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Abstract
The standard momentum operator −i∇ has the trivial domain (the null vector)
if the L2 Hilbert space consists of only real-valued functions. In consequence,
it is useless in quantum mechanics of the relativistic Majorana particle which is
formulated in such a Hilbert space. Instead, one can consider the axial momen-
tum operator introduced in (2019) Phys. Lett. A 383 1242. In the present paper
we report several new results which elucidate usability of the axial momen-
tum observable. First, a new motivation for the axial momentum is given, and
the Heisenberg uncertainty relation checked. Next, we show that the general
solution of time evolution equation written in the axial momentum basis has
a connection with quaternions. Furthermore, it turns out that in the case of
massive Majorana particles, single traveling monochromatic plane waves are
not possible, but there exist solutions which have the form of two plane waves
traveling in opposite directions. Another issue discussed here in detail is rela-
tivistic invariance. A single real, orthogonal and irreducible representation of
the Poincaré group—consistent with the lack of antiparticle—is unveiled.
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1. Introduction

The discovery of a nonvanishing mass of neutrinos has led to many conjectures about the nature
of these particles. In particular, it is possible that they are relativistic massive fermions of the
Majorana type. While state of the art description of fundamental particles is provided by quan-
tum field theory (notwithstanding its well-known problems), the slightly older framework of
relativistic quantum mechanics is also useful, especially in the case of single particles. Rela-
tivistic quantum mechanics has many important applications e.g. in atomic physics, theory of
elementary particles, and even in condensed matter physics, see, e.g. [1–3]. Among relativis-
tic wave equations, the most popular is of course the one proposed by P A M Dirac, but other
equations are interesting as well, in particular the Proca and the Salpeter equations recently
discussed in [4, 5], respectively. There is no doubt that relativistic quantum mechanics is the
source of important insights. Quantum mechanics of the Majorana particle is not an exception
in this respect.

Relativistic quantum mechanics of the Majorana particle significantly differs from quantum
mechanics of the Dirac particle. It has several unusual features. Certain aspects of it have
already been considered in [6–10]. In particular, there is a rather intriguing problem concerning
the momentum observable (see below) which to the best of our knowledge was first considered
in [7], and recently readdressed in [10], where the axial momentum operator has been proposed
as a momentum-like observable. In the present paper we utilize expansions into eigenfunctions
of the axial momentum operator in order to discuss the general solution of the time evolution
equation, as well as the relativistic invariance.

The time evolution equation for the Majorana particle coincides with the Dirac equation3,

iγμ∂μψ − mψ = 0, (1)

in which certain Majorana-type representation for Dirac matrices γμ is assumed, that is these
matrices are purely imaginary, and m is a non-negative real number. The crucial difference
with the Dirac particle is that all four components of the bispinor ψ are real numbers. This
assumption is consistent with equation (1). Thus, the relevant Hilbert space H consists of all
real normalizable bispinors, and the pertinent algebraic number field is that of real numbers
R, not the more common in quantum mechanics algebraic field of complex numbers C. There
exist other formulations of Majorana quantum mechanics„ e.g. [6, 9], but they are equivalent
to the one adopted here, and of course the problem with the momentum operator is present
there too.

Quantum mechanics with real numbers or even quaternions in place of the algebraic field
of complex numbers is not very popular, but it has been thoroughly discussed in literature
[11–13]. In particular, it is known that in the real and quaternionic cases the discrete symmetries
P, T , and C are represented by unitary operators, while in complex quantum mechanics anti-
unitary symmetry operators can also appear.

The standard momentum operator p̂ = −i∇ turns real bispinors into imaginary ones, there-
fore its domain in H is trivial—it consists of the null vector only. Thus, a new momentum-like
operator is needed. Such operator, called the axial momentum and denoted by p̂5, has been
proposed in [10], namely

p̂5 = −iγ5∇

3 We use the natural units, c = � = 1.
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in the Schroedinger picture. It is Hermitean, and its spectrum is continuous. Moreover, it can
be regarded as the generator of spatial translations. On the other hand, it hasrather peculiar
features. First, it does not commute with Hamiltonian in the case of the massive Majorana
particle (m > 0).4 In consequence, its direction is not constant in time in the Heisenberg pic-
ture—the axial momentum contains a rotating component of the magnitude m/Ep, where

Ep =
√

m2 + p2
5 is the energy of the particle [10]. This component is negligibly small at high

energies, but it cannot be neglected at the energies comparable with m. The eigenfunctions of
the axial momentum can be used as a basis for Fourier-type expansion of time-dependent wave
functions of the Majorana particle [10]. It turns out that in place of simple time-dependent
U(1) phase factors known from the case of Dirac particles there are certain cumbersome
time-dependent SO(4) matrices.

In the present paper we continue the investigations initiated in [10]. We begin by providing a
new motivation for the axial momentum operator. It is based on a mapping between the Majo-
rana and Weyl bispinors. Next, we show that the classic position vs momentum uncertainty
relation remains unchanged when the standard momentum operator is replaced by the axial
one. After these introductory remarks, we examine the general solution of the wave equation
in the form of expansion in the basis of eigenfunctions of the axial momentumψp(x). We notice
that the solution can be regarded as position and time-dependent quaternion. Next, we trans-
form the solution to a more convenient form without the cumbersome SO(4) matrices, namely
we rewrite it as a superposition of traveling plane waves, see formula (13). That this is at all
possible is a surprise because the direction of the axial momentum is not constant in time if
m > 0. Interestingly, it turns out that in the massive case the plane waves necessarily come in
pairs. The paired plane waves have the opposite wave vectors p and −p, hence they travel in
opposite directions. Their amplitudes are not equal, the ratio is 1 : m/Eq.

