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ABSTRACT 

Grain boundaries and their networks have a profound influence on the functional and structural 
properties of every class of polycrystalline materials and play a critical role in structural 
evolution and phase transformations. Recent experimental advances enable a full 
crystallographic characterization, including the boundary misorientation and inclination 
parameters, of grain boundaries. Despite these advances, a lack of appropriate analytical tools 
severely undermines our ability to analyze and exploit the full potential of the vast amounts of 
experimental data available to materials scientists. This is because the topology of the grain 
boundary space is unknown and even a well-studied part of the complete grain boundary space, 
the misorientation space, is relatively poorly understood. This thesis summarizes efforts to 
improve the representation of misorientation information and to understand the topology of the 
complete grain boundary space. First, the topology of the space of misorientations is discussed 
with a focus on the effect of symmetries on the minimum embedding dimensions in Euclidean 
space. This opens the door to a new method of representation of misorientation information in 
which grain boundaries can be uniquely colored by their misorientations. Second, conditions 
under which the topology of the grain boundary space has been resolved are presented. 
Resolving the topology of the complete grain boundary space not only facilitates statistical 
analysis of grain boundaries, but can also help describe the structure-property relationships of 
these interfaces. 
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List of Figures 
Figure 1.1: Schematic illustrating equivalent descriptions of the orientation of a grain with two-

fold rotational symmetry. Because of the underlying crystal symmetry, there are two 
distinct ways of embedding the crystal coordinate axes (denoted by subscript C). 
Hence, there are two distinct rotations 𝜋/9 and 10𝜋/9, measured with respect to the 
reference coordinate axes (denoted by subscript S), that describe the orientation of 
this grain. 
 

Figure 1.2: Boundary (a) is physically different from boundary (b) and this difference can be 
reflected in the measured parameters only if a fixed convention is followed in 
assigning the boundary plane normal. The convention here is that if the boundary 
parameters are measured with respect to grain A then the boundary normal is always 
directed away from the reference grain A. Using this convention, the two boundaries 
in (a) and (b) are defined by distinct parameters (𝑀;𝑛�⃗ ) and (𝑀;−𝑛�⃗ )respectively.  

 
Figure 1.3: Deficiencies in existing grain boundary maps are illustrated using samples of (i) Cu-

Cr and (ii) Rhenium alloys. (a) EBSD micrographs with grain boundaries 
highlighted. (b) Grain boundaries colored according misorientation angle alone (low- 
vs. high-angle). (c) Grain boundary map showing the specific coincidence 
misorientations (colored), as well as low angle (grey) and high angle (black) 
boundaries. These maps do not represent complete misorientation information and 
the coloring does not capture misorientation distances between the various 
boundaries. 

 
Figure 1.4: Common representations of the color space.  (a) RGB Color cube (b) HSL Color 

sphere (c) HSV color cone. Color spaces are simply connected in ℝ3. 
 

Figure 2.1: The rotation, orientation and misorientation spaces represented on a circle and using 
𝜔 parameterization, color coded to show the inherent connectivity of these spaces. 
(a) The 2D rotation space: 𝜔 ∈ [0,2𝜋) and the coloring indicates that 𝜔 ∼ 𝜔 + 2𝜋. 
(b) Orientation space of 𝐶2 system: 𝜔 ∈ [0, 𝜋) and 𝜔 ∼ 𝜔 + 𝜋. (a) & (b) are 
topologically equivalent. (c) Grain Boundary misorientation space of  𝐶1 system: 
𝜔 ∈ [0, 𝜋) and 𝜔 ∼ 2𝜋 − 𝜔. The crucial difference is that the end points of the 
domain 0 and 𝜋 are not identified. (d) Grain boundary misorientation space of 𝐶2 
system: 𝜔 ∈ [0,𝜋/2]. 
 

