5 gives us only a representation for

the estimate t-t . In general, the filter is non-implementable because

the on-line computation of the terms on the right is infinite dimensional.

Either we need the joint a posteriori probabilities

(#<#t-t <$+d$, T<t <T+dT Z t) or an infinite system of stochastic dif-

ferential equations. We will see in a latar section on implementations

that both of these are infinite dimensional problems.

Note that our signal estimation problem consists of only the filtering

of a diffusion process observed with a fixed random time delay. It appears

that this is the first time the filtering of a diffusion process observed

with a fixed random time delay has been considered, although the case of a

fixed known time delay has been considered before, e.g., [37]. We will see

in the later sections that our work on delay time estimation, suboptimal

approximations and so on are also novel applications of nonlinear filtering

concepts and techniques.
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2.3b Multiple-Model Solution to the Signal Estimation Problem

This approach is based on the following expression for the estimate

of the signal:

E f t-t t # ($iZt) d#
-s t-ts tt-t-t ,t

O O0s0
f I p , (4,'r IZt )dT #4

-00 0

= $ p ($ Z,t s=T)d# pt (T Z t)dT
f - t-ts

= E{tT Zt,ts=T P(T<t s<T+dT t
0

t

Ef t-T IZ t t =T} P(T<t,<T+dT Z t
0

(2.3b.1)

The last step follows because for T>t, we know that t-T=0.

Equation (2.3b.l) clearly exhibits the multiple-model nature of the solution

[7]. For each value of ts = T<t, we have one estimate of the signal

$t-t . These estimates are weighted by the a posteriori probabilities of

ts and then summed. We will discuss the problem of computing the



probabilities P(T<t s<T+dT Z t) in the next section in connection with the

estimation of t s. To generate the estimate E{t-TI Zt, t s=T, we note that

for each value of ts = T<t, the signal $t-T satisfies the equation

(2. 3b.2)dt = a($t ,t-T)dt + y'($- T,t-T)dj , t>T
t-T t-T -t-T -t-T -

and the measurements are given by

dzt = h( t-Tt)dt + dwt
t>T (2.3b.3)

so that the estimate

= E{tT Z , t =T}, t>T (2. 3b. 4)

is given by the filter [38]

t-T a(t-T t-T)dt

+ E{($ -$ )(h($ ,t) - h($ ,t)) Z ,t =T}.
t-T t-T t-T t-T t s

A

*(dz t-h( ,-Tt)dt), t>T (2.3b.5)

with the initial condition, at t=T,

$t-T I t=T 0 = E{ 0}, given (2. 3b.6)
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Conceptually, our solution then consists of an infinite bank of filters at

each time t, one filter for each value of ts= T<t and this bank grows with

time t. Each filter is of the form given by equation (2.3b.5) and starts

at time t=T with initial condition given by equation (2.3b.6). In the ge-

neral nonlinear case, the filter (2.3b.5) is non-implementable because to

compute the terms on the right hand side, we need to carry along the density

p(#t- Z) at each time t and this gives rise to an infinite dimensional

problem. However, in the linear Gaussian case, the filter reduces to a

readily implementable Kalman filter. The model for the signal #t-T reduces

to

d~t-T = at-T -T + y' dT t>T (2.3b.7)
tT t-T -t-T-

and the measurements are given by

dz = h # dt + dw , t>T (2.3b.8)
t t t-T t-

Assuming that the initial value 0 is Gaussian, then the filter (2.3b.5)

becomes the Kalman filter:

A A

d# = a # dt + h cU (t)(dz -h # dt), t>T (2.3b.9)
t-T t-T t-T t T t t t-T

where the error covariance

a (t) = E{( - ) Zt, t =T, t>T (2.3b.10)
T t-Tb t-T t s

is given by the Riccati equation
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dT ( t) 2 2

wit2a (t) + y't- t -t-htoT(t)a,

with the initial condition, at t=T,

t>T (2.3b.ll)

(2.3b.12)T (T) = E{ (#0-E{ 0}) 2 = a0 , given

The Riccati equation can be solved a priori for values of t>T to obtain

a (T). From equation (2.3b.ll), we see that we need to solve one Riccati

equation for each value of the initial time T. However, if the observation

gain

ht = h = constant

then we need only solve one equation, namely

da0(t) 2 2
dt = 2at O (t) + ' t - h t)

a (0) = Y

t>0

given

(2.3b.14)

(2.3b.15)

The solution a (t) to equation (2.3b.ll) with h =h is then given by
T t

a (t) = aO(t-T) (2.3b.16)
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In practice, it is of course impossible to implement the solution

proposed here based on the multiple-model approach simply because it consists

of an "uncountably infinite" number of filters at each time t and the bank

of filters grows with time t. In addition, each filter is non-implementable

in the general nonlinear case and is implementable only in the linear

Gaussian case. However, the idea of this approach leads easily to an ap-

proximate suboptimal implementation. For instance, suppose we know that

t. < t < t (2.3b.17)
i - s - f

We can partition the interval [t.,t ] as
i f

t. = t <t <...< t = t (2.3b.18)
1 0 1 n f

and implement the filters given by equation (2.3b.5) for the values of

t =to, t ,...,t . The partition (2.3b.18) can be chosen based on our
s 0' 1 n

knowledge of the a priori distribution of t . For instance, if the a priori
S

density pt (t) has the form as in Figure 3, then we might choose the
5

*
partition with more points around t and fewer points elsewhere because

*
points nearer to t have a higher probability of occurrence. We will have

more to say about implementations later.
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Pt (t)
S

t

t. t* t
f

FIGURE 3: A POSSIBLE FORM OF Pt (t)
S

2.3c Estimation of Delay Time t
S

The delay time estimation problem is in principle solved by computing

the probability distribution of t conditioned on the observations Z . We
s t

saw in Section 2.3b that this probability distribution is also used in the

multiple-model approach to the signal estimation problem. The representa-

tion (2.3a.21) for the signal estimate t in Section 2.3a requires the
S

conditional probability $tt = P(ts<t Zt). The on-line computation of

this probability distribution is accomplished by doing a filtering, a

smoothing and a prediction problem on the unit-jump process $t introduced

in Section 2.3a, since at any time t, we have

E{$ Zt} = P(lP=i Zt) = P(tS<TlZt) (2.3c.1)

for any value of T. The result is given in Theorem 2.6.
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Theorem 2.6: The estimate

T t = TIZt = P(ts T Izt)

is generated recursively by the following equations:

T=t: dit t (l tit )dt

+ [Eft h($t-t ,t)Z t t t-t ,t)]dvt '
S S

P(t >T)
5-

P(t >t)s-
T>t: $T (-t tt

t
T<t: $Tit TIT +

Here,

dvt = dzt - h($t-t ,t)dt

S

is the innovations process and

I(T,t') = E{$ h(t-t,t')| Iz }-
T t-t 'Ttl
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(2.3c.3)

(2.3c.4)

(2.3c.5)

( 2 .3c.6)

t'-t,t')
s

(2 .3c.7)

E(T,t')dVt,



Proof: Equation (2 .3c.3) is obtained by considering the filtering problem

on the system

dit =t (1-t )dt + dmt (2.3c.8)

with the observations

dzt = h($t-t ,t)dt + dwt (2 .3c.9)
S

and applying Theorem 2.4. Note that the term <m,w> t=0 since mt has a

jump at t=t . Thus we get equation (2.3c.3). Equation (2.3c.5) is

obtained by considering a smoothing problem on the process $t with the ob-

servations (2.3c.9) and the result is well known [6]. Similarly, applica-

tion of prediction results [6] to the system (2.3c.8) with the observations

(2.3c.9) results in

T

Tt t + f Pt(l 'It)dt' , T>t (2.3c.10)

t

which will be simplified as follows to equation (2.3c.4). We have

dT )TIt = PT (1 TIt )dT (2.3c.ll)

where d (.) denotes the differential of the quantity for a differential

change in T. This can be rearranged as



T T = -p dT (2.3c.12)

T tI

which is integrated to give

Itin = - td'(2.3c.13)

and this simplifies to

ft Ptdt'

~Tit = l-(l-4tit )e~t' (2.3c.14)

T
We now evaluate J Pt'dt'. Since

Pt =Pt (t) I Pt(t')dt'
t

= - Pt (t')dt' Pt (t')dt' (2.3c.15)
dtft s / t s

then

T

pt'dt' = - in Pt (t')dt' T

P(t >t)
-ln s- (2.3c.16)

P(t >T)
S-
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fT
ft Pt~dt' P(t >T)

and so e S- (2.3c.17)
P(t >t)

s-

P(t >T)
which gives equation (2 .3c.4). Note that is precomputable.

P(t >t)
S"

U
Remark: Although we have derived equation (2 .3c.4) via a prediction

approach, it can be done more easily as follows.

Tt P(ts<TIZ) P(t s<tIZ t) + P(t<t <TIZt)

A

=ti + P(t <TIz t, t >t)P(t >tz t)

t t + P (t <TIzt , ts>t) (1-pt t) (2.3c.18)

But given t >t, Z contains no information on t . Thus,
S t s

P(t <TIZ ,t >t) = P(t <Tit >t)

P(t<t <T)
= s-( 2 .3c.19)

P(t >t)
S

and equation (2.3c.18) simplifies to (2.3c.4).

Computing the a posteriori probability distribution P(t z <TZ ) of t,

for all values of T at each time t is an inherently infinite dimensional

problem. This difficulty becomes more obvious when we consider implemen-

tations in a later section.
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Finally, consider the problem of on-line estimation of the delay time

ts given the observations Zt. If we are interested in the minimum mean

square error estimate Efts zt}, we can compute it as

0o

Et Z} = TP(T<t <T+dTIZ ) (2.3c.20)

0

There is no way to compute this estimate on-line with finite dimensional

computations. Another delay time estimate of common interest is the maxi-

mum a posteriori probability estimate [16] which is given by the value of

t at which the a posteriori density of t given Z is a maximum. Froms s t

Theorem 2.6, it is not easy to deduce that the density P (T t) exists,
S

especially from equation (2.3c.5) for T<t. However, by considering the system

dt 0 (2.3c.21)

and computing the estimate Efe s Z }, we easily see that P (TIZ ) exists.
t t t

Related results in Wozencraft [74] also indicate the existence of Pt (T!Z ).
S

2.3d Implementation of Results and Some Special Cases

In this section, we want to examine the implementation aspects of our

signal and delay time estimation results and find cases in which the results

admit finite dimensional implementations. We first note two points here.

The first concerns the delay time estimation results and, as we have noted

before, the on-line computation of the a posteriori distribution of ts is an

inherently infinite dimensional problem since we have to compute the whole

distribution function at each time. We will see later in this section that
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the results in Theorem 2.6 for computing the a posteriori distribution of

ts require an infinite dimensional multiple-model type of implementation.

There is no hope of finding a case in which the delay time estimation results

admit a finite dimensional implementation except if we make a suboptimal

approximation. We shall talk about one such approximation in the next

section. The second point to note here is that the multiple-model solution

to the signal estimation problem also requires inevitably an infinite dimen-

sional implementation since we have assumed a continuum of values of t .
S

Thus, the only result in which we can hope to find cases of finite dimen-

sional implementation is the representation result for the signal estimate

given in Theorem 2.5. We shall first investigate cases of finite dimen-

sional implementation for this result, then examine the implementation of

the signal and delay time estimation results in general and finally examine

a combined implementation for the signal and delay time estimation results.

Special Cases of Optimal Finite Dimensional Implementation

We shall examine here the representation result for the signal esti-

mate given in Theorem 2.5 for cases of finite dimensional implemen-

tation. This equation is

d$~ = (p tE( 1 tt) + E($ 0($ t,t-t ) Z })dt

t-t t 0 t~t )h t- t t-t st) t
s t

ttt-t t-t t-t t

- dvt

$t-t It= =0 (2.3d.1)ttSt=
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From our experience with filtering theory, we conjecture that a finite

dimensional implementation should be possible in the linear Gaussian case.

This is the case in which the signal and observation models are linear and

given by

dt tdt +d , t>0

0= Gaussian random variable

$t =0 , t<0

dz = h # dt + dw , t>0
t t t-t t -

S

Equation (2.3d.1) now becomes

d# = (ptE{($ }(1-$P ) + E{$ ca t #tZ })dtdt-t S Pt E 0 1- tit +E t- at-t St-t slzt d

^ 2,Z l v

+ hE{ ($ -(p )1Z }dv , (2.3d.2)
t t-t t-t t.t

S S

where here

dVt = dzt - ht t-t dt (2.3d.3)

Equation (2.3d.2) shows that our conjecture is not quite correct yet for

the following reasons.

Firstly, the term E{pt- t-t t-t Zt, although linear in t-t
S S S

involves the random gain $t- t-t , the randomness being due to t s To
S
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compute this term on-line requires the joint a posteriori probabilities

p itt ($oZtts=T)d$P(T<tor<T+dT t ), r an infinite system of stochastic

S

differential equations. Either method leads to an infinite dimensional

implementation. The only case in which the computation of this term is

finite dimensional is when at=a, a constant, in which case

Eft- at-t t-t Izt = aE$t tt t and we can easily show that

E{$t$tZt = $ (2.3d.4)
t- t-t ItI t-t

Equation (2.3d.4) is easily verified in Appendix 3.

Secondly, consider the term E{(t- -t ) 2Ztl. To compute this
S S

term on-line requires an infinite system of stochastic differential equations

but this approach is not very interesting. The alternative way using the

multiple-model approach turns out to be very appealing in this case although

it is still infinite dimensional. We can write

^{~t 2 ^}=J'E(~ 2
Ef(($ - ) Z1 = E f($ - ) Z ,t =T}P(T<t <T+dT Z

t-t t-t t t-t t-t t s s- t

f a (t)P(T<t <T+dT Z ) (2.3d.5)
T s- t (.d5

T<t

where the covariance a T(t), for each T<t, can be precomputed by solving a

Riccati equation. (See Section 2.3b, equations (2.3b.10) to (2.3b.12)).

Since a (t) is precomputable, the problem reduces to the on-line computation
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of the probabilities P(T<t_<T+dTIZ ) which is an infinite dimensional

problem. We are interested in finding cases in which the computation in

equation (2.3d.5) is finite dimensional. First recall from Section 2.3b

that when the observation gain

ht = h = constant (2.3d.6)

we have

T (t) = 0 (t-T), t>T (2.3d.7)

so that we only need to solve the Riccati equation for a0 (t) in order to

compute C T(t) for all T. In this case, equation (2.3d.5) becomes

E(( - ) 2Z = (t-T)P(T<t <T+dT ) (2.3d.8)
t-t t-t t s- t

s s T<t

which resembles a convolution operation. This is illustrated in Figure 4.

Next, note that in the time invariant case, since we have a scalar constant

linear system with constant linear observations, the system is completely

controllable and observable and therefore the Riccati equation (2.3b.14) for

computing G0 (t) must reach a steady state as t4m, i.e.,

C0 (t) -+ a = constant as t- +O

where a is given by

2 2
2caa + y'y - haG = 0 (2.3d.9)
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a ~ 2 + 2)2+ ' L/h 2

h kh 2

In this case, suppose we know in addition that

t < t < t
1a- s - 2

and we are in the region t>>t2 Then equation (2.3d.8) becomes

E{(# -# )2IZ} =
t-t t-t t J

s s t <T<t

a (t-T)P(T<t <T+dTjz )
0 s- t

= a f P (T<t <T+dT l zt
t <T<t2

(2.3d.1l)

Thus, we have found one case in which E{(tt t ) Zt) can be
S S

computed with a finite dimensional operation. Another case in which we

expect finite dimensional computations for this term is when

0 (0) = a (2.3d.12)

i.e., the Riccati equation (2.3b.14)

steady state value a. In this case,

a0 (t) = a ,

for computing a0 (t) starts with the

it is well known that

t>o (2.3d.13)
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and hence we have

2 Z }= fP(T<t <T+dT Z )E t-t t-t t (~ s-<~T t
s T<t

= C Yt~t (2.3d.14)

Thus, the on-line computation of the covariance reduces to that of $ tIt'

which from Theorem 2.6, is given by

dt t= t (1Vtt)dt

+[E(t h(#t-t ,t) jzt t t1t t-tst)]dvt

$)010 =0 (2.3d.15)

In the linear case, this reduces to

dV1t t = t (14 t t )dt

+ h t-ts (V tt)dVt (2.3d.16)

and we see that $tt requires finite dimensional on-line computations

provided we have t-t
S

Finally, coming to the first term ptE{(#0 4(1Pt t) back in equation

(2.3d.2), the only on-line computation to be done is in computing $t1t which

we have just discussed above.
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Summarizing our discussion, we conclude that we have the following

cases in which the representation for t-t given in Theorem 2.5 admits a

finite dimensional implementation.

(i) We have a linear time-invariant signal and observation model:

d$p = #$ dt + y'dT ,t tdt -tf
t>0

$0 = Gaussian random variable,

t = 0,t I

(2.3d.17)

t<0

(2.3d.18)dzt = h t-t dt + dwt
S

Suppose that

go = E{((0 - E{$0 })2}

= a (2.3d.19)

where CY is the steady state value given in equation (2.3d.10). Then,

is generated by

d$p =(p E{# 1(1-$ 1 ) + a$ t )dt
t-t to0tt t-

+ ha ttdVt'

=0
t-t sIt=0

(2.3d.20)

where

(2.3d.21)
dvt dzt - h t-t dt

$t-t



is generated by

d$ = P (1-$ )dt + h# (1-4 )dv
tit t tit t-t s tit t

$0| =0 (2.3d. 22)

Note that if, in addition, we have t <ts<t2 , then for t>t2 , we have

$tIt=1 in which case

d t-t t-t dt + hadvt
(2.3d.23)

This is just the steady state Kalman filter and the result is expected.

Since we have linear time invariant signal and observation models and the

covariance starts from the steady state, then for t greater than or equal

to the largest possible value of t s, the transients due to the unknown

arrival time should have vanished.

(ii). We have the same signal and observation models in (i). Assume that

t < t < t
1- s- 2

Then, when t>>t 2, the estimate t

#t-t t-t dt + hadVt
S

is given by

(2.3d.24)

which is again the steady state Kalman filter. This is expected since if

t 1<ts<t2 and t>>t2, then the actual value of ts does not matter because
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the transients that occur when the signal first arrives should have

disappeared.

Note that although we have carried out our work above in the scalar

signal model case, the results can be extended without difficulty to the

case of the vector model:

dy = A y dt + B dT , t>O (2.3d.25)

# = c , t>O (2.3d.26)

where and c are m-vectors, A and B are mxm and mxn matrices respectively.

Of course, we have to assume that (A,B) is controllable and (A,c') is

observable. This model generates a richer class of signals $ than the

scalar model (2.3d.17). However, we shall not do this extension here.

PRECOMPUTED VALUES OF 0 (t) MOVE TAPE THIS WAY
1 UNIT LENGTH/UNIT TIME

C (t-T)P(T<t <T+dTIZ )SU.......... SM OF PRODUCTS FOR ALL T<t
0 s t EQUALS E{( t-t _t-t ) 2Z t*

s S

0 T i+dT t

VALUES OF P(T<t <T+dTIZ )

COMPUTED ON-LINE

FIGURE 4: THE CONVOLUTION OPERATION OF EQUATION (2.3d.8)
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Implementation of Signal and Delay Time Estimation
Results in General

We discuss here the methods and the difficulties involved in the im-

plementation of the signal and delay time estimation results in the general

nonlinear case.

Consider first the representation result in Theorem 2.5 for the signal

estimate t-
s

t-t -t 0 tt t- t-t s t
A S

+ E(($ t-$ )(h($ ,-t)-h($ ,- 't)) IZ t dV (2.3d.27)
t-t t-t t-tt-t t

The first term on the right requires the on-line computation of tit which,

as we will see later, requires an infinite dimensional implementation in

the general nonlinear case. To compute the second and the third terms

on-line requires either an infinite system of stochastic differential

equations or carrying along the joint a posteriori probabilities

P($<$ <$+d$, T<t <T+dT|Z ). The manner in which an infinite system of
- t-t s- t

stochastic differential equations arises is well known in nonlinear filtering

theory [6], (38] and we shall not present the details any more. The on-line

computation of the conditional probabilities P($<$t-t <$+d$,T<t <T+dTIZt
S

has to be carried out as

P -(t$ t <$+d$, T<t <T+dTIZ )

=P ($J Z ,t s=T)d$ P(T<t s<T+dT jZ ) (2.3d.28)
ts 5- t

t-t
S
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We will discuss later the implementation for computing the probabilities

P(T<t <T+dTIZ ). To compute the density P ($|Z ,t =T) involves no
s- t $ t s

5

new difficulties since there is no uncertainty in the arrival time given

that t =T. We have the results
5

T>t: P ($p Z ,t =T) = (2.3d.29)
$t s

since $t=0, for t<0, by definition,

T=t: P t-t z t, its =T 0 ($) O (2.3d.30)
t

S

which is the given a priori density of $0'

T<t: dp = L(p)dt + (h-h)(dz -hdt)p (2.3d.31)
t

where

p = p ($Z ,t =T) (2.3d.32)
#tst-t
S

Equation (2.3d.31) is just the Kushner equation [38]. It is of course

impossible to implement equation (2.3d.31) in the general nonlinear case.

However, in the linear Gaussian case, the density p is Gaussian and so it

is completely characterized by its mean and covariance which can be computed

via equations (2.3b.9) and (2.3b.ll). Equation (2.3d.28) calls for a point

wise multiplication of the probabilities P (t- Z ($t,t s=T)d$ and

S

P(T<t <T+dTIZ ) for different values of T at each time t and therefore

leads to an implementation essentially equivalent to the multiple-model

approach of Section 2.3b. We have to compute the density P ($|Z ,t =T)

$
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for each possible value of t =T, thus giving rise to an infinite bank of
S

filters. Again, we emphasize that these filters are non-implementable

except in the linear Gaussian case.

Summarizing the above discussion, we conclude that the representation

result (2.3d.27) for the signal estimate t-t is in general non-implemen-
S

table because the on-line computation of each term on the right is infinite

dimensional. However, the result is very useful because, as we have seen

previously, in several linear time invariant cases, it does admit a finite

dimensional optimal implementation.

The multiple-model solution to the signal estimation problem given

in Section 2.3b is a conceptual implementation-oriented approach, giving

rise to an infinite bank of filters. We have discussed this in Section

2.3b and will not go into any more details here. In Section 2.4, we will

discuss it again when t takes on finitely many values.
S

Finally, we consider the implementation of the equations given in

Theorem 2.6 for computing the a posteriori distribution $Tjt P(ts<TIZt)

of t . These equations are reproduced here for convenience:
S

T=t: tt Pt ( t t)dt

+ [E{$ h(t ,t)Z }z - $ t~h($t ,t)]dvt ,+[' t h( t-t t1 t I^t It ( t-t t)Id
S s

A
$O =0 (2.3d.33)
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P(t >T)
T>t: $T t1 t ) s-

P(t >t)
s-

T<t: T t TIT + J (T,t')dvt

where

(Tt') E h( tt t' T Ith($t'5-tst')

Note that in equation (2.3d.35), we only need to compute

each time t. For each value of T in equation (2.3d.35), $TIt

recursively in time t as

d$T t = E (T,t)dvt

(2. 3d. 36)

E(Tt) at

is computed

(2.3d.37)

starting with the initial condition TIT at time t=T. Thus, to implement

equation (2.3d.35), we only need to compute 2 (T,t) at each time t for all

values of T<t.

The terms which we need to compute in order to implement equations

(2.3d.33) to (2.3d.35) are E{t h(t-t ,t)IZt -, h( ,t) and the first
S S

term E{V h($t-t ,t)IZt} in E(T,t). We have the following evaluation:
5

E{$ h($t-t ,t)-Zt

fht($t) P(<$tt $+d$,t'<ts<t+dt' Zt

t'<T all$
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t'<T all#

=f
t'<T

Efh(#t-t It) Zt,t s=t'} P(t'<ts<t'+dt' zt)
s

Setting T=t, we also have

E{t h(# t-tst) Zt

tf
t,<t

(2. 3d. 39)E~h(#t-t ,t) Ztts =t') P(t'<ts<t'+dt' IZt)

Thus, both E{4t h(#t-t ,t) Z t and E{ h(t-t ,t) Z t can be computed
S S

via the multiple-model approach. If we also evaluate h(#t-t ,t) as
S

h(#t-t ,t) = E{h(t-t ,t) Z ,ts=t'} P(t'<t <t'+dt' z t
t'<t

+ h(Ot)(1-$tit

then we immediately see that the whole set of equations for computing

P(t <TIZ t), for all T at each time t, can be implemented via the multiple-

model approach which now involves an infinite bank of filters, each one for

computing the estimate E{h(# , t)Z Zt, ts=t '} and one for every value of

t s=t'<t. Again, this bank of filters grows with time t.
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Since the estimate Efh(4t-t ,t) Z ,t s=t', for each value of t s=t'<t,
S

is the primary quantity to be computed in the implementation of the delay

time estimation results, we shall examine here how it is computed. Again,

there are of course two ways to compute it. The first way is to carry along

the density P ($|Z ,t =t') a method which we have discussed before
$ st-t

S

(see equations (2.3d.29) to (2.3d.32)). The other way is to generate the

stochastic differential equation representation for it. Given that

t =t'<t, we know that

h($t-t ,t) = h($t-t',t) (2.3d.41)

S

and an application of Ito's differential rule [40] gives us

h h 12h
dh($ ,t) -- + --- ($ ,t -t') + -1 Y" ($ ,tt'Y( t-t') ---h dt

t-t' at 3$ t-t'r 2 - t-t' F - Yt-t a2

+ h_'($t-t',t-t')dgt-t, (2.3d.42)

Thus, the estimate

h($ ,,t) = E{h($ t) Z Ft=t') (2.3d.43)

s

is given by
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d (t h + h a3 IttY(t2 h
dh( ,tt) = E --- + -- # t-t') + -- '(# ,tt'Y( ,t-t') --t-t'at @# -t 2 - t'--t-t' 2

Z ,t =t' dt

+ E((h(# ,It) - h( tt,,t)) Z ,t =t'.

- (dz -f(4t-t,,t)dt) (2. 3d.44)

This is of course only a representation and we have to generate the

stochastic differential equation for computing each term on the right hand

side, ending up with an infinite system of equations. We shall not go any

further into this problem here.

Note that in the linear Gaussian case, i.e., signal and observation

models linear, initial signal value Gaussian, the basic quantity to be

computed in the implementation of the delay time estimation results is the

estimate # , = E{#p Z,t=t'}. This estimate is readily computed by
t-t t-tIt s

an implementable Kalman filter, as we have seen in Section 2.3b.

In the linear time invariant Gaussian case, we have seen earlier that

if %0=a, i.e., the initial covariance of the signal equals the steady state

value, then $tit is generated by a finite dimensional filter. (See equation

(2.3d.22)). Equation (2.3d.34) then shows that the computation of $Tjt'

for T>t, is also finite dimensional. However, even in this case, the

computation of $Tit, T<t, is still not finite dimensional.
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Combined Implementation of Signal Estimation and Delay
Time Estimation Results

We have seen in the previous section that the multiple-model approach

is the natural way to implement the equations for computing the a posteriori

probability distribution of the delay time. The multiple-model approach is

also one way of implementing the solution to the signal estimation problem.

Thus, it appears to be possible to implement the solution to the entire

problem of signal and delay time estimation via the multiple-model approach.

Indeed, this is possible and we illustrate the overall implementation in

Figure 5. The major component of the implementation is the growing infinite

bank of filters, one for each value of ts t'<t, at each time t. Each filter

generates the estimates $tt , and h($t-t,t). (Note that h($t-t,,t) is

used in computing t-t,; see equation (2.3b.5)). In the linear Gaussian

case, all the filters reduce to readily implementable Kalman filters.

Note the presence of the feedback loop around the box for computing

the a posteriori probabilities P(t'<t <t'+dtlzt). These probabilities

together with the estimates h($t-t,,t) are used to compute the updated a

posteriori probabilities P(t'<t <t'+dt'lZ t+dt) when the new observations

dzt are obtained. The new values of the a posteriori probabilities are

fed back to be used in the next update.

The on-line computation of the a posteriori distribution of ts, besides

serving its role of providing on-line estimates of ts, can also be viewed

as a fine-tuning mechanism on the signal estimation algorithm. Because of

the uncertainties in the delay time ts, we do not know at each time t which

point of the signal # we are actually measuring and therefore such a fine -

tuning based on updating our knowledge of t is necessary.
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2 .3e Suboptimal Implementation via Assumed Density Approximation

We have seen that our signal and delay time estimation results are in

general non-implementable and in the last section we found some special

cases in which the representation result for the signal estimate is imple-

mentable. Those are the only cases in which our results admit a finite

dimensional optimal implementation. In this section, we are interested in

finding approximate approaches for deriving suboptimal finite dimensional

implementations for our results. Such approximate implementations are

important in practice because they provide the only means of actually im-

plementing our solution. Many approaches for approximating optimal filters

exist in the literature [41], [42]. We shall only make use of one of

these approaches here.

The approach that we use here is based on an assumed density approxi-

mation to the a posteriori distribution of the delay time t . The idea is
S

to assume that the conditional density of t given the observations Zt has

a known form which is characterized by a finite number of parameters and

the problem of on-line computation of this conditional density then reduces

to one of on-line determination of these parameters which hopefully is a

finite dimensional problem. We have seen that the on-line computation of the

conditional distribution of ts is a crucial component of the solution to the

entire problem of signal and delay time estimation and that it is an inherently

infinite dimensional problem. Therefore, if we can find a finite dimensional

approximate solution to this problem, then we can hopefully find more cases

in which the entire signal and delay time estimation problem admits a

finite dimensional solution.
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In the following, we first consider the case in which the assumed

conditional density of ts is characterized by one unknown and nonrandom

parameter and then extend it to the case of two unknown nonrandom para-

meters. Finally, we consider the case of two unknown parameters, one of

which is nonrandom while the other is random. In all cases, we assume

that the conditional density is exponential.

The One Unknown Nonrandom Parameter Case

We assume here that the a priori and a posteriori density of ts is

given by

- (T-T) T>T

Pt (TIZt) for t>O (2.3e.1)

s 0 , T<T

The parameter is assumed to be unknown and nonrandom while T is assumed

to be known. The value of T is the time before which the signal will not

arrive with probability one. Thus, for values of t such that O<t<T,

the observations contain no measurements on the signal and hence on t and
S

so

Pt (TIZt) = Pt (T) , O<t<T (2.3e.2)
S S

We can see this easily since

# = 0, O<t<T (2.3e.3)



dzt = h(Ot)dt + dwt , O<t<T (2.3e.4)

which implies that

C{z, O<T<t} = f{w , O<T<t}, O<t<T (2.3e.5)

Now, since ts and {w T, 0O<T} are independent, equation (2.3e.2) follows.