Finally, we elaborate on the relativistic invariance of the model using the amplitudes defined
in the basis of eigenfunctions of the axial momentum. It turns out that the realization of the
relativistic invariance in the space of these amplitudes is similar to the picture known from
the case of the Dirac particle, which is a rather encouraging result. On one hand, this find-
ing is perhaps surprising because the axial momentum is not conserved if m �= 0. On the
other hand, the γ5 matrix is a scalar with respect to the Poincaré transformations, hence one
may expect that its presence does not destroy the relativistic invariance. The representation
of the Poincaré group we have obtained in the massive case is orthogonal, irreducible, and
equivalent to a real version of the well-known spin 1/2 unitary irreducible representation.
Recall that in the case of the Dirac particle one obtains a reducible representation composed
of two spin 1/2 irreducible representations. Such representations, here discussed within the
framework of relativistic quantum mechanics, usually reappear unchanged when one consid-
ers single particle sectors for the related quantum field. In the Dirac case, the two spin 1/2
representations correspond to the particle and its antiparticle. In the Majorana case we expect
the particle only.

Our overall conclusion is that the axial momentum operator is a reasonable replacement for
the ordinary momentum one (which should not be used in the Majorana case anyway). Certain
peculiar features present in the case of the massive Majorana particle, like the mixing of modes
with opposite axial momenta (discussed in section 3), are negligible at energies Ep � m. At
lower energies however, they cannot be neglected. We regard them as intrinsic physical features
of the relativistic massive Majorana particle.

4 This fact is explained by a relation of the γ5 matrix with the well-known axial U(1) charge, which is not conserved
in the massive case.
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The paper is organized as follows. In the next section we introduce the axial momentum
operator using the mapping between the Weyl and Majorana bispinors, and we derive the uncer-
tainty relation. In section 3, after a brief recap of necessary results from [10], we point out the
connection with quaternions, and we discuss the traveling plane waves. Section 4 is devoted to
analysis of the representation of the Poincaré group that exists in the space of solutions of the
evolution equation.

2. The axial momentum: new motivation, and the Heisenberg uncertainty
relation

Throughout this paper we work with the Dirac matrices γμ in a Majorana-type representation,
i.e. the matrices are purely imaginary. Then also the matrix γ5 = iγ0γ1γ2γ3 is purely imagi-
nary. Furthermore, γ5 is Hermitian, hence also anti-symmetric: γT

5 = −γ5, and γ2
5 = I, where

I is the 4 by 4 unit matrix. We work with the following set of the Dirac matrices

γ0 =

(
0 σ2

σ2 0

)
, γ1 = i

(
−σ0 0

0 σ0

)
, γ2 = i

(
0 σ1

σ1 0

)
,

γ3 = −i

(
0 σ3

σ3 0

)
, and γ5 = i

(
0 σ0

−σ0 0

)
.

Here σk are the Pauli matrices, and σ0 is the 2 by 2 unit matrix.
In all Majorana-type representations charge conjugation C is represented just by the com-

plex conjugation. Therefore, the Majorana bispinors, which by definition are invariant under
C, have only real components in such representations. The operator p̂5 commutes with C, in
contradistinction to p̂.

The motivation for the axial momentum given in [10] refers to a Lagrangian in classical
field theory and to the Noether theorem. Moreover, it applies to the massless case (m = 0)
only. Below we give an independent, simple and more general motivation.

There is a simple one-to-one mapping M between linear spaces of the Majorana bispinors
and right-handed (or left-handed) Weyl bispinors. From arbitrary right-handed Weyl bispinor
φ, which by definition has the property γ5φ = φ, we form ψ = φ+ φ∗ ≡ M(φ), which is real,
hence Majorana, bispinor. The asterisk denotes the complex conjugation. Now, because the
matrix γ5 is purely imaginary, φ∗ is a left-handed bispinor, γ5φ

∗ = −φ∗. It follows that γ5ψ =
φ− φ∗, and φ = (I + γ5)ψ/2 ≡ ψR, φ∗ = (I − γ5)ψ/2 ≡ ψL. This shows that the mapping M
is invertible. Notice that it preserves linear combinations only if their coefficients are real. The
Weyl bispinors are complex, hence the standard momentum operator p̂ = −i∇ is well-defined
for them. In particular, it commutes with the γ5 matrix, therefore also p̂φ is right-handed Weyl
bispinor. Let us find the Majorana bispinor that corresponds to p̂φ:

M(p̂φ) = p̂φ+ (p̂φ)∗ = p̂(ψR − ψL) = −iγ5∇ψ = p̂5ψ.

We see that the standard momentum operator in the space of right-handed Weyl bispinors gives
rise to the axial momentum operator in the space of Majorana bispinors.

The axial momentum commutes with γ5, therefore it can be used also in the space of right-
handed Weyl bispinors. However, in this space it coincides with p̂ because γ5φ = φ.