Figure 2.2: (a) A parametric ball built using the quaternion vector parameter �⃗� = �⃗� 𝑠𝑖𝑛 �𝜔
2
� that 

represents the rotation space in ℝ3. The polar coordinates (𝜃,𝜙) define the axis of 
rotation �⃗� and 𝜔 is the angle of rotation. (b) The antipodal points, on the surface of 
the parametric ball, 𝑄1 = (𝜋, �⃗�) and 𝑄1′ = (𝜋,−�⃗�) represent the same rotation and 
are identified. The closed path 𝑃𝑄2𝑄2′𝑃 is obtained by continuously deforming the 
path 𝑃𝑄1𝑄1′𝑃. 
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Figure 2.3: Path connectivity in the 432-orientation space. The dashed black line represents a 
continuous path completely contained within the space. The dashed blue lines 
represent paths with a jump (shown using green and red dashed lines).  

 
Figure 2.4: Grain boundary misorientation space of point group 𝐶1(1). (a) Represents the 

symmetry �⃗�~ − �⃗� in the rotation space introduced by the grain exchange symmetry 
( 𝑀~𝑀−1). (b) The fundamental zone of 𝐶1(1) grain boundary misorientation space. 
(c) Represents the symmetry (𝑞1, 𝑞2, 0)~(−𝑞1,−𝑞2, 0) on the plane 𝑞3 = 0 of the 
fundamental zone. This symmetry is equivalent to a two-fold rotational symmetry in 
the plane 𝑞3 = 0. 
 

Figure 2.5: The character of the surfaces of 𝐶1(1) grain boundary misorientation space: (a) the 
dashed blue lines represent closed paths and the discontinuity in the path 𝑃𝑄1𝑄1′ 𝑃 
can be removed by continuously moving point 𝑄1 towards the origin. (b) The 
hemispherical surface (𝑞12 + 𝑞22 + 𝑞32 = 1) of the misorientation space acts as a 
boundary. Any path that intersects this surface gets reflected back into the 
fundamental zone at the same point. 
 

Figure 2.6: Grain boundary misorientation spaces with surface symmetries of point groups (a) 
𝐶2(2), (b) 𝐶3(3), (c) 𝐶4(4), (d) 𝐶6(6) and (e) 𝐷3(32). (i),(ii) & (iii) show the 
fundamental zones from different views to illustrate the symmetries on their 
surfaces.  The surfaces with rotational and mirror-line symmetries are colored red 
and blue respectively and the boundary surfaces are colored grey. 

 
Figure 2.7: (a),(b),(c) and (d) represent misorientation fundamental zones of systems 𝐶6(6), 

𝐶4(4), 𝐶3(3) and 𝐶2(2), respectively, stretched along the 𝑞3 axis. A continuous 
deformation in the angular direction illustrates the topological equivalence between 
these spaces. 

 
Figure 2.8: A continuous deformation sequence illustrating topological equivalence between 

𝐶2(2) and 𝐶1(1) grain boundary misorientation spaces. 
 

Figure 2.9: A continuous deformation sequence illustrating topological equivalence between 
𝐷3(32) and 𝐶2(2) grain boundary misorientation spaces. 

 
Figure 2.10: Fundamental zones in orthographic projection of quaternion space for (a) 𝐷2(222) 

(b) 𝐷4(422) (c) 𝐷6(622) systems. These systems have three surfaces with mirror-
line symmetries on them. The surfaces with mirror symmetries are colored (yellow, 
pink and magenta) and the surfaces with no symmetries are colored grey. 
Fundamental zones for (d) 𝑇(23) and (e) 𝑂(432) systems with the surface 
containing mirror symmetry colored blue. 

 
Figure 2.11: The (a) 𝐷2(222) and (b) 𝑂(432) grain boundary misorientation spaces are simply 

connected. The dashed blue lines represent closed paths and the discontinuity in the 
path 𝑃𝑄1𝑄1′𝑃 can be removed by continuously moving point 𝑄1 onto the line (a) 𝐴𝐺 
in 𝐷2(222) fundamental zone and the line (b) 𝐴𝐶 in 𝑂(432) fundamental zone. 
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Figure 2.12: A continuous deformation sequence illustrating the topological equivalence 

between the grain boundary misorientation spaces of point groups 𝐷4(422) and 
𝐷2(222). 