We assume that the a priori density Pt (T) is known, i.e.,

Pt(T) -ts
-se (T-T)

Soe

0

T>T

T<T
(2.3e. 6 )

Thus, we know that

0<t<TS = 0 (2.3e.7)

For t>T, we want to determine 5 using the observations. We denote the

value of S determined based on the observations Zt by St and rewrite

equation (2.3e.1) as I (~ tT-T)t e

t (TIzt)
s 0

, T>T

, T<T
for t>T (2 .3e.8)

To generate St , note that at each time t>T, we have
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P (t<tI zt)
t ^

/ -S(T-T) 
dT

T

= - (t-T)
(2.3e.9)

From Theorem 2.6., we know that

P(t <tlzt t t

can be generated, for t>T, by the filter

# P(l1Pt t)dt + [E{l h(t ,t) Iz.~ tth( ~ t)]dVt
dtit Pt t tt + [ft(t-t s t|t tit t-t s't]dt

with initial condition

TIT =0

(2 .3e.10)

(2.3e.11)

(2.3e.12)

Note that p t, t>T, is in this case defined in terms of the a priori density

Pt Pt (t) f Pt (T)dT
s t s

-3 (t-T) f - 0 (T-T)

0 t 0

(2 .3e.13)

By equating equations (2.3e.9) and (2.3e.10) , we have
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l-e t(t-T) t 2 .3e.14)

from which we get the equation for determining t
t

1_ _St ln , t>T (2.3e.15)

1- i)

Under the assumed exponential conditional density (2.3e.1), the conditional

mean estimate of ts is easily given by

Eft Zt) = T +-- = T + , t>T (2.3e.16)

S 1___t ln 1

From the above development, we see that the conditional density of

ts can be computed on-line by computing St alone and the latter is
A

derived from the estimate tt which we have seen how to compute. The

estimate $It also gives the estimate E{t IZ t.

As we have discussed before, the filter (2.3e.11) for computing 9

requires an infinite dimensional implementation because of the terms

E{$t h($ , t) t and h(#t-t ,t). However, in the case in which the
S S

observation model is linear, i.e.,

dzt = h t-t dt + dwt, t>O (2.3e.17)

S

then we have
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E{V th($t-t , t) IZt} = EV $thttt IZt1
S S

=ht t( 2 .3e.18)t Jt-t
S

so that the filter (2.3e.11) reduces to

dt t t(V tit)dt + ht t t(lV t)dvt, t>T (2.3e.19)

which is finite dimensional provided that the signal estimate 4t-t can

be computed with a finite dimensional filter. Referring back to the

discussion in Section 2.3d, we conclude that the following case gives us

a finite dimensional filter for computing # . We have the linear
S

signal model

d#t dt + y'drit , t>O (2.3e.20)
t t t

(note that it is only partly time-invariant) with the linear observation

model

dzt = h t-t dt + dwt , t>O (2.3e.21)

S

In addition, assume that the initial value $0 of the signal is Gaussian.

A

Then, t-t is generated by the filter
s

^ ^ 2

dt-t = t ( tit)E{$0 t-t )dt + ht E{ t-t t-t dv

t>T (2.3e.2 2 )
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The computation of the covariance E{((t-t )tt 2 ZtI via the multiple-
S S

model approach is now finite dimensional because we have

E- ) Z = C (t) P(T<t <T+dT Z ) (2.3e.23)
t-t t-t  2 T s- t

T<T<t

and a (t) is precomputable while the computation of the probabilities
T

P(T<t <T+dT Z ) involves only computing the value of t . Thus, the filter
s- tt

(2.3e.22) for t-t is finite dimensional implying that the filter (2.3e.19)
S

for $tjt is also finite dimensional. The overall implementation for signal

and delay time estimation is illustrated for this case in Figure 6.

The finite dimensional implementation comes about mainly because the

parameter of the assumed form of the conditional density pt (TIZt) can be
S

computed on-line with a finite dimensional implementation. Note that pre-

viously we have discovered that in the linear time-invariant Gaussian case

without the assumed exponential conditional density for ts, the implementa-

tion is finite dimensional only if t <ts<t2 and if t>>t2 in which case the

solution a0 (t) of the Riccati equation reaches a steady state value a or if

a0 (0) is equal to the steady state value a. Now with the assumed exponential

conditional density of t , the implementation is finite dimensional whenever

the initial signal value $0 is Gaussian and the signal and observation models

are linear with only the first term c in the signal model being-time-

invariant. The implementation is even simpler if the observation model is

also time-invariant in addition to being linear, since, as we noted before,

we now have a (t) = a0 (t-T) so that we only need to solve one Riccati equation



for a0 (t) and store these values instead of solving an infinite system of

Riccati equations for a (t), one for each value of t =T, and storing all

these values.

FILTER GIVEN

BY (2.3e.22)

$t-ts

tt

DETERMINE

BY (2.3e.15)
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Our results above can be generalizedwithout difficulty to the case of a

vector signal model which produces a richer class of signals than the scalar

model (2.3e.20). We shall not do this here.

^ 2
Finally, note that equation (2.3e.23) for E2( -# ) Z } need

t-t t-t t
S S

not be evaluated on-line. It can be evaluated off-line as a function of

t and t and the results can be stored so that at each time t, when t

^ 2
is obtained, the value of E{(C# -# ) Z } can be found from the stored

t-t t-t t
S S

values. We illustrate this briefly in the following example.

Example

Consider the signal model

#t dt + d, t>0

0O = known 
(2.3e.24)

with the observation model

dzt t-t dt + dw , t>O (2.3e.25)
S

In this case, 0(t) is given by the Riccati equation

dc0(t) 2d0 = -2yo(t) - c0 (t) + 1 (2.3e.26)
dt 0 0

Since #0 is known, we have

C0 (0) = C0= 0 (2.3e.27)
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The solution for G0 (t) is then given by

a0 (t) = (- 121 (2 .3e.28)

1/+ I-2 2 t +
2J

Equation (2.3e.23) now becomes

21,zt etTT)

^ 2 ^J-lt d
t-t t-t t t

S S

T

-- StStjt dT
T + -2)9 e 2ev/?(t-T)+ 1 (2 .3e.29)

4 2V2

The first integral above can be evaluated analytically while the second

integral cannot be evaluated analytically unless t is an integer. However,

we can in principle evaluate it numerically for all values of St and all t,

creating a table of values which gives E{ (# - ) Zt} as a function
t-t t-t t

S S

of t and t, i.e.,

E{(t-t t-t (2 .3e.30)
S S

At any time t, once the estimate St is obtained, the table immediately gives

us E{( -A 2Ztj.
t-t t-t t

S S

Alternatively, the second integral above can be evaluated numerically
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for all values of St and t. Then for each t, the values of the integral can

be approximated by a polynomial in 5t. Having obtained the value of t at

^2
each time t, the value of E{((tt t ) ZtI can thus be readily evaluated.

S S

The Case of Two Unknown Nonrandom Parameters

In the previous case, we have assumed that T is known. Since the

assumed conditional density of t is exponential, the most likely value of

t is always T, i.e., T is the value of t that occurs with maximum proba-
s S

bility although the minimum mean square error estimate of t conditioned on
s

the observations Zt is greater than T, according to equation (2.3e.16).

It will be more interesting if the most likely value of ts is allowed to

vary as we obtain new observations. This is what we will do in this section.

All we assume we know about T is that T > to, where t0 is known and t > 0.

The work of the previous section carries over easily.

For values of t such that 0 < t < t0, the observations contain no

measurements on the signal and hence on t . Then,
S

Pt (TIz t = t (T)
S S

-S (T-T 0)
50e , T>T0

for 0 < t <to
ST<T 

(2 .3e.31)

The a priori density Pt (T) is assumed to be known and thus we know that
S

0 < t < t 0= e 0 (2.3e.32)



T = To , 0 < t < t0  (2.3e.33)

For t>t0, we want to determine S and T using the observations. Denote the

values of S and T determined based on the observations Zt by t and Tt

respectively. Following the method in the previous section of equating

the equation

P(t,<tz t) = 1- ~ t t (2 .3e.34)

with the equation

we get one equation for and T
t

t(t - Tt ln 
(2.3e.36)

1 
tit

To obtain another equation between t and Tt we note that the prediction

A

estimate t+Alt, for fixed A>O, is computable in terms of the estimate

t t

A (1 A \ P(t >t+A)

t+Ait =tlt) P(ts> t) (2.3e.37)
s-

(See Theorem 2.6).
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Now, since

P(t S<<t+A zt 1 - (t+A-Tt

t+A I t = (t<t+AZt

- t (t+A-'t
= Vt+AIt

t (t+A - 't in A

( 1-/t+A t

Solving equations (2.3e.36) and (2.3e.41), we get

T t - t) A

where

f (t) = ln In

1tit / t+A I t/

Equation (2.3e.42) can be simplified as follows.

f(t) /4 1 ____

1-f() = ln ln tt

\ 1-$tt t / ( - t+A lt
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(2.3e.38)

we have

(2.3e.39)

(2 . 3e. 40)

(2.3e.41)

(2.3e.42)

(2 .3e.43)

(2 .3e. 4 4 )



But from equation (2.3e.37), we have

1- P (t >t)
A

14t+At ~ t s-+A

-0 (t-TO0
e

-60 (t+A-TO
e

= e

Thus,

Tt t ln ,t>t 00 1-$ 14 g

and using this in equation (2.3e.36) gives

t 0 ,
t>t0

The work in this section is exactly the same as in the previous one
AA

parameter case except that $tt is used to determine two values, t and

T . We therefore arrive at the same case of finite dimensional suboptimal

implementation as in the last section. (See equations (2.3e.17) to

(2.3e.22)). The only difference is that the filters now start from time

t = t0 and the quantity pt is now given by

Pt = 0

, t>T
0

t<T0

(2. 3e. 48)
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The Case of One Random and One Nonrandom Parameter

The work that we are trying to do in this section is similar to that

in the previous case of two nonrandom parameters. The only difference is

that in this case, the most likely value T of ts is assumed to be random.

The results and the approach, however, are similar to the previous two cases.

The a priori and a posteriori density of t is again assumed to be
5

exponential, given by

Pt TIZt = e(TT) T>T for t>O (2.3e.49)
s 0, T<T

The parameter is again assumed to be unknown and nonrandom while T is

assumed to be unknown and random. The a priori and a posteriori density

of T is also assumed to be exponential, given by

-O(t'-t )

T (tjt t Oe t'jt0  for t>O (2.3e.50)

0 , t'<t 0

Here, e is unknown and nonrandom while t0 is known and is the smallest

possible value of T. Since T is random, equation (2.3e.49) is to be

interpreted as

(TIZ $Se-(T-t') , T>t'

P (T IZ , T=t') = for t>0 (2.3e.51)
s 0 , T<t'

Thus, we have



t (TIZt I
S

00

t(T|Zt ,T=t')PT(t' IZt)dt'

t0

-6(T-t') u (T-t')Oe-6(t'-t0
f -1

T

= See -T+eto J e ( -O)t'dt' u_ T-t0
t0

-6 (T-t
0 )

=e
(T-t

0 )) 
T-t

0 ) (2.3e.52)

-S(Tr-t
0t / ~ ( -6(T-t)

Pt (jt T e 
s 0

T>t

, T<t0

for t>O

(2.3e. 5 3 )

In the above, ut') is the unit step function:

u t') = 11
, t'>o

, t<0
(2.3e.54)

In our present setting, since ts >T>t0 , then for t<t0 , the signal #t-t

will not arrive with probability one. Thus, as explained in the one

parameter case, for t<t 0 '
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SOee -8 0(T-t) 0
Pt (TIZt = Pt CT) 0 6 0 -(t

S S

0

0 O0 T>t0

T<t
0

(2.3e.55)

P (t'Ilz t) = P T(t') =
0e-o (t'-t0

0

The a priori densities Pt (T) and P (t') are assumed known, i.e., 0 and
S

0 are known. Thus, we know that

and

= so

e = e0

(2.3e.57)

(2.3e.5 8 )

for t<t 0 . For t>t 0 , we want to determine 5 and e using the observations

Zt. Denote the values of 3 and 0 determined using the observations Zt

by t and 0 t. From equation (2.3e.53), we easily get, for each t>t0'

St t

t t f
1 ^

= A A t e

St-e t

t (T-t 0

t(t-t 0 )

-t (T-t0 ]dT

-t (t-t0
te
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-t<t0 ( 2 . 3 e.56)

P(ts<tzt )

(2 .3e.59)



and from equation (2.3e.50), for t>t0 '

t

-t (t'-t0)
P (T<t|IZ ) = t e dt'

t
0

A

=1- e -et (t0(2.3e.60)

However, we know that

P(t <tzt tit (2.3e.61)

and similarly, defining the process it such that

1 ,t>T

t 0 t>T (2.3e.62)

'0 , t<T

we have

AA

P(T<t|Zt) = E(t tJ itit (2.3e.63)

We shall shortly show how the estimates ipt-t and ftit can be generated

in this case via a procedure similar to that in Theorem 2.6. Equating

(2.3e.60) and (2 .3e.63), we have

-e (t-t 0
1 - e ttr tit (2.3e.64 )

or

at0= tTin , t>t (2 .3e.65)

1- tit
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Similarly, equating (2 .3e.59) and (2.3e.61), we have

-Stt-t0) ^ t(t-t0~1 + tttt tt , t>t 0  (2.3e.66)

t t

We can, in principle, solve for St in terms of 0t and t t. A closed

form expression for t in terms of e t and $tit is not possible and we shall

just leave equation (2.3e.66) as an implicit equation for t

Under the assumed density (2.3e.53), the conditional mean estimate

of t is given by

E{t z =t + + (2.3e.67)
s t A

t t

while the most likely value, i.e., the maximum a posteriori probability

estimate, of ts is

ln ($t
t 0=to+ (2 .3e.68)
s/tAA S -et t

Thus, both estimates of ts can be computed on-line by computing t and 0t'

Now, consider the computation of the estimates $t~t and 1TtIt on which

everything else depends. We have to first enlarge the family of a-fields

{8t t> defined by equation (2.3a.3), Section 2.3a, so that the process

7 t is also adapted to (
8t t>0. Thus, we define 8t now as
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B = G v {$ ,O<T<t} V o{{w: t (o)<T}jT<t}
t t T-t - - s - -

V a{{w: T(W)<T}IT<t} (2. 3e.69)

The process rt is now clearly adapted to Bt By a proof similar to that

in Appendix 1 for $t F'I t can be shown to have the representation

drt = Pt(1rt)dt + dnt

p = P (t)
t T

t

P (T)dT
T

(2.3e.70)

(2.3e.71)

and nt is a t-martingale. Under the assumed a priori density P (t) in

(2.3e.56), we have

Pt =00 , t>t

From Theorem 2.1, we know that it has the representation

d#t t t(1-i )dt + dmt

(2.3e.72)

(2.3e.73)

when ts can take on any value t>0. Now, we know in addition that t > T
5-

where T is random. Under this new condition, we show in Appendix 4 that

$t now has the representation

(2.3e.74)d$ = p (1-$ ) u dt + ff dm
t t t t- t- t
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With the assumed a priori density Pt (T) in (2 .3e.55), we have
S

-0(t-t - 0 (t- to)

P t -6 0 (t t 0) 1 - 0 (t-t 0)
e - e

0o 0

, t>t0 (2.3e.75)

We can now derive the equations for the estimates $tlt and 7tt , for

t>t 0. By considering the filtering problem on the system (2.3e.70) and

(2.3e.74) with the observations

dzt = h(t-t ,t)dt + dwt
(2.3e.76)

and applying Theorem 2.4, we get

- A

d'r tt = Pt (lr It t)dt + [E{7th($t-t ,t) |Z tit h($t-t ,t)]dvt '
S s

TIT 0 (2.3e.77)

and

dtit t t-t t- t )dt + [E{ t h(tt ,t)IZt} - t tt h($t-t ,t)-

dV ' T) -0 (2.3e.78)dVt TIT=

Note that <n,w>t=0 and <m,w>t=0 since n t and mt have jumps at T and ts

respectively. Equation (2.3e.78) can be further simplified since

7t-|t 7tit (2.3e.79)
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which follows because, for each fixed t,

E(Tr t-Tr Z- I} = P(T=tlZ )=0 (2.3e.80)
t t- t t

For the same reason, we similarly have

Trt- t t t tjt (2.3e.81)

Thus, we have

d4Jtit t Ot tit-l ti )dt + [E{th($t-t ,t) Iz t tt h($ t-t ,t)]-

dvt ' TT=0 (2.3e.82)

In general, there is no way to implement the filter (2.3e.77) because the

first term E{Tr h($t-t ,t) z tI admits no implementation, not even a con-
s

ceptual infinite dimensional multiple-model implementation, in the general

nonlinear case. However, in the case when the observation model is linear,

i.e.,

dz = h # dt + dw (2.3e.8 3)
t t t-t t

S

then, since we have

# , t <t
t-t s-

7r # = t-t (2.3e.84)

s It , t >t s

the filter (2.3e.77) reduces to
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d = p (1-f I)dt + h ttt (1-t )dv , =I0 ( 7e T85)

while the filter (2.3e.82) reduces to

dtIt t tjt t)dt + t-t ' titdt TIT=0 (2.3e.86)

Both the filters for t t and $tit admit finite dimensional implementations

in the linear observation model case if the filter for t-t is finite
S

dimensional. This will be true for the signal model considered previously

in the one-parameter case:

dt tdt + d , t >0

0= Gaussian random variable

(2.3e.87)

For exactly the same reasons as in the one-parameter case, the filter for

$t-t is now finite dimensional:
S

2
t-t t tit 0 t-t t t-t t-t t t

(2.3e.88)

The overall implementation is illustrated in Figure 7.

2.3f Some Examples Involving Known Signals

In this section, we want to illustrate our signal and delay time esti-

mation results via some examples in which the signal is known a priori. The
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purpose of doing this is two fold. Firstly, we want to show that in the

case of known signals, the solution to the optimal signal and delay time

estimation problem can be implemented without a growing infinite bank of

filters. Of course, the solution still requires an infinite amount of on-

line computations but the implementation is so much simpler than an infinite

bank of filters that it is appealing. Secondly, the case of known signals

can be of great importance in practice. Suppose we are interested in

inferring the properties of the time-invariant transmission field and the

signal source is under our control. We can then send a known signal through

the transmission field to the sensor and our delay time estimation results

will enable us to infer the properties of the field. Other variants of this

situation can also be mentioned. For instance, the velocity of the trans-

mission field might be spatially constant and there is a reflector present

in the transmission field. See Figure 8.

OUTGOING

SIGNAL SIGNAL

SOURCE REFLECTOR

s0 S
SENSOR RETURN S > 0
s = 0

SIGNAL

FIGURE 8: AN EXAMPLE INVOLVING ONE SOURCE, ONE

SENSOR AND ONE REFLECTOR
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By sending a known signal to the reflector and processing the return, we

can estimate the travel time between the source and the reflector. If the

distance of the reflector from the source is known, the delay time estimate

enables us to estimate the velocity of the transmission field. Conversely,

if the velocity of the transmission field is known, we can estimate the

distance of the reflector from the source. This latter situation is very

important in radar and sonar communication problems [16].

In what follows, we will analyze two examples, one involving an

exponential signal and one involving a rectangular pulse.

Example 1 Exponential Signal

We consider here the following signal model which is a special case

of the model (2.2.1):

d#t = -a t dt , a>0,, t>0

0= known, (2.3f.1)

$t = 0 , t<0

The signal $t is then given by

-at
$t 0 e u_ t) (2.3f.2)

where u (t) is the unit step function. Since the signal model is time
-1

invariant, we will also assume a time invariant observation model:

dzt h)t-t dt + dwt (2.3f.3)
S
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By Theorem 2.5, the estimate #t-t is given by
S

dot-t
S

= p (1- ̂ ) Pt + hE (k ~ t) 2 1 /
t t t 0 Oa t-t S)dt + f(t-t s-t-t ) t

t-t t=0
S

dVt =dzt - h t-t dt
S

The second term in equation (2.3f.4) can be shown to be zero. We have

t

^ 2f
E((#t-t t-t ) Zt

s s 0

(2.3f.6)
0 s (t-T)P(T<t +d|Zt

(See Section 2.3d, equation (2.3d.8)). The term 0(t) is given by the

Riccati equation

dO (t) 2 2
dt -2aa0 (t) - h y0 (t) t>0 (2.3f .7)

However, since #0 is known, the initial condition is

y0 (0) = (0 =0 (2.3f.8)

The solution to equation (2.3f.7) with the initial condition (2.3f.8)

is easily shown to be

-96-

where

(2.3f.4)

(2.3f.5)



a0(t) = 0 ,f

Thus,

E{ ( A 21Zt-t t- t=0,
S S

t>0 (2.3f.10)

and the filter (2.3f.4) reduces to

(2.3f.11)
d Stt t t t 0 t-t )dt , t-t St=0

The on-line estimation of the signal $t-t therefore involves mainly
s

the on-line computation of the estimate $tjt'

We turn now to the equations for computing the a posteriori distri-

bution = P(ts<TIZt). (See Theorem 2.6). These are given by

T=t: dltit Pt Ul-ltit)dt + h t-t (l_4tit)dvt

P(t >T)
T>t: l$T. t 1 t-t(ls-

LI T)P(t >t)
S-

T<t: $TIt TIT

(2.3f.12)

(2.3f.13)

(2.3f.14)+ I
T

where

E(T,t) = hE{ Tt-ts Zt) - h$TI t t-t (2.3f.15)
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Note that equation (2.3f.14) is to be implemented as

d$ = E(T,t)dvt
Tjt -2t

(2.3f.16)

i.e., one equation of the form (2.3f.16) for each T<t, starting with the

initial condition $TtT at time t=T. Thus, at each time t, we only need to

compute E(T,t) for all T<t.

In all the equations above for computing $TIt the only equation that

requires an infinite amount of on-line computations is (2.3f.14) because

of the first term Efl #t-t ZtI in E(T,t), since we have to compute it

for all T<t. We have

T

f= P(t'<t <t'+dt' Zt)

0

= # e t et P(t'<t <t'+dt' Z )
005- t (2.3f.17)

The last equation shows us the kind of on-line computations that have to

be carried out. At each time t, we have to evaluate the integral

e at P(t'<t <t'+dt' Z ) for all T<t. This can be done by performing
JT 5- t



the integration forward in T until T=t and storing up all the intermediate

results of the integration.

By performing the integration indicated above, E(T,t) can thus be

evaluated at each time t for all T<t via equation (2.3f.15). When an

incremental observation dzt is obtained, the updated a posteriori distri-

A
bution ipt+dt is computed via (2.3f.16) for all T<t+dt.

We now summarize the example as follows. For this case of a known

exponential signal, the on-line computation of the signal estimate #t-t

involves mainly the computation of the estimate $tit and note from

equations (2.3f.ll) and (2.3f.12) that both these estimates are generated

by finite dimensional filters. An infinite bank of filters is not required

either for signal estimation or for delay time estimation. However, the

delay time estimation results still require an infinite amount of on-line

computations because at each time t, we have to evaluate the integral in

equation (2.3f.17) for all T<t. In spite of this, the implementation is

very much simpler than an infinite bank of filters.

It is interesting to note that for this case of an exponential signal,

some "estimate" of t can be obtained with finite dimensional computations.
S

Denote this "estimate" of t based on the observations Z by t .. Then,

from equation (2.3f.2), for t>tsit , we have

A ~-a(t-ts jt
= sie (2.3f.18)

t-tgv0

which gives
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1 1 / O
t t ln

t-t S

Note that tsit is alway less than t.

computation of t-t

finite dimensional.

As we have pointed out before, the

is finite dimensional and so equation (2.3f.19) is

Example 2 Rectangular Pulse

We assume here that the signal is a rectangular pulse given by

0 t<0

S= t1 , O<t<T
0, t>T

(2.3f.20)

Note that this model is not of the class (2.2.1) which we have analyzed

in the main part of our work. Thus, the representation result for the

signal estimate is no longer true but we shall see that the signal estimate

can easily be generated. The delay time estimation results in Theorem 2.6,

however, do not depend on the model for the signal #t and therefore are

still true. We assume here a linear observation model:

dzt = h $ dt + dw (2.3f.21)
5

The signal estimate is generated as follows:

$- S= P(t <t<T+t Zt)

= P(t<T+tlzt) - P(t<t z )
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= P(t-T<t szt) - P(t<t z t)

=(-$t-Tit tit

$t-t = t t t-T t
i.e. (2.3f.22)

Thus, everything now boils down to the on-line computation of the a pos-

teriori distribution $Tit This is computed by the following equations:

T=t: d4Itit = t (lt t)dt + h t-tts (ptit)dVt

dt t P t (14t t)dt + h t ($ tlt-$t t-Tt Hl4tjt)dVt

with initial condition

NO =0

Here

dVt = dzt - ht t-t dt
S

T>t: $Tt 

P(ts >T)

P(t >t)
s-

t

T<t: (Tit T ITIT f
T

where

E(Tt) = h tE{ #tt Zt }
A T

t h Tit t-t
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(2.3f.25)

(2.3f.26)

(2.3f.27)

(2.3f.28)

(2.3f.29)

E(T,t')dot'



Of all the equations for computing T~t , only equation (2.3f.28) requires

an infinite amount of on-line computations. Again, equation (2.3f.28) is

to be implemented as

d$p - E(T,t)dv (2.3f.30)
Tit t

i.e., one equation of the form (2.3f.30) for each T<t, starting with the

initial condition T at time t=T. Thus, we only need to compute

E(T,t) for all T<t at each time t. In equation (2.3f.29) for E(T,t),

the first term is evaluated as

T

ET$ T t = t t =t'}P(t'<t z<t+dt' Z )

0

Tf t- tt-t P~t st~t s- t

0

A

A A

= Tt tT<t <t-T<T<t

0 , 0<T<t-T (2.3f.31)

Thus, the on-line computation of this term, at each time t, involves at

most an infinite number of subtractionsone for each T<t. The term

E(T,t) is therefore readily computable at each time t for all T<t.

For this case of a rectangular pulse signal, the signal and delay
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time estimation problems both reduce to the on-line computation of the a

posteriori distribution $T t The latter can be computed on-line by

an infinite number of elementary algebraic operations and therefore the

implementation is as simple as we can hope to get. Note that we can never

hope to get away with a finite number of operations in computing $lTt

on-line, since we have to compute it for all T at each time t.
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Relation of our work to known results

Our results for processing known signals observed with a random time

delay represent a new approach to the problem. However, we should point

out that some existing results in the communications literature can also be

applied to such signal processing problems. Essentially, in this case, we

can use a correlation receiver or a matched filter receiver [74] to decide

which value of the delay time is the true one based on the maximum a poste-

riori probability criterion. Once the true value of the delay time is

decided on, the estimate of the signal is determined. We illustrate briefly

here the structure of the correlation receiver.

Suppose the delay time t takes on the values {tjts,...,t 1, with the

a priori probabilities {P P2 ''''',n} respectively, and the signal #t is

known a priori. Then, the correlation receiver consists of a bank of n mul-

tipliers and n integrators. Let the observations be given by

r(t) = h ttt + n (t) , t>O (2.3f.32)
w

where r(t) is the received signal and n (t) is a zero-mean white Gaussianw

noise process. The correlation receiver first generates the set of numbers

r. , i=1,...,n, where

r =f r(t)$ t tdt (2.3f.33)

and from these the number . , i=l,.. .,n, where

5. = r. + c. (2.3f.34)

Here, c. , i=l,...,n, is precomputable and depends linearly on ln P.. Note
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that the Z.'s form a sufficient statistic for our decision problem. From

each 9,. , the a posteriori probability P (t =t. r(t), <t<00) can easily

be obtain as

(R-2Li\
_ 1 ~ N)

P(t =t. r (t), 0<t<o) = e P(r) (2.3f.35)
s 11 27N

where

r
r= (2.3f.36)

_ n.

R= liril r 2  (2.3f.37)

and N is the magnitude of the power spectrum of n (t) . It is shown by
w

Wozencraft [74] that if the index k is such that Zk i , for all i=l,...,n

and ik, then the decision t =t minimizes the probability of error. The
s k

last stage of the correlation receiver is a peak detector which selects the

maximum of the numbers .. Once the decision t =t is made, the signal
1 s k

estimate is just #t-tk

We can point out now the similarities and the differences between the

correlation receiver and the known signal results we derived above. Firstly,

our results are recursive and enable us to do on-line estimation for both the

signal and the delay time. The correlation receiver, however, is non-recursive

and the estimates of the signal and the delay time can be obtained only after

all the observations have been processed. Secondly, note that although we
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have discussed the correlation receiver for a finite number of possible values

of t in the above, we should really interpret it as follows. Given that
S

t takes on a continuum of values, we approximate this set of values by a
S

finite subset only for implementation purposes and design a correlation re-

ceiver based on this finite set of values. This is similar to our results

for processing known signals. If we were to actually implement our results

for delay time estimation, we have to approximate the continuum of values

of t by a finite subset and compute $Tit for values of T in this finite

subset. When ts actually takes on finitely many possible values, we also

have results, presented in Section 2.4, for doing on-line signal and delay

time estimation. Finally, note that all our results enable us to deal with

random signals directly in contrast to the above results in the conmunica-

tions literature. However, the latter results provide us with a different

insight into the problem than our formulation. There does not seem to be

any way in which the implementation structure of our results is similar to

the structure of a correlation receiver. The analogy to this is the relation

between a Kalman filter starting with infinite initial covariance and a

matched filter receiver generating a maximum-likelihood estimate.

The same remarks as above apply to the matched filter receiver which

realizes the same decision rule as the correlation receiver.

In practice, it is not clear whether our recursive procedures are

superior or inferior to the existing nonrecursive procedures. In any event,

both solutions yield useful insights into the problem. Recursive solutions

are definitely very appealing but for some applications, nonrecursive

procedures are favored. For instance, in radar communication problems, a

radar pulse might be only about 50ms in duration [69] and for such a signal,
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nonrecursive procedures employing, say, a matched filter receiver, imple-

mented with the aid of the fast Fourier transform, is obviously preferrable

to our recursive solution. We shall not try to advocate here one solution

over another; the application in mind will decide the choice.

2 .3g Summary Review of Solution

We have now completed the solution to the signal and delay time

estimation problem in the case of a continuous range of values of the delay

time t . We have assumed that the a posteriori probability distribution
S

of ts is absolutely continuous with respect to the Lebesque measure on the

real line, i.e., ts does not take on any value t with nonzero probability.

The main results are as follows.

For the signal estimation problem, we have two solutions: a repre-

sentation for the signal estimate t by means of a stochastic differen-
S

tial equation and a multiple-model solution. Both solutions are in the

general nonlinear case non-implementable because they require an infinite

amount of on-line computations. The multiple-model solution is inherently

infinite dimensional since we have a continous range of values of t .
5

Even in the linear Gaussian case, it involves an infinite bank of Kalman

filters. The only way to get a finite dimensional implementation is to

approximate the infinite bank of filters by a finite bank which is

suboptimal. However, the representation result for the signal estimate

leads to finite dimensional optimal implementations in several special

-107-



cases. Moreover, using an assumed density for t s, we have seen that the

representation result easily leads to finite dimensional suboptimal im-

plementations. In the case of known signals, we have seen one example in

which the representation result admits a finite dimensional optimal

implementation. Thus, the representation result appears to be a more

interesting and more useful solution than the multiple-model approach.