The presence of the one-to-one mapping M might suggest that the two quantum mechanics,
Majorana and Weyl, are equivalent to each other. For the equivalence, the mapping M should
preserve scalar product. It turns out that it is not the case. Let us take ψ1 = M(φ1),ψ2 = M(φ2),
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and compare the scalar product of the Majorana bispinors
∫

d3x ψT
1ψ2 with the scalar product∫

d3x φ†
1φ2 of the corresponding Weyl bispinors. We have

∫
d3x ψT

1ψ2 =

∫
d3x (φT

1 + φ†
1)(φ2 + φ∗

2) =
∫

d3x (φ†
1φ2 + (φ†

1φ2)∗).

Here we have used the identity φT
1φ2 ≡ 0, which follows from the antisymmetry of γ5: φT

1φ2 =
φT

1γ5φ2 = −φT
1γ

T
5 φ2 = −(γ5φ1)Tφ2 = −φT

1φ2. Thus we see that in general the scalar product
is not preserved by M,

∫
d3x ψT

1ψ2 �=
∫

d3x φ†
1φ2.

Note also the differences in evolution equations. In the Weyl case, the evolution equation has
the form (1) with m = 0, namely iγμ∂μφ = 0, while in the Majorana case m �= 0 is allowed.
Using the mapping inverse to M one can of course transform equation (1) for the Majorana
bispinor ψ to the space of right-handed Weyl bispinors—we obtain iγμ∂μφ− mφ∗ = 0, which
is known as the Dirac equation for φ with the Majorana mass term (recall that φ∗ is the charge
conjugation of φ). This last equation cannot be accepted as a quantum mechanical evolution
equation for the Weyl bispinor φ because it is not linear over C—it is linear only over R.
The point is that the Hilbert space of the right-handed Weyl bispinors5 is linear over C, there-
fore also quantum mechanical evolution equation for these bispinors should be linear over C,
otherwise the superposition principle is broken.

Commutator of the axial momentum with position operator x̂ j = x jI, where I is the four by
four unit matrix, has the form

[x̂ j, p̂k
5] = iδ jkγ5, (2)

which differs by γ5 from the commutator [x̂ j, p̂k]. In spite of the difference, the implied
uncertainty relation has the usual form

〈ψ|(Δx̂ j)2|ψ〉〈ψ|(Δp̂k
5)2|ψ〉 � 1

4
δ jk,

where Δx̂ j = x̂ j − 〈ψ|x̂ j|ψ〉, Δp̂k
5 = p̂k

5 − 〈ψ|p̂k
5|ψ〉. The uncertainty relation is obtained in

the standard manner. Let us consider

I(α) = 〈ψ|(αΔ p̂k
5 + iγ5Δx̂ j)(αΔp̂k

5 − iγ5Δx̂ j)|ψ〉,

where α is a real variable. It is clear that I(α) � 0. On the other hand, using commutator (2)
we have

I(α) = α2〈ψ|(Δp̂k
5)2|ψ〉 − αδ jk + 〈ψ|(Δx̂ j)2|ψ〉.

We know that this quadratic polynomial in α does not have two distinct real roots. The
uncertainty relation follows as the necessary and sufficient condition for this.

In the massive case (m > 0) the axial momentum has nontrivial time evolution in the Heisen-
berg picture, because it does not commute with the Hamiltonian ĥ shown below. This aspect is
discussed in detail in [10].

5 By definition, it includes all bispinors which obey the condition γ5φ = φ. Arbitrary complex linear combination of
such bispinors also is right-handed. The complex conjugate bispinor φ∗ is left-handed.
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3. Time evolution of the axial momentum amplitudes and quaternions

The general solution of equation (1) in the basis of eigenfunctions of the axial momentum was
found in [10]. It is complete from a theoretical viewpoint, but rather clumsy if one thinks about
concrete applications. Below we transform that solution to a much simpler form. Furthermore,
we point out that the general solution can be described in terms of quaternions. Such a link
of the Majorana quantum mechanics with the algebra of quaternions is yet another intriguing
feature of it, in addition to the non Hermitian Hamiltonian ĥ and non conservation of the axial
momentum in the case of free massive Majorana particle.

Let us begin by recalling necessary facts from the paper [10]. The Dirac equation (1) is
rewritten as

∂tψ = ĥψ, (3)

where the Hamiltonian

ĥ = −γ0γk∂k − imγ0

is real and anti-symmetric, but it is not Hermitian if m �= 0. Nevertheless, the scalar product
〈ψ1(t)|ψ2(t)〉 =

∫
d3x ψT

1 (x, t) ψ2(x, t) is constant in time because ĥ is anti-symmetric. The time
evolution operator is orthogonal one.

The normalized eigenfunctions of the axial momentum have the form

ψp(x) = (2π)−3/2 exp(iγ5px) v, (4)

They obey the conditions

p̂5ψp(x) = p ψp(x),
∫

d3x ψT
p (x) ψq(x) = δ(p − q).

where v is an arbitrary constant, normalized (vTv = 1) and real bispinor. We call the functions
ψp(x) the axial plane waves6. Note that

exp(iγ5px) = cos(px)I + iγ5 sin(px).

The expansion of ψ(x, t) into the axial plane waves has the form

ψ(x, t) =
1

(2π)3/2

2∑
α=1

∫
d3 peiγ5px (v(+)

α (p)cα(p, t) + v(−)
α (p)dα(p, t)

)
, (5)

where the basis bispinors v(±)
α obey the conditions

γ0γk pk v(±)
α = ±|p| v(±)

α .