 
Figure 2.13: Deformation scheme representing the embedding of 𝐷2(222) grain boundary 

misorientation space in ℝ3. 
 

Figure 2.14: Deformation scheme representing the embedding of the grain boundary 
misorientation space of point group 𝑇(23) in ℝ3. Fundamental zone of 𝑇(23) 
misorientation space in (a) orthographic projection of quaternion space and in (b) 
Rodrigues-vector representation. (c)-(e) The space is deformed continuously into a 
cone such that the surfaces related to each other with mirror symmetry are glued 
together. 

 
Figure 2.15: Continuous deformation of the 432-misorientation space. (a) Orthographic 

projection of 432-misorientation space (432-MS). (b) A continuous mapping into a 
Rodrigues-vector representation of 432-MS with straight edges and planes. (c-e) the 
same space subsequently rotated and surfaces flattened. (e-g) Continuous 
deformation of (e) into a prism. (g-h) Prism to a half-cone. (h-j) Half-cone to a 
cone. This deformation is an embedding of 432-MS in ℝ3 and the final cone 
obtained is a simply connected space in ℝ3. 

 
Figure 3.1: The grain boundary misorientation spaces that can be embedded in ℝ3 are mapped to 

either the HSL Color Sphere or the HSV Color Cone. 
 

Figure 3.2: An illustration of the projection schemes used for visualizing misorientation spaces 
of (a) 𝐷2(222), (b) 𝐷4(422), (c) 𝐷6(622), (d) 𝑇(23) and (e) 𝑂(432). (i) Three-
dimensional representation of the fundamental zones of misorientation spaces 
obtained by a volume-preserving projection of the four-dimensional quaternion 
space. (ii) Intersection of a surface of constant misorientation angle and the 
fundamental zone. (iii) Area-preserving projection of the two-dimensional section 
shown in (ii). In (i), (ii) and (iii) the misorientations are colored according to the 
mappings obtained in chapter 2. 

 
Figure 3.3: Color legend for grain boundary misorientations of crystals with 𝐷2(222) rotational 

point group symmetry. Each triangle is the well-known standard stereographic 
triangle for 222 point group. 

 
Figure 3.4: Color legend for grain boundary misorientations of crystals with 𝐷4(422) rotational 

point group symmetry. 
 

Figure 3.5: Color legend for grain boundary misorientations of crystals with 𝐷6(622) rotational 
point group symmetry.   
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Figure 3.6: Color legend for grain boundary misorientations of crystals with 𝑇(23) rotational 
point group symmetry. 

 
Figure 3.7: Color legend for grain boundary misorientations of crystals with 𝑂(432) rotational 

point group symmetry, built using area-preserving projection of surfaces of constant 
misorientation angle 𝜔. Each triangle is the well-known standard stereographic 
triangle.  

 
Figure 3.8: Grain boundary misorientation map for a hexagonal closed packed material, 

Rhenium. The rotational point group of Rhenium is 𝐷6(622). Complete 
misorientation information (axis and angle) can be directly interpreted using the 
legend. Since the colors represent a continuous mapping, contrast in the colors 
represents misorientation distance. 

 
Figure 3.9: Grain boundary misorientation map for a Cu-Cr sample with a coloring scheme that 

is one-to-one and continuous. 
 

Figure 3.10: Representations of EBSD data using colors to denote grain orientations.  (a) Grain 
orientations colored according to their misorientations with respect to the sample 
reference frame, using the legend from Figure 3.7. (b) Grain orientations colored 
using traditional inverse pole figure representation, with the legend in the upper-
right corner showing the mapping of color to surface normal vector. The grains in 
the dashed circle are used to show the advantages of this approximate coloring 
scheme using misorientations as compared to the inverse pole figure representation. 

 
Figure 3.11: A screen-shot of the OIMTM Analysis Software with the grain boundary 

misorientation map built using coloring schemes developed in this thesis. 
 

Figure 4.1: Schematic illustrating the grain boundary parameters (𝜔,𝛽) of a 2D grain boundary. 
 