For the delay time estimation problem, we can compute on-line the

a posteriori distribution P(t <TjZ ) of the delay time t given the
s- t s

observations Z t. The solution is inherently infinite dimensional since

we have to compute P(t <TIZ t) for all T at each time t. Only in the

case where we assume that an a posteriori density Pt (TIZt) exists and is
S

of a known form characterized by a finite number of parameters is the

delay time estimation solution finite dimensional. The equations for

on-line computation of P(t <TIZ ) require in general a multiple-model

type of implementation involving an infinite bank of filters. However,

in some examples involving known signals, an infinite bank of filters is

not necessary. Although the on-line computations are still infinite

dimensional, the required implementations are simpler and more appealing.

Throughout our results, it is apparent that the solutions to the

signal and delay time estimation problems are coupled. This is to be

expected. Because of uncertainties in ts , the on-line computation of the

conditional distribution of t is necessary to refine our estimate of

. Conversely, since our measurements are on the on-line
S s

computation of the conditional distribution of ts inevitably involves

estimates of the signal.
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2.4 Solution for finitely many possible values of t

We assume here that t takes on finitely many possible values
S

{t 1t 2,..,tn} with the nonzero a priori probabilities {P ,P2''''' n

respectively. This situation models the case in which the transmission

medium can be one out of a finite number of possibilities. Alternatively,

this situation models the case in which the random velocity characterizing

the transport medium is spatially constant and takes on only one out of a

finite number of values. Physically, this case of a finite set of values

of ts is not so interesting and important as the previous case of a con-

tinuous range of values of t s. The results that we present here are not

new and are included only for the sake of completeness. However, certain

interesting applications of these results to the problem of statistical

inference on the transmission field can be pointed out.

Since t takes on a finite set of values, it does not have a probabi-
S

lity density function. The representation for the signal estimate $-t-t
s

given in Theorem 2.5 is then no longer true. The only way to estimate

the signal in this case is to use the multiple-model approach which is

particularly easy in this case because we have

i

$ = (2.4.1)t-t t.<t Ot-t. t
s i

where

t-t. t-t t s 1
1 S
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and

P Pt =t. z ) (2.4.3)
t s i t

Thus, at each time t, the signal estimate $t-t is generated by a finite
S

bank of filters which grows with time to at most n. Each of the estimates

is generated as in Section 2.3b. The equations for computing the

a posteriori probabilities P are well known in this case, see for instance
t

[7]. They are given by

i i#^ -
dP = P (h($ ,t) - h($ ,t))(dz -h($ ,t)dt)

t t t-t. t-t t t-t
1 5 5

P P. , i=l,...,n (2.4.4)
0 i

where

n
h($ ,t) = Z h($ ,t)P (2.4.5)

t-t t-t. t
s i=1 1

and

h ,t) = E{h($ ,t) zt, t =t.1 (2.4.6)
t-t t-ts t 5 1

It is interesting to consider a problem of hypothesis testing on the

transmission medium. Suppose our observations on the signal are limited

to the time interval [0,T] where T > max t. and based on these observa-
l<i<n 1

tions, we want to decide on the true value of t . This can be viewed as a

problem of deciding what the transmission medium actually is given that
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it is one out of a finite number of possibilities. This hypothesis

testing problem can be solved by computing the probabilities P , i=1,...,nT

and making the decision that t =t. , for that value of i for which P is
s i T

maximum. This approach of solving the hypothesis testing problem is

equivalent to the likelihood ratio approach [7].

-111-



2.5 The Multiple Source Problem

The aim of this section is to extend the results in the previous

sections to the case of multiple signal sources. We shall only consider

the case with two signal sources, as shown in Figure 9, with both sources

generating the same signal and assume that the delay times involved take

on a continuous range of values. The joint a priori distribution of

the delay times is assumed to be absolutely continuous with respect to

the Lebesque measure on the plane. The extention to an arbitrary number

of sources is similar, while the finite hypothesis case can also be worked

out in analogy with the signal source case.

SIGNAL SIGNAL
SOURCE 1 SOURCE 2 SENSOR

s=O s=s0 s>s0

FIGURE 9: THE TWO SOURCE CASE

The motivation for considering the multiple source problem is

to study the situation in which there are reflectors present in the

transport medium to reflect the signal. Specifically, consider the situ-

ation in Figure 10. Because of the presence of the two reflectors, the

SIGNAL
SOURCE

O _s

SENSOR - REFLECTOR REFLECTOR

s=0 1 2

FIGURE 10: THE TWO REFLECTOR CASE

-112-



signal received at the sensor is made up of two signals, each one being

the signal from the source but observed with a different random time de-

lay. Conceptually, the reflectors in Figure 10 correspond to the sources

in Figure 9. The situation with more than two reflectors is similar

and we refer to this problem as the multiple reflection problem. The

multiple reflection problem and the multiple source problem are con-

ceptually equivalent and the two names will be used interchangeably.

The case of only one reflector corresponds to the case of a single source

which we have considered in detail before.

One possible application of the solution to the multiple reflection

problem is to the discrete multipath communication problem [16]. Note

that our problem formulation here applies to the nonresolvable case of

the discrete multipath communication problem, i.e., the reflections of

the signal received at the sensor overlap in time. Another possible

application is to the problem of deducing the placement of the reflectors

in the transmission medium. Assuming that the velocity of the trans-

mission medium is spatially constant and is known, the delay time esti-

mates enable us to estimate the distances of the reflectors from the

sensor. This has possible applications to seismic signal processing

[5], [25), [26].

2.5a Problem Formulation

We assume that both signal sources generate the same signal #t which

is an Ito diffusion process given by the same model discussed before

(see Section 2.2):
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# = a(# ,t) +'# t , t>0
t t -t -

#0 = random with known distribution, (2.5a.1)

$t = 0, t<O

Let tsl and ts2 be the travel times of the signal from signal source 1

and signal source 2 respectively to the sensor. By the set-up of the model,

we have:

tsl > ts2 (2.5a.2)

The sensor observes two signals, #t-tsl due to signal source 1 and

#t-ts2 due to signal source 2. Suppose the observations of the sensor

are modeled as

dzt = h 1 ( , t)dt + h2 (tt , t)dt + dwt (2.5a.3)

where h1 (.,.) and h2 (.,.) are jointly measurable with respect to both

arguments and wt is a standard Wiener process. We define the cumulative

observation a-field of the sensor as

z = a{z , O<T<t} (2.5a.4)
t T --

The problems we are interested in are now:

(i) To estimate the signals #t-t and #t-ts2

(ii) To infer the properties of the transmission field.

For the second problem, we shall see that we can compute on-line

the joint a posteriori distribution P(t <T1 t ts2<2IZt) of the delay
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times t and t s2. This joint distribution is also used in computing

the estimates of the signals. We present in the following sections the

solution to the two problems posed above.

We note that the observation model (2.5a.3) can allow different

amounts of reflection from the different reflectors. This is especially

evident in the case when h1 (.,.) and h 2(.,.) are linear in t-tsl and

# srespectively, so that h (t) and h (t) can be regarded as the
t-t 2  1 2

reflection coefficients from reflectors 1 and 2 respectively. In our

model we take h (t) and h 2(t) to be deterministic, but one could consider

them to be random (as in amplitude fading in a Rayleigh channel [16)).

We state here the statistical assumptions made in our analysis of

the problem. As in the one source case, wt is assumed independent of

and of # so that wt is independent of #t. We will also assume w
:t0 t t

to be independent of tsl and of ts2 and this implies that wt is independent

of #t-tsl and of #t-ts2

2.5b Signal Estimation

As in the one source case, we discuss here two solutions to the

signal estimation problem, namely the solution via dynamical representations

for the signal estimates and the multiple-model solution.

Dynamical Representations for Signal Estimates

We are interested in the stochastic differential equation repre-

sentations for the estimates

= E{# Z} (2.5b.1)
t-t t-t t

sl1 sl
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and

= E# Z } (2. 5b. 2)
t-t t-t t

s2 s2

It will be seen that such a representation is possible for t-t and
A s2

not for t-t '-slA

The derivation of the representation for 4t-ts2 proceeds as in the

one source case. To describe events at the sensor, we construct the

increasing family {Bt } t> of G-fields such that

B = G{w , O<T<t} V '{ , O<T<t} V O{# , O<T<t}
t T' -- -t - T-t 2  -

V a{{W: tl <T}0<T<t}

V O{{W: t <T} O<T<t} (2.5b.3)s2-L

On the family {Bt } t>, the process #t-ts2 is a semimartingale and has

the representation

d#t-ts2 = 2t (1 2 t ) 0 + 2t- a(t-t s2, t-ts2))dt

s2 s2

where $2t is the unit-jump process defined by

1,t>t

$2t =s2 (2.5b.5)
2t o, t<t ss2

and p2t is given by

p2t = p (t) f Pt (T)dT (2.5b.6)
s2 t s2
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while m2t is a B t-martingale (here we are using the fact that $2t is

also B t-adapted.) The derivation of this representation is the same

as that of Theorem 2.2 in the one source case. Following the steps

that lead to Theorem 2.5, we now have the following representation for

t-s2:

d#t = (p t(l.1$t ) { + E{$ a(#~t , t-t 2 ) IZt}) dtd t-t s2 P2t (1 2tit )E 0 1+E 2t- U( -~ t-t s2 )Zt )d
s2 s2

+ E4 (h (# , t) + h (# , t))
s2 sl s2

- t-ts 2 (h(#t-t s, t) + h2 (t-t s2, t)) Zt}dvt

#t-ts2 t=0 0 (2.5b.7)

where

dx) = dz - h (# , t) dt - h (# , t)dt (2.5b.8)

We will discuss later the implementation of this filter as well as its

specialization to the linear case.

To generate the representation for the estimate # Sl, note that

$t-tsl is a delayed version of #t-ts2 since tsl > t s2. Because the

observation zt contains a measurement on #t-ts2, the estimation of #t-tsl

should be viewed as a smoothing problem. We have found that it is im-

possible to write the stochastic differential equation representation

for the estimate #t-tsl in all cases. This difficulty was noted by Kwong [37]

in the case of a fixed known delay. A trivial extension of the argument
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by Kwong [37] easily leads us to this conclusion. The reader should

refer to [37] for a thorough discussion of this point. In the case when

t and t are known, say t T and t sT , a nonrecursive representa-
sl s2 sl s2 21

tion for $ has been obtained by Kwong [37], where

= E(# Z t =T t =T } (2.5b.9)
t-T t-t t, sl 1, s2 2

1 sl

Using the estimate t-T, the estimate #t-tsl can then be generated

by using a multiple-model type of approach. This is discussed in de-

tail in the following section. Note that at present, it is not known

how to generalize the nonrecursive representation for $t-T to one for

sl because without conditioning on known values of tsl 
and ts2'

the representation is not well defined.

Multiple-Model Solution

The estimates #t-t4 s and #t-ts2 can be generated as

= I' ~ Ef# IZ , t1 =T1 , t=T2  .t-t S, ft-t sl t sl= l' s2= 2
sl T <T <t sl

2- 1-

P(T 1<t <T 1 +dT 1 , T 2<t 2 <T 2 +dT 2 Z) (2.5b.lo)

= E( t TT -t-t s t-t t sl 1' s2  2
s2 T <t s2

T <T
2- 1

P(T <t <T + dT , T <t <T2 +dT Z) (2.5b.ll)
' 1 sl-l1 2 s2- 2 2 t

The computation of the probabilities P(T <t <T +dT , T <t <T +dT 2|Z
1 s11 1 2 s2- 2 2 t

will be discussed in a later section. We now discuss the generation of
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the estimates

t-T7 = Ef{t-t Zt, tll ts T (2.5b.12)
1tT - sl ztI t=i s2= 2

and

t-T2 = E{#t-ts2 Zt, tsl, ts2 2} (2.5b.13)

Given that t sl=T and t s2=T 2, we have

dt-T =at-T, t-T 1)dt + l' (t-T, t-T) d , t>T (2.5b.14)
1- - 1 1 1- t ,

d#t-T2 = (t-T , t-T 2 )dt + l' ( t-T, t-T 2 )d 2, t>T 2  (2.5b.15)

and the observation equation is

dzt = h t-T ,t)dt + h2 (t-T 2,t)dt + dw , t>O (2.5b.16)

Thus, the estimation equation for t-T is [38]:

<t<T2 t-T2=0 (2.5b.17)

T <t<T : dft-T2 t-T2, t-T 2)dt

-E{( 1 t t-T 2)(h2 t-T2,t)-h2 t-2t))

Zt, tsl 1, ts2T }(dz'-h2 ( t-T2,t)dt),

t-T2 t=T2 = Ef#0 (2.5b.18)
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where

dz' = dz - h (0,t)dt (2.5b.19)
t t 1

T <t = d -T t-T2, t-T2 )dt

+ Ef((#t-T 2 t-T2 l t-T 1, t) + h 2 (t-T 2,t

1 1 t-T t) - h2 t-T ,t))1Zt, tslt1, ts222

2 2

.(dz t-h (# ,- t)dt - h 2(# ,- t)dt) (2.5b.20)

t1 t-T 1 22t-T

1 2

In principle, to implement the filter (2.5b.18) in the general

nonlinear case, we can write a stochastic differential equation for

each term on the right hand side, ending up with an infinite system

of equations. However, for the filter (2.5b.20), the same procedure

is not possible because it is impossible in general to write a stochastic

differential equation for the term E{ t-T2h 1(t-T , t)|Zt, tsl l, ts2 2

This problem has been discussed in Kwong's thesis [37] and we refer the

interested reader to this reference. In the general nonlinear case,

it is impossible to compute this term recursively by any means. However,

in the linear Gaussian case, this term reduces to hlt Ef t-T 2t-T1

zt, tsl 1, ts2 } and is precomputable as we shall see later.

Now, consider the problem of finding the estimation equation for

We know that
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= 0, t<T (2.5b.21)
t-T 1  1

For t>T 1, we encounter the same problem as before for # t-t . The gen-

eration of this estimate is a smoothing problem since # t-T is a delayed

version of #t-T and we have observations on #t-T. In all cases, it is

2  2  A

impossible to generate the dynamical representation for #-. See the

discussion in [37].

However, a nonrecursive representation for #- has been obtained

by Kwong in [37] and is given by

t

t-T t-(T -T2 )-T t-(T1-T2 f E 1t-T 1s-T
t-(T 

1-T 
2

1[h S-T s) 2 s-T2, s)

- h s-T s) - 2 s-T2, s)]Z sitsll , s2 2

(dz - h 1s-T s)ds - h2 s-T 2 , s)ds) (2.5b.22)

where E 0{.} denotes the expectation with respect to a probability measure

P defined by

dP0
= exp [ - [hltT, t) + h t)]dw

0 1 2

T
1 [h t-Tft) + h 2 (tT t)] 2dt] (2.5b.23)

211 2

Here [0, T] is the interval of time over which our problem is defined.

Under the probability measure P the process zt, the observations, is
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a standard Wiener process. Thus, intuitively, under the measure P ,

no measurement on #t-T and #t-T2 is made. Equation (2.5b.22) is

only a representation and is incomputable in practice. In the linear

Gaussian case, this representation reduces to a readily implementable

smoothing equation which is given in Section 2.5d.

2.5c Delay Time Estimation

We discuss here the on-line computation of the joint a posteriori

distribution P (t <T 1 , t <T |Z ) which, besides being used for esti-
s-1 s2- 2 t

mation of the delay times ts and t s2, is also used in the multiple-

model solution for computing the signal estimates #' and # s as
t-t t-ts

illustrated in the previous section. This is done by first writing

P(T <t <T +dT , T <t <T +dT Iz )1 sl-l1 1 2 s2- 2 2 t

= P(T2 <t 2 <T 2 +dT I zt, t1 =T 1 ) P (T <t <T 1 +d 1 z ) (2.5c.1)

The first term on the right can be computed by considering an estimation

problem on the process $2t defined by equation (2.5b.5) . Given that

t = Tl, we now have the new a priori density P(ts2 tsl=T ) for t s2

In addition, given that tslT 1 , events at the sensor should now be

described by the increasing family {B'} of a-fields such that
t t>o

B' = a{w , O<T<t} V a{# , O<T<t}
t T - T-T

V U{#t , O<T<t}
T-t 2  -

V a({: t2 <T}I0<T<tAT1 } (2.5c.2)
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The probabilities of these events should be assigned by the measure

P(.It 1 =T). Under this new a priori probability measure (assuming it

is absolutely continuous with respect to Lebesque measure), the process

$2t has the representation

d$2t p( 2t )dt + dmt (2.5c. 3)

where

t ts2 (t tslT 1) ts2 (T|ts=T 1)dT (2.5c.4)
t

and m2t is a martingale on {B' }t>0'

The probability distribution 2T2 tT = E{$ 2 T2 zt, t = T }

= P(t s<1?2 Zt ' t 1 =T1 ) is now computed by the following equations whose

proofs are direct extensions of the one-source case:

T2 t: d$ 2tT = P2t 1  2tjt,TI )dt

+ [E{$ 2t(h 1( t-tslt) + h2 (t-ts2 t))IZt, t T sl

~ 2tlt, T (h1 ( t-ts tIT )+h2 t-ts2 t|T ))].

. tIT '

$2010,T = 0 (2.5c.5)

where

h 1 t-t s, tIT 1 ) = E{h 1 (t-t s, t) Zt, tslTl} (2.5c.6)

h 2 t-t s2, tJT1 ) = E{h2 t-t s2, t)IZt, t l=T} (2.5c.7)
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and

dVtIT= dzt - hl t-tsl, tIT1)dt - 2 t-ts2, tI T )dt (2.5c.8)

P(ts22 t T
2>t: 2T2 t,T 1  2t it,T P (t tt =T 1 ) (2.5.9)

t

2<t: 2T2 1 t,T1  2T2 2 T 1  2 (T ,T Il)dVTT (2.5c.10)

2

where

2 2, ty = E{2T2 (h 1 t-ts t) + h2 t-t s2, t))

IZt, tsl=T 1 22T2 t,T1 h( t-t s, t IT 1)

-2T tT h2 t-ts2 tIT 1) (2.5c.l1)

and h1 t-ts, tIT ) is defined by equation (2.5c.6) and h2  t-t s2, tIT 1)

by equation (2.5c.7).

Next, the probability distribution V$lT it = E{1T 1 1Zt} = P(t jTiZt)

is computed by the following equations which are obtained by considering

an estimation problem on the process it defined by

t 1 t>tsl (2.5c.12)

o, t<tsl

and which has the representation

dV lt lt (1~l4Vt)dt + dmlt (2.5c.13)

where

l t (t) f Pt (T)dT (2.5c.14)
sl t sl
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and m t is a B t-martingale.

T1 =t: d$itt = Pit(1'Pitlt)dt

+ [E{$1t (h1 t-tsl, t) + h2 t-ts2, t)) IZ t

lt t (h ( t-tslt) + h2 t-ts2, t))]dvt '

=1010 0 (2.5c.15)

P(t ,>T)
T1>t: $1T't = l-( 'tiI) P(t >t) (2.5c.16)

t

T1<t: $lT t = 1T + JE(T T)dv (2.5c.17)

where

1t) = E1 1(h1 t-tsl, t) + h2 t-ts2, t))|Zt

1'T 1t (h( t-t s, t) + h2 (t-t s2, t)) (2.5c.18)

The derivation of these equations follows that of Theorem 2.6 directly.

With the equations for P(t T2 Iz t, t =T ) and P(t ZTIZ), we

can then generate the joint distribution P(t ,<T1  ts22IZt) on-line

using equation (2.5c.1).

As in the one source case, the above equations for computing

P(tTs2 2Zt, tsii) and P(tsi<TiZt) have to be implemented via the

multiple-model approach. For instance, in equation (2.5c.18), the term

E{$ h2 t-t ,t) Zt} is evaluated as
1 s2
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E{1 h ( ,t) Z t}
1T 2 t-tt

1 s2

4 Efh 2(# ,- s1t) Z , t s=t', t2=t }-

0<'t t !:T

. P(t'<t <t' + dt' , t'<t <t' + dt' IZ ) (2.5c.19)
1 sl-i1 1 2 s2- 2 2 t

It is easy to see that the basic quantities to be computed in implementing

the delay time estimation equations are the estimates

h 1(#tT , t) = E{h (#) , t)jZ tI t=T , t 2 =T2 } (2.5c.20)

and

h 2 (#tT , t) = E{h 2(tt (# , t) Z , t=T 1 , t 2 =T2  (2.5c.21)

2 s2

However, to generate the equations for computing these estimates involves

the same difficulties as those encountered before in deriving the equations

for #t-T4 and #t-T2. In the next section, we examine the linear Gaussian

case in which all these estimates are computable.

2.5d The Linear Gaussian Case

We saw in the previous sections that one way to generate the complete

solution to the signal and delay time estimation problems is the multiple-

model approach. We shall first discuss the multiple-model solution here

and then examine the representation results for the signal estimates.

Multiple-Model Solution

In the linear Gaussian case, the signal model (2.5a.1) specializes

to
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d t = at dt + 'dit, t>0

#0 = Gaussian random variable (2.5d.1)

#t = 0 , t<0

and the observation model (2.5a.3) becomes

dzt = h t t-t sl dt + h 2tt-t s2 dt + dw t (2.5d.2)

The basic quantities called for by the multiple-model approach are the

estimates

#t =E# t Z , t s=Tl, t 2 =T 2  (2.5d.3)
l sl

and

t-T2= E{#t-ts2 t, ts=T 1, ts2 2 (2.5d.4)

The solution for computing these estimates has been derived rigorously

by Kwong [37] and we present it here for the special case of our model.

Given that tsl 1 and ts2 2 the observation model becomes

dzt =h tt-Tdt + h 2t t-T2dt + dwt (2.5d.5)

It is well known that #t is a Gaussian process and its distribution con-

ditioned on the observations Zt is also Gaussian. In fact, the same is

true for #t+e for any 6 such that -t<6<0 [37]. Thus, its a posteriori

density given Zt is completely characterized by the conditional mean

and the conditional covariance.

The conditional means #- and t-T are given by the following

equations:
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t<T 2 lT 1 t-T t-T2 = 0

T <t<T1: #t-T 1 = 0

d#t-T2 t-T2 t-T2 dt + P (t IT,T2)h 2t(dz t-h 2t t-T2dt),

#t-T tT
we2 2 er ia

where the error covariance

P (tI T,T 2 ) = E{(#t-T

0 E{#0

A 2

2 t-T 2 ztIt s=T 11ts2T

is given by the Riccati equation

dp0 (t ITi 1 T2  2a p (tIT T ) + y y
dt t-T2 0(t 2 -,T-T 2 2t-T

- h2tP (tITi, T2)

0 (t=T2 1 ' 2 E -E{#0 2=E ,0 given (2.5d.10)

T <T <t:
2 1-

d#t-T2 = t-T 2 t-T2 dt + [P0 (tITi,T2 )h 2 t + P 1 (t, T2-T 1 lT )hlt

. [dzt - ht t-T dt - h 2tt-T 2dt]

4t-T

(2.5d.11)

t-T 1 t-(T 1 -T 2

t

t-(T -T2

[P 2(s, t-(T1 2 )-s, O T,T 2)h2s

+ P2 (s, t-(T -T 2)-s, -(T 1 -T2 l' 2)hls

. [dz s-(hls s-T + h2s s-T 2)ds] (2.5d.12)
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Note that the first term #t-T t-(Tj -T 2 ' in equation (2.5d.12) is

the estimate generated by the filter (2.5d.ll):

t-TIt-(T1-T 2) t-T -(T 2 )ft-(T -T 2

E{#t-(T12 2)-T t-(T1 2 , t 1=T 1 , ts2 2

(2.5d.13)

Equations (2.5d.1l) and (2.5d.12) can be understood more easily if

we write xt t-T2 and xt-(T -T 2) t-T '

The covariances P , i=O, 1, 2 are defined by

2 (te~t 1 1 2  =ET{(4 +0 -2( T ,T2) t-T 2  t-T 2 +8 t-T 2+( t-T 2 +) t '

tsl 1, ts2T 2

e < o, < 0 (2.5d.14)

P 1 (t,6!T1 ,T2  P 2 (t,0,0|T 1, T 2) (2.5d.15)

P0 (tJT1 ,T2) = 2 (t,0,0T,11T2) (2.5d.16)

Note that the definitions (2.5d.16) and (2.5d.9) are the same. The

above covariances are precomputable by the following equations which

are obtained by direct substitution into Kwong's results [37]:

dP) = 2atT 0 (tTT 2 ) - h 2
P2 (t|T ,Td 0 '2 t 20 2 2t 0 1OT2

- h tP (t, -(T -T 'TTit 1 1 2 12

- 2hth2 t PO(tITT 2)p 1 (t, -(T 1 -T2 1lT 2

+ Y't-T2 t-T2 
(2.5d.17)
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S e1t,2 = P 1(t, T 0 2 t-T2

- P (t,IT T,T 2) h2 P (tjT,T21 1 2 2t 0 1 2

2 (t,0, -(T -T2 IT',T )h2 P (t,-(T 2 1-2
2 1- 1 2 it 1 1 2)1T1 T2)

- 1(t ,0T ,T2)hlth 2 t 1(t, -( T-T 2) l' 2)

- P2 (t,0, - (T1-T2 )Tl'T 2)hlth2t O(tiT ,T 2)

(2.5d.18)

t 2 (t,0,T T2 -P (t, 1T ,T)h 2t (t,( T ,T36t E 1 1l'2 2 t, T 1 2)

P (t, ,-(T -T ) 2-r )h 2 p (t,-(T -T )', l' 22 12 12 it 2 1 2 ITT 2)

-1 (tI1TT2)hl th2 2t,-(T -T2) ' TT 2

- P2 (t,0,-(T 1 -T2) Tl'T 2 )hlth2tP1 (t,(|TlT 2)

(2.5d.19)

The initial conditions are

P0 CT 2 l' 2 = 1 (T2 , T1 'T 2) = 0,

for

P (T ,,jT ,T 2) = 0

e<0 ,

P 1(t, T1, T 2) 0 (tIT,T2)

P2 (t,e,0IT1 T2) = 1 (t, eT1,T2)

Representations for the Signal Estimates

We have seen that it is impossible to generate the representation,

recursive or nonrecursive, for #t-t in Section 2.5b. The only way to
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generate the estimate #t-tsl is by means of the multiple-model approach

even in the linear Gaussian case. Thus, the computation of the estimate

t-t sis infinite dimensional in all cases.t-slA

Consider now the representation (2.5b.7) for the estimate t-t

in the linear Gaussian case. This representation becomes

d# = (p (1-4 ) E(I E$ a # Zt})dtt-t 2  2t 2t it E0 2t- t-t t-t t

+ E{h# + h #2
it t-t s2t-t sl 2t t-t ss2 sl s2tpt

2
- h ltt-t t-t - h 2 t -t Zt }dVt (2.5d.23)

s2 sl s2

where

dVt = dzt - hltt-tsl dt - h2tt-ts2dt (2.5d.24)

Evidently, the filter (2.5d.23) is always infinite dimensional because

the innovations process Vt involves the estimate t-t However, we

are interested in finding cases in which the remaining terms on the right

of the filter (2.5d.23) is implementable.

When at a, a constant, the second term becomes

Ef$p~ a # IZ.} = GE IZ }E 2t- at-t s t-t s t aE 2t- t-t S2It

= at-ts2 (2.5d.25)

The last step follows as in the one-course case. The second term is now

finite dimensional.
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For the third term, we write

E{hit t-ts2 t-tsl
+ h 4)2

2t t-ts2

-h t s t-tsl - h2tt-t s2 t

= ht E t-ts2 t-ts2 t-tslt-tsl 1t

+h2t E t-t s2_ ~ s2) t
(2. 5d. 26)

We now compute each of the two terms on the right-hand side of (2.5d.26)

using the multiple-model philosophy:

h E {(4 ( - t- ) Z
it -ts2 _t S2 t sit~ si

t T

=hit 1= f
Ty=0 T2=0

P (t,-(T1-T2 2s l<tsl 1+dT,

T2<t s2 2+dT2 IZt) (2.5d.27)

where P(.. ,T2 ) is defined by equation (2.5d.15) and is precomputable

by equation (2.5d.18). Similarly,

h2t E{(#t-ts2 t-ts2 )2 z t

00 T At

=h2t r f
T1=0 T2=0

0 (tIT ,TT2 <tslT + dTi,

T 2<ts2f2+dT2 IZt)

where P (t|T1,T2) is defined by equation
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(2.5d.16) and is precomputable by equation (2.5d.17). Equations (2.5d.27)

and (2.5d.28) are of course infinite dimensional and there does not yet

seem to be any case in which they could become finite dimensional. Based

on our experience with the one-source case, we expect them to become

finite dimensional when P1 (t, -(T1 -T2) l'TT2 ) and P0 (t T ,T2 ) are equal

to their steady state values. However, these steady state values, al-

though independent of t, would still be functions of T and T2 and so

we would still have to evaluate the integrals in (2.5d.27) and (2.5d.28)

over the appropriate ranges of T and T2 on-line. In fact, we expect

P and P in the steady state to be functions of T1-T2 only. In spite

of this difficulty, we can still hope to evaluate these two equations

with finite dimensional computations suboptimally. The evaluation of

the integrals in (2.5d.27) and (2.5d.28) in the steady state appears

to be an interesting open problem.

The way in which equations (2.5d.27) and (2.5d.28) could be finite

dimensional is when P1 (t,-(r 1,T2  T 2 ) and P (tjT,T 2) are equal to

their steady state values, say P1 ,T 2) and P CT 2 ) respectively, and

we use an assumed joint density, characterized by a finite number of

parameters, for tsl and ts2. Then, since P T ,T 2) and P l 2( ) are

precomputable and the on-line computation of the joint density of tsl

and ts2 involves only the on-line determination of the parameters

characterizing the density, equations (2.5d.27) and (2.5d.28) are easily

seen to be finite dimensional. In fact, they can be evaluated off-line

in terms of the parameters of the assumed density and once the parameters

are determined, the values of the two covariances are obtained. of course,
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this is only a suboptimal approach based on what we have done in the one-

source case. We expect that the on-line determination of the parameters

of the assumed joint density of tsl and ts2 would involve the estimates

ltlt and 2tit and we will examine these estimates shortly.

The conditions under which P (t|T,T2) and P1(t,-(T 1-T ITlT2)

are equal to their steady state values are discussed by Kwong [72]. We

shall not discuss these conditions here and the interested reader should

consult [72].

Finally, let us consider the computation of $1t and $2tit which

are given by the filters:

d$ 1 tt Plt (l1P tit)dt

+ [E(lt (h 1 t-t ,t) + h2 (t-t s2, t)) IZt

lt t(h1 t-t sl t) + h2 t-ts2,t))dot

$10 10 =0 (2.5d.29)

d$ 2t t P2t (1V2tt t)dt

+ [EI2 (h (# , t) + h ( , t))JZ }

sl s2

+2t t(h1( t-t , t) + h2 t-ts2, t))]dt'

V2010 =0 (2.5d.30)

Equation (2.5d.29) has been presented before (see equation (2.5c.15)). The

derivation of equation (2.5d.30) is similar, In the linear Gaussian case
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these reduce to:

# A t

d$itIlt i t t)dt

+ [hlt At-t + h2t lt-t s2Zt

lt t t-ts2)]d 
st2

$100 =0 (2.5d.31)

d $ 2 tjt = p2t - 2 tjt)dt

+ [h ltt-ts 2tit

+ h 2tt-ts2 ( 2 tIt) ]dvt

$20f0 -0 (2.5d.32)

The last two equations show that even in the linear Gaussian case, the

computation of $lt t and 2t t are infinite dimensional. The reason

is that the estimate #t-ts is involved, which also occurs in the inno-

vations process Vt. There is an additional term involved in equation

(2.5d.31) for l1tt, namely E(1 t-ts2 Zt We will here examine what

the computation of this term involves.