The eigenvalues±|p| correspond to helicities ±1/2, respectively, [10]. They are double degen-
erate (α = 1, 2). Thus each single mode in (5) is common normalized eigenstate of p̂5 and of
the helicity. The index α = 1, 2 reflects the degeneracy of the common eigenstates which is an
artifact of the reality of our Hilbert space.

6 Note that the time dependence is not included—it is represented by a time-dependent SO(4) matrix, see formula (7)
below.
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The basis bispinors have the following form

v(+)
1 (p) =

1√
2|p|(|p| − p2)

⎛
⎜⎜⎝

−p3

p2 − |p|
p1

0

⎞
⎟⎟⎠ , v(+)

2 (p) = iγ5 v
(+)
1 (p),

v(−)
1 (p) = iγ0 v(+)

1 (p), v(−)
2 (p) = iγ5 v

(−)
1 (p) = −γ5γ

0v(+)
1 (p). (6)

They are orthonormal,

(v(ε)
α )T(p) v(ε′)

β (p) = δεε′δαβ ,

where ε, ε′ = +,− refer to the helicity, and α, β = 1, 2. The basis (6) has quite remarkable
properties: it is real; generated from v(+)

1 by the quaternions which are introduced below; and
it does not depend on the mass m—it is scale invariant.

Time dependence of the real amplitudes cα(p, t), dα(p, t) in expansion (5) is found by solving
equation (3). To this end, the amplitudes are split into the even and odd parts,

cα(p, t) = c
′
α(p, t) + c′′α(p, t), dα(p, t) = d

′
α(p, t) + d′′

α(p, t),

where c
′
α(−p, t) = c

′
α(p, t), c′′α(−p, t) = −c′′α(p, t), and analogously for d′, d′′. Furthermore, we

introduce the notation

�c(p, t) =

⎛
⎜⎜⎝

c′1
c′′1
c′2
c′′2

⎞
⎟⎟⎠, �d(p, t) =

⎛
⎜⎜⎝

d′
1

d′′
1

d′
2

d′′
2

⎞
⎟⎟⎠, K±(p) =

⎛
⎜⎜⎝

0 −n1 ±n2 ±n3

n1 0 ∓n3 ±n2

∓n2 ±n3 0 n1

∓n3 ∓n2 −n1 0

⎞
⎟⎟⎠,

where

n1 =
m p1

Ep

√
(p1)2 + (p3)2

, n2 =
|p|
Ep

, n3 =
m p3

Ep

√
(p1)2 + (p3)2

,

and Ep =
√

m2 + p2. The time dependence of the amplitudes is given by following formula
[10]

�c(p, t) = exp(tEp K+(p))�c(p, 0), �d(p, t) = exp(tEp K−(p))�d(p, 0). (7)

The matrices K±(p) are anti-symmetric, hence the matrices exp(tEpK±(p)) belong to the SO(4)
group. Because K2

± = −I, we have the formula

exp(tEp K±(p)) = cos(tEp)I + sin(tEp)K±(p). (8)

Here we end the recapitulation of the relevant for this work facts from [10].
Using expansion (5) we immediately obtain the Plancherel formula

〈ψ1|ψ2〉 =
∫

d3 p
2∑

α=1

(
c(1)
α (�p, t)c(2)

α (�p, t) + d(1)
α (�p, t)d(2)

α (�p, t)
)

,

7
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where the amplitudes c(1)
α , d(1)

α correspond to ψ1, and c(2)
α , d(2)

α to ψ2. Let us remind that the
integration variable p is the eigenvalue of the axial, not the ordinary, momentum. Splitting the
amplitudes into the even and odd parts, we may write

〈ψ1|ψ2〉 =
∫

d3 p
(

(�c (1))T�c (2) + (�d (1))T�d (2)
)
. (9)

Because the time evolution is given by the orthogonal matrices, as shown in formula (7), we
again see that the scalar product is constant in time.

In the general solution of equation (3) quoted above the amplitudes cα, dα are split into
the even and odd components which mix during the time evolution, see formula (7). It turns
out that the solution can be rewritten in a more transparent form. To this end, we use formula
(7) and (8), as well as the concrete form (6) of the basis bispinors. After straightforward and
somewhat lengthy calculation the general solution is transformed to the following form

ψ(x, t) =
1

(2π)3/2

2∑
α=1

∫
d3 p

[(
cos(Ept)I − L̂+ sin(Ept)

)
eiγ5pxv(+)

α (p)cα(p, 0)

+
(
cos(Ept)I + L̂− sin(Ept)

)
eiγ5pxv(−)

α (p)dα(p, 0)
]

, (10)

where

L̂± = iγ5
|p|
Ep

± iγ0 m
Ep

.

In formula (10) we have the initial values of the full amplitudes cα, dα, while in (7),the even
and odd parts appear separately.

Notice that

cos(Ept) ∓ L̂± sin(Ept) = exp(∓L̂±Ept),

because L̂2
± = −I. Therefore, in the massless case, i.e. m = 0, formula (10) acquires a very

simple form, namely

ψ(x, t) =
1

(2π)3/2

2∑
α=1

∫
d3 p

[
eiγ5(px−|p|t)v(+)

α (p)cα(p, 0)

+ eiγ5(px+|p|t)v(−)
α (p)dα(p, 0)

]
(11)

Thus, in this case the modes with different helicity do not mix during time evolution, in
accordance with the theory of irreducible representations of the Poincaré group.