Figure 4.2: The torus represents the product space 𝑆1 × 𝑆1. Any point on the torus can be 
defined using (𝜔,𝛽) parameters. Here 𝜔 represents the boundary misorientation and 
𝛽 represents the boundary inclination and 𝜔,𝛽 ∈ [0,2𝜋). 

 
Figure 4.3: Colors are used to represents the connectivity of these spaces. (a) (i) 𝑆1 × 𝑆1 torus 

and its (ii) projection onto a plane. (b) (i) The horned-tours (inner radius = 0) and its 
(ii) projection. As represented by the coloring scheme, the points (𝜔 = 0,𝛽) 
and (𝜔 = 2𝜋,𝛽) are equivalent. (c) The horned-tours is mapped into a 2-sphere 
using the relation (𝜃,𝜙) = (𝜔/2,𝛽). 

 
Figure 4.4: The equivalence relations corresponding to Equations (4.4) and (4.6)  for odd-fold 

rotational symmetry systems (a) Grain boundary information using (𝜃,𝜙) 
parameters. The path ABC in the upper hemisphere is equivalent to the path CDE in 
the lower hemisphere. This equivalence is better represented in its (ii) projection. (b)  
Boundary information using (𝜃′,𝜙′) parameters. In this parameterization the paths 
ABC and CDE are related through mirror symmetry. 
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Figure 4.5: The equivalence relations corresponding to Equations (4.4) and (4.6)  for even-fold 

rotational symmetry systems (a) Grain boundary information using (𝜃,𝜙) 
parameters. The path ABC1 in the upper hemisphere is equivalent to the path C2DE 
in the lower hemisphere. This equivalence is better represented in its (ii) projection. 
(b) Grain Boundary information using (𝜃′,𝜙′) parameters. In this parameterization 
the paths ABC1 and C2DE and are related by an inversion about the origin. The 
space is defined as the real projective plane (ℝ𝑃2). 

 
Figure 4.6: Single-axis grain boundary space for point group 𝐶1. (a) Grain boundary 

misorientation fundamental zone for 𝐶1 point group in orthogonal projection and 
with misorientations along the 𝑧-axis highlighted. (b) There is a boundary inclination 
space (2-sphere) associated with every boundary misorientation. This is represented 
by attaching the north-pole of a sphere (of radius 𝐶(q) = �1 − 𝑞02 ) to each 
boundary misorientation. Shown here is a 2-sphere of radius 1

√2
 attached to the 

misorientation corresponding to (𝜔, �⃗�) = �𝜋
2

, [0 0 1]�, .i.e. �⃗� = �0,0, 1
√2

 �. (c) A 
solid parametric ball obtained by considering all the boundary inclinations with 𝑧-
axis as the misorientation axis. (d) A schematic illustration of the mirror symmetry 
on the surface of the parametric ball; any vector [𝑟1 𝑟2 𝑟3] ∼ [𝑟1 𝑟2 −𝑟3]. 

 
Figure 4.7: The equivalence relations on the boundary space can used to determine the 

symmetries associated with the boundary inclination space (2-sphere). (a) 
Corresponding to any misorientation with angle 𝜔 ∈ [0,𝜋), the boundary inclination 
space has no symmetries (𝐶1). (b) Corresponding to misorientation angle 𝜔 = 𝜋, the 
boundary inclination space has the symmetry 𝐶𝑠. 

 
Figure C.1: Symmetries associated with the boundary inclination space for crystals with point 

group symmetry 𝐶2, (a) corresponding to any misorientation with angle 𝜔 ∈ [0, 𝜋/2) 
and misorientation axis �⃗� = [0 0 1], the boundary inclination space has a two-fold 
rotational symmetry (𝐶2). (b) Corresponding to misorientation angle 𝜔 = 𝜋/2, the 
boundary inclination space has the symmetry 4�. 
 

Figure C.2: Symmetries associated with the boundary inclination space for misorientations along 
the 𝑧-axis for crystals with point group 𝐶𝑛: (a) 𝐶3(𝑛 = 3), (b) 𝐶4(𝑛 = 4), and 
(c) 𝐶6(𝑛 = 6). (i) Corresponding to any misorientation with angle 𝜔 ∈ [0,𝜋/𝑛), the 
boundary inclination space has no symmetries (𝐶𝑛). (ii) Corresponding to 
misorientation angle 𝜔 = 𝜋/𝑛, the boundary inclination space has the symmetry 2𝑛����. 