The derivation of the filter for is straightforward
s2

along the lines we have derived other filters in this chapter and there-

fore is omitted. In the linear Gaussian case, this filter is given by
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it t-t s2
l t- + $t t- t- ]dt
it tts2 t ts2 tts2

+ Ihlt t-t  t-t s2

+h E sl s2
2

+ h 2t E lt t-t s

lJttt-t Izt

t-t s2ltt-t Zt}]d t

s2 s2
(2.5d.33)

This filter is of course infinite dimensional and the terms involved in

this filter are very similar to those in the filter (2.5d.23) for #t-ts2
The second term is finite dimensional only when at = a so that

1ta t = a $(2.5d.it- s2 s2 s2

The only term which is new and requires consideration is:

h E{4 2_ lz} h E{f ( 2 _ ~2_2t Elt ts2 t 2t E t ts2 ts2 t

+ h2tE{lt-ts2 Izt

= h2 tE{ lt -ts2

2
+ h2tlt tt-t 

t-t IZ ts2

(2.5d. 35)

Now,

E($t t s2 t s2) Zt

t T1

f f I1PO (t1 T T2) P(Tl<tsl 1 +dT1 , T2<ts2 +dT2 Zt)
T =0 T 2=0 

(2.5d.36)
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Equation (2.5d.36) is essentially the same as equation (2.5d.28) and

we shall avoid further discussion. Notice that the filter (2.5d.33) does

not introduce any new term which requires another filter for its computa-

tion. This is fortunate because otherwise the new filter might intro-

duce terms which again lead to new filters. We have ended up here with

a finite bank of filters.

We summarize our discussion here as follows. The representation for

t-t in the linear Gaussian case is infinite dimensional in all cases
s2

because the estimate #t-tsl is required. The terms involved in this

filter lead to a finite bank of filters for their computation. Even

when the covariances P1 (t, -(T 1 - 2 t 1 1T 2) and P0 (tIT1 ,T2 ) are equal to

their steady state values, the covariances on the right of the filter

for t-t still require an infinite amount of on-time computations.
s2  - A

The computation of the estimates $1t t and 2tit is also always infinite

dimensional. The main reason why the estimation of #t is always
t-t

s2

infinite dimensional is that the estimate # is needed. When the
t-ts

delay times tsl and ts2 are known, we have seen earlier in this section

that the estimates of # and # are readily computed by a
tsl t-s2

smoother and a linear filter respectively. (See equations (2.5d.ll) and

(2.5d.12). In our case in which tsl and ts2 are unknown, it is impossi-

ble to generalize the smoother (2.5d.12) to one for # . At present,
t-t

A sl
the only way to generate sl is the infinite dimensional multiple

model approach employing a growing infinite bank of smoothers. This is

the problem that makes our estimation problem much more difficult than

when the delay times are known. The problem of finding a representation
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for t-tsl , whether recursive or non-recursive, remains unsolved at

present. The only way we can hope to find cases in which the computation

of t-t is finite dimensional is by first deriving a representation
Ssl

for t-t. Otherwise, using the multiple model approach, we can only
t ss

hope to get a suboptimal estimate of -ts by implementing a finite

subset of the infinite bank of smoothers.

We conclude this section by listing the ways in which our problem

here with random delay times is more complex compared to the case of known

delays. (1) We need a growing infinite bank of smoothers to compute

t-tsl. In the case of known delays, the computation of this term in-

volves a single smoother which is still infinite dimensional. (2) We

have to compute $2tjt and in some cases $t t also. These estimates do

not arise in the known delay case but are analogous to the computation

of tit in the single source case. They take into account uncertainty

in our knowledge of the delay times. (3) We have to compute $1t t-ts2
This is a new term not seen in the single source case. It adds an

additional equation but does not complexify the system nearly as much

as (1) above. (4) Even in the steady state, the covariances in the

filter for s2 require an infinite amount of on-line computations.

This is unlike the one-source case in which the covariance is finite-

dimensional in the steady state.

2.5e Implementation of Results in General

In this section, we will examine the requirements for implementing

our results in general.
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Consider first the representation (2.5b.7) for the estimate

t-ts2

dt-ts2 2t (1 2tI ) Ef #0 ) + E{$ 2 t-( t-ts2 , t-ts2) IZt })dt

+ E{t-ts2 (h1 ( t-t slt) + h2 (t-t s2,t))

-t s2(h 1 (t-t slt) + h2 4t-t s2, t)) t

. dv
t

t-ts2 t=0 = 0 (2.5e.1)

Neglecting for the moment the first term, we see that to compute the re-

maining terms on the right requires either an infinite system of stochastic

differential equations or carrying along the joint conditional probabilities

1- t-ts l +d# 2t-ts <2)+d@' T <t T +dT , T <t <2+dT 2Zt). It
1t sl I -tts2 2 2 i 2

is possible to write the stochastic differential equations for those terms

which involve only t-ts2. For those terms which involve both )t-t and

t-t s2, this is impossible and the reason is given in [37]. The joint

conditional probabilities are computed as

l t-tsl 1 2it-ts2 2 2'

T 1<ts <T1+dT 1  T 2<t s22 +dT2 t

=) P1, #2 Zt, tsl 1, ts2 2) d# 2
t-t 1<2t-t

sl s2

. P(T <t <U +dT1 , T2<ts2T2+d2|Zt) (2. 5e.2)
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We have seen in Section 2.5c how the joint conditional distribution of

tsl and ts2 is computed. To compute the joint conditional density

P , s (# ,#2|Zt t s2 2) recursively is, however, impos-

sl s2
sible mainly because the conditional density P ( iZt,ts=T1, ts2=T 2t-ts

cannot be computed recursively. The reason is the same as in Section 2.5b

where we explained why the estimate # = E(# JZ , t =T , t =T 2
t-T t-t t slFl1 s2 2

1 sl
cannot be computed recursively. It might still be possible to compute this

joint conditional density by some other nonrecursive procedure which we do

not have at present. In the linear Gaussian case, the joint conditional

density above is Gaussian and is completely characterized by the mean and

the covariance. The computation of the latter two quantities has been

illustrated in Section 2.5d.

Finally, consider the first term on the right of equation (2.5e.1).

The only quantity we have to compute on-line is the estimate 2tt which

is given by

d$2t|t 2t 2tt )dt

+ [E($ 2 (h (#-ts , t) + h (# ,- s t))|Z }

~ 2t t (h1( t-tsl, t) + h2 t-ts2, t))]dVt'

20|0 =0 (2.5e.3)

where
oo

p = P t 2 (t) P (T)dT (2.5e.4)
t 

t
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This equation is derived in the same way as equation (2.5c.15) for

$ltlt. As pointed out in Section 2.5c, the way to implement this equation

is the infinite dimensional multiple-model approach in the general non-

linear case. Even in the linear time-invariant Gaussian case, we have

seen that the filter for $2tjt is still infinite dimensional.

Next, for the estimate ts, we have seen in Section 2.5b that

a representation, recursive or nonrecursive, is not possible in all

cases. The only way to generate this estimate is by the infinite dimen-

sional multiple model approach.

The remainder of the results on signal estimation via the multiple-

model appraoch and on delay time estimation all require the same imple-

mentation - the multiple-model implementation using an infinite bank

of filters. We have seen this in Section 2.5b and 2.5c. Thus, as in

the one-source case, the complete solution to the overall problem of signal

and delay time estimation can conceptually be considered to be given by

a growing infinite bank of filters, one for each possible pair of values

of the delay times tsl and t s2. See Figure 5 for the illustration in

the one-source case. In the linear Gaussian case, the estimates t-T

t-t-Tand $t-T 2 are the only quantities to be generated by the bank of filters

and we have presented the estimation equations in Section 2.5d.

2.5f An Example Involving a Known Signal

In this section, we illustrate the results of the multiple

source problem by an example involving a rectangular pulse signal. For

the primary motivation for considering known signal examples, refer to

Section 2.3f. Here, we can add that in the two reflector case of Figure
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10, sending a known signal from the source and processing the reflections

at the sensor enable us to deduce the placement of the reflectors pro-

vided the velocity of the transmission field is known.

The signal t is a rectangular pulse given by

0( t<o

1 <t<T (2.5f.1)t - -

0 , t>T

and assume a linear observation model

dzt = h tt-tsl dt + h2tt-ts2 dt + dwt (2.5f.2)

The signal estimates are given by

-tt lt t lt-Tlt (2.5f.3)

and

t-ts2 2t t - 2t-Tlt (2.5f.4)

Thus, as in the one-source case both the signal and delay time estimation

problems are solved by computing the joint conditional distribution of

tsl and ts2. From this joint conditional distribution, we can obtain the

marginal conditional distributions $l1T t and 2T by which the signal
1 A21t

estimates #t-tsl and #t-ts2 are computed. In the rest of this section,

we will discuss the computation of the joint conditional distribution of

tsl and ts2 for which the estimates $1Ty t and $2T21tTU are required.

See Section 2.5c.
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The equations for computing the estimates 1T ft are now given as

follows. See equations (2.5c.15) through (2.5c.18).

T, = t: dltt lt itIt )dt

+ [hit lt t lt-T t H ltt

+ h2t E($lt t-ts2 Zt

- h2t4lt tP 2tIt - 2t-T t)]dVt'

$100 = 0 (2.5f.5)

P(t >T1
T > t: 1Tt ( t s(t t) (2.5f.6)

sl-

t

T < t: Alt = T l 1iT)dV (2.5f.7)

1 1

where

1(T ,t) = h t(E{1 t-t f zt
lT t lt It lt-T t

+ h2t (E{ 1 tts2 Zt

iT It 2tIt _2t-Tjt (2.5f.8)

The terms that require infinite dimensional on-line computations are

the following:
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E{T 1 #t-ts2 t

=O<t' <t' <T
-2- 1- 1

. P(t <tstj+dtj , t'<ts2 t'+dtZt)

t-t2, P(t i<t <ts2<t'+dt2 t<t <t'+d t )

P(t T1 , t5 % T |Zt) '

= P(t<T1 S , t-T<ts2 TlZt)

0

(in equation (2.5f.8)),

O<T <t<T

O<t-T<T 1<t

O<T <t-T

Efl it ftt zP = p(ts t ts2<t|Zt) ' O<t<T

s2 t P ts<t t-T<ts2t , T<t

(in equation (2.5f.5)).

E 1 t-t sZt

=1
O<t <t'<T
-2- 1- 1

E{t-t IZt =tl , t =t' I-
sit s i S 1 s2 2

P(t <tsl tj+dt' , t <ts2<t'+dt Zt

t-tj P(tj<tsl.:t'+dtj , t <ts2< t +dt jZt)
<t <St <_Tt

P (t s 1, , ts2STiZt) '

= P(t-T<ts 1 T1 , ts2 T|Zt),
0,

l<T <t<T

O<t-T<T <t

0<T <t-T
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(2.5f.11)

E(# t-t s2IZt , t sl=t' , ts2=t' 1 -
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Thus, the joint conditional distribution of t and ts2 is the only quantity

needed in implementing the equations for computing the estimates $T It at

each time t for all values of T . To compute this joint conditionaldis-

tribution, we need the estimates 2T t, T in addition to the estimates

2  1

$lT1 t given above. The equations for computing the estimates $2T2 1t ,T1
are now given as follows. See equations (2.5c.5) through (2.5c.11).

T 2 t: d$2tt,T = - tt, T 1 )dt

+ [hlt E{2 4t-t sl , t =Tl}

+ h2tE{$2tt-ts
2 Zt , tsl 1

- hlt2t t,T Ef{t-t Jz , tsl=T l

1{ sl s=T1 d
- h2t2t t,T t-ts2 t ,tsll - dutIT 1

I2010 ,T1  (2.5f.12)

P(t >2 It ,T )
2>t: $2T 2t, T 1 2tt,T (t >tIt =T ) (2.5f.13)

t

T <t: E = E(T 2  TITl)dVT2 <: 2T2 t,Ti 2T2 T2 T1  2 (2.5f.14)

where

2 (T2 ,tT )= h it E{2T 2 t-t Zt , tsl= 1

+ h2t E($2T2 t-ts2 Zt , tsl 1

- h1t 2T2 tT1 E{#t-tsl Zt , tsl 1

- h2t 2T21t,Tl E{#t-ts2IZt, ts=T } (2.5f.15)
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These equations can be further simplified. Equation (2.5f.12) simplifies

to

d2 = t : d2tIt , T1 = t2t It, T )dt

+ 2t E{#t-t

$2010, T

Zt , ts}=T *

= 0

since in equation (2.5f.12), the second and fourth terms are equal:

IZt tsl =l 

= hlt t-T E{$ 2 t IZt , t 1 =T 1 )

= hlit 2t t, T EIt-t t , t slT (2.5f.17)

Similarly, equation (2.5f.15) simplifies to

2 T, t T ) = hE($T t Z , ts 12 2 1t1 2t2T 2 t-ts2 It r sl=

- h2t 2T2 It, T1 {t-t s2 Zt, tsl l} (2.5f.18)

The terms in the above equations which require infinite dimensional

on-line computations are:

E{$2T2 t-ts2 IZ, t T 1

f ~t-tl P(t <ts2<:t'+dt Z tO<t min(t, T , 2s

P(t s29m|Z t), O<t<T

P(t-T<t s2T|Zt 0<T<t
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* (1 - $ 2t t, T 1) dV t|T , r

hlit E{$ 2tt-t



where

T m=min (t, T, T ) (2.5f.20)

(in equation (2.5f.18)),

Ef# Z- ,2I t S,= T 1t-4.t It tsl 1
s2

P(t <T' Z ) O<t<T
s2 m t

P (t-T<t <T 'f I Zt) , <T<t (2.5f .21)

where

T' = min (t, T1 ) (2.5f.22)

(in equations (2.5f.16) and (2.5f.18)).

With the estimates lT t and $2T2It, T, computed above, we can compute

the joint conditional distribution of tsl and ts2 as in Section

2.5c. Note again that this joint conditional distribution is the only

quantity needed in implementing the whole set of equations above for

$lT tand $2T2 t,Tl* The marginal conditional distribution $2T2 1t of ts2

can be obtained from the joint conditional distribution and it is used

in computing the signal estimate # by equation (2.5f.4).
t-t5

As in the one-source case, the example here involving a known rectan-

gular pulse signal does not require an infinite bank of filters for imple-

mentation. The implementation of the solution to the overall problem of

signal and delay time estimation is still infinite dimensional but involves

only an infinite amount of subtractions on-line. Both the signal esti-

mation and delay time estimation problems are solved by computing on-line

the joint conditional distribution of tsl and ts2'
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2.5g Concluding Remarks on The Multiple Source Problem

We have now completed the analysis of the multiple source problem

along the lines of the basic one-source-one-sensor case. A few points

deserve mentioning before we move on to the next problem.

Estimation problems for systems with time delays, even if the delays

are known, are inherently infinite dimensional [37]. If the delays are

unknown, the problem becomes even more complicated. In our problem, the

whole difficulty starts from the estimation of # . A representation
t-ts

sl
for t-t sl, recursive or nonrecursive, is at present impossible. The only

way to compute this estimate is the infinite dimensional multiple model

approach.

The main reason why a representation for # is impossible is
t-ts

because the delay times are unknown. We have seen that conditioned on

known values of the delay times, a nonrecursive representation is possible

in the general nonlinear case although it is non-implementable. In the

linear Gaussian case, this representation reduces to an implementable smoothing

equation. However, it is impossible to generalize this representation to

the case of unknown delays because without conditioning on known delays,

the representation is not well defined. At present, it is not clear how

unknown delays can be taken into account in the representation.

The manner in which our problem here with random delays is more dif-

ficult than the case of known delays can be summarized as follows. (1)

We need a growing infinite bank of smoothers to compute # . In the
t-ts

case of known delays, this estimate is computed by a single smoother which

is still infinite dimensional. Since the estimate # is infinite
t-t
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dimensional, our solution to the entire problem of signal and delay time esti-

mation is infinite dimensional in all cases because the estimate of $ or

h($t-t , t) is needed in generating the innovations. (2) Because of
sl

uncertainty in our knowledge of the delay times, we have to compute $itjt

and $2tjt which do not arise in the case of known delays. This is analogous

to the computation of tit in the one-source case. (3) We have to compute

the estimate Vlt.t-ts2. This is a new term not seen in the single source

case. It adds an additional equation but does not complexify the system

nearly as much as (1) above. (4) The covariances in the filter for #

requires an infinite amount of on-line computations even in the steady

state in the linear Gaussian case. This contrasts with the one source case

in which the covariance is finite dimensional in the linear Gaussian case

in the steady-state. In the case of known delays, the covariance in the

linear Gaussian case is precomputable.

The only way we can suggest at present to obtain a finite dimensional

suboptimal approximation for computing # is to approximate the in-t-ts

finite bank of smoothers by a finite bank. Each of these smoothers is in-

finite dimensional and a finite dimensional approximation in this case is

not known. Even if we use an assumed density characterized by a finite

number of parameters for the delay times tsl and ts2, it is not possible

to come up with a finite dimensional suboptimal implementation. The main

reason is that the on-line computation of the parameters of this assumed

density requires the estimates $1tjt and 2tIt and both these estimates

require infinite dimensional on-line computations. At present, it is not

clear if there is any other way to come up with a finite dimensional
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approximation to our results.

We have not worked out the case in which tsl and ts2 take on a finite

set of possible values. However, the results are very similar to the one-

source case and we will just mention them here. For the signal estimation

problem, the only solution is the multiple-model approach which in this

case involves only a finite bank of estimators. The equations describing

these estimators are the same as those presented in the previous sections

on the multiple-model solution when tsl and ts2 take on a continuum of

values. For the delay time estimation problem, we compute the a posteriori

probabilities P(t 1 =T, t 2=T Izt) where (T1, T') is one possible pair

of values for tsl and t s2 The stochastic differential equations describing

the evolution of these probabilities are similar to those presented in the

one-source case.
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2.6 The Multiple Sensor Problem

This section extends the analysis of our basic model to the case of a

single signal source and multiple sensors. We shall only analyze the case

of two sensors as shown in Figure 11; the extension to an arbitrary number of

sensors is similar. The delay times involved are assumed to take on a conti-

nuous range of values and their joint a priori distribution is assumed to be

absolutely continuous with respect to the Lebesque measure on the plane.

The case of only a finite possible set of values of the delay times can also

be worked out as in the one-sensor case.

Signal Sensor Sensor

Source 2
A A

s=O s= 2 s=s1

FIGURE 11: THE TWO SENSOR CASE

Sensor arrays are common in practice, e.g., seismometer arrays, antenna

arrays and so on. We are interested in estimating the signal at the location

of the sensors and the travel times of the signal from the source to each of

the sensors. The latter estimates will enable us to estimate the travel time

of the signal between the sensors. In many practical applications of sensor

arrays, this estimate is very important. For instance, it is used in the

resolution, i.e., bearing estimation, of propagating signal fields [33], [43].

Consider the situation in Figure 12 which is conceptually the same as our

model in Figure 11.
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Signal Front -

S .- Signal Propagation
Direction

s =

s=O Sensor 2 Sensor 1

s=s 2 s=s 1

FIGURE 12: BEARING ESTIMATION FOR PROPAGATING SIGNAL FIELD

Assuming that the propagation velocity v of the transmission field is spatially

constant and is known and assuming that the separation s1-s 2 of the two sen-

sors is known, we see that the travel time T of the signal field between the

sensors and the propagation direction are related by

S =2 T (2.6.1)

v cose

From this equation, we see that an estimate of the travel time T will give us

an estimate of the signal propagation direction 0. Bearing estimation of

propagating signal fields is in fact one of the main applications of sensor

arrays.

We shall see that the analysis of the multiple sensor problem is very

similar to that of the multiple source problem discussed in the last section.
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2.6a Problem Formulation

Assume again the following Ito diffusion process model for the signal

from the source:

dt ,t)dt + y' (t ,t)dTJ , t>O

$0 = random with given distribution, (2.6a.1)

$t= 0 , t<0

Let tsl and ts2 be the travel times of the signal from the source to sensor

1 and sensor 2 respectively. By the set-up of the model, we have

tsl > ts2 (2.6a.2)

The signals observed at sensors 1 and 2 are $t-tsl and $t-ts2 respectively.

We assume the following observation models:

Sensor 1: dz = h1 4tt ($ ,t)dt + dw (2.6a.3)
lt 1 st- lt

Sensor 2: dz 2t= h2 t-t s2,t)dt + dw2t (2.6a.4)

The functions h1 (-,-) and h2 (-,-) are assumed to be jointly measurable with

respect to both arguments. The processes wlt and w2t are independent standard

Wiener processes, both independent of q and of $ Thus, both w and w2t

are independent of $ . It is also assumed that both wlt and w2t are independent

of tsl and of ts2. Hence, both wt and w2t are independent of t-tsl and

t-ts2. Since we are interested in collective processing of the measurements
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of the sensors, we define the cumulative observations

Z = a{z 1  ,Z 2 T , O<T<t} (2. 6a. 5)

The problems we are interested in are now:

(i) To estimate the signals $t-tsl and $t-ts2

(ii) To infer the properties of the transmission field.

As in the multiple source problem, we shall see that for the second

problem above, we can compute on-line the joint a posteriori distribution

P(t <T ,t <T 2 Z t) of the delay times t and t .

2.6b Signal Estimation

We present here the representation results and the multiple-model solu-

tion to the signal estimation problem.

Dynamical Representations for Signal Estimates

Since the observations of the sensors are processed collectively, we

define the increasing family (Bt t> of a-fields to describe events at both

sensors:

B = O{w ,w ,O<T<t}VY{4 ,4 , O<T<t}
t lT 2T -- T-t T-t -

sl s2

Va{{W: t <T ,t <T }I O<T<t, 2<T (2.6b.1)
sl- 1 s 2 - 2 | 1 2-QTt

This is similar to the definition in the multiple source problem. We are

interested in the dynamical representations for the signal estimates

S = E{ Z } 15(2.6b.2)t-t t-ts t
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and

t-ts 2

= E{#t-ts2 t}
(2.6b. 3)

Following the same steps as in the multiple source problem, we have the

representation 
for t-ts2

d#t-ts2 (P2t (P 2tIt)E{0) + E{$2t- t-ts2t-ts2) Zt})dt

+E(t-t s2 -t-t s2)(1 t-t sl ,t)-h 14t-t sl rt)) Z tldVlit

+ E{(4 t-t t-t )(h2 (t ,t)-h2 (t-t ,t)) Zt }dv2t

s2 s2 s2 s2

#t-ts2 t=0
=0 (2. 6b. 4)

where

dvlt = dzlt - h 1 ( t-t st)dt (2. 6b. 5)

and

dv 2t = dz 2 t - h2 t-ts2,t)dt

are the innovations processes. The process $ 2t is given by

2t 
, t>t s 2

1 , t<ts2

(2. 6b. 6)

(2.6b. 7)

While

oo

p2t = Pt (t)

s2 t

P (T)dT
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Note that the structure of this representation (2.6b.4) is very much the

same as that of the representation (2.5b.7) for t-ts2 in the multiple source

problem. We will discuss later the implementation of this filter in general

and its specialization to the linear case.

To generate the representation for sl involves the same difficulty

as in the multiple-source problem and the problem is not solvable in all

cases. See Section 2.5b of the multiple source problem for the explanation.

When t and ts2 take on known values T and T2 respectively, a nonrecursive

representation for t-T has been derived in [37], where

# E$ Z , t =T , t =T) (2.6b.9)
tTt-t t tslT t 2 T 2tl sl

We shall present this representation in the next section on the multiple-

model solution. It is impossible to generalize this representation to the

case of unknown random values of tsl and ts2 because without conditioning on

known values of tsl and ts2 , the representation is not well defined.

Multiple-Model Solution

In the multiple-model approach, the signal estimates are given by

$ , = $- P(T 1<t sl<T 1+dT , T 2<t <:T2 +dT 21Z ) (2.6b.10)

tt $ 1s1P(T <t <T +dT ,T <t <T +dT Z ) (2.6b.ll)
t-t j t-T 1 sl- 1 1 2 s2 - 2  2 t

s2 2

TU 2L'Ul
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(2. 6b. 12)= Ef t-t sl Zt , tsi 1 ,ts2 2)

#t-T22
=E#t-t Zt , ts=T 1 ,ts2 2 (2.6b. 13)

The computation of the probabilities P(T <t <_T +dTd 2z )

is discussed in the next section. The estimates and

generated as follows. Given that tsT 1 and ts2T 2 , we have

d#t-T ot-T ,t-T1 )dt + y' (#t-T ,t-T1 )d , t>T 1

and

d#t-T ,t-T 2)dt + y' (t-T2 ,t-T 2)d 2 ,t>T2

and the observation equations are

dzlt = h 1 ( t-Tt)dt + dwlt

and

dz 2t= h2 t-T 2,t)dt + dw2t

Thus, the estimation equation for t-T is [38]:

O<t<T2 
t-T 2

(2.6b.18)
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(2.6b.14)

(2.6b. 15)

(2.6b.16)
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T t<Tl: # = a2( t-T2)dt

+ { t-T 2 t-T 2 ) h2 ( t-T 2 I) h2 t-T 2 r) It I sl 1 s2 =T2

-(d 2t- t- ,t)dt),
22

t-T2 t=T2 = E{ 0 } 
(2.6b.19)

T <t: d# 4( ,-)d
1- t-T 2  t-T2 22

+ E((# -4 ) (h (#) ,t)-h (#) ,t))Zt=T t=T-
t-T t-T 1 t-T 1 t-T tTs l t 2 T 2 }

2 2 1 1 1

-(dzit 1 t-T 1 t)dt)

+ E{(#)t 4-T 2 )(h2(#
)t ,t)-h 2 (# tt)) Z , t1 =T1 ,t 5 =T -

" E 4t-T 2 t-T2 ) h2 4t-T 2 t) h2 4t-T 2 Q)Izt t sl= l I s2= 2

-(dz2t 2 4t-T2 ,t)dt) (2.6b.20)

To implement the filter (2.6b.19) in the general nonlinear case, we can

write a stochastic differential equation for each term on the right hand side,

ending up with an infinite system of equations. However, for the filter

(2.6b.20), the same procedure is not possible because it is impossible to

write a stochastic differential equation for the term

E{) h (#) ,t) Z ,t =T ,t =T 2. This problem has been encountered
t-T2 1 t-TS t sl 1 s2 2

before in the multiple source problem (see Section 2.5b) and we refer the

reader to Kwong's thesis [37] where the problem is discussed. It is impossible

to compute this term recursively by any means in the general nonlinear case.

However, we shall see that in the linear Gaussian case, this term is

precomputable.
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Next, we turn to the problem of generating the estimate #-. We know

that

=0, t<T (2.6b.21)

For t>T , since #t-T4 is a delayed version of t-T2 , the estimation of

#t-T 1is a smoothing problem because we also have observations on #t-T2. In

any case, it is impossible to generate the dynamical representation for

. See the discussion in [37]. However, a nonrecursive representation
t-T 

1

has been derived in [37] and is given by

t-T t-(T 1-T2 2 t-(T 1-T2

+ t E{E0 [#t # ][h1 (# ,s)-h (# ,s)] Z,t=T 1 ,t 2 =T2 }-+ 4T1T2)EE0 t-Ty ls-Ti1[ 1 ( s-T 11 1 s-T 1r) s rtsl= 1 ' s2= 2

-(dz ls-h1 ( s-T, s)ds)

t

+ tT -T2 EO t-T 1  s-Tl] [h2  s-T2,s)-h 2  s-T2,s)] Z ,tsl 1,ts2=2
stT 2T -TT 2 2T t 2

- (dz2s 2 s-T2 , s)ds) (2.6b.22)

Here E0 {- denotes the expectation with respect to a probability measure P0

defined by

~- xp T fT2
dP0T

dP= exp[ h t-T ,t)dwlt - h2 t-T ,t)dw2t
0 102

- (h (2 ,t) + h2(# ,t))dt] (2.6b.23)
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where [0,T] is the interval of time over which our problem is defined. Under

the probability measure PO , the observation processes zt and 2t are

independent standard Wiener processes and thus intuitively, under the measure

PO , no measurements on $t-T and $t-T2 are made. Equation (2.6b.22) is

only a representation which is incomputable in practice. In the linear Gaussian

case, this representation reduces to a readily implementable smoothing

equation which is given in Section 2.6d.

2.6c Delay Time Estimation

The on-line computation of the joint conditional distribution

P(t,1<T 1 ,tsT 22 Z t) is carried out as in Section 2 .5c for the multiple

source problem. We write

P(T <ts T+dT1 , T2 <ts2 2 +dT2 Zt

= P(T 2 <t 2 <T 2 +dT 2 Z ,t =T 1 )P(Tf<t1 <T,+dTI z ) (2.6c.1)

The conditional distribution P(ts2:72 zt ,t tsl ) is computed by considering

an estimation problem on the process $2t defined by equation (2.6b.7).