Intriguingly, the general solution (7) and its equivalent form (10) can be rewritten in terms
of quaternions. The quaternionic units î, ĵ, k̂ are introduced as follows:

î = iγ5, ĵ = iγ0, k̂ = −γ5γ
0 = iγ1γ2γ3.

They obey the usual conditions

î2 = ĵ2 = k̂2 = −I, î̂ j = k̂, k̂̂i = ĵ, ĵk̂ = î.

The bispinor basis v(±)
α (p) is generated from v(+)

1 (p) by acting with î, ĵ, k̂, see formula (6).
Moreover, all matrices present in formulas (7) and (10) can be expressed by I, î, ĵ, k̂. In

8
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particular, K±(p) = ∓n2̂i ± n3 ĵ + n1k̂. Therefore, the time evolution of the amplitudes �c, �d
at each fixed value of the axial momentum p is given by a time dependent quaternion.

Solution (10) can be written in a Fourier form, in which no matrices are present, only
trigonometric functions and the basis bispinors (6). This is possible because the quaternions
acting on the basis bispinors do not yield any new bispinors, but only permute them. This form
of solution (10) reads

ψ(x, t) =
1

(2π)3/2

∫
d3 p

[
cos(px) cos(Ept)Vcc(p) + cos(px) sin(Ept)Vcs(p)

+ sin(px) cos(Ept)Vsc(p) + sin(px) sin(Ept)Vss(p)
]

, (12)

where the Vcc stand for linear combinations of the basis bispinors, namely

Vcc(p) = c1(p, 0)v(+)
1 (p) + c2(p, 0)v(+)

2 (p) + d1(p, 0)v(−)
1 (p) + d2(p, 0)v(−)

2 (p),

Vcs(p) =
1

Ep

[(
m d1(p, 0) + |p|c2(p, 0)

)
v(+)

1 (p)

−
(
m d2(p, 0) + |p|c1(p, 0)

)
v(+)

2 (p) −
(
m c1(p, 0) + |p|d2(p, 0)

)
v(−)

1 (p)

+
(
m c2(p, 0) + |p|d1(p, 0)

)
v(−)

2 (p)
]

,

Vsc(p) = −c2(p, 0)v(+)
1 (p) + c1(p, 0)v(+)

2 (p) − d2(p, 0)v(−)
1 (p) + d1(p, 0)v(−)

2 (p),

Vss(p) =
1

Ep

[
−
(
m d2(p, 0) − |p|c1(p, 0)

)
v(+)

1 (p)

−
(
m d1(p, 0) − |p|c2(p, 0)

)
v(+)

2 (p) +
(
m c2(p, 0) − |p|d1(p, 0)

)
v(−)

1 (p)

+
(
m c1(p, 0) − |p|d2(p, 0)

)
v(−)

2 (p)
]
.

Formula (12) is a convenient starting point for analysis of concrete examples of solutions.
Solution (12) is a superposition of standing plane waves. In order to rewrite it in terms of

traveling plane waves we use trigonometric formulas such as cos(px) cos(Ept) = 1
2 (cos(px −

Ept) + cos(px + Ept)), etc. We obtain

ψ(x, t) =
1

2(2π)3/2

∫
d3 p

[
cos(px − Ept) A+(p) + cos(px + Ept) A−(p) (13)

+ sin(px − Ept) B+(p) + sin(px + Ept) B−(p)
]

,

where

A±(p) = v(+)
1 (p)A1

±(p) + v(+)
2 (p)A2

±(p) + v(−)
1 (p)A3

±(p) + v(−)
2 (p)A4

±(p),

B±(p) = v(+)
1 (p)B1

±(p) + v(+)
2 (p)B2

±(p) + v(−)
1 (p)B3

±(p) + v(−)
2 (p)B4

±(p),

and

A1
± = (1 ± p

Ep
)c1 ∓

m
Ep

d2, A2
± = (1 ± p

Ep
)c2 ∓

m
Ep

d1,

A3
± =

(
1 ∓ p

Ep

)
d1 ±

m
Ep

c2, A4
± =

(
1 ∓ p

Ep

)
d2 ±

m
Ep

c1,

9
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B1
± = −(1 ± p

Ep
)c2 ∓

m
Ep

d1, B2
± = (1 ± p

Ep
)c1 ±

m
Ep

d2,

B3
± = −

(
1 ∓ p

Ep

)
d2 ±

m
Ep

c1, B4
± =

(
1 ∓ p

Ep

)
d1 ∓

m
Ep

c2.

In these formulas p ≡ |p|, Ep =
√

p2 + m2, and the amplitudes c1, c2, d1, d2 are the ones
present in formula (10) (the arguments (p, 0) have been omitted for brevity). Let us remind
again that p is the eigenvalue of the axial momentum.