 
Figure C.3: Symmetries associated with the boundary inclination space for crystals with point 

group symmetry 𝐷2, (a) corresponding to any misorientation with angle 𝜔 ∈
[0,𝜋/2) and misorientation axis �⃗� = [0 0 1], the boundary inclination space has the 
symmetry 𝐶2𝑣. (b) Corresponding to misorientation angle 𝜔 = 𝜋/2, the boundary 
inclination space has the symmetry 𝐷2𝑑. 
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Figure C.4: Symmetries associated with the boundary inclination space for misorientations along 
the 𝑧-axis for crystals with point group 𝐷𝑛: (a) 𝐷3 (𝑛 = 3), (b) 𝐷4(𝑛 = 4), and 
(c) 𝐷6(𝑛 = 6). (i) Corresponding to any misorientation with angle 𝜔 ∈ [0,𝜋/𝑛), the 
boundary inclination space has no symmetries (𝐶𝑛𝑣). (ii) Corresponding to 
misorientation angle 𝜔 = 𝜋/𝑛, the boundary inclination space has the 
symmetry 𝐷3ℎ (𝑛 = 3), 𝐷4𝑑 (𝑛 = 4) and 𝐷6𝑑 (𝑛 = 6). 
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1. Introduction 
Over the past few decades, materials scientists have come to an increasing realization that the 

distribution and connectivity of different grain boundary types play a very important role in 

governing various mechanical and functional properties of materials. While the role of the 

structure of grain boundaries in various transport and failure mechanisms in polycrystalline 

materials has been investigated for more than half a century [1-4], there has been a renewed 

interest in this field over the past few decades following the suggestion of Watanabe [5] that 

grain boundary types can be ‘designed and controlled’. Revolutionary improvements in the 

properties of some FCC metals have been gained by increasing the proportion of twin-related, 

highly symmetric grain boundaries. Various processing routes, such as thermo-mechanical “grain 

boundary engineering” processing [6-12] and application of magnetic fields [13, 14], have been 

used to increase the frequency of coincidence site lattice (CSL) boundaries [15], and can 

dramatically improve resistance to intergranular and transgranular degradation in polycrystalline 

materials. Some examples include a 50-fold increase in weldability [16], a 16-fold decrease in 

creep rate [17], a four-fold increase in service life of battery electrodes [18], and a seven-fold 

increase in critical current density in high-Tc superconductor YBa2Cu3O7 [19]. The engineering 

of grain boundary types has also been combined with the control of microstructural length scales, 

as in the case of so-called “nano-twinned” materials, which comprise an extreme density of twin-

related boundaries with characteristic spacing on the nanometer scale [20-23]. 

Recently, there has been considerable evidence [24-26] indicating that not just the population of 

individual interfaces, but also the global connectivity among them, is important in governing 

properties.  This is especially true in cases where grain boundaries act as transport pathways or 

as barriers to transport, as for conductivity [27-29], diffusivity [30, 31], corrosion resistance [32], 

creep [33], and embrittlement [34]. The propagation of interfacial failure depends strongly upon 

the extent of connectivity among the susceptible interfaces, whereas transport across a 

polycrystal requires a network of transport paths across “low-barrier” boundaries, avoiding 

“high-barrier” boundaries that tend to block it. In either case, the statistical and spatial 

distributions of the boundary types are central to the structure-property relationship, and it has 
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been shown that grain boundary engineered materials with remarkable property enhancements 

described above in fact exhibit dramatically altered connectivity among different boundary types 

[35, 36].  