Given that tslT 1 , events at the two sensors should be described by the

increasing family {B'}t>0 of G-fields such that
t t>

B' = a{w w 0<T<t}VG{$ , 0<T<t}VU{$ , O<T<t}
t lT2T -- T-T 1  T-t --

VG{{w:t s2()<T} 0<T<tAT } (2.6c.2)

and the probabilities of these events should be assigned by the measure

P(-I t,=T ). The process $2t now has the representation
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(2.6c.3)d$2t = p -2 tI)dt + dmit2t 2t 2tt

where

00

Pt t (t tsl= 1
2t ts2 ' ft

Pt (TI ts 1=T1)dT (2.6c.4)

and mt is a martingale on (8't . The conditional distribution
2t tt>0

2T2 
t , T1

= E$2T2 Z ,t =tsl } = P(t s2 2 Z t =tsl l) is now computed by the

following equations whose derivations are direct extensions of those in

Theorem 2.6:

T2 t: d$P2 t,T
= p(-i)dt

2t 2t It,Td1

+ [E{I$2th 1(tt slt) Zt ,ts=T 1

-2t t, 1h ( t-tslt T )]dv 1

+ [E{2th2 t-ts2 ,t) Z ,tsl 1

2t t, 2 t-t ,t 1)Idv2t T
l s21

'20 10,T.
=0

where

h 1 (t-t ,tIT1) = E{h 1 t-tslt) IZ ,tT sl l
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h 2  t-t ,tjT ) = E{h2 ( t-t s2t Zt ,tsli l1

dVlt|T = dzlt i t-t ,tIT 1)dt

dv2tIT = d2t h 2 t-t s2,tT 1)dt

T2 >t: $2T |tT
2 l T

1 - (142tt,T 
1 )

P(t >T t =T )

P(ts2>tl t T )

t

+ f

T2

/t

2

E (T2 TIT1)dV1TIT

E2 2 l)dv2TT 1 (2.6c. 11)

where

1(2 ,t|IT) = 2T h1 t-tsl t) Zt si 1

2T E t,T h 1 ,t-t ,t TT ) (2.6c. 12)

and

E2(T ,tIT) = E{$ 2 h2 (t-ts2
,t) Z ,tsl 1

- P2T 2t,T 2 (t-ts,t T )
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Next, the conditional distribution P(t jT 1 Zt) is obtained by consi-

dering an estimation problem on the process $1t defined by

t>tsl

0 ,
( 2 .6c.1 4 )

t<t

This process has the representation

d$1 p (1-i )dt + dm
it Pit it it (2. 6 c.15)

where

Pit = Pt (t)
t

P (T)dT
tsl

(2.6c.16)

and mit is a martingale on {Bt }t> . The conditional distribution

lT1 t = E($i 1 Zt} = P(tsl<T zt ) is now computed by the following equations

which are extensions of those in Theorem 2.6:

T,=t: d 1 tit = Pilt (1 4 It t) dt

+ [E{$1th1 
t-t sl

~t lt h 1t-t

+ [E{$1th
2 tts2

- ?1tlt h2 4 t-t
V$ 1 = 0

,t) z tI

s,t) ]dvt

,t) t

,t)]dv
2t

(2.6c.17)
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where

dvit dz t -1 t-t

dV 2 t = dz 2 t - h2 (t-t

,t)dt

P(t > T 1 )

T1>t: $1T 1t iltt) t)s-

A
Tt: $1T t 1T + t

+ t+ f

1 ,T)dV1

E2T1 ,T)dV2 T

1(T ,t) =E{$ h( t-ts,t) Zt

1T It 1 t-t t)1 sl

-~~f (J.1I h 1 c It)
2 1 iTT 2 t-t t

l s2

- $i 1 ft h2 (t-t 5 ,t)
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,t) dt (2. 6 c.1 9 )
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where

(2 .6c. 2 1)
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With the equations for P(ts2T Zt,t=T) and P(t <TI zt), we can
s2-21jt sll si-i1j1t

then generate the joint conditional distribution P(t <:T ,ts2<2T Z) on-line

using equation (2.6c.1). All the above equations for on-line computation of

P(t<TIz ,t =T1 ) and P(t <T Z ) have to be implemented via the multiple-
is2 t sl 1 sl-s 1 t

model approach and the basic quantities to be computed are the estimates

(# ,t) = E{h1 (#Ptt ,t) Z ,t =T ,t 2 =T 2  (2.6c.24)
1 sl

and

h 2(# ,- t) = Eih 2(#t~ ,2t) Z t ts=T , t s=T 2 (2.6c.25)
2t-T2  2 t-t t sl 1 s2 2(2c.)

2 s2

To generate the equations for computing these estimates involves the same

difficulties for t and # . We shall examine in the next section the

linear Gaussian case in which all these estimates are computable.

2.6d The Linear Gaussian Case

The Multiple-Model Solution

The solution here is again derived from Kwong's results [37]. The

signal model (2.6a.1) becomes

d#t = t dt + y'd , t>O
t t -t -.t

0 = random with given Gaussian distribution (2.6d.1)

=t 0 , t<0
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and the observations at the sensors are

Sensor 1:

Sensor 2:

dzt hl t-sdt + dwltit it t-tsl + t

dz2t h h2 tt s2 dt + w2

(2.6d.2)

(2.6d.3)

We have seen in the previous sections that the complete solution to the

signal and delay time estimation problems can be given by the multiple model

approach. In this case, the basic quantities required in the multiple model

solution are

t-t t

t-t t
s2

,t =T ,t T }
sl 1 s2 2

,t =T ,t =T }
sl 1 s2 2

(2.6d.4)

(2.6d.5)

We shall just deal with the generation of these two estimates in the rest

of this section. Given that ts=T and t s2=T , the observation models

become

Sensor 1:

Sensor 2:

dzlt = hlt t-T1dt + dwlt

dz2t = h 2 tt-T 2dt + dw2t

(2.6d.6)

(2.6d.7)

It is easy to see [37] that conditioned on the observations Zt , the distri-

bution of # t+ , for any 0 such that -t<0<0, is Gaussian. This distribution

is completely characterized by its mean and covariance. We will show below

the equations for computing the conditional means #t-T4 and #t-T2 and their
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associated covariances.

t<T2 1 t-T 2

T2<t<Tl: $t-T

dt-T2

= 0

= 0

t-T 2 t-T 2dt + P 1 (t T 2)h2t (dz2t-h2t t-T 2dt),

t-T2 t=T2
= E{# 0

where

F0 t|T 1,T2) = E{(#t-T2tT 2 Zt ,ts 1 ,ts 2 2 }

is given by the Riccati equation

dPO(tIT, ,T2) 2 2
dtP= P (tT2,T2 + y' -h p (t T ,T) ,
dt t-T 02 1 = 2 E-t-T(#t-T 2t 0 gi 12

p 0 (T2 T 1 IT 2 ) = E{(4 0- E{ )=E0 given

T2 1<t dt-T2  t-T 2 t-T~d

+ h t 1(t,-(T-T2 2I ) (dz t-hlt t-T dt)

+2t0 (tT,2) (d2t-h2tt-T2 d)
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t-T t-Tljt-(T-T2

t
+ hTls 2(st-(T 12)-s,-(T1T2 l' 2 )(dzls-hls s-T ds)

t-(T1-T 2

t
A

+1 h2s 2 (s,t-(T , 2)-s,T T T2)(dz2s-h 2s s-T 2ds)

t- (T -T (2.6d.14)

The term t-T lt-(TT2) in the last equation is the filter estimate generated

by equation (2.6d.13):

t-T 1 t-(T 1-T 2) t-(T1 2 )-T t- (T 1-T 2

= E{ t-(T 1  2 )T2 Lt-(Tl-T2 tl ,ts2 2} (2.6d.15)

All the above equations are better understood if we write x(t) = -2 and

x(t-(T 1-T2 )) = t-T The definitions of the covariances P , i=0,l,2 are

the same as in the multiple-source problem:

P2 (t , ,"E T1 T2 ) = E ( t 6 t - T -
2 -T2+e t-T 2+0 t-T 2+E t-T 2+E

Z ,tsl 1 ,ts2 2 (2.6d.16)

P 1,(toeTIT 21 2 (t,0o T1 ,T2) (2.6d.17)

P 0 (tIT 1,T2) = P2 (t,01 0 T1 ,T2 ) (2.6d.18)
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where e<0, (<O. These covariances can be precomputed by the following

equations which are derived from Kwong's results [37]:

d = 2ct- 0 ( , p (t'T h (t T + y 2 y
- 0  tT2 t-T 2 0 T2 2 )2t 0 ( T ,T2 -lt,-- T ,

-2 2 1 2 (T,2 (2.6d.20)

- P(te T ,T2) = a P (td T, T ,T2 (t TT 2)p (tOjT

-h 2 2(t, Tl, T 2)p (te,(T, -T 1 2l'T2) (2.6d.20)
it 1 12 2212

a tFF 11 ) - h 2 p(tO ,lT )p (tpE T1 FT)

h 2 te-T- ~, p("j-TT TF (2.6d.21)

The initial conditions are

P0 (T 2 2 = 1 T 2  1 2 p2 (T2 FO; T1 T 2 /

for 0<0 and t(<0 (2.6d.22)

P1(t,0 T1,T2) 0 (t T1,T 2) (2.6d.23)

P 2 (t,8,0 T1 ,T2) = p 1 (t, IT 11 T 2 ) (2.6d.24)
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Representations -for 'the Signal Estimates

We have seen that it is impossible to generate the representation for

, recursive or nonrecursive, and the only way to compute this estimate

is the infinite dimensional multiple model approach even in the linear Gaussian

case. Thus, we shall only discuss the representation for the estimate

AAt-s2

In the linear Gaussian case, the representation (2.6b.4) for t-ts
s2

reduces to

d$ = (p (1-$ E{$t} +t $ 06 $Z }) dtd t-t s (P2t 2t~t )E 0 +E 2t- at-t s t-t s zt }dst2  t t tOs2 s2

+ h E{ ( - $ t($ - t ) Z tdV

lt t-t s t-t s2) t-t st-t slZt ld t

+h 2tE{( t-t t-t )2t }dV2 t
s2 s2

$ s = 0 (2.6d.25)
t-t t=0

s2l

The structure of each term in this filter is exactly the same as that of

A

the filter (2.5d.23) for $t-ts2 in the linear Gaussian case of the multiple

source problem. We shall therefore avoid the details and just state the

results concerning the conditions under which each term becomes finite

dimensional.

For the first term on the right of the filter (2.6d.25), we only need

to comput $2tit on-line. This estimate is given by the filter
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dV2tIt =2t 2t t)dt

+ hlit t-t sl (42tit ) dVlt

+ h 2tt-t s2 (1 2t~t )dV2t'

200 = 0 (2.6d.26)

which is derived in a manner similar to equation (2.6c.17) for 1tit. It

is immediately obvious that this filter is infinite dimensional because

it requires the estimate sl. The only way we can avoid computing the

estimate 2ti is when t <t <t and we are in the region t>t so that2tIt i -s2- 2 - 2

2tjt ='

For the second term on the right of the filter (2.6d.25), the on-line

computation is finite dimensional if at=a, a constant, so that

E{$ a # Z } =ctEf$ Z2t- at-t s t-t s2zt a 2t- t-t s2ztst t 2  s2 s2

=#t-ts2 (2.6d.27)

For the last two terms, we have

h E{(t t t
it tt 2  tts2 ttsl sl ) t

t T

ht T T2=0(t,-(T1-T2 l' 2 l<tsl 1+d 2<ts2 2 +dT2 Zt (2.6d.28)
ilO 2=
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2
h E((# -# ) Z}l
2t t-ts2 t-ts2

co tAT

=h2t f0 (tT, T2 l<tsl l+dT, lT2<ts2S2+dT 2Zt) (2.6d.29)
T=0 T2=0

where P 0 (tI T ,T2 ) and P1 (t,- (T12-T TlT 2 ) are defined by equations (2.6d.18)

and (2.6d.17) and precomputable by equations (2.6d.19) and (2.6d.20)

respectively. These two equations are of course infinite dimensional and

there does not seem to be any case in which they could become finite dimen-

sional. Even in the steady state, P0 (t T1,T2 ) and P1 (t,-(T1-T 2 )TlT 2) are

still functions of T1 and T 2. This is exactly the same as in the multiple

source problem and we shall avoid further discussion.

The conditions under which PO (t T1 ,T2 ) and Pl(t,-(T1 -T2) T1 T2 ) will

reach their steady state values are discussed in Kwong [72]. We refer the

reader to this reference for a complete discussion.

Finally, we discuss here the computation of the estimate itit. In

the linear Gaussian case, this estimate is generated by the filter (see

equation (2.6c.17)):

AAtit lt it tdt

A Al+ ht -l l t)dVlt

+h 2t[E*it t-t Zlt Itt t-t 2t

101 0 (2.6d.30)
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All the terms involved in this filter have been encountered before except

Efl Zt. This filter is of course infinite dimensional since the

estimate t-t is involved. We now examine the computation of

E{$1 lt-t s2l Zt*

In the linear Gaussian case, this estimate is given by the filter:

di r1 5"- p- t
tt-t lt t t- t -t +1t-2t-t t-t

s2 s2 s2 s2 s2l

+ h Et ltZtdl
it -ts2 51 s s2 51 lj~~1l

+h1- E{4 ~2
2t it - - t-t s t V2t

s2s2

Again, the second term is finite dimensional when at=a, a constant, so that

= a $1t t-t 
2

(2.6d.32)
1t-aUt-t 2t-t

s2 s2

Of all the remaining terms, we only need to consider the estimate

E{41l 2- Z which we have not encountered yet in this section. We have
it t t s~
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2 2 ^ 2
E{$ Z } =E{p (4) -4) )Z }
l{P t t-t Zt l { t t-t s t-t ts2l s2s

+ E{VJ A2 Z

ltt-t 2  t

=1 P (tjTlT 2) P(Tl<t <Tl+dT ,T <t <T +dT Z )
0 12 lsi-i 1 l2 s2- 2 2jt

T =0 T 2=0

i2
+ itit t-ts 2  (2.6d.33)

The first term on the right of equation (2.6d.33) is very much the same as

the term on the right of equation (2.6d.29) and we shall avoid further

discussion. Note that the filter for ltYt-t does not introduce any term
s2

which requires a new filter for its computation. This is fortunate because

we now end up here with a finite bank of filters for computing the terms

required in implementing the filter (2.6d.25) for t-ts2

We summarize our discussion as follows. In the linear Gaussian case,

the filter (2.6d.25) for # is still infinite dimensional in all cases
t-t 2

because the estimate $t-tsl is involved. The remaining terms on the right

require in general an infinite amount of on-line computations but they can

be represented by a finite bank of filters. Even in the steady state, the

covariance terms require an infinite dimensional on-line computation. The

strong similarities between our results here and the corresponding results

in the multiple source problem should be noted. The ways in which our pro-

blem here with random delays is more difficult than the case of known delays

are the same as in the multiple source problem.
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Because the structure of the terms involved in the solution of this

multiple sensor problem is exactly the same as those in the multiple source

problem, we shall avoid discussing the results again here. It should be

evident by now that the discussion of the multiple source problem carries

over directly. In particular, we shall avoid discussing the computational

requirements in the general nonlinear case of the multiple sensor problem.

2 .6e An Example Involving A Known Signal

We will again consider the results of the multiple sensor problem in the

case of a known rectangular pulse signal. Since the results are almost iden-

tical to those in the multiple source problem, we will avoid the derivations

and only present the results.

The signal $t is given by

0 t<0

= 1 O<t<T (2.6e.1)

0 ,t>T

and the observations are

dz = h # dt + dw (2.6e.2)
lt lt t-t lt

sl

and

dz = h s dt + dw (2.6e.3)
2t 2t t-t 2t

s2

The signal estimates are given by

$ = $ t- (2.6e.4)t-t s ltjt - lt-Tit
sl

t-t 2  2t~t - ~2t-Tjt (.eS
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Thus, the signal and delay time estimation problems are both solved by compu-

ting the joint conditional distribution of tsl and t s2* From this joint

conditional distribution, we can obtain the marginal distributions $1TIt

and 12TIt by which we can compute the signal estimates ct-t and t-t '
sl s2

We will discuss the computation of this joint conditional distribution in

the rest of this section. As discussed in Section 2.6c, we have to compute

the estimates $T1It and $2 2 It,T1 '

The equations for computing 4lT t are given as follows. See equations

(2.6c.17) to (2.6c.23).

A A

T =t: ditt =it l ii t)dt

+ [hlit lt t lt-Tlt l4tt t)]dylt

+ h2t [E{fltt-tt z - ltIt 02tt 2t-T t )]dV 2t

=100 0 
(2.6e.6)

P(t T)

T >t: $l 1  = 1 - (,-P1 t- ) si- 1 (2.6e.7)
l1 ~ ~ tl P(t >t)

sl-

T <t $1Tt = ~ 1TI + jz ,)d
/tit

A A

t
+ f E2 (T1 ,T)dV2T (2.6e.8)

we1

where
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and

,t) = h t[E{$ Ittsl zt

- 1iT It (ltIt lt-Tit)]

E2 (T 1 ,t) = h2t iE{ 1 tts 2 Zt

-- l1 t 2t t 2t-T t)

The terms that require infinite dimensional on-line computations are

evaluated as follows:

P (t T t <Tl Zt), O<T <t<T
P1t ,ts2 1 1

E1T 1t-t s21 Zt P (t sSTJ ,t-T<t s291 z t ~~-T1<

0 , O<T <t-T

(in equation (2.6e.10)),

P(t <t ,t2<t zt)

s2 P tsl-< ,-<ts2<t Zt)

, O<t<T

, T<t

(in equation (2.6e.6)),

P(tj-g1 ,t 2  1I zt)
E($ #t-tsl zt P(t-T<t1 < 1 ,ts2 1  zt)t

0

O<T <t<T

O<t-T<T <t

O<Tl:<t-T

(in equation (2.6e.9)).
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Next, the equations for computing $2T2 1t,T 1 a

equations (2.6c.5) to (2.6c.13).

2=t: d 2t t,T1

$200 ,T

2 P2.jl 2tit,T)dt

+ 2t E{t-t s2 Zt st 1 (1-2tt,T 1)dv2tIT

=0 (2.6e.1 4 )

= 1 - (1- t,-)

P (t >Tt s T 1s2- 2 tS1

ts2- i tsl 1

- 2 2 
1jT2 rT

t

S1 ,T IT)dVI

+ f 2 (2 TTITl)dV2TI T
T21

2 ( 2 ,tT 1) = h2tE$ 2T2 t-ts2 Zt ,tsl 1

- h2t2T tT1 Et-ts2Z ,t 1 }

The terms which require infinite dimensional on-line computations are

evaluated as follows:
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T >t: $

<t:

(2.6e.15)

where

E1( 2 ,t|T 1 )=0

and

(2.6e.16)

(2.6e.17)

(2.6e.1 8 )

are as follows. See



2T 2t-t s t sl l
2 s2

P(t <T Z ) , O<t<T
s2- m t--

(2.6e.19)

P(t-T<t <T Z ) , O<T<t

where

T = min(t,T1,T2) (2.6e.20)

(in equation (2.6e.18)),

E{t-t ,t tsl

P(t ' Z ) , o<t<T
s2 m t (2.6e.21)

P(t-T<t S ' zt) , O<T<t
s2- mt-

where

T' = min(t,T ) (2.6e.22)
m 1

(in equations (2.6e.14) and (2.6e.18)).

A A

With the estimates $1lTlt and $ 2Tj2tT , we can compute the joint

conditional distribution of tsl and ts2* In all the equations above for

1T 1 it and $2T2 t,T , this joint conditional distribution is the only

quantity needed in performing the on-line computations. The on-line

computations, though infinite dimensional, involve only an infinite amount

of algebraic operations. The overall solution to the problem of signal and

delay time estimation is given in the joint conditional distribution of

tsl and ts2 -179-



2.6f Concluding Remarks on the Multiple Sensor Problem

We have now completed the analysis of the multiple sensor problem and

noted the remarkable similarities between this and the multiple source pro-

blem. A few concluding remarks here are in order.

Firstly, all the estimation results in this problem are infinite dimen-

sional. This is not surprising since estimation problems for systems with

time delays are inherently infinite dimensional even if the delays are known

[37]. Because of the close similarities between this and the multiple

source problem, we have exactly the same remarks here as in Section 2.5g

concerning the additional difficulties compared to the case of known delays

and so on.

Secondly, the case in which the delay times take on a finite number of

possible values can also be worked out in a manner similar to the basic one-

source-one-sensor case. We shall not work out the details but just mention the

results. For the signal estimation problem, the only solution is the

multiple-model approach which now involves only a finite bank of estimators.

These estimators are described by the same equations presented in the previous

sections on the multiple-model solution when tsl and ts2 take on a continuum

of values. For the delay time estimation problem, we compute the a posteriori

i i i
probabilities P(t =T , t =T Z ) , where (T ,T ) is one possible pair of

sl 1 s2  2 t 1 2

values for tsl and t s2 The evolution of these probabilities is described by

stochastic differential equations similar to those presented in the one-

source-one-sensor case.
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CHAPTER 3

ESTIMATION OF TIME-INVARIANT RANDOM FIELDS OBSERVED

VIA A MOVING POINT SENSOR

3.1 Introduction and Motivation

The basic idea for the problems we consider here is as follows. Given a

time-invariant spatially varying random quantity, we want to estimate it when

it is observed via a point sensor moving along it in space. There are many

physical examples that motivate the consideration of such problems.

Space-time random processes which are observed and estimated via a

moving point sensor abound in nature, good examples being the gravitational

field of a planet [20], [44], the atmospheric pressure, temperature or humidity

fields of the earth, [17], [18], a distribution of pollutants or gas in the

atmosphere [19] and so on. Of all the above examples, only the gravitational

field is time invariant. However, the other examples can also be considered

time invariant for the purpose of observation and estimation via a moving

point sensor because they usually vary so slowly compared with the motion of

the sensor that they can be considered time-invariant during the time that

the sensor is moving across them. Such an assumption was made in [19] for the

purpose of estimating the constituent densities of the upper atmosphere.

We shall only be concerned with time invariant spatial random processes

which vary in one spatial dimension. The reasons are as follows. Firstly,

many time invariant fields exist in nature and, as we have pointed out above,

many of the time varying fields in practice are "quasi-time-invariant".

Secondly, in order to consider variations in more than one dimension

simultaneously, we need a usable multidimensional stochastic calculus to handle

the problem. As pointed out in Chapter 1, such a tool is not yet available
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and therefore we are forced torestrict consideration to variations in one

dimension. However, we shall see that our work here for time invariant fields

in one spatial dimension points out many of the features common to estimation

of time invariant fields in more than one spatial dimension.

In all the work that follows, we will refer to the process of estimating

a time invariant spatial field observed with a moving point sensor as spatial

mapping.

A good example of spatial mapping in practice is the microwave sensing

of atmospheric temperature and humidity fields via satellites [17), [18].

The system referred to in [17] and [18] is the Nimbus-5 satellite which

carries a five-channel microwave spectrometer that has operated since

December 1972. It is making the first satellite-based microwave measurements

of global atmospheric temperature profiles, as well as measurements of

atmospheric water content and other geophysical parameters. The measurements

are stored and processed off-line. We shall not be concerned in our work

here with applying our results to any example such as the Nimbus-5 system above.

The Nimbus-5 example is pointed out here only as a motivation for our work.

However, in the remainder of this chapter, whenever appropriate, we will point

out potential applications of our work and our ideas to this Nimbus-5

example.

3.2 Modeling time invariant spatial random fields

In order to handle spatial mapping problems, we find it necessary and

useful to model the spatial variations of the time invariant random field.

This will enable us to describe the variations in time of the process as

observed by the sensor. Modeling a time-invariant random field is not a new

-182-



problem. Many authors have tried to do this before via the classical approach

of using correlation functions as was done for random processes in time. For

instance, in [14], Chernov modeled the random refractive index of the

atmosphere using analytical correlation functions which approximate those

measured experimentally. By imposing a structure on the correlation function,

various types of random fields have been defined, e.g., homogeneous random

fields, homogeneous isotropic random fields and so on [45], [46]. In this

research, we have taken a somewhat different approach motivated by a desire

to use many of the powerful results of estimation theory. Since we are only

considering time-invariant fields that vary in one spatial dimension, we have

taken the approach of describing the variations of the field in this spatial

dimension by a stochastic differential equation in space.

A stochastic differential equation model allows one to perform certain

types of analysis that one cannot do just with a correlation function model.

As we will see, this type of model enables us to derive readily recursive

estimation procedures. It is interesting to note that the main difference

between the Kalman filtering theory (4] and the Wiener filtering theory [2]

also lies in such a difference of a model for the process. The former theory

has now replaced the latter in most applications because it employs a dynamical

model for the process and yields recursive filtering algorithms which are

readily implementable. A dynamical model for a random process has the additio-

nal advantage that if there are unknown parameters in the model, they can be

identified on-line using observations on the process. Note that a stochastic

differential equation can be viewed as a shaping filter and, given correlation

information about a random process, we can find a shaping filter whose output

will possess that correlation function.
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Of course, the use of such a model employing a stochastic differential

equation in space implies that we know a great deal about the field and thus

there are questions that remain concerning its utility. On the other hand,

one can take the point of view that, given correlation data, we can fit a

spatial shaping filter to the data. Such a point of view has also been pro-

posed by other investigators. In [19], McGarty mentioned such ideas for

modeling the constituent densities of the atmosphere. In discrete space, such

an approach has been proposed in [20]. The question of the utility of such

differential models is a difficult one and a study of this issue is beyond

the scope of this research. Rather, we wish to understand the implications

of such a model for the problem of random field estimation.

3.3 Problem Formulation

SENSOR O-)

v(t) )> 0

x (S)

0

FIGURE 13: SPATIAL MAPPING

Our spatial mapping problem can be set up mathematically as follows.

See Figure 13. We have a time invariant spatial random field which varies

in one spatial dimension. We propose to use the following spatial shaping

filter model for the field of interest:

dx(s) = f(x(s),s)ds + g'(x(s),s)dw(s), s>O (3.3.1)
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where x(O) is a given random variable. Here, x(-) is the random quantity of

interest and s is the spatial coordinate. The process w(s) is an n-vector of

independent Wiener processes with E[dw(s)dw'(s)] = Q(s)ds. The functions

f(-,-) and g(.,.) are assumed to satisfy conditions for the existence and

uniqueness of solutions x(-).

The field is observed via a point sensor which moves in the direction of

increasing s with a positive velocity v(t). The equation of motion of the

sensor is given by

ds(t) = v(t)dt , s(O)=O (3.3.2)

where s(t) is the coordinate of the sensor at time t. The velocity v(t) is

either known a priori or is unknown a priori and has to be computed on-line

using noisy or perfect observations. The value of the field measured by the

sensor at any time t is x(s(t)) and this value is a function of t, i.e.,

x(s(t)) = x(t) (3.3.3)

Assume that the sensor makes noisy observations on the field and that these

observations are modeled as:

dz (t) = c(x(t),t)dt + dS (t) (3.3.4)

where S(t) is a standard Wiener process. Depending on our knowledge of the

motion of the sensor, estimation of the field can be done in two ways which

we will describe in the following sections.

We state here the assumptions concerning the processes involved. We
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assume that {S1 C ) - S 12 ' 1 >2>t is independent of

{s(T), v(T), O<T<t}. By assuming that {( 1) - 1(T2 ' 1 2>t) is indepen-

dent of {w(s(T)), O<T<t} and x(O), then {1 CT ) - S , ' 1 2>t} is

independent of {X(T) , O<T<t).

Before we can estimate the field using the observations (3.3.4), we have

to be able to describe the evolution of x(t) as a function of t in terms of

the motion of the sensor. To do this, we need the following result.

Theorem 3.1: Let {w(s), F,, s>0} be a Wiener process with

2 .
Efdw CS = Q(s)ds with respect to the parameter s, where

F = a{w(s'), 0<s'<s} (3.3.5)

Assume that the process s(t) satisfies

ds(t) = v(t)dt , s(O)=0 (3.3.6)

where v(t)> 0 is a given continuous random process. Let t(s) denote the

inverse of s(t). Further assume that the increments w(s ) - w(s2 '

s1>s2 >s, are independent of {s(T)As, v T>01 and {v(t(s')), 0<s'<s).

Define the increasing family of a-fields

G = F vo-{s(T)As,v TO}VC{v(t(s')), O<s'<s} (3.3.7)

Then for each t, s(t) is a stopping time with respect to G , and on the family
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{Gtlt> , where

G = GSt (3.3.8)

the process

w(t) = w(s(t)) (3.3.9)

is a martingale with respect to time t and is given by

dw(t) = v/2 (t) dn(t) (3.3.10)

where {jt 'G t is a Wiener process with respect to time t with

2
E(dl (t))= Q(t)dt = Q(s(t))dt.

This theorem is not new and is available in [47]. Our proof in Appendix

5 using martingale theory is much easier than that in [47] and is included

for the sake of completeness.

Using this result, we can easily obtain from equation (3.3.1) the fol-

lowing equation for X (t):

dtX_ (= t),t)v(t)dt + g1(x(t),t)vl/2(t)dn(t) (3.3.11)

where

f(-,t) = f(-,s(t)) (3.3.12)

and

g(.,t) = g(.,s(t)) (3.3.13)

In the following sections, we will consider the problem of estimating the

process x(t) and thereby the process x(s).
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Remark: In the spatial mapping problem we have formulated here, we have

assumed that the sensor makes direct observations on the field and these

observations are to be processed to estimate the field. This problem for-

mulation applies to such problems as microwave sensing of atmospheric fields

using satellites like the Nimbus 5. It does not apply to such problems as

gravity field mapping via spacecraft tracking data [44). In this latter type

of problems, the time invariant spatial random field is a force field which

affects the motion of the sensor and the field is to be estimated by pro-

cessing observations on the motion of the sensor. However, we shall not be

concerned with the latter type of problems here although we will briefly

mention it in Chapter IV.

3.4 Field Estimation with Deterministic Sensor Motion

We assume here that the velocity v(t) of the sensor at each time t is

known a priori or is observed perfectly. Then since v(t) is known, we have

a simple nonlinear filtering problem involving the system (3.3.12) with the

observations (3.3.4). The minimum mean square error estimate

A

x(t) = E{x(t)IZ } (3.4.1)
lt

where

z = a{z (T), O<T<t) (3.4.2)
lt 1 -

is given by [38)

A

dx-(t) =f(xE(t),t)v(t)dt

AA

+ Ef(x(t) - 2(t)) (c x(t) ,t) - ((t),t)) Zlt
A

-(dz1(t) - c(x(t),t)dt) (3.4.3)
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This is a nonlinear filter which is in general non-implementable. We will

not go into the questions of implementation here.

Since v(t) is known for each t, so is s(t). Thus, in this case, we can

associate our estimate x (t) at each time t with a point s in space. This

completes the spatial mapping problem.

In the case of linear field and observation models, the filter (3.4.3)

reduces to the Kalman filter which is implementable. The field model becomes

dx(s) = f(s)x(s)ds + g'(s)dw(s) (3.4.4)

and the observation model becomes

dz1 (t) = c(t)i'(t)dt + d (t) (3.4.5)

The evolution of x(t) is given by

dx(t) =f (t)_(t)v (t) dt + g (t)v/2 (t) dT (t) (3.4.6)

where

f(t) = f(s(t)) (3.4.7)

and

g(t) = g(s(t)) (3.4.8)

The estimate x(t) is now given by

d"(t) = f(t)v(t)x(t)dt

+ c (t) c'(t) (dz 1 (t) - c (t) ^(t) dt) (3.4.9)
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which is the readily implementable Kalman filter. The covariance

a(t) = Ef ('(t) - x(t)) Zlt} (3.4.10)

is precomputable by solving the Riccati equation

daT(t) O .. I
dcxt) - 2f(t)v(t)a(t) + v(t)g'(t)Q(t)g(t)

2 2 -1
-a (t)c (t)R (t)

a(0) = 0, given (3.4.11)

where

R(t)dt = Efd2 (t)} (3.4.12)
1

and

Q(t) = Q(s(t)) (3.4.13)

We shall encounter this linear case again in a later section when we

consider the problem of sensor velocity control for optimal field estimation.

Note that since v(t) enters in the second term on the right of the

Riccati equation (3.4.11), it essentially scales the intensity, i.e., the

covariance Q(t),of the noise g(t) that drives the process x(t). This is also

evident from equation (3.4.6) for x(t) in which there is a gain of v (t)

on the input dr (t). The intuitive interpretation is that the higher the

velocity of the sensor, the higher the intensity of fluctuation in the process

x(t) it observes and consequently the worse its observations. This corres-

ponds to our intuition that the faster the sensor moves, the less information

it can get from the field. The presence of v(t) in the first term on the
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right of the Riccati equation represents the fact that the spatial correlation

of the field is reflected as a correlation in time through the velocity v(t).