Let us consider now a single mode with fixed value q of the axial momentum, i.e. we put in
the formulas above cα(p, 0) = cαδ(p − q), dα(p, 0) = dαδ(p − q), where cα, dα, α = 1, 2, are
constants now. In the massless case,

A1
+ = 2c1, A2

+ = 2c2, A3
+ = A4

+ = A1
− = A2

− = 0, A3
− = 2d1, A4

− = 2d2,

B1
+ = −2c2, B2

+ = 2c1, B3
+ = B4

+ = B1
− = B2

− = 0, B3
− = −2d2, B4

− = 2d1.

We see that in this case the A+, B+ part on the rhs of formula (13) is independent of the A−, B−
part. In particular, we can put one of them to zero in order to obtain a plane wave propagating
in the direction of q or −q.

The massive case is different—the plane wave always has the two components propagating
in the opposite directions, q and −q. If we assume that A− = 0, simple calculation shows that
also B− = A+ = B+ = 0; if we put B− = 0 then also A− = A+ = B+ = 0.

Let us put the constants d1 = d2 = 0. In the massless case this assumption gives the plane
wave moving in the direction q,

ψ(x, t) =
1

(2π)3/2
cos(qx − Eqt) (c1v

(+)
1 (q) + c2v

(+)
2 (q))

+
1

(2π)3/2
sin(qx − Eqt) (−c2v

(+)
1 (q) + c1v

(+)
2 (q)).

In the massive case all four components in (13) do not vanish. However, the amplitudes of
the −q components, i.e. A−, B−, are negligibly small in the high frequency limit, i.e. when
m/Eq � 1. In this limit

A1
+ ≈ 2c1, A2

+ ≈ 2c2, A3
+ =

m
Eq

c2, A4
+ =

m
Eq

c1,

B1
+ ≈ −2c2, B2

+ ≈ 2c1, B3
+ =

m
Eq

c1, B4
+ = − m

Eq
c2,

and

A1
− ≈ m2

2E2
q

c1, A2
− ≈ m2

2E2
q

c2, A3
− = − m

Eq
c2, A4

− = − m
Eq

c1,

B1
− ≈ − m2

2E2
q

c2, B2
− ≈ m2

2E2
q

c1, B3
− = − m

Eq
c1, B4

− =
m
Eq

c2.

On the other hand, in the limit of long waves, i.e. q � m,

A1
± ≈ c1, A2

± ≈ c2, A3
± ≈ ±c2, A4

± ≈ ±c1,

10
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and

B1
± ≈ −c2, B2

± ≈ c1, B3
± ≈ ±c1, B4

± ≈ ∓c2.

In this case the q and −q components have approximately equal magnitudes.

4. Relation with irreducible representations of the Poincaré group

The Poincaré transformations of the real bispinor ψ(x) have the standard form,

ψ′(x) = S(L)ψ(L−1(x − a)), (14)

with S(L) = exp(ωμν[γμ, γν]/8), where ωμν = −ωνμ parameterize the proper orthochronous
Lorentz group, L = exp(ωμ

ν ), in a vicinity of the unit element. Below we show that in the
massive case these transformations imply transformations of the axial momentum dependent
amplitudes which coincide with the real form of a single standard unitary Wigner’s represen-
tation with spin 1/2. This representation being real and unitary is in fact orthogonal one. The
conclusion is that as far as the relativistic transformations is the issue, the expansion into the
axial plane waves of the Majorana bispinor has the properties expected for a single massive
spin 1/2 particle.

We do not discuss here representations of the Poincaré group pertaining to the massless
Majorana particle (m = 0). The massless case is simpler because now the operator p̂5 com-
mutes with the Hamiltonian. We find two independent irreducible representations with the
helicities ±1/2. The appearance of a gauge structure with implied gauge equivalence classes
of real bispinors is noteworthy. Detailed analysis of the massless case is presented in lecture
notes [14].

We start from the following expansion into the eigenstates of the axial momentum

ψ(x, t) =
1

(2π)3/2

∫
d3 p
Ep

eiγ5px v(p, t), (15)

where v(p, t) is a real bispinor, and Ep =
√

m2 + p2. Equation (3) gives time evolution equation
for v

v̇(p, t) = −iγ0γkγ5 pkv(p, t) − imγ0v(−p, t). (16)

The reason for v(−p, t) in the last term on the rhs is that γ0 anti-commutes with γ5 and there-
fore γ0 exp(iγ5px) = exp(−iγ5px)γ0. Taking time derivative of equation (16) we obtain the
following equation

v̈(p, t) = −E2
pv(p, t).

Let us write its general solution in the form

v(p, t) = exp(−iγ5Ept)v+(p) + exp(iγ5Ept)v−(−p), (17)

where the argument of v− is −p for later convenience. Then ψ(x, t) can be written as

ψ(x, t) =
1

(2π)3/2

∫
d3 p
Ep

(
eiγ5(px−Ept) v+(p) + e−iγ5(px−Ept) v−(p)

)
, (18)

11
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where in the last term we have changed the integration variable to −p. Furthermore,
equation (16) is satisfied by v(p, t) of the form (17) only if v±(p) obey the following conditions

Epγ5v±(p) = γ0γk pkγ5v±(p) ± mγ0v∓(p). (19)

Applying the transformation law (14) with a = 0 to solution (18), we obtain Lorentz
transformation of the bispinors v±(p),

v′±(p) = S(L) v±(L−1 p), (20)

where now we use the four-vector p instead of p for convenience in notation: v+(p) ≡ v+(p)
and p0 = Ep. The spacetime translations x′ = x + a are represented by SO(4) factor

v′±(p) = e±iγ5 pa v±(p). (21)

In the massive case, v−(p) can be expressed by v+(p), see (19). The scalar product
〈ψ1|ψ2〉 =

∫
d3x ψT

1 (x, t)ψ2(x, t) acquires explicitly Poincaré invariant (and time independent)
form

〈ψ1|ψ2〉 =
2

m2

∫
d3 p
Ep

v1+(p) (γ0Ep − γk pk) v2+(p), (22)

where v1+(p) = vT
1+(p)γ0, and v1+(v2+) corresponds to ψ1(ψ2) by formula (18).