Along with the increasing recognition that grain boundary types and their networks are key to 

structure-property connections, the materials community has developed an impressive suite of 

experimental tools to study them.  From the earliest studies using manual mapping in the 

transmission electron microscope [37], to automated two-dimensional spatial orientation 

mapping by electron backscatter diffraction (EBSD) [38], to the present toolkit that includes 

three-dimensional x-ray diffraction [39, 40] and automated serial sectioning methods [41-43], the 

field has progressed to the point where the materials scientist now has a quantitative view of the 

boundary network in full crystallographic detail [44, 45]. The three-dimensional characterization 

of grain boundaries has enabled numerous studies investigating the role of grain boundary plane 

distributions in grain boundary engineering [46, 47]. Recent activity elucidating the full five-

parameter space of grain boundaries in various common materials [48-53] also speaks to the 

growing appreciation that the distribution of boundary types must be a focus for the future of 

microstructural science in general and for microstructure design in particular. 

However, the experimental capabilities of the field have outpaced our ability to interpret and 

represent boundary information. One of the great difficulties in the effort to understand and 

control grain boundary types is that the space of boundaries is vast and somewhat complicated 

[54]. The structure of a grain boundary is determined by five crystallographic parameters that 

represent both the misorientation between the two neighboring grains (3 parameters) and the 

boundary inclination (2 parameters). Understanding the topology of the complete grain boundary 

space is crucial not only for defining the notion of distributions of grain boundaries but also for 

formulating continuous analytical functions relating the structure of grain boundaries to 

properties such as energy and mobility [52, 55]. From a topological point of view, the five-

parameter space is complex: it contains a singularity at the zero-misorientation point, where there 

is no longer any boundary [54], and involves various symmetries from the crystals and the 

required invariance to an exchange of the two grains at the boundary [56]. As a result of these 

complexities, the topology of the complete grain boundary space is currently unclear. However, 

the problem is even more dire than this: even a well-studied part of the five-parameter space—
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the three parameters of the grain boundary misorientation— remains relatively poorly 

understood because of various shortcomings of existing parameterizations and visualization 

methods [57-59].  

To be able to analyze and exploit the full potential of the vast amounts of experimental data 

available to materials scientists, it is crucial to develop tools that help resolve or remove some of 

the complexities of the grain boundary space. Since the difficulties associated with the 

representation and analysis of the grain boundary parameters are largely mathematical, it is 

beneficial to first establish the conventions necessary to properly define misorientations and the 

boundary parameters. We also explore some relevant topological notions that will be useful in 

the analysis of these abstract mathematical parameters. 

1.1. Definitions and Conventions 
Experimentally, the determination of grain boundary parameters begins with measuring the 

orientation difference between adjoining grains. The symmetries of grain boundary parameters 

are closely related to the symmetries of individual crystals that make the grain boundary. The 

analysis of grain boundary parameters, therefore, begins with an examination the orientation 

space, which in turn requires the definition of the rotation space. 

1.1.1. Rotation Space 

An ordinary rotation operation (also known as a proper rotation) is defined as a rigid-body 

transformation around a fixed axis called the axis of rotation. Since infinitesimal rotation 

operations are well-defined (i.e. rotations of infinitesimally small rotation angles), the set of all 

rotations has a continuous structure and is defined as the rotation space. It is necessary to clearly 

specify the frame of reference and the convention, active or passive [60], to be able to relate the 

rotation to the orientation of a particular grain or to the misorientation between two objects. 

While we use the active convention to describe rotations in this work, the conventions for the 

reference coordinate frame will be discussed in detail in the definitions of orientation and 

misorientation spaces. 

To work with the abstract notion of a rotation, a variety of parameterizations have been 

conceived, which can be broadly classified as:  
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(a) Rotation matrices: 3 × 3 matrices with special properties, such as orthogonality and 

positive unit determinant, represent proper rotations. The group of matrices with these 

properties belong to the Special Orthogonal Group [61] denoted as 𝑆𝑂(3). There is a 

one-to-one correspondence between the rotation space and the group 𝑆𝑂(3), therefore, 

the entire space of rotations is often represented by 𝑆𝑂(3). In the case of two-

dimensional rotations, 2 × 2 special orthogonal matrices belonging to the group 𝑆𝑂(2) 

are used to specify rotations.  