Hence the faster sensor moves, the less correlation we expect to see in the

observed time process.

The result that we arrive at above in the linear case is of greater

importance in practice than the nonlinear filter (3.4.3). This is true not

only because it is an implementable filter but also because in practice linear

models will be the first to be tried out because of their simplicity. We

shall always examine our results in the special case of linear models in the

following sections.

3.5 Field Estimation with Random Sensor Motion

3.5a The Problem and Its Basic Difficulty

We assume in this section that the velocity v(t) of the sensor is not

known a priori and is observed in the presence of noise, i.e., we have an

observation on the sensor of the form

dz 2(t) = v(t)dt + d 2(t) (3.5a.1)

where 2 (t) is a standard Wiener process independent of S(t). In addition,

assume that we also have an observation on the position of the form

dz 3(t) = s(t)dt + d 3(t) (3.5a.2)

where A3(t) is a standard Wiener process independent of 1(t) and 2(t).
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As with 1(t), we will assume that {2 (T1 )2 (T2 ) 3 (T1 )3 (T2  T1 2 >t}

is independent of {s(T), v(T), O<T<t}, {w(s(T)) , 0<T<t} and x(O). Then, the

former is also independent of {Ix(T), O<T<t}. The measurements z (t) on the

field and the measurements z 2(t) and z 3(t) on the sensor are now to be

processed collectively to estimate the field and the motion of the sensor.

In order to deal with the motion of the sensor, we need to first model

its velocity. Suppose its velocity v(t) is modeled by the dynamical system

dv(t) = u(t)dt + k'(v(t),t)dE(t) (3.5a.3)

Here u(t) is the control input or the acceleration of the sensor. It is

either predetermined and applied open loop or determined on-line based on the

measurements, i.e., u(t) is measurable with respect to the measurements Z '

where

Z = C{z 1 (T), z 2 (T), z 3 (T), O<T<t} (3.5a.4)

In either case, u(t) is known at each time t. The process E(t) is a vector of

independent standard Wiener processes which is independent of 11(t), 51 (t),

2 (t) and 3(t). The term k'(v(t),t)dE(t) models random perturbations on the

motion of the sensor. Since we assume that v(t)>O for all t>O , we have to

place some constraints on equation (3.5a.3). These conditions require that

k(-,-) be random and in fact it must depend on v(-). We can assume that

v(t) = $(y(t)) (3.5a.5 )

where $(-) is a positive function and y(t) is an Ito diffusion process. Then,

Ito's differential rule shows that v(t) satisfies equation (3.5a.3) where
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k(*,-) now depends on v(-).

An alternative model for the velocity which guarantees that v(t)>O for

all t>O is the lognormal bilinear model

dv(t) = (u(t)dt + b'(t)dE(t))v(t) (3.5a.6)

Here u(t) is the same as in equation (3.5a.3) while b(t) is deterministic,

i.e., known a priori. It is easy to see that ln v(t) is an Ito diffusion

process and has a Gaussian distribution. Thus, v(t)>O for all t>O.

Finally, we also have the equation of motion

ds(t) = v(t)dt (3.5a.7)

We can now view the problem of estimating 2(t) as a nonlinear filtering

problem involving the system made up of equations (3.3.12) for X(t), (3.5a.3)

or (3.5a.6) for v(t) and (3.5a.7) for s(t), with the observations z (t) ,

z2 (t) and z3 (t) given by equations (3.3.4), (3.5a.1) and (3.5a.2) respectively.

The filtering equations can be written down at once by [38] to yield the

estimate

x(t) = E{X-(t) Zt) (3.5a.8)

where Zt is defined in equation (3.5a.4). The filter is given as follows:

A

dx(t) = f(x'(t),t)v(t)dt

+ E(x(t)-x(t))(c (x~ (t) , t) -c (-(t) ,t))IZt
A~

(dz (t)-c(x(t),t)dt)

+ E( ((t)-2(t) ) (v(t)-v(t) )I Zt(dz (t) -v(t)dt)
A A

+ E{(x(t)-xO(t)) (s(t)-s (t)) IZt) (dz3 (t)-s(t)dt) (3.5a.9)
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where

= E{-Z t} (3.5a.10)

This filter is of course non-implementable because it is infinite dimensional.

In the linear case in which the field model is linear, i.e.,

OW -V 1/2
dx(t) = f(t) (t)v(t)dt + g'(t)v (t)dT1(t) (3.5a.ll)

(see equation (3.4.6)) and the observation model on the field is linear, i.e.,

dz (t) = c(t)'(t)dt + d (t) (3.5a.12)

(see equation (3.4.5)), the filter above becomes

dx(t) = f(t)x(t)v(t)dt

^ 2
+ c(t) E (x(t) -(t)) Zt I (dz 1(t) -c (t) x(t) dt)

+ E{(Xv(t)-x(t))(v(t)-v(t))IZ t (dz2 (t)-v (t)dt)

+ E{(x (t)-x(t)) (s(t)-s(t)) Zt} (dz3 (t)-s(t)dt) (3.5a.13)

This filter is still infinite dimensional and therefore non-implementable.

The main reason is that equation (3.5a.11) for "(t), although linear in v(t),

contains the random gain f(t)v(t). In the filter (3.5a.13), the term

E{x(t)v(t)jz t), for instance, requires an infinite number of equations to be

computed on-line. We illustrate this briefly as follows in the case when

f(t)=f=constant. To compute Efx(t)v(t) Zt), we first write the stochastic
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differential equation for x(t)v(t). Using Ito's rule, we see that

d('x(t)v(t)) contains the term v(t)di(t) which in turn contains the term

fv 2(t)2(t)dt. Thus, to compute E{x(t)v(t)IZ t requires computing

E{v 2 (t)(t) Izt which in turn requires computing Ev 3 (t)x(t) Zt, and so on

resulting in an infinite system of equations.

Although the filter (3.5a.13) is infinite dimensional, there exists a

possibility of computing some terms on the right hand side by finite dimen-

sional approximations. For instance, we can replace v(t) by 9(t) and

f(t)=f(s(t)) by f(s(t)) in equation (3.5a.ll). Then, in the filter (3.5a.13),

the first term on the right becomes

f(t)^(t)v(t)dt = f (s(t))v(t)x(t)dt (3.5a.14)

We will discuss this type of approximations in more detail later in this section.

Although we do not present them here, the filters for computing the

estimates v(t) and s(t) are of the same form as (3.5a.9) and involve the

measurements z 1 (t), z2 (t) and z3(t).

In the paragraphs above, we have examined the problem of estimating

x(t) = x(s(t)) in some detail. However, estimating ~(t) does not solve

the field estimation problem completely in this case of random sensor motion.

Since v(t) is not known perfectly at each time t, neither is s(t). Thus, at

each time t, we do not know with which point s in space to associate our es-

timate x(t). In fact, since s(t) can take on different values, x(t) cannot

be associated with any fixed spatial point s. It is now evident that since

s(t) is unknown at each time t, computing the estimate x(t) is not the optimal

way to solve the spatial mapping problem. In the following section we examine
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methods for avoiding this difficulty.

One suboptimal approximate method of spatial mapping we would like to

point out here is to associate the estimate x(t) with the point s(t) provided

we can estimate the position s(t) accurately. Although in theory there is

no guarantee that s(t) will increase monotonically in t, in practice we can

often be sure it is very likely to do so.

3.5b Some Methods of Field Estimation

The discussion of the previous section has led us to investigate the

problem of estimating the field x(s) at known positions s at each time t.

Since we can compute the estimate s(t) of the position of the sensor at each

time t, where

s(t) = E{s(t)IZ t (3.5b.1)

we can therefore try to estimate x(s(t)), i.e., the value of the field at the

estimated position of the sensor. This is what we will attempt to do next.

The estimate s(t) is given by the filter

ds(t) = v(t)dt + Ejs(t)c(x(t),t)-s(t)C(x(t),t)IZt

-(dz 1(t) -c(x(t) ,t) dt)

AA

+ E{s(t)v(t)-s(t)v(t)IZt I (dz 2 (t)-v(t)dt)

2 ^2 A
+ Efs (t)-s (t) IZ} (dz 3 (t)-s(t)dt) (3.5b.2)

Note that although the field does not affect the motion of the sensor, the

field value "(t) is still correlated with the velocity v(t) and hence the

position s(t). This is because x(t) is correlated with {v(T), O<T<t}. Thus,

the second term on the right of equation (3.5b.2) is nonzero.
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In order to estimate x*(t) = x(s(t)) recursively on-line, we first need

to find the stochastic differential equation representation for x*(t) so as

to be able to apply the well-known results of filtering theory. However at

this point, we find that a stochastic differential equation for x*(t) is

impossible. The main reason is that we need a result like Theorem 3.1 to

characterize the process w(s(t)) in order to transform equation (3.3.1) for

x(s) to an equation for x*(t). Such a result is not possible. Theorem 3.1

A

only holds when s(t) is monotonically increasing in t. However, s(t) given

by equation (3.5b.2) fluctuates in t because the equation is driven by

Wiener processes. The difficulty that prevents us from characterizing

A

w(s(t)) basically stems from the fact that we are trying to define a process

of the form 1P(p(t)) where y1(p) is a Wiener process in the parameter p and

p (t) is a Wiener process in the parameter t. Such a process at this time

defies detailed analysis. Therefore, at present, we do not see any way of

characterizing x*(t) by which we can derive filtering formulas for it.

A

Since we cannot estimate x*(t) = x(s(t)), we will try to solve the field

estimation problem by estimating x('(t)), where '(t) is the position defined

by

A

d'(t) = v(t)dt (3.5b.3)

S(O) = 0 (3.5b.4)

This position is known at each time t given the observations. Note that it

is in some sense an "open loop" measurement of s(t). Since we have measure-

ments z 1t), z 2(t) and z 3(t), the velocity estimate v(t) is computed by the

filter
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dv(t) = u(t)dt + E{ (v (t) -v(t) ) (c (x(t) ,t) -c (X (t) ,t) ) Zt

* (dz1 (t)-c( (t),t)dt)

^ 2
+ E { (v (t) -v (t) ) Zt } (dz2 (t) -v (t) dt)

+ E{(v(t)-v(t)) (s(t)-s(t)) It
A

(dz3 (t)-s(t)dt) (3.5b.5)

where we assume the model (3.5a.3) for v(t). We now need to characterize

the process x(' (t)) and here again the main problem is to characterize

w( (t)). Since the computation of the estimate v(t) involves the measurement

z1 (t) on i'(t) = x(s(t)), the following problem arises in characterizing

w(E(t)). Suppose at some time t, the position 2(t) is less than s(t). Then,

^ (t) is correlated with x(s), for 's(t) <s<s(t) and hence with w(s), for

s(t) <s<s(t). We cannot then straightforwardly apply a version of Theorem 3.1

defined for v(t) and '(t) because w(s1 )-w(s2), s 1>s2>Z(t), is not independent

of {' (T), O<T<t} and {v(t(s')), O<s'<s(t)}. In short, the process w(s) may

no longer be a Wiener process on the family {G'} where
s s>O

G' = a{w(s'), Q<s'<s}V a{s(T)As, T>0}

V Y{v(t(s')), O<s'<s} (3.5b.6)

and without this property, we cannot derive a representation for w('(t))

similar to that in Theorem 3.1. If, however, '(t) is greater than s(t), then

w(s1 )-w(s2 ), s 1>s2 >(t), is indeed independent of {(T), o<T<tl and

(r(t(s')), O<s'<s(t)} and we can apply a version of Theorem 3.1 defined for
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v(t) and s(t) to obtain the representation for w(s(t)). Since at each time

t, we do not know if s(t) is less than or greater than Z(t), the represen-

tation for w('(t)) cannot be obtained in this manner.

The only way to get around the problem above is to use the estimate of

v(t) computed using only the measurements z (t) and z (t) on v(t) and s(t),

i.e.,

2
dv*(t) = u(t)dt + E{(v(t)-v*(t)) Z 3t} (dz2 (t)-v*(t)dt)

+ E{(v(t)-v*(t))(s(t)-s*(t)) Z 23t (dz3 (t) -s*(t)dt) (3.5b.7)

(assuming the model (3.5a.3) for v(t))

where

Z23t 2(T), z3 (T), O<T<t} (3.5b.8)

and

ds*(t) = v*(t)dt + E{(s(t)-s*(t))(v(t)-v*(t)) z 23t
A^ 2

(dz 2(t)-v*(t)dt) + E{(s(t)-s*(t)) Z23t} (dz3 (t)s*(t)dt) (3.5b.9)

Note that these are only suboptimal approximations to the conditional means of

v(t) and s(t) given Zt since

v*(t) = E{v(t)iZ 2 3t} (3.5b.10)

and

s*(t) = E{s(t)IZ 2 3 t} (3.5b.ll)

We restrict u(t) to be Z 23t-measurable in this case. Now, define the position
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s*(t) by

d2*(t) = v*(t)dt (3. 5b. 12)

The process v*(t) is not correlated with {x(c+"t))-x(*(t)), V>O and

neither is "*(t). Thus, it is now true that {w(a+'*(t))-w('*(t)), Y>0) is

independent of ({*(T) , OQT<t} and (v*(t(s')), O<s'<Z*(t)}. Applying a

version of Theorem 3.1 for s*(t) and v*(t), we have

dw(*(t)) *1/2 (3. 5b. 13)

where n*(t) is a vector of independent standard Wiener processes defined with

respect to the velocity v*(t). We can now characterize the process

X* (t) = x(U* (3.5b.14)

by the stochastic differential equation

d2*(t) = f(X*(t) *(t))d'*(t) + g'(X*(t), "*(t))dw(2*(t))

= f*(j *(t) ,t)v*(t)dt + g* (*(t) ,t)v*1/2 (t)dl*(t) (3.5b.15)

where

f*(*t) = f(-*(t) (3.5b.16)

g*(-,t) = g (3. 5b. 17)

The spatial mapping problem is now accomplished by estimating x*(t). The
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minimum mean square error estimate

Xt) = E{x*(t) tz (3.5b.18)

is given by [38] (here we use the fact that v* and s* are Zt -measurable):

dx-*(t) = f* (X-*(t),t) v* (t) dt

+ E{*(t)c(x(t),t) -*(t)c( (t),t)IZ }-
t

* (dz 1(t)-c(x()t)dt)

A
+ E{x*(t)v(t)-x*(t)v(t) IZt}

- (dz2 (t)-v(t)dt)

A

+ E{*(t)s(t)-X*(t)s(t) Z t} (dz 3(t)-s(t)dt) (3.5b.19)

This filter is nonlinear and is in general non-implementable because the

terms on the right are incomputable.

The above approach of mapping the field by estimating x('*(t)) has some

obvious drawbacks. As time goes on, the difference between '*(t) and s(t)

may get large and hence the point s(t) of the field that the sensor is

measuring may be getting further and further away from the point ~*(t) that

we are trying to estimate. If the field is correlated over short distances

only, the performance of our estimation scheme would deteriorate because the

field at the point being observed and the field at the point being estimated

are weakly correlated.

In the case of linear field and observation models, the filter (3.5b.19)

reduces to
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di*(t) = f*(t)V*(t)A*(t)dt

A A A

+ c (t) E(^* (t) X'(t) -X*(t) X'(t)|Zt)I (dz 1(t) -c (t)x(t) dt)

+ E(x*(t)v(t)-x*(t)v(t) It } (dz 2(t)-v(t)dt)

+ E x(t)s(t)-x*(t)s(t) IZ t (dz 3(t)-s(t)dt) (3.5b.20)

where

f*(t) = f(s*(t)) (3.5b.21)

This filter is still non-implementable because some terms on the right are

incomputable. We have illustrated in Section 3.5a that the estimate x(t) has

to be computed by an infinite number of equations even in the case of linear

field and observation models. In addition, there are added complications in

the computation of terms like E{x*(t)x(t) Itl which is the conditional second

order moment of a process sampled at two different rates. There does not seem

to be any case in which the filter (3.5b.19) for estimating 2*(t) = x(s*(t)) is

implementable. As such, we have only produced the representations for the

estimate X*(t). Of course, these may be useful in devising suboptimal

approximations.

In the paragraphs above, we have examined some optimal methods of spatial

mapping which consist of estimating the field x(s) at known positions s at each

time t. The first two methods of estimating x(s(t)) and x(*(t)) are not

achievable since a semimartingale characterization of x(s(t)) and of x(s(t))

is impossible. The third method of estimating x(s*(t)) leads to non-implemen-

table infinite dimensional filters even in the linear case. We now turn to

some suboptimal spatial mapping schemes which are readily achievable and

hopefully lead to finite dimensional implementable filters.

-202-



Note that in Section 3.5a, we have mentioned one method of suboptimal

approximate spatial mapping. This method consists of associating the estimate

A A

x(t) = x(s(t)) with the point s(t) provided we can estimate the position s(t)

A

accurately. We have discussed the problems of computing the estimate x(t) in

Section 3.5a and will not go into this any more.

Another method of suboptimal approximate spatial mapping which is es-

pecially useful in the linear case is the following. We essentially decouple

the estimation of the motion of the sensor from the estimation of the field.

We have seen in the case of deterministic sensor motion that with the position

s(t) and the velocity v(t) of the sensor known at each time t, we only use the

observation z (t) on x(s(t)) to estimate the field. Suppose now we want to

use a similar procedure to estimate the field when the sensor motion is random

and s(t) and v(t) are not known precisely at any time t. The idea is to

compute the estimates v*(t) and s*(t) of the velocity and position using only

the measurements z 2(t) and z 3(t) on v(t) and s(t) respectively. See equations

(3.5b.7) and (3.5b.9). As noted before, these are only suboptimal estimates

since the measurement z (t) on the field gives us additional information on

the motion of the sensor. We have only decoupled the estimation of the motion

of the sensor from the estimation of the field in order to get implementable

AA

suboptimal filters. These estimates v*(t) and s*(t) are now substituted for

v(t) and s(t) whenever the latter quantities appear as if they were the actual

velocity and position. Thus, equation (3.3.12) for R(t) = x(s(t)) becomes:

di(t) = f(^(t),t)v*(t)dt + gI(x(t),t)v* 1 / 2 (t)dn(t) (3.5b.22)
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where

f(-,t) = f(-,s*(t)) (3.5b.23)

and

g(-,t) = g(-,s*(t)) (3.5b.24)

Note that at each time t, given s*(t) and v*(t), the randomness in f(-,-)

and g(,-) is only due to '(t). We now generate the estimate of '(t) using

only the measurements z1(t). The estimate #(t) is given by the filter

A A

dx(t) = f(x(t),t)v*(t)dt

+ E(x(t)-x(t))(c(X(t),t)-c(X(t),t)) Zlt}*

- (dz 1(t)-c(x(t),t)dt) (3.5b.25)

The estimate x(t) is now associated with the point s*(t) and the spatial mapping

problem is solved. As mentioned before, in theory, there is no guarantee

that s(t) will be monotonically increasing in t but in practice it is very

likely to be so, since position estimates can often be made very accurately.

In the nonlinear case, the filter (3.5b.25) of course will not be

implementable. However, in the linear case, the result becomes very interesting.

Equation (3.5b.22) reduces to

di(t) = f(t)v*(t) (t)dt + ' (t)^*/ 2 (t)dg (t) (3.5b.26)

where

f(t) = f(s*(t)) (3.5b.27)
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g(t) = g (s* (t)) (3. 5b.28)

All the gains in equation (3.5b.26) are now measurable with respect to

z23t = a{z 2(T),z 3(T), 0<T<t} (3. 5b. 29)

and thus can be considered known at each time t. With a linear observation

model on the field,

dz (t) = c(t)2(t)dt + d 1(t) (3. 5b. 30)

the estimate x(t) is now easily seen to be given by the Kalman filter

d (t) = f(t)v*(t) (t)dt + c(t)O(t)(dz 1(t)-c(t)'(t)dt) (3.5b.31)

where the covariance

A = ) 
ZltCY(t) = E{ (~x(t) -x(t) ) I (3.5b.32)

is computed on-line by the Riccati equation

dct) = 2f(t) *(t)_(t) + *(t)~g' (t)Q(t) (t)
dt 2 r v 9(Qtg(t

~2 2 -1
- a (t)c (t)R (t),

(3. 5b. 33)Y(0) = a0 , given

Equations (3.5b.31) and (3.5b.33) for computing the estimate x(t) are readily

implementable. The interesting feature here is that the Riccati equation
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(3.5b.33) has to be solved on-line to yield the covariance O(t) because the

gains in the equation depend on v*(t) and s*(t). The covariance a(t) can be

computed only as v*(t) and s*(t) become available.

Now, let us consider the computation of the estimates v*(t) and s*(t)

which are given by equations (3.5b.7) and (3.5b.9):

dV*(t) 0 0 v*(t) u(t) dz 2(t) - v*(t)dt
d= IA dt + dt + E(t) 2 A

s*(t) 1 0 s*(t) 0 dz (t) - s*(t)dt
(3.5b.34)

where

v(t)-v*(t) [v(t)-v*(t) s(t)-s*(t)] Z23t (3.5b.35)
Z(t) = E]23(3Sb35

s(t)-s*(t)

The filter (3.5b.34) is infinite dimensional because E(t) has to be computed

on-line with an infinite dimensional implementation. The reason is that the

velocity v(t) is given by the nonlinear stochastic differential equation

dv(t) = u(t)dt + k'(v(t),t)dE(t) (3.5b.36)

which guarantees that v(t) is positive for all t>O. (See discussion following

equation (3.5a.3)). There are however two ways of divising suboptimal imple-

mentable approximations to the filter (3.5b.34).

In the first method, we assume that k(v(t),t) can be replaced by

k(v*(t),t) so that equation (3.5b.36) becomes linear in v(t). The filter

(3.5b.34) becomes a Kalman filter and the covariance E(t) is computed on-line
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by the Riccati equation

( A E(t) + 1(t)A' + B(t) (t)B'(t) - (t)E (t)E(t)

E(0) = 0 (3.5b.37)

where

0 0
A = (3.5b.38)

11 01

k'(v*(t),t)
B(t) = ~~t(3.5b.39)

o'

7(t)dt = E{dE(t)dE'(t)} (3.5b.40)

and

D(t)dt = E I 2 (3.5b.41)

LdS 3 (t).J

The initial condition Z(0)=0 arises from the fact that we assume s(0) and

v(0) are known. The Riccati equation (3.5b.37) is solved on-line because the

gain B(t) depends on the estimate v*(t). The result we have arrived at is the

extended Kalman filter.

In the second method, we assume that u(t) is sufficiently large that we

can use a linear model for v(t):

dv(t) = u(t)dt + k' (t)d((t) (3.5b.42)
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where k(t) is known a priori. With such a model, we cannot guarantee that

v(t) > 0 at every t with probability one but we can only be sure that v(t) < 0

with very small probability. Physically, this corresponds to the situation in

which the control input we apply on the sensor is so large compared to the

random perturbations that we can be sure that v(t) < 0 with very small proba-

bility. With the model (3.5b.42) for v(t), the filter (3.5b.34) again becomes

a Kalman filter and E(t) is computed by the Riccati equation (3.5b.37) where

now

k'(t)
B(t) = (3.5b.43)

Since the gains in the Riccati equation are now known a priori, E(t) is

precomputable.

3.6 Some Special Cases

A Special Case of the Field Model

In the last section, we have seen the difficulties of spatial mapping when

the motion of the sensor is random. We consider in this section a special case

of the field model (3.3.1) in which we can hope to avoid the difficulties of

the last section. This model is given by

dx(s) = f(x(s), s, r)ds (3.6.1)

In this case, the randomness in x(s) is due to the random parameters r which

may include the random initial condition x(0). Reference [48] examines models

of this type extensively. The parameters r can be identified on-line by

augmenting equation (3.6.1) with the equation
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dr = 0 (3.6.2)

and then applying filtering theory to this augmented system. We shall not

deal with this problem of estimating r any further.

Consider the field estimation problem when the sensor motion is deter-

ministic. In this case, the field is mapped by estimating x(t) = x(s(t)).

Since x(t) satisfies the equation

di(t) = f(x(t), s(t),r)v(t)dt

= f(K(t), t, r)v(t)dt (3.6.3)

the estimate

X(t) = E{x(t) IZt} (3.6.4)

is given by

A

dx(t) = (x(t), t, r)v(t)dt

A

+ E{(x(t)- (t))(c(~(t),t)-c(x(t),t))IZt}

(dz (t)-c(x(t),t)dt) (3.6.5)

In the general nonlinear case, this filter is of course non-implementable.

In the case of linear field model

dx(s) = f(s,r)x(s)ds (3.6.6)

and assuming a linear observation model, the filter (3.6.5) becomes
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dx(t) = Ef(tr)x(t) IZtv(t)dt

AA

+ c(t)E{(((t)- (t)) Z } (dz1 (t)-c(t)x(t)dt) (3.6.7)

This filter is still non-implementable because we have to carry along the

joint conditional density of x(t) and r. Actually, although the field model

(3.6.6) is linear in x(s), it should be considered nonlinear because r should

be considered as additional state variables that satisfy equation (3.6.2).

If the model (3.6.6) does not depend on r, the randomness in x(s) being due to

x(O) alone, then the filter (3.6.7) can be easily seen to be a readily imple-

mentable Kalman filter. But this is a very special case of what we have done

earlier.

Next, consider the field estimation problem when the sensor motion is

random. Since the field model (3.6.1) is not driven by any Wiener processes,

the field can be mapped by estimating x*(t) = x(s(t)). The estimate s(t) of

the position of the sensor is given by

ds(t) = v(t)dt + a 1(t)dV (t) + 2(t)dV2 (t) + a 3(t)dV 3(t) (3.6.8)

where

C 1(t) = Efs(t)c(x(t),t)-s(t)c(x(t),t) Zt } (3.6.9)

Y2 (t) = E{s(t)v(t)-s(t)v(t) Z t (3.6.10)

2 ^2
c3 (t) = E{s (t)-s (t) Zt (3.6.11)
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dv (t) = dz (t)-c(x(t),t)dt (3.6.12)

dv2 (t) = dz 2 (t) -v (t) dt (3.6.13)

and

dv3 (t) = dz3 (t)-s (t) dt (3.6.14)

Thus, the process x* (t) = x (s (t)) satisfies the equation

dx*(t) = f(x*(t),s(t),r) (v(t)dt + a 1 (t)dv 1(t) + 2(t)dv 2(t) + a 3(t)dv 3(t))

= f*(x*(t),t,r) (v(t)dt + a (t)dv (t) + 2(t)dv 2(t) + 3(t)dv 3(t))

(3.6.15)

Applying results from [6], the estimate

x*(t) = Eix*(t)Z t (3.6.16)

is generated by the filter

dx*(t) = f*(x*(t),t,r)v(t)dt

+ E{x*(t)c(x(t),t)-x*(t)c(x(t),t) + <m, >t Zt ldv(t)

A A d
+ E{x* (t)v (t)-x* (t)v (t) + - <m,2 t Zt dV (t)

Ad

+ Efx*(t)s(t)-x*(t)s(t) + <m, 3 >t Zt}dv (t) (3.6.17)

where mt is the martingale defined by

dmt = f* (x* (t) , t, r) [C1 (t) ,a2 (t) ,a3 (t)] dv (t) (3.6.18)

dv2 (t)

dv3 (t) J

We have assumed that the joint variance processes <m, > t 2 > t and
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<m,!3 > are differentiable, an assumption required in [6]. This assumption
3 t

is actually true because we have, by definition [49], [36],

t

<mS>t fn

= t
0

/ ft

0

l 2 3(T)

f* (x* (T) ,T,r) [a1 (T) ,a2 CT) 0a3 (T)]

f * (x1 (T) ITr) [a1 (T) ,Y2 CT) ,CY3 (T)]

[d<V 1 1 >1
1 -

d<V 3 >

d 12 iT

d<V 2 ' l>

d<v ,3 >
3 1 T[d<v1 ,6 T

d<v ,3 >2 2 T

d<v ,3 > I3 2 T

Fd<v1 ,3>T

Id<V2 ,3 >
2 3 T

d<V3 '43 T I

which clearly show that they are differentiable. The evaluation of

variance processes <V2 '1 >t , etc., is carried out in Appendix 6.

results are as follows:

V2

<V 3

<v

2

3

V1
V2

1 > = t
lit

,3 > = 0
i t

,6>= 0
1it

,3 > = 0
2 t

,3 > = t
2 t

,! > = 0
'2 t

,S> = 0
3 t

,3 > = 0
3 t
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(3.6.19)

(3.6.20)

(3.6.21)

the joint

The

(3.6.22)

(3.6.23)

(3.6.24)

(3.6.25)

(3.6.26)

(3.6.27)

(3.6.28)

(3.6.29)



<v3 ' 3 t t

<m,f >t = f*(x*(t),t,r)a (t)
< 2t 1

d <m13 > =f*(x*(t),t,r)CY (t)
dt 2 t -2

d <m, 3 >t = f*(x*(t),t,r)a 3 (t)

The filter (3.6.17) now reduces to

dx*(t) = f*(x*(t),t,r)v(t)dt

+ [a 4(t) + a (t)f*(x*(t),t,r)]dV 1(t)

+ [ 5(t) + 2(t)f*(x*(t),t,r)]dV 2(t)

+ [a 6(t) + a 3(t)f*(x*(t),t,r)]dv 3(t)

where

S4(t) = E{x*(t)c(x(t),t)-x*(t)c( x(t),t) z }

a5 (t) = Efx*(t)v(t)-x*(t)v(t) IZ}t

and

a6 (t) = E{x* (t) s (t)-x* (t) s (t) Zt}
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(3.6.30)

and

(3.6.31)

(3.6.32)

(3.6.33)

(3.6.34)

(3.6.35)

(3.6.36)

(3.6.37)



The result (3.6.34) is only a representation and is not implementable

in all cases. Besides other difficulties, the estimate c(x(t),t) is never

computable except via an infinite system of equations. Even in the linear

case when c(x(t),t) = c(t)x(t), we have seen in Section 3.5a that the compu-

tation of the estimate i(t) = E{x(s(t)) IZt} is infinite dimensional. The

manner in which infinite dimensional problems arise in the computation of the

other terms in the filter (3.6.34) is similar. We shall not go into the

discussion any further.

Estimation of the field at a fixed spatial point

We consider in this section the estimation of the field at a fixed

spatial point s0>0 and use the field model (3.3.1). This problem has some

possible practical value and is certainly of theoretical interest. Again,

we consider the cases of deterministic and random sensor motion.

When the sensor motion is deterministic, the estimation problem is

straightforward. If the position of the sensor s(t) is less than so , then

the estimate

x(so0t) = E{x(s0)IZlt} (3.6.38)

is given by the prediction equation [6]

A Jso
x(s0 t)=(t) + E{f (x(s),s) Zlt}ds (3.6.39)

s (t)

where

x(t) = E{x(s(t)) Z l} (3.6.40)
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is the filtered estimate we have considered before in Section 3.4.