Transformations (20) and (21) are unitary with respect to this scalar product. Thus, we have
here real unitary, i.e. orthogonal, representation of the Poincaré group. It turns out that it is
irreducible and equivalent to a real version of the standard spin 1/2 unitary representation.
Detailed analysis of the representation is given below. Let us recall that in the case of mas-
sive Dirac particle one finds a reducible representation which is a direct sum of two spin 1/2
representations.

Representation (20) can be cast in the standard form which involves the Wigner rotations and

a representation of SU(2) group [15]. To this end, we introduce the standard momentum
(0)
p =

(m, 0, 0, 0), where m > 0, as well as a Lorentz boost H(p) such that H(p)
(0)
p = p. Furthermore,

at each p we introduce the basis of real bispinors,

vi(p) = S(H(p))vi(
(0)
p), (23)

where i = 1, 2, 3, 4, and vi(
(0)
p) is a basis at

(0)
p such that mvT

i (
(0)
p)vk(

(0)
p) = δik (the factor m is

included for dimensional reason). Here again we use the four momentum in the notation as in
(20). The bispinor v+(p) is decomposed in this basis,

v+(p) = ai(p)vi(p).

The scalar product (22) is equal to

〈ψ1|ψ2〉 =
2

m2

∫
d3 p
Ep

ak
1(p)ak

2(p), (24)

where k = 1, 2, 3, 4. The real dimensionless amplitudes ak
1, ak

2 correspond to ψ1,ψ2,
respectively.

12
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Let us find the relativistic transformation law of the amplitudes ak(p). In the case of Lorentz
transformations, using (20) we have

v′+(p) = a′k(p)vk(p) = S(L)ai(L−1 p)vi(L−1 p) ;

= ai(L−1 p)S(H(p))S(H−1(p)LH(L−1p))vi(
(0)
p).

The Lorentz transformation R(L, p)) = H−1(p)LH(L−1 p) leaves
(0)
p invariant—it is a rotation,

known as the Wigner rotation. Therefore, we may write

S(R(L, p))vi(
(0)
p) = Dki(R(L, p))vk(

(0)
p). (25)

In consequence,

v′+(p) = ai(L−1 p)Dki(R(L, p))vk(p),

and finally

a′k(p) = Dki(R(L, p))ai(L−1 p). (26)

The invariance of the scalar product (24) implies orthogonality of the 4 by 4 real matrix with
the elements Dki(R(L, p)).

The space-time translationψ′(x) = ψ(x − a) results in a change of the amplitudes7, ai(p) →
ai(p). Let us compute ai(p). Using formula (21) we have

v′+(p) = ak(p)vk(p) = eiγ5 paak(p)vk(p) = ak(p)S(H(p))eiγ5 pa vk(
(0)
p)

= mak(p)S(H(p))
(
vT

l (
(0)
p)eiγ5 pa vk(

(0)
p)
)
vl(

(0)
p).

At this point it is convenient to choose the basis vk(
(0)
p) in the Kronecker form, in which the ith

component of the bispinor vk(
(0)
p) is equal to δik/

√
m. In this basis

mvT
l (

(0)
p)eiγ5 pavk(

(0)
p) = (eiγ5 pa)lk.

In consequence,

al(p) = (eiγ5 pa)lkak(p). (27)

The matrix eiγ5 pa is orthogonal, and the scalar product (24) is of course invariant with respect
to the transformations (27).

Formula (25) opens the way to identification of the pertinent orthogonal representation of
the Poincaré group. This representation is uniquely characterized by representation (26) of the
Wigner rotations [15]. In order to identify this last representation it suffices to take in formula

(25) p =
(0)
p and L = R, where R is arbitrary rotation. Then R(R,

(0)
p) = R. Let us again use

the Kronecker basis introduced above. On this basis, formula (25) can now be rewritten as
S(R) = D(R), where the matrix elements of D(R) are equal to Dki(R). Therefore we now turn
to the matrices S(R).

7 We use the notation a because a′ is already used.
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The matrices S(R) have the form

S(R) = exp(
1
2

(ω12γ
1γ2 + ω31γ

3γ1 + ω23γ
2γ3)).

They form a subgroup of the SO(4) group. There exist real orthogonal matrices O such that

Oγ1γ2O−1 = î, Oγ2γ3O−1 = ĵ, Oγ3γ1O−1 = k̂,

where î, ĵ, k̂ are the quaternions introduced in the previous section. For example, one may take
the matrix

O =
1√
2

(
σ0 −σ1

−σ0 −σ1

)
.