(b) Euler angles [62, 63]: The Euler angle triplet (𝜙1,Φ,𝜙2), which describes any rotation as 

a sequence of three successive rotations, has been routinely used by crystallographers 

because of their use in diffraction (three-circle goniometry [64]) and in pole figure 

inversion methods [63, 65-67].  

(c) Axis-angle parameters [58, 68]: The axis-angle parameters denote the axis �⃗� and angle 𝜔 

of rotation and hence are naturally intuitive. Two-dimensional rotations correspond to 

rotations around a fixed axis and we consider the axis of rotation to be the z-axis and the 

crystals being rotated to reside in the x-y plane (without loss of generality). Hence, in the 

special case of two-dimensional rotations it suffices to specify just the rotation angle 𝜔. 

The primary drawback of the axis-angle parameters, in the description of three-

dimensional rotations, is the degeneracy that exists as the rotation angle approaches zero, 

since the axis of rotation is not defined when 𝜔 = 0. However, this degeneracy 

disappears when the axis-angle parameters are mapped to unit-quaternions. 

(d) Quaternions [58, 69-71]: A unit quaternion 𝐪 is a four-dimensional vector of the 

following form: 

 𝐪 = (𝑞0,𝑞�) = (𝑞0,𝑞1,𝑞2, 𝑞3), satisfying �𝑞𝑖2
3

𝑖=0

= 1 (1.1)  

It is related to the axis-angle parameters through the relation: 

 𝐪 = �𝑐𝑜𝑠 �
𝜔
2� , 𝑎𝑥𝑠𝑖𝑛 �

𝜔
2� ,𝑎𝑦𝑠𝑖𝑛 �

𝜔
2� ,𝑎𝑧𝑠𝑖𝑛 �

𝜔
2�� (1.2)  

where �⃗� = �𝑎𝑥,𝑎𝑦 ,𝑎𝑧� represents the axis and 𝜔 denotes the angle of rotation. 
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The correspondence between rotations and four-dimensional unit vectors suggests the possibility 

of a representation of the rotation space using unit four-dimensional sphere (called the 3-sphere). 

Indeed, the rotation space is equivalent to the 3-sphere 𝑆3 with antipodal points identified1

2.3.1

. The 

topological consequences of this equivalence are explained in section . In the case of two-

dimensional rotation space, any rotation operation can be specified by the angle of rotation 

𝜔 ∈ [0,2𝜋], which can be represented by points on a circle with coordinates (cos𝜔 , sin𝜔). 

Hence, the 2D rotation space is equivalent to a circle (𝑆1) and the topological aspects of the 2D 

rotation space are deduced from the topology of the circle (refer to section 2.2.1). 

In this entire thesis, we will use the quaternion parameterization extensively. This is not only due 

to the convenient mathematical properties of the unit-quaternions [56, 59, 72-75] but also 

because the topological properties of the rotation space are better appreciated when represented 

as a 3-sphere using the quaternion parameterization. But the matrix representation is also useful, 

especially in expressing rotations of vectors, which can be conveniently represented using matrix 

multiplication of a vector. Hence, we define a matrix representation 𝐠, which is a function that 

converts any parameterization into a matrix representation. For example, the matrix 

representations of rotations represented by 𝑀, and by a quaternion 𝐪, and an axis-angle pair 

(𝜔, �⃗�) are given by 𝐠(𝑀), 𝐠(𝐪) and 𝐠(𝜔, �⃗�) respectively. 

1.1.2. Orientation Space 

An orientation (denoted as 𝑂) is simply an active rotation operation that relates a fixed right-

handed reference coordinate axes, usually aligned along the sample edges, and a right-handed 

crystal coordinate axes embedded in the grain whose orientation is of interest. Hence, the 

orientation space is equivalent to the rotation space, but is modified by a number of equivalence 

relations2

                                                 
1 Antipodal points refer to diametrically opposite points on the surface of the sphere. In this case, the points 𝐪 =
(𝑞0, 𝑞1,𝑞2,𝑞3) and −𝐪 = (−𝑞0,−𝑞1,−𝑞2,−𝑞3) are the antipodal points on the 3-sphere. By identification of 
antipodal points