If s(t) = so , then

x (Slt) = X(t) (3.6.41)

and finally, if s(t) is greater than so , the estimate x(s0It) is given by

the smoothing equation [6]

t
x(s0|t) 

= ^X(t0) + f

t0

Efx (SO) (c ( (T),T)-c (K(T), T)) Z1

-(dz 1(T)-c(E(T),T)dT) (3.6.42)

where we assume that

(3.6.43)s(t 0) =S0

The results above are only representations which are not implementable in the

general non-linear case. In the case of linear field model so that

f(x(s),s) = f(s)x(s) (3.6.44)

the prediction result (3.6.39) is implementable because we can now write

d x(sjt) = f(s)x(slt)ds,
S

for s>s(t)

x(s It) = Ejx(s) Z t
(3.6.46)

The estimate x(s 0t) is then obtained by integrating equation (3.6.45) forward

in s from s = s(t) to s = s0 . However, the smoothing result (3.6.42) is

still not implementable even in the case of linear field and observation models.
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Consider now the case of random sensor motion. In this case, the esti-

mation problem is not so straightforward as before. Because the position

s(t) of the sensor is not known precisely at each time t, a multiple-model

type of approach is necessary. We can write the estimate

x(s 0t) = E{x(s0 )| t (3.6.47)

as follows:

x(solt) = f E{x(s 0) Z , s(t)=s'}P (t)s' I zt)ds' (3.6.48)

However, the generation of the estimate E{x(s0)lZt ,s(t)=s'} is a problem

which cannot be solved except in the simple case of a random constant velocity.

The reason is as follows. If s'=s0 , the estimate Efx(s0) Zt ,s(t)=s'} is

equal to the estimate E{x(s(t)) IZt ,s(t)=s'}. If s'<s 0 , the estimate

E{x(s(t)) Zt ,s(t)=s'l is required in computing the estimate E{x(s0 )IZt ,s(t)=s'

by means of a prediction equation of the form of (3.6.39). However, the

estimate E{x(s(t)) Zt ,s(t)=s'}, which is not equal to the estimate

E{x(s(t)) IZt = (t), cannot be generated by any estimator at the present time.

Finally, if s'>s0 , the estimation equation for E{x(so)IZt ,s(t)=s'} cannot

be written down at all. Although we are given s(t)=s' , the time t0 at which

the sensor was at s0 is unknown since the sensor motion is random. Thus a

smoothing estimator of the form of equation (3.6.42) cannot be written.

In the special case in which the velocity of the sensor is an unknown

constant random variable v, the difficulties mentioned above can be overcome.
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Consider first the generation of the estimate E{x(s(t)) Z ,s (t)=s'}.

Since s(t) = vt, conditioning on s(t)=s' is the same as conditioning on

v=s '/t and this determines the entire motion of the sensor. Thus, the

estimate

x(t s') = E{x(s(t)) Zt ,s(t)=s'} (3.6.49)

is given by

dx(t s') = f(x(t),t)vdt

+ E (x(t)x (t) ) (c (x (t) ,t)c (x(t) ,t))Zt ,s(t)=s'

- (dz1 (t)-c (x (t) , t)dt) (3.6.50)

where here

= E{*Zt ,s(t)=s'}

Note that we need ore filter of the form (3.6.50 ) for each possible value

of v = s'/t because for each t>0, s(t) can take on any value s'>0. The

measurements z2 (t) and z3 (t) are not used in the filter (3.6.50) because they

are measurements on v(t) and s(t) respectively and the latter quantities

are now assumed known. We can now generate the estimate E{x(s0) Zt ,s(t)=s'},

for s'<s , as follows. If s'=s0 , then

E {x (s) jZt , s (t) =s '}=E{x (s (t) )Zt t= ts)(..1
I f xss)t)) = A (3.6.51)

If s'<sO , then
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s 0

E{x(s0)IZt ,s(t)=s'} = x(tIs') + Eff(x(s),s) IZt ,s(t)=s'}ds (3.6.52)

Note that when f(-,-) is linear in x(s), equation (3.6.52) is implementable

as with equation (3.6.39). Finally, if s'>s0 , then the time t0 at which the

sensor is at the point s0 is

s0t

t o (3.6.53)

Thus,

Efx(s ,s (t)=s'} = x(t 0

t0f E~x(s) (c(x (T),T) - ^c(X(T) ,T)) Z ,s (t)=S' *

t 
0

(dz (T)-c(2(T),T)dT) (3.6.54)

The generation of the estimate X(t 0) has been considered before in Section

3.5a.

We have now considered in detail the generation of the estimate

Efx(s 0)Zt ,s(t)=s'). Returning to equation (3.6.48), the density of s(t)

conditioned on Z can be generated by considering the filtering problem on

the system consisting of the states v(t), s(t) and x(t) = x(s(t)) with the

observations z1 (t), z2 (t) and z 3 (t). The joint conditional density of v(t),

s(t) and 2(t) is immediately given by Kushner's equation [38] and from this

we obtain the conditional density of s(t). We now see that in the case of
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random sensor motion, the estimation of x(s 0) is always infinite dimensional

because the unknown random position of the sensor gives rise to an infinite

dimensional multiple-model approach for estimating x(s0 ).
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3.7 Optimal Field Estimation via Sensor Motion Control

One of the most interesting features of the problem of estimating a

random field using observations from a moving point sensor seems to be in

the problem of sensor speed versus estimation accuracy. It is conceivable

that the speed with which the sensor moves across the field affects the

quality of its observations on the field and hence the accuracy of the

estimates of the field. We first illustrate our conjecture concretely in

mathematical terms and then formulate and solve an optimal control problem

on the motion of the sensor so that the field is observed and estimated

in a manner optimal with respect to some criterion involving the estimation

error covariance. Our work here will be carried out only for the case of

linear field and observation models with deterministic sensor motion, i.e.,

the velocity of the sensor is computed a priori and there are no random

inputs driving the sensor. In this case, we have seen in Section 3.4 that

the field is readily estimated by means of a Kalman filter and the estima-

tion error covariance is precomputable. The problem of finding the optimal

velocity of the sensor so as to minimize a cost functional involving the

estimation error covariance can now be formulated and solved as a deter-

ministic optimal control problem and we expect to be able to find explicit

expressions for the optimal velocity in some special cases. If we consider

the case of a nonlinear field or observation model or that of random sensor

motion, the estimation error covariance has to be computed on line using

the observations, and the sensor motion control problem becomes a complex

stochastic control problem. We will not consider the latter case here

mainly because it is not as analytically tractable as the linear case with

deterministic sensor motion. In addition, since this is the first time
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such sensor control problems for optimal field estimation are considered,

we feel that we should not involve ourselves with highly complicated

mathematical problems. Rather, we should limit ourselves at present to

a problem which is as simple as possible mathematically so that we can

develop an insight and an intuitive feel for the sensor control problem

in general. It is our hope that the following analysis will provide the

desired insight and also a foundation for future work.

Consider here the linear case with deterministic sensor motion,

encountered before in Section 3.4. The field model is given by

dx(s) = f (s) x (s) ds + g' (s) dw(s) (3.7.1)

The process i(t) = x(s(t)) measured by the sensor is given by

di(t) = T(t)v(t)i(t)dt + j(t)v(t)dr(t) (3.7.2)

where

f(t) = f(s(t)) (3.7.3)

i(t) = %(s(t)) (3.7.4)

The observations on the field are given by

dz1 (t) = c(t)i(t)dt + d 1 (t) (3.7.5)

The velocity v(t) of the sensor is assumed known at each time t, i.e., it

is observed perfectly at each time t or it is known a priori and there are
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no random inputs perturbing the motion. The field is then mapped by

computing the estimate

k(t) = E{x(s(t))IZit} (3.7.6)

which is given by the Kalman filter:

d5t(t) = f(t)v(t)x-(t)dt + c(t)a(t)R~ (t)(dz1 (t)-c(t)x-(t)dt)

(3.7.7)

where

R(t)dt = E{d 2(t)} (3.7.8)

and

o(t) = E{(x(t) - xi(t)) 2 !Zlt}
(3.7.9)

is the estimation error covariance given by the Riccati equation:

dt = (t)v(t)a(t) + v(t)' t - 2 (

CF(O) = 00, given (3.7.10)

Here

Q(t)dt = E{dg(t)dTrj'(t)}

= _(s(t))dt (3.7.11)

where _(s)ds = E{dw(s)dw(s')}. It is obvious from equation (3.7.10) that

the velocity v(t) of the sensor affects the quality of the estimates as
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measured by the error covariance a(t). This is also true in the case of

nonlinear field and observation models. We consider below the formulation

and solution of the sensor control problem for optimal field estimation

in the linear case with deterministic sensor motion.

Formulation of the Sensor Control Problem

The problem we are considering here is completely new and admits

formulations as control problems on the sensor at several levels of

complexity. The formulation that we present here is only one possible

formulation, and it has been chosen both because of its potential useful-

ness and for its analytical tractability.

We want to find the optimal velocity program v*(t), tc[O,T], for the

sensor so as to minimize a cost functional which involves the estimation

error covariance G(t), te[O,T]. First, we place a constraint on the motion

of the sensor:

Tv(t)dt = s (3.7.12)

This means that the sensor has to cover a distance of s0 in a length of

time T. We can suppose that s is the length of the section of the field

that we want to estimate. In addition, we impose the constraint

v(t) > 0, t s [0,T] (3.7.13)

This constraint prevents the sensor from sweeping over any point of field

more than once. Since the motion of the sensor is deterministic, the
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constraint (3.7.13) implies a one-to-one relation between the spatial

coordinate s and the time t because these two variables are related as

t
s(t) = f v(T)dT (3.7.14)

0

where s(t) is the position of the sensor at time t. We denote by t(s)

the inverse of the function s(t), i.e., t(s) is the time at which the sensor

is at the point s. The one-to-one relation between s and t enables us to

denote the dependence of any variable on s or on t interchangeably. Thus

we define

v(s) = v(t(s)) (3.7.15)

We shall now formulate the criterion of optimality. This criterion should

contain a cost that measures the accuracy with which the field is estimated.

We prepare to use the term

s 0
J' J q(s)c(s)ds (3.7.16)

where a(s) = a(t(s)) is the estimation error covariance. The function

q(s) is a positive function which we determine a priori, and it reflects

our judgment of the relative accuracy with which different parts of the

field have to be estimated. Since we will solve the control problem in

time, we transform the cost J' in equation (3.7.16) as

T
' = J (t)cr(t)v(t)dt (3.7.17)
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where

q(t) = q(s(t)) (3.7.18)

The velocity v(t) is the control in this sensor control problem. In order

to make the control problem well posed and to penalize large magnitudes of

the velocity, we will include in the criterion of optimality, a weighted

integral of the square of the velocity. (Alternatively, we could require

v(t) < M for some bound M.) Thus, we finally write the criterion of

optimality as

T
J = f [q(t)cY(t)v(t) + r(t)v2 (t)]dt (3.7.19)

where r(t) is a positive function. From the discussion earlier in this

section, the estimation error covariance c(t) is given by the Riccati

equation

dcr(t) = 2f(t)v(t)f(t) + v(t)j(t)g(t)-(t)- -2(t)C2(t)lR1
dt(0

a(O) = 0, given (3.7.20)

Note that if v(t) is determineda priori, G(t) can be precomputed. We can

now state our optimal control problem as follows:

Find the optimal velocity v*(t), tc[O,T], subject to the constraints

(3.7.12), (3.7.13), and (3.7.20) so that the cost functional J in equation

(3.7.19) is minimized.
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Solution to the Sensor Control Problem

The optimal control problem formulated above can be solved by a

direct application of the minimum principle [55]-[57]. The control in

this problem is v and the state variables are a and s. Thus, we have the

state equations

da(t) = 2f(s(t))v(t)a(t) + v(t)g(s(t))Q(s(t))Z(s(t)) - -l2(t)c2(t)R~(
dt

(3.7.21)

ds(t) = v(t)
dt

(3.7.22)

The initial values of these states are known:

a (0) = 0

s(0) = 0

(3.7.23)

(3.7.24)

The constraint (3.7.12) is now transformed into the terminal condition

S(T) = s0
(3.7.25)

It is convenient for computational reasons to modify the problem by

incorporating another constraint:

Cy(T) = a (3.7.26)

Without such a constraint, the two-point boundary value problem that must
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be solved is more difficult. The solution to that problem can be obtained,

but we have explicitly considered only this simpler case for demonstration

purposes. The constraint (3.7.26) means that we are interested in eventually

achieving the value a for the estimation error covariance. In practice,

we usually would want a to be less than a0. Next, in order to have a

closed constraint set for the controls, we modify constraint (3.7.13) to

v(t) > e, Vt C [0,T] (3.7.27)

where 6 > 0 is an arbitrarily small but fixed constant. Finally, the

Hamiltonian H is given by

H = P [q(s(t))a(t)v(t) + r(t)v 2 (t)]

+ P1 (t)[2f(s(t))v(t)(t) + v(t)_'(s(t))Q(s(t))Z(s(t))

- a2 (t)c2 (t)R1 (t)]

+ P 2 (t)v(t) + P(t)[C - v(t)] (3.7.28)

where

> 0 e - v(t) =0
yt (3.7.29)

= 0 6 - v(t) < 0

(See [57]). The variables PO' 1(t), P 2(t) and p(t) are costate variables.

Now, we apply the minimum principle given in Theorem 5-10 of [56]. In order

that v*(t) be optimal, it is necessary that the following conditions be

satisfied (* denotes optimal):
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(a) dc*(t) = 2f(s*(t))v*(t)cy*(t) + v*(t)_g'(s*(t))_Q(s*(t))g(s*(t))

- a*2 (t)c2 (t)R~ (t)

ds (t) =
dt v (t)

P* > 0
0 -

dp*(t)

dt 30

= -P q(s*(t))v*(t) - 2p*(t)f(s*(t))v*(t)

+ 2c*(t)c2(t)R 1 (t)p*(t)

dp* (t)

dt

(3.7.30)

(3.7.31)

(3.7.32)

(3.7.33)

3H*

as

= -P*G*(t)v*(t) aq(s*(t)) - 2p*(t)v*(t)Y*(t) a (s*(t))
0 as1

-2p*(t)v*(t)

-P*(t)v*(t)g'(s*(t)) TS(s*(t))z(s*(t)) (3.7.34)

aY*(0) =0

aF*(T) =

s*(0) = 0

s*(T) = 0

(b) Minimization of H with respect to v.
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- 0 = P*q(s*(t))a*(t) + 2r(t)v*(t)p*
Dv* 0 0

+ 2p*(t)f(s*(t))G*(t)

+ P*(t)g'(s*(t))q(s*(t))g(s*(t)) + P*(t) - y*(t)

(3.7.39)

Since

S2 -H 2r(t)p* > 0 (3.7.40)

3v 2 0-
*

we conclude that v* obtained from equation (3.7.39) must necessarily

minimize H. Equation (3.7.39) gives us only one solution for v* and so

this must necessarily be a global minimum. If we are considering the

region v(t) > c, we have p*(t) = 0 so that equation (3.7.39) gives us

P v*(t) = -2r~1(t)(P (s*(t))(t)

+ 2p*(t)f(s*(t))*(t)

+ p*(t)z'(s*(t))Q(s*(t))g(s*(t)) + p*(t)] (3.7.41)

Note also that the initial and terminal conditions on the costates are free.

We have now obtained all the conditions that characterize the optimal

velocity v*(t) and the optimal estimation error covariance y*(t). In

principle, the optimal control problem has been solved. However, the solu-

tion as such does not give us much insight into the sensor control problem.

It is evidently impossible to obtain any algebraic simplification on the
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set of necessary conditions above. Usually, in practice, the necessary

conditions in an optimal control problem have to be solved numerically

on a computer. In what follows, we shall consider a special case in which

we can obtain an explicit solution to the optimal velocity v*(t) and the

optimal estimation error covariance c*(t).

The Case of Spatially Invariant Field Model and Time Invariant

Observation Model

We consider here the case in which the field model is spatially

invariant and given by

dx(s) = fx(s)ds +_g'dw(s) (3.7.42)

so that i(t) = x(s(t)) is given by

di(t) = fv(t)i(t)dt + g'v 2(t)dn(t) (3.7.43)

and the observation model on the field is time-invariant and given by

dz1 (t) = ci;(t)dt + dS1 (t) (3.7.44)

In addition, assume that r(t) in the criterion of optimality reduces to

r(t) = r > 0 (3.7.45)

Then the necessary conditions above reduce to:
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a) dC*(t) 2fv*(t)a*(t) + v*(t)giQ g - a*2(t)c2
dt 

/

ds* (t) = v*(t)
dt

0 -

dP (t)
1
dt

(3.7.46)

(3,7.47)

(3.7.48)

-P *q (s* (t) ) v* (t) - 2P* (t) fv* (t)0 1

+ 2a*(t)P*(t)c /R
1

dP (t)

dt
-Pa* (t)V*(t) 3(s*(t))

0 as

(3.7.49)

(3.7.50)

(3.7.51)

(3.7.52)

(3.7.53)

(3.7.54)

(3.7.55)

a* (0) = ao

Yr (T) =

*
s (0) = 0

S (T) = s0

b) Minimization of H with respect to v:

=0 = P q(s*(t)) cY*(t) + 2rv (t)P

* ** **
+ 2P (t)f a (t) + P (t)g'Q g + P (t) - (t)

1 S 2

A Special Case

The set of necessary conditions above is still not solvable in closed

form. We now consider the following special case in which a closed form

solution is possible:
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f = 0 (3.7.56)

'Q g = 1 (3.7.57)

r = 1/2 (3.7.58)

c 2/R = 1/2 (3.7.59)

q(s) = q = 1 (3.7.60)

Since f=0, the field x(s) consists of a weighted sum of independent standard

Wiener processes with total intensity g'Q g = 1. Of course, this case does

not constitute a realistic example of a field but we are picking this example

so as to obtain explicit solutions. Hopefully, the explicit solution will

give us some insight into the general problem, which must be solved using

numerical methods. The choice of q(s) = 1 means that the accuracy of all

parts of the field is of equal weight. The necessary conditions now reduce

to:

*
a) dcY (t) = v*(t) - *2 (t) (3.7.61)

dt 2

ds*(t)*
dt = v (t) (3.7.62)
dt

*

P > 0 (3.7.63)

*
dP1(t)

= - P v (t) + a (t)P (t) (3.7.64)
dt 01

dP 2 (t)
-t = 0 (3.7.65)

dt
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* _

CT (0) = CG0  k3. I.bb)

*

C (T) = (3.7.67)

*

s (0) = 0 (3.7.68)

s (T) = s0 (3.7.69)

b) Minimization of H with respect to v:

= 0 = PO *(t + P ( + P() + P2(t) - y (t) (3.7.70)

The above equations can now be simplified as follows. We can set

**

PO=1 if P0 > 0. The only case in which PO = 0 is when the terminal con-

ditions a* (T) = a and s* (T) = s0 are so difficult to meet that optimi-

zation becomes irrelevant (i.e. either we cannot achieve these conditions

or there is only one possible trajectory); that is, all we want is to find

the velocity v (t) that will meet these terminal conditions [55]. This is

*

also evident from equation (3.7.70) since when PO = 0, we cannot determine

v* (t) from this H-minimization condition. We will here assume that the

terminal conditions on a and s are so given that they can be met with more

than one velocity profile v(t), 0<t<T, and therefore set

*

PO = 1 (3.7.71)

Consider now the case when v(t)> s so that y*(t)=0. Then, equation (3.7.70)

gives
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v (t) = - a (t) - p (t) - P (t) (3.
1 2

From the available equations we can easily get a differential equation for

a (t). Differentiating equation (3.7.72) to obtain

dv*(t) da (t) dP(t) dP(t)

dt dt dt dt

and substituting from equations (3.7.61), (3.7.64) and (3.7.65) we arrive

at the equation

dv (t) l 1*2 t) - Y* (t) P* (t)

Using P (t) from (3.7.72) and noting that, by (3.7.65),

P (t) = P*(Q) (3.2 2

7.72)

7.73)

we get

*

dv (t) C *2 t) + G*(t) (v (t)
dt 2

3 *2 t (

~T C (t) +aC (t) (v (t)

+ *(t) + P* (0))
2

+ P2 (0))2

Next, use v (t) from (3.7.61) to get

dv* (t) 3 *2 (t y* () da*C(t) +1 C*2 (t * 0

*t C' (t * t 3 2 1 2*

t)+ P*'' 3 (-a (t) + j-a* (t)
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Finally, differentiate (3.7.61) and substitute from (3.7.74) to obtain

2 * * dc*t
d a (t) dv (t) * d (t)

dt 2  dt dt

* * 3 *2 1 *3
= (O)G (t) +t) +-a (t) (3.7.75)

Solving this equation then gives us the optimal estimation error covariance

C (t) assuming that v* (t)>E yt. To solve this equation, multiply the left

da**
side by 2 -C dt and the right side by 2 da*:

* *
da d dac \ * * 3 *2 1 *3 *
dt dt dt t 22 2

which gives

d d * 2 2(p* (0)* 3 *2 1 *3 *
dt dt 2+ c )d

An integration gives

* 2
at)

=P (0) *2 + G* 3 +1 Cy* 4 + c2 4

where

cc=( d t= 
2

* 2 * 3 1 *4
2(P2(0)y (0) + y (0) + a (0))
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The solution to equation (3.7.76) is found in terms of elliptic functions

[58]. By writing equation (3.7.76) as

d( 2\ * * * * 2--- = h2  (- ( ) (6) h =1/4 (3.7.78)
dt

then the solution is given by (58]

Cx* (t) = (Y-Aa) /(Y 2 A) + (CT (0) -a) (3.7.79)

where

Y = sn{hMt, k} (3.7.80)

A = -- (3.7.81)
a-6

k 2 ( 0-Y) (a-6) (3.7.82)
(a-y) (c-6)

M2 = ( -6) (c-y)/4 (3.7.83)

The function sn{-,'} is an elliptic function known as the sinus amplitudinus

function [58], (59] and it is tabulated in [60]. The solution (3.7.79) for

a* (t) does not depend on the sign we take for dG in equation (3.7.78)

since we can absorb the + or - sign in the factor h which also occurs in the

first argument of the solution for Y in equation (3.7.80). The function,

sn{u,k), is an odd function in u and the solution for G* (t) involves only

the square of this function. We have now obtained a closed form solution

for the optimal estimation error covariance a*(t), and using this in the

*
Riccati equation (3.7.61) will give us the optimal velocity v (t) of the
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sensor. The initial values P (0) and P*(0) of the costate variables are free
1 2

* *
and can be selected so that the terminal conditions on a* and s can be met.

Since elliptic functions are not common functions it is difficult to

visualize how the solution above behaves. We therefore work out below a

numerical example to enable us to see how the solution behaves in one parti-

cular case.

In the example we have chosen, the terminal time is T = 0.5. The

initial conditions are c*(O)=l and s*(0)=0 and the terminal conditions are

a* (0.5)= 0.41 and s*(0.5)=3.94. It turns out that to meet these terminal

conditions, we have to choose P*(0)=2.75 and P (0)= -10.25. Then, in equa-
1 2

tion (3.7.78), the roots on the right hand side are given by a=3, S= -2,

y= -8.25 and 6=3.52. We now have A=10.62, k=0.231 and M=j 3.99. To

evaluate the sn{-,-} function when the first argument is imaginary, we use

the relation [59]

sn{ju,k} = j sc{u,k'}

= sn{uk (3.7.84)
cniu,k'I

where

k' = (1-k2 1/2 (3.7.85)

and

cn2 {u,k'} = 1 - sn2 {u,k'} (3.7.86)

The values of G*(t) can be evaluated directly from equation (3.7.79) with

*
the aid of elliptic function tables, while v (t) is evaluated from the
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*
da

Riccati equation (3.7.61), using equation (3.7.78) for d . Table 3.1

below shows the values of G (t) and v* (t) for t=0 to t=0.5 at increments

of 0.1 for t.

TABLE 3.1

* *

t c (t) v (t)

0 1 6.50

0.1 0.98 6.51

0.2 0.92 6.53

0.3 0.81 6.57

0.4 0.65 6.61

0.5 0.41 6.67

Actually, this numerical example was obtained by solving the problem

backwards. We first pick the initial conditions * (0 ) s*(0), P*(0) and

P* (0) so that v*(0) from equation (3.7.72) is positive. With these values
2

selected, we evaluate -~-* from equation (3.7.61) and hence c from equation
Ida* ) 2

(3.7.77). The coefficients in equation (3.7.76) for dt are now all known.

Then, we find the roots a, 3, y and 5 for equation (3.7.78) so that equation

(3.7.76) is satisfied. We can now evaluate a*(t) and v*(t) via the method

mentioned before. The terminal conditions a*(0.5) and s*(0.5) are not picked

a priori but just result from the values of a*(0), P* (0) and so on that we

pick. We will have more to say about the numerical solution of such optimal

control problems in general in a later section.

Note that in the example, v*(t)> 0 for all O<t< 0.5. Thus, we do not

have to invoke the condition P*(t)> 0 which happens when v(t)=s, for some
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cannot be expected. We note that the necessary conditions we have derived

are highly nonlinear, involving products of the state and costate variables

and the control. In the case of spatially invariant field and time invariant

observation models, the nonlinearities in the system of equations are somewhat

simpler, and one might hope to find an explicit solution in this case, as we

have for one special case.

In practice, however, the solution to an optimal control problem usually

cannot be found explicitly and it has to be determined numerically on a

computer. In the case of the sensor motion control problem that we have for-

mulated, the initial and terminal conditions on the state variables are

specified. Thus, the initial and terminal conditions on the costate variables

are free. In a numerical solution of such an optimal control problem, we

need to use a numerical technique such as Newton's method [70], [71] to solve

for the optimal state and costate trajectories and thereby the optimal control.

We illustrate here how this method works for our sensor control problem. For

notational simplicity, we define

y(t) = (3.7.87)

as the vector of state variables and define

P(t) = (3.7.88)

1P 2 (t)j

as the vector of costate variables. We assume PO=l. Write the set of

cannonical equations for the state and costate variables in the necessary

conditions of optimality (equations (3.7.30) to (3.7.34)) for simplicity as
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This is a linear system of the form

:k+1(t)
-+1()

k+1(t)

+1(t)

where

b(y (t), P (t),t) I

and its solution at t=T is given by

- t) [
P Ct)

[73]

[ +1 CT)

ST)
Ek+1 j

= (T,0)

Fk+1 (0)
k+l (0)j

+ n (T/) (3.7.102)

where

T
nk (T,0) =

0o

and D (-, -) is the transition matrix associated with the system

(3.7.103)

(3.7.104)((t)t

pLt P (t)
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(3.7.101)

O(T,T) Mk(T) dT



E >0 arbitrarily small (as long as we take c < 6.5). Note also that a (t)

decreases with t although v*(t) increases with t. The fact that v*(t)

*
increases with t is because we have to meet the terminal condition on s

That CT*(t) decreases with t although v*(t) increases with t is not surprising

since we are taking observations as we move along.

We should remark that although we have obtained an explicit solution in

one special case, we have not obtained a great deal of insight into the

nature of problems of sensor motion control for optimal field estimation. It

is clear that more work is needed in order to understand the problem thoroughly.

Numerical techniques are needed to obtain the solution in general since we

cannot always hope to find explicit solutions. The application of one nume-

rical technique to our sensor control problem is explained in the following

section.

Summary of the Sensor Control Problem

We have now solved the problem of optimal field estimation via sensor

motion control in the case of linear field and observation models with deter-

ministic sensor motion. We have derived the necessary conditions for opti-

mality in the general case of a spatially varying linear field model and time

varying linear observation model. In a special case of a spatially invariant

linear field model and a time invariant linear observation model, we have been

able to derive an explicit solution for the optimal estimation error covariance.

In the general case of a spatially invariant linear field model and time

invariant linear observation model, it may still be possible, in principle,

to derive an explicit solution for the optimal estimation error covariance

or the optimal velocity. However, for the case of a spatially varying linear

field model and a time varying linear observation model, such explicit solutions
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* (t) = a (y* (t) , P* (t) , v* (t) , t)

P* (t)= b (y* (t), P* (t) , v* (t) , t) (3.7.90)

with the given boundary conditions

*(0)1 [Ol
y*(O) = = L J y (3.7.91)

s* (0) 0

and

Cr (T) Cr

y*(T) = = (3.7.92)

Ls (T) [ s0

From the H-minimal condition of equation (3.7.39), we can solve for the

optimal control v*(t) in terms of the optimal state and costate variables

y* (t) and P* (t), assuming that v*(t)> E so that P* (t)=0. Suppose

v (t) = h(y* (t), P* (t) , t) (3.7.93)

Then we can substitute this relation into equations (3.7.89) and (3.7.90) and

eliminate v* (t):

y (t) = a (y* (t) , P* (t) , t) (3.7.94)

p (t) = b(y *(t), P*(t),t) (3.7.95)

We now have to solve this set of coupled equations (3.7.94) and (3.7.95) with

the boundary conditions (3.7.91) and (3.7.92). Newton's method is used to
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determine, in an iterative manner, the functions y (t) and P(t), for all

t E [O,T]. The method generates a sequence of time functions {y (t)}

and {P (t)}, t E [0,TJ, k=0,1,2,..., which always meet the boundary conditions
Z-k

(3.7.91) and (3.7.92) but do not necessarily satisfy the differential equa-

tions (3.7.94) and (3.7.95). The idea is to choose this sequence of functions

so that they approach the solutions of the differential equations (3.7.94)

and (3.7.95). An initial guess for (t) and P (t) is first made over the

entire interval [0,T]. Suppose we have arrived at the k-th guess 4(t)

and P (t), t E [0,T]. Then, the (k+l)th guess is generated as follows. If

the (k+l)-th guess is the true solution, then

k+l(t) = (y+ (t)' p+(t),t)

P (t) =b~(y (t), P (t),t)
-k+l - -k+ -k+l

(3.7.96)

(3.7.97)

We now linearize this system about the k-th guess:

+1(t ( (t), P (t),t)

+1(t)yb (t), (t),t)

where

~(t)

3a

ay
ab

FY+(t)-Yk(t)

+ ~(t) j
k+1(t)-P(t)

L

(3.7.98)

(3.7.99)

y=y (t), P=P (t)
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Note that k(t), ij(t) and nk(T,0) are known given the k-th guess. Equation

(3.7.102) now gives us a relation between Yk+1 (T), k+(0) and P k+l(0). But

we require that the boundary conditions

(0) = , (T) = y (3.7.105)

be satisfied. Thus, we can find the required value for P (0). We now
;-k+l

have the initial condition for the (k+l)-th guess, i.e., Yk+l (0) and

p (0) and using this in equation (3.7.100) gives us the (k+l)-th trajectory

y (t), P (t), t E [0,T]. The iteration is continued likewise and usually
-k+1 -k+1

the true solution is considered to have been obtained when

max Yk+1 (t) - Ek(t) < (3.7.106)
t E[0,T] P (t) - P (t)

-k+1l-

where 6 is a predetermined arbitrarily small positive number. The optimal

control is then obtained from equation (3.7.93).

Note that we have assumed v*(t)> E in the discussion of Newton's

method above. Whenever v*(t)=E, the condition p*(t)> 0 would have to be

invoked. In this case, we cannot just apply Newton's method above directly.