Thus, the matrices OS(R)O−1 are elements of the algebra of quaternions, and as such they can
be written in the form

OS(R)O−1 = s0I4 + s1̂i + s2 ĵ + s3k̂, (28)

where s0, sk are real functions of the parameters ωik. These matrices also belong to the SO(4)
group. Furthermore, because

(OS(R)O−1)T = s0I4 − s1̂i − s2 ĵ − s3k̂

and OS(R)O−1(OS(R)O−1)T = I4, we obtain the relation (s0)2 + (s1)2 + (s2)2 + (s3)2 = 1.
On the other hand, let us consider the spin 1/2 representation T(u) of SU(2) group, T(u)ξ =

uξ, where u ∈ SU(2) and ξ is a two-component spinor (in general complex). This representation
can be rewritten in real form simply by using the real and imaginary parts. Thus we write

u =

(
α −β
β∗ α∗

)
, ξ =

(
ξ1

ξ2

)
,

where α = α′ + iα′′, β = β ′ + iβ ′′, ξ1 = ξ′1 + iξ′′1, ξ2 = ξ′2 + iξ′′2, and αα∗ + ββ∗ = (α′)2 +

(α′′)2 + (β′)2 + (β′′)2 = 1. Next, we form the four-component real vector �ξ and the 4 by 4
real matrix T̂(u):

�ξ =

⎛
⎜⎜⎝
ξ′1
ξ′′1
ξ′2
ξ′′2

⎞
⎟⎟⎠ , T̂(u) =

⎛
⎜⎜⎝

α′ −α′′ −β′ β′′

α′′ α′ −β′′ −β′

β′ β′′ α′ α′′

−β′′ β′ −α′′ α′

⎞
⎟⎟⎠ .

It turns out that �ξu = T̂(u)�ξ, where ξu ≡ T(u)ξ. The matrix T̂(u) can be rewritten in terms of
the quaternions,

T̂(u) = α′ I4 + β′ î + β′′ ĵ + α′′ k̂. (29)

The rhs of this formula coincides with the rhs of formula (28) if α′ = s0, β′ = s1, β′′ = s2, and
α′′ = s3.

In conclusion, the representation of the Wigner rotations given by the matrices S(R(L, p))
is equivalent to the real form of the spin 1/2 representation T(u) of SU(2) group. Thus, we have
found that the representation of the Poincaré group, given by formulas (21) and (26), is the spin
1/2, m > 0 representation. Notice that we have obtained just one such spin 1/2 representation.
In the case of Dirac particle a direct sum of two spin 1/2 representations appears, one for
particle and the other for antiparticle.
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5. Summary and remarks

1. Let us summarize our main results. We have shown that the axial momentum operator for
the Majorana particle is related to the ordinary momentum for the Weyl particle by the one-to-
one mapping between the two models, and that it obeys the Heisenberg uncertainty relation.
Next, using the eigenfunctions of the axial momentum operator, we have written the general
solution of the Dirac equation for the real bispinor in the form of superposition of traveling
plane waves, with the eigenvalues p of the axial momentum playing the role of wave vectors,
i.e. giving the wave length and the direction of propagation. In the massive case this super-
position has the special feature that the plane waves come in pairs with the opposite axial
momenta, p and −p. This is due to the fact that in the massive case the axial momentum
does not commute with the Hamiltonian ĥ. Therefore, the eigenvectors of p̂5 are not station-
ary states—the minimal stationary subspace in the Hilbert space is spanned by the two modes
p,−p. The presence of such paired plane waves could perhaps serve as a signature of the
massive Majorana particle. This effect is relatively small at high energies, but quite sizable
at energies close to the rest mass of the particle. Last but not least, we have shown how one
can unveil the irreducible spin 1/2 representation of the Poincaré group working with the axial
momentum basis.

Apart from the results listed above, there are quite interesting purely theoretical aspects,
namely the reformulation in terms of quaternions, and fully-fledged relativistic quantum
mechanics over the algebraic field of real numbers R in place of complex numbers.

We conclude that the axial momentum p̂5 = −iγ5∇ can be accepted as the replacement for
the ordinary momentum p̂ = −i∇. This latter operator is not an observable for the Majorana
particle because it does not commute with the charge conjugation C, in contradistinction to p̂5.
We think that the axial momentum is the proper observable to be used in theoretical analysis
of experimental data for relativistic Majorana particles, when they are available.

2. The investigations of the axial momentum can be continued in several directions. In our
opinion, two are especially interesting. First, we would like to check time evolution of wave
packets with certain fixed initial profile of the axial momentum. Formulas (12) and (13) seem
to be a good starting point for work in this direction. We believe that such a basic knowledge
about evolution of normalizable wave functions can be helpful in experimental searches for
the Majorana particles.

The second very interesting and important topic is the application of the axial plane waves
in quantum theory of the Majorana field. The amplitudes ai(p) introduced right above formula
(24), where p = (p0, p) with p being eigenvalue of the axial momentum and p0 =

√
m2 + p2,

have clear transformation law with respect to the Poincaré group. This fact suggests that
precisely these amplitudes should be replaced by creation and annihilation operators of the
Majorana particle when quantizing the real Majorana field.

Finally, one may use the axial momentum instead of the ordinary momentum in quantum
mechanics of the Dirac particle. Here the ordinary momentum has the advantage: it commutes
with the Dirac Hamiltonian in the case of free particle—but the use of the axial momentum,
which is after all a legitimate observable, can lead to new insights.
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