It is not clear at present what numerical technique can be used to handle

the situation.

In the sensor control problem that we have considered, if, instead of

specifying the terminal condition G*(T), we had let it be free, the resulting

numerical problem would be even more complex. In this case, we would have

the terminal condition P (T)=0 and we would have to solve a split two-point
1
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boundary value problem. A discussion of such two-point boundary value

problems can be found in [70], [71) and we shall not detail them any more.

Note that Newton's method as described above cannot be applied for split

two-point boundary value problems. Other methods, such as the method of

steepest descent [70], [71), have to be used instead.

Considering extensions to the special case of the sensor control

problem we have considered, it appears to be very likely that we can still

obtain a differential equation for U*(t) alone if we change the values of

g'Q g, r and c 2/R provided we keep f=0 and q(s)=constant. If f is nonzero

and q is non-constant, several nonlinear terms arise in the necessary con-

ditions, and it is not clear if we can perform a similar analysis.

Note that although we have considered the sensor motion control problem

using the velocity as the control, we could also have formulated the problem

using the acceleration as the control and the velocity as an additional

state variable. In this case, the positivity constraint on the velocity

becomes a state-variable inequality constraint and this would require an

approach slightly different than the approach we used in the previous sections.

For a discussion on control problems with state-variable constraints, see

[57]. Actually, it is more meaninful physically to consider the acceleration

as the control in the sensor control problem. However, we shall not solve

this problem here.

Finally, note that in the sensor control problem in this section and the

spatial mapping problem in the previous sections, we very often encounter the

case of the spatially invariant field model

dx(s) = fx(s)ds + g'dw(s) (3.7.107)

-245-



Because f is a scalar constant, the class of processes generated by this

model is quite special. We can extend our work without difficulty to the

case of the vector model

dy(s) = A y(s)ds + Bdw(s) (3.7.108)

x(s) = c'y(s) (3.7.109)

This model of course generates a richer class of processes. We shall

however not do this extension here.
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CHAPTER 4

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, we have examined the issues of space-time modeling and

estimation in the context of two particular physically motivated examples.

While we have been motivated by potential applications to several problems of

practical importance, the major emphasis of our workhas been in the study of

the modeling of space-time processes and of the consequences of such models

for problems of optimal estimation. For the problem in Chapter 2, we pointed

out such potential applications as wave propagation in random media, statis-

tical fluid mechanics, discrete multipath communication and seismic signal

processing. For the problem in Chapter 3, we foresee applications such as

microwave sensing of atmospheric temperature and humidity fields using sa-

tellite observations and gravity field mapping via instruments carried in a

moving vehicle. For the models formulated in both chapters, we have analyzed

in detail the estimation and statistical inference problems involved. We will

point out in the rest of this chapter several problem areas which are immediate

extensions of the work we have done but first we list the contributions of our

work.

The main contribution of this thesis is the abstraction of mathematical

models for certain physically motivated space-time process problems and in

indicating how the powerful techniques of stochastic analysis and estimation

can be used in their solution. As we have pointed out before, many previous

researchers have investigated into random field problems via various different

approaches and with different applications in mind. However, their work has

mostly been directed at characterizing the properties of random fields and

very little has been done in the area of space-time modeling and estimation.
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Our work here is among the first attempts in conceptualizing real physical

problems involving random fields and developing a theory of estimation and

statistical inference for the models we formulated for such problems. We have

laid a foundation in this thesis upon which future researchers can build in

order to handle more complicated and realistic space-time problems. A number

of new ideas have been introduced, such as sensor control for optimal field

estimation, which are certain to lead to much further research in the future.

Moreover, we have laid down some concrete concepts and mathematical results for

the classes of space-time problems that we have formulated. Although our

problem formulations are admittedly narrow, we have nevertheless achieved

something more solid for these problems than many other workers have for their

random field problems. For instance, in [28], Monin and Yaglom have only dis-

cussed some basic statistical ideas for inferring the nature of a random tur-

bulent fluid flow. The discussion, though general, is vague and gives no in-

dication at all of how such statistical ideas can be implemented in practice.

In contrast, although our problem formulations deal with very simple cases,

we have derived concrete mathematical results and discussed how in practice

they can be implemented. Our work further indicates the degree of complexity

that the solution of a random field estimation problem can involve. This

could never have been seen in such a general qualitative discussion as in [28].

We believe that many random field problems in practice can be solved if appro-

priate mathematical models are abstracted for such problems. This is one of

the main reasons for our formulation of the models in this thesis. Hopefully,

our work here can help to inspire future researchers to create models for

other space-time problems.

We list here the specific contributions we have made to the topic of random
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fields in the context of the space-time problems we have considered.

(1) We considered the problem of estimating a random signal field propagated

by a random transmission medium. In the process, we provided the first solu-

tion to the problem of estimating a diffusion process observed with a random

time delay.

(2) We discovered several cases of optimal finite dimensional implementation

to the signal estimation results in (1).

(3) One way of deriving finite dimensional suboptimal approximate implemen-

tations to the signal estimation results was demonstrated.

(4) An entirely novel on-line procedure for estimating random delay times

in propagating signals was presented.

(5) Some results were derived for inferring the properties of random time

invariant transmission fields using known propagating signals.

(6) Similar contributions, though more restricted, were made in the case of

multiple signal fields and in the case of multiple sensors.

(7) We derived the results for estimating a time invariant spatial field

modeled by a stochastic differential equation and observed by a moving point

sensor. The implications of using such a model for the problem of random

field estimation are uncovered by the results.

(8) A novel problem of optimal field estimation via sensor motion control is

formulated and solved explicitly in one special case. Although the special

case that we have solved might not be important in practice, the ideas intro-

duced have much further implications for future research and practical

applications.

In the following paragraphs, we will contribute some ideas for future

research which are direct extensions of the work we have done.
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In Chapter 2, we have seen in both the multiple source and multiple

sensor problems that the estimation of #t-tsl can at present be accomplished

only by the infinite dimensional multiple model approach consisting of a

growing infinite bank of smoothers. A representation for the estimate

#t-t sl is impossible at the moment, whether recursive or nonrecursive.

This makes both the multiple source and multiple sensor problems more dif-

ficult than the basic one-source-one-sensor problem or the estimation problems

in which the delay times are known. Thus, deriving a representation for

the estimate $t-tsl is a very important problem for future research. Only

tt-t
ssl

by examining the representation for 4- s , whether recursive or nonrecursive,

can we hope to find cases in which the computation of c l is finite di-

mensional, if they exist. At present, the only way we can hope to compute

#t-ts with a finite dimensional implementation is to approximate the in-

finite bank of smoothers by a finite bank. However, each of these smoothers

is infinite dimensional [37] and a finite dimensional approximation is not

known in this case. Estimation problems for systems with time delays, even

if the delays are known, are infinite dimensional [37]. Thus, it is hard

to expect, and even appears to be impossible, that our problems here with

random delays can admit finite dimensional optimal implementations.

However, a representation for t-tsl can still give us additional insight

into how finite dimensional suboptimal approximations can be made.
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For the work of Chapter 2, it will be interesting to consider, as a

first extension, the case in which the observation model contains an unknown

random parameter, i.e., the observation model is given by

dzt h($t-t ,r,t)dt + dwt (4.1)
S

Here, h(-,-,-) is jointly measurable with respect to all three arguments

and wt is a standard Wiener process satisfying the same assumptions made in

Section 2.2. In addition, it is assumed to be independent of r. The parameter

r is a random variable with a known a priori distribution. The problems we are

interested in are now:

(i) To estimate the signal $t-t using the observations Z '
S

(ii) To estimate the delay time ts

(iii) To estimate the parameter r.

One of the main reasons for examining the above problems with the observation

model (4.1) is to study the situation in which the transmission medium

modulates the amplitude of the signal field in addition to causing random

transmission delays from the source to the sensor. In general, since both

r and t are determined by the random transmission field, one would want to
S

consider the case in which they are statistically correlated. In the linear

case the parameter r has a direct interpretation as an amplitude attenuation

factor:

dzt htr t-t dt + dwt (4.2)

One approach for solving the above problems which we can suggest here
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immediately is the multiple model approach. By conditioning on each known

value of the parameter rsay r=r/, we can apply the results of Chapter 2 to

obtain an estimate of the signal $t-t as well as the conditional distribu-
S

tion of the delay time t . The only problem that remains now is to find the
S

equations for computing on-line the conditional distribution P(r < r' IZt) of

the parameter r given the observations Zt . Once this distribution is available,

the solution to the above problems is obtained as follows. Define

#t-t r' = E{$tt Z ,r=r'} (4.3)

Then, the estimate of the signal $t-t is given by
5

$ = $ ~P (r'<r<r'+r 44
t- t- Ir' ~ r t(4)

r

Similarly, the conditional distribution of the delay time ts is given by

P(t <t' z t) = IP(t <t' Z ,r=r') P(r'<r<r'+dr' Z ) (4.5)
r'

The problem of deriving the equations for computing on-line the conditional

distribution P(r<r' IZt) of the parameter r given the observations Zt remains

to be solved.

When we further extend our problem to the case of multiple signal sources,

i.e., when the observation model becomes

dzt h1 t-tsl,rlt)dt + h2 (t-t s2,r 2,t)dt + dwt (4.6)
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it becomes even more interesting. Here, r1 and r2 are (possibly correlated)

random variables, both independent of wt. When we consider the multiple source

problem as the multiple reflection problem, the parameters r1 and r2 can be

used to model the random reflection coefficients from the two reflectors. This

becomes more apparent in the linear case, when the observation model (4.6)

reduces to

dz = h r $ dt + h 2 r $ dt + dw (4.7)
t lt 1 t-t 1  2t2 2-

Again, one approach that we can immediately suggest for solving the multiple

source problem is the multiple model approach. By conditioning on known values

of r1 and r2, the results of Chapter 2 can be applied to estimate the signals

$t-tsl and $t-ts2 as well as the delay times tsl and t s2 The only problem

that remains to be solved is to derive the equations for on-line computation

of the joint conditional distribution of r1 and r2. The case in which the gains

r and r2 are random in equation (4.6) or (4.7) is important in practice because

when we apply the results for the multiple reflection problem to, say, the dis-

crete multipath communication problem, r1 and r2 can be used to model the ran-

dom amplitude fading in a Rayleigh communication channel [16].

A more complicated version of the multiple reflection problem above can also

be considered. This is the case in which reflection and transmission of the

signal field take place on both sides of each reflector, giving rise to rever-

berations which happen all the time in most wave propagation problems, especially

seismic signal processing [15]. Considering the two-reflector situation in

Figure 14, we see that since the signal field is continually being reflected

between the two reflectors, more and more return signals are received by the
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sensor, each successive return being weaker than the previous one. The

observation model for this problem is of the form

dz = h ( ,r 1 ,t)dt + h2 (tt ,r2 ,t)dt +...+dw
t t 1 1 2 -t 2 t

(4.8)

which contains an infinite number of terms because theoretically there is an

infinite number of return signals generated by the reverberations. It is also

easy to see that there is a simple relation among the delay times, i.e.,

t . - t . = 2T
si+1 si

(4.9)

where T is the travel time between the two reflectors. It is not clear at

this point how the problem of estimating the signals t-t , t-ts2 etc., can

be solved since the observation model (4.8) contains an infinite number of

terms.

Reflector 1

Sensor

A
0

Signal

Source

Ref le 1tor 2

s

FIGURE 14: A TWO-REFLECTOR SITUATION INVOLVING REVERBERATIONS
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Finally, we remark that when applying our results of Chapter 2 to any

specific problem, one would need to evaluate the performance of the estimators

by simulation. Such performance analyses would also be useful for comparing

our results with those derived via the classical frequency domain approach.

This is clearly a crucial next step in determining the utility of the frame-

work we have developed.

In Chapter 3, we considered the problem of estimating a spatial random

field using observations from a moving point sensor. We assumed that the

field did not affect the motion of the sensor, and we have pointed out that

such a problem formulation does not apply to such problems as gravity field

mapping using spacecraft tracking data [44]. However, we feel that a problem

formulation applicable to the latter type of problems is not only theoretically

interesting but also useful in practice. We shall present here a problem

formulation for the case in which the field affects the motion of the sensor;

the solution of the problem is suggested for future research.

Assume that the random field is an acceleration (or force) field, i.e.,

that x(s) is the random acceleration (or force) experienced by the sensor at

point s. The equations of motion are

ds(t) = v(t)dt (4.10)

dv(t) = x(s(t))dt = x(t)dt (4.11)

The field x(s) is still assumed to be given by the spatial shaping filter model

(3.3.1). The equation for the acceleration x(s(t)) = x(t) can be obtained

from the field model (3.3.1) using the same space-time transformation as in

Theorem 3.1. The result is similar to equation (3.3.11):
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(4.12)

where f(-,-) and g(-,-) are as defined in equations (3.3.12) and (3.3.13).

The process E(t) is periodic, with period 2T (defined later), and over each

period is defined by

T1 (t) ,<t<T
-(2nT+t) = n = positive integer (4.13)

Jn(2T-t), T<t<2T

where 11(t) is a vector of independent standard Wiener processes. The interval

of time T is length of time during which the sensor can move under the influence

of the acceleration field before coming to a stop and reversing its direction

of motion. The nature of the motion of the sensor in the acceleration field

can be briefly described as follows. Since x(s) is an acceleration, its

integral

S

P(s) x(s')ds' (4.14)

0

is a potential. The sensor moving in the acceleration field can be viewed as

a particle rolling in the potential field. If the particle starts from rest

from a point so , it will roll off in the direction of lower potential until

it reaches a point s1 , such that

P(s0 l= P(s ) (4.15)

It stops at s1 and reverses its direction of motion until it comes back to

rest at s0. Thereafter, the motion is repeated. The length of time T is the
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time it takes the particle to go from s0 to s1 or from s1 to s0. Note that

we have assumed the motion to be conservative, i.e., there is no dissipation

of energy. The motion is periodic with period 2T.

Now, assume that the motion of the sensor is observed through its velo-

city and position, i.e., we have observations

dz 1(t)= v(t)dt + dw (t) (4.16)

dz 2(t) = s(t)dt + dw 2(t) (4.17)

where w (t) and w 2(t) are independent standard Wiener processes such that

{w1 (T1)-w 1 (T2 ' 1 >T 2Ltl and {w2 (T1) -w2 (T 2)' T1 >T2 tl are independent of

(M(T), 0<T<t }. Using these observations, we want to estimate the section of

the field traversed by the sensor, i.e., x(s) for s e [s0 ,s1]. Considering

the problem over an interval of time nT<t<(n+l)T, n a positive integer, the process

E(t) is a vector of independent standard Wiener processes. We can therefore

view the problem as a standard nonlinear filtering problem consisting of the

system (4.10) through (4.12) and the observations (4.16) and (4.17) and write

down the filtering equation for E{x(t) ZtI = Efx(s(t)) Zt 1. However, the same

problems will arise here as in Chapter 3 due to the position s(t) not being

known exactly. The same discussion as in Section 3, Chapter 3,on such problems

applies here and we shall not repeat it. A more interesting feature of the

field estimation problem here lies in the fact that since the sensor will

reverse its direction of motion after every interval of time T, we will be

re-estimating the old values of the field after every interval of time T. In

addition, the value of T is random and we do not know when we start re-estimating

the old values. At present, it is not clear how this estimation problem can
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be done. It seems that some combination of filter and smoother is needed

and that T has to be estimated on line so that at the appropriate time we

can switch from the filter to the smoother when we are re-estimating the

old values of the field.

The problem we have formulated above is important because it models the

problem of gravity field mapping using spacecraft tracking data. The phe-

nomenon of the sensor reversing its direction of motion and re-experiencing

the old values of the acceleration field is analogous to a spacecraft re-

experiencing the old values of the gravity field after making a revolution

round the planet.

We can also extend the problem formulated above to the case in which the

motion of the sensor is dissipative. This is the case in which the velocity

of the sensor is given, for instance, by

dv(t) = x(t)dt - D(v(t))dt (4.18)

where D(v(t)) is a velocity-dependent dissipative force. In this case, it

is well known that the sensor travels for shorter and shorter intervals of

time between stops and the distance traveled between stops also decreases.

The field estimation problem is now more complicated than before when sensor

motion is conservative because the time it travels before reversing its

direction of motion changes with each stop, making it more difficult than

before to predict when we will start re-estimating old values of the field.

Additional complications arise due to the fact that a smaller portion of the

field is re-estimated after each stop. At present, no definite solution can

be foreseen for this problem and we suggest it for future research.

The work in Chapter 3 has all been carried out for the case of a conti-

nuous field x(s). The same is true of the gravity field mapping problem that
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we have just formulated. However, there are many random fields in practice

which naturally involve jump discontinuities, especially in the area of

image processing [65], [67], (68]. Thus, the modeling of random fields with

jump discontinuities and their estimation using observations from a moving

point sensor is also an important area for future research. At this stage,

we feel that fields with jump discontinuities can be modeled using an analog

of equation (3.3.1), our spatial shaping filter model for a continuous field.

This model is given by

dx(s) = f(x(s),s)ds + g'(x(s),s)dN(s) (4.19)

where N(s) is a vector of independent standard Poisson processes. The

theory of equations of the form (4.19) has been treated extensively, e.g., [6].

Since N(s) is a jump process, it gives rise to jump discontinuities in x(s).

We conjecture that the estimation of such discontinuous fields can be dealt

with along the lines by which we deal with continuous fields.

Finally, an extension of the problem of optimal field estimation via

sensor motion control to the case of nonlinear field and observation models

should be considered. It is well known that in this case the estimation

error covariance has to be computed on-line using the measurements [38]. The

problem of controlling the velocity of the sensor to minimize some functional

of the error covariance will now become an on-line stochastic control problem.

We shall not attempt to formulate the problem here but suggest it for future

researchers in this field.

The problems we have considered in Chapter 3 as well as the gravity field

mapping type of problems we just formulated above are all based on a one-

dimensional model for the fields of interest. For more realistic applications
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to such problems or to problems in other areas such as image processing

[65], [67], [68], a model in multidimensional space would be necessary.

Before such models can be made, a usable multidimensional stochastic calculus

would be necessary and we have cited such work before in Chapter 1. However,

in order to make use of such multidimensional stochastic calculus, the

artificial causality imposed in its definition must be understood and its im-

plications clarified before realistic models can be built.

It should also be pointed out that all of our work in this thesis has

been done for the case of a continuous parameter, i.e., continuous time or

continuous space. Perhaps some insight could also be gained if we carry out

our work here for the case of a discrete parameter, i.e., discrete time or

discrete space. An appropriate model for a field in one-dimensional discrete

space could be the following:

x(k+l) = f(x(k),k) + g'(x(k),k)w(k) (4.20)

Here, x(.) is the random quantity of interest, k is a nonnegative integer

and w(k) is a vector of independent white Gaussian sequences. One simplifi-

cation that we certainly can get in the case of a discrete parameter is that

the need for a spatial stochastic calculus may be eliminated. This simplifi-

cation could prove to be helpful when we try to extend our work to the case

of a multidimensional discrete parameter. The study of such discrete parameter

fields is very interesting theoretically and might prove to be of great help

in understanding random fields with a multidimensional continuous parameter.

Although we have studied in detail two problems of modeling and estimation

of space-time stochastic processes, we have by no means covered great territory
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in the area of random fields. Rather, our contributions in this thesis

have only shed some light on one corner of a vast unexplored research area

which still harbors lots of open issues and unanswered questions for both

theoreticians and applied scientists. We feel that we have made significant

progress in this thesis, but we are still at the threshold of a new and

exciting area for future research.
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APPENDIX 1

Verification of Theorem 2.1

Theorem 2.1: The unit-jump process $t can be represented by the sto-

chastic differential equation

dp = x dt + dm
t t t

where mt is a martingale on (8t t>0 and

oo

t Pt (t) Pt (tt)dT (1-V ) P ( t
s t s

P t (t) is the a priori probability density of ts

This is intended to be a non-rigorous verification of the result.

For a rigorous proof, see [54].

The process $t is a submartingale on {t }t>. It is easy to check that

it is of class DL [35]. Thus, by the Doob-Meyer decomposition theorem (35],

we can write

t = a t +mt (Al.l)

where {a t' t} is an increasing process and {mt t } is a martingale. The

decomposition (Al.1) is unique. We now have to show that

at f T (Al.2)
0
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and this can be done by showing that $

0

E $t+At

$t+At

*t+At

t+At

0

t+At

t

- 4
Jt 4t - XAt

X dT is a martingale on

t

TdT t
0

(Al.3)

But we have

Ef t+At t t = po t+At t

= t+At t t $t=1 t+At t lj8t $t=0

= Pt+At - 1 $i:t~ P= 0 ( 11)it)

= (t s<t+Att ts>t) (1-$t)

= P(t<tS<t+At)/P (t >t) (-$t)

z t(t) At

t
Pt (T) dT] (1-t
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{Bt t>Q0
Now,

t

t At (Al.4)

=E



E {($t+At

t+At t

J T tT) f
0

From this, we can show that for any

E t t'

TdT)

It

-(t -JrXodT

= E $t' I-t fti 
Ad

tit
t

To do this, partition the interval [t,t'] as:

t=t0 < tn = t'

so that ti+ -t = At is small.

T dT

Then,

St }t
t

= E $t n t t t. t
n-1 n-1 i+1l 1

t i+1

A dT +...+ j
Tt

t

AdT +...+ j

t0

X dT ) t
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T t (Al.5)

St

(Al. 6)

E I tv

t 0

tn

t fn

n-1
(Al.7)



The typical term is

E $ ti+l ti+1t. TdT -t

t 
f ti+l

t .
t.

by (Al.5). Thus, (Al.6) follows and $ t -

X dT B B
T t tp,

X TdT is a martingale on

t t>0
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APPENDIX 2

Proof of Theorem 2.2

Theorem 2.2: The signal $t-t is represented by
S

dtt t (X0JO + 'Pt- aOqt-t ,t-ts))dt

+ [$0  't- t-t
S

,t-ts t dmb

d t

'P- denotes the left-continuous version of $tP. --

Using the Doleans-Dade Meyer change of variables formula [36], we

have:

tt
S

= ' t-t

T d T-t
s

t+
0

+ t
T<t

d<$c c >
-t T

('PT T-t T- (T-ts

(A2. 1)TE (T-ts)- T T- T- T-t (T-ts)-

cThe notation $t cand c
t-t

S
denotes the continuous part of the processes t
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0 -_t S+ fo
t

$(T-t )-d$ + f



C
and t-t. Since $t is purely discontinuous, we have $ =0 and so

fourth term in the right side of (A2.1) is zero. The second term

#T-t )-d$T is also zero since d$P 0
s

only at T=t
5

the

and $T-t )
S

at T=t . Thus, by rearrangement,
S

$= $ $ +
t-t 0 -t /s s 0 $- d$

T- T-t

+ EZ 1 Tt ('T'P T~- ( -- t )~'T'P T-
T<t s 5

(A2.2)

The last term on the right is zero since $P -P #0 only at T=t and

(T-t )-=0 at T=t.

T-t T T-) is eq
T<t s

s

It can easily be seen that the term

ual to #0 Pt . Hence,

t

T-d@ T-t s+ 0 t
os

(A2.3)
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tt = pt- # t-t + 0#t

= 1pt- (a(t-t~ ,t-ts) dt + yl (t-ts ft-t)antt

+ P 0(x tdt + dm0t

= (Jo+ t- a( t-t

+0 04~ 4i- 11(O

F t-t ))dt

,t-t)]I
SIS

dm
t

drit~
(A2.4)

5]
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APPENDIX 3

Verification of equation (2.3d.4)

We have, at each fixed time t,

Ef t-t t- t-t Z t
S S

E{((t t- t-t Zt
S

IE{ ($ t-$ )$ Z- ,iz 't s=T}(T<t s<T+dT Z ) A31

T<t

But $i -4 / 0 only at t =T=t and P(t =t|Z )=O.
t t- s s t

Therefore,

tt-t Zt t-t (A3.2)
S S
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APPENDIX 4

Verification of equation (2.3e.74)

We can write, since t >T

t = rIUt t t

Using the Doleans-Dade Meyer change of variables formula,

t = T0 V0  + t T dT + t T d$ + t

0 0 0

c c
d<1rf , >T

+ TT 7r-T -] - E (ir-ir) + Lrr Ji -ip
T<t LILL T<t L h TT ~ (A4. 2)

We now note the following:

(1) Since 7Tc =0 and $c =0, the fourth term is zero.

(2) Since dff TO only at T=T and since ts >T implies that ip =0,

thus the second term is zero.

(3) Since r -1 TO only at T=T and $ =0 , thus the sixth term is zero.

These reduce (A4.2) to

t 00 + T d$ + [Tr Tr - T- - T- ( -)
0 T<t T<t

r0 $0 +
00

d$ + Z T (7r - )
T- T T<t

But
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E ( _T) = $TT t
T<t

and

T = 0 w.p.1

because

P($ =1) = P(t <T) = P(t =T)=0

Thus, we finally have

pt =r 0 0 + j / T- T

det t- tdt + dmt)

where we make use of the representation

dt tdt + dmt ,
for t>T .
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APPENDIX 5

Proof of Theorem 3.1

Theorem 3.1: Let (w(s), F s, s>0 be a Wiener process with

E~dw2(S)O = Q(s)ds with respect to the parameter s, where

F = ca{w(s'), O<s'<s} (A5.1)

Assume that the process s(t) satisfies

ds(t) = v(t)dt, s(O)=O (A5.2)

where v(t)>0 is a given continuous random process. Let t(s) denote the

inverse of s(t). Further, assume that the increments w(s1)-w(s2), for

s1>s 2s, are independent of (s(T)As, VT>O} and {v(t(s')), O<s'<s}.

Define the increasing family of a-fields

G =F va{s(T)As,VT>O}Vcy{v(t(s')), O<s'<s}, (A5.3)
S S

Then, for each t, s(t) is a stopping time with respect to Gs and on the

family {Gt } t> where

G = G (A5.4)
t s(t)

the process

w (t) = w (s (t)) (A5.5)

is a martingale with respect to time t and is given by

-272-



dw (t) = v (t) d (t) (A5.6)

where {T ,Gt } is a Wiener process with respect to time t with

E{d2 (t)I = Q(t)dt = Q(s(t))dt

Proof: We first show that s(t), for every t, is a G stopping time. First

we note

{s(t)<s} = {s(t)As<s} s G (A5.7)
S

Furthermore, by the continuity of s(t)

{s(t)=s} = .A s < s(T)As<s- E Gm n>m T rational m n (A5.8)

T<t

Hence s(t) is a stopping time.

By the assumption that the increments w(s 1)-w(s2 ), s1 >S >, are

independent of {s(T)As, VT>0} and {v(t(s')), O<s'<s), the process w(s) is a

2
Wiener process on {G } . Thus, w'(t) = w(s(t)) is a continuous L -martingale

on {G t t>0 Note that s(t) and v(t) are adapted to Gt and v(t) is predictable

on t t>0 since it is continuous. Now, define the process TI(t) as the sto-t t>o

chastic integral

TI(t) = fnt v-1/2 (T) w (T) (A5.9)

0

We can easily verify that ql(t) is a standard Wiener process on {tt> as
t t>o

follows:
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(i) r (t) is a continuous Gt -martingale since it is a stochastic

integral with respect to the continuous martingale {w'(t),G .

(ii) T(0)=0

(iii) Since

TI (t) = t v-1/2 (T)dr(T)

-s(t)

=f s
0

V-1/2 (t(s'))dw(s')

where

s' = s(T)

then, for t>t 2

E{ TI (t- - (t 2 t

E{ s (t 1) -1/2 (s 1 (s'))dw(s') 2 IGs (t2)
s(t 2

s (t )

-Efs(t 2)

s(t

E{ 
st
s (t2

v (s 1(s'))d<w>I G }
s s(t

2)

v (s'))ds' G }
s(t 2 )

= t - t2
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because

v (t(s'))ds' = dT

Equation (A5.9) now gives us the desired result:

d? (t) = v1/2 (t) dT) (t)
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APPENDIX 6

Derivation of equations (3.6.22) through (3.6.30)

To derive these equations,we first construct the a-fields with respect

to which the processes are adapted. As in Appendix 5, we first construct the

family {G }s>0 by

G = a{w(s'), 0<s'<s~va{s(T)As, VT>_0}

va{v(t(s')), 0<s'<s) (A6.1)

and assume a{x(0)}CG . It is still assumed that the increments w(s )-w(s2 )

s >s2s , are independent of {s(T)As, \T>0} and {v(t(s')) , 0<s'<s}. Now,

define the family (Bt t>0 by

Bt S(t) V t l 2 ' 3 -T<t }(A6.2)

It is easy to see that all processes of interest which vary with t, including

spatial processes sampled in time, are adapted to {Bt It>. By the assumption

we made earlier that 0 (T (T ) 0, (T ) - (T ) , S3 (T )- ( T~ T >T2 t
we~~~~ mdealetht( R)S 2 '2 1 2 2 '3 1 3 2 '1 2>tl

is independent of {s(T), v(T), 0<T<t} and (w(s(T)), 0<T<t}, the processes

S1(t), 2(t) and 3(t) are Wiener processes on {t t>0. We did not consider

these a-fields in Chapter 3 because they were not needed except in the

derivations in this appendix.

Consider the derivation of equation (3.6.22) for <Vl , >t. For any

-276-



t>t ,with t, fixed, we have

E{<V ,S1 >t+At - l t It

= E{(V 1 (t+At) - v1 (t) ) (1 (t+At) - 51 (t) ) Bt }

But

V 1 (t+At) - V1 t) = (c ( (t) ,t) - c ((t),t))At

+ (5 (t+At) - ( t))

and we have

E{[c(x(t),t) - c(2(t),t)]At[1 (t+At) - S (t)] IBt

since both c((t),t) and c(x(t),t) are independent of the future increment

1 (t+ At) - S (t) of the observation noise. Thus, (A6.3) becomes

E{<V1 ,it+At
- < 1 t Bt1

= E{(1 (t+At) - 1Ct) ) 2 1I = At (

From (A6.6), it is easy to show that for any t>t1 , with t, fixed, we have

E{<V ,1>t 1 > t t t-t (t 1

which implies that

<V , 1> t (
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Using the same technique for <V2 'I1>t , we have

E{<V2 ' 1t+At 2 ti t1

= E (V 2 (t+At) - V2 (t) )(1 (t+At) - $1 (t)) B t, t>t1

But

V2 (t+At) - V2 (t) = (v(t) - v(t))At + ( 2(t+At) - 2t))

and we have

E{ (v (t) - v(t) )At (3 (t+At) - S1 (t)) B) = 0

E{( (2 (t+At) - S2 (t))( 1(t+At) - 0l(t)) Bt) = 0

(A6.9)

(A6.10)

(A6.11)

(A6.12)

A
Equation (A6.11) follows since v(t) and v(t) are independent of the future

increment 1 (t+At) - S (t) of the observation noise S1(t) while (A6.12)

follows by independence of 1 (t) and 2 (t). Thus,

E{<V2 '1it+At 2 ' 1 t t } = 0

and from this it follows that

<V2 1 >t = 0

The derivation of the other equations is similar.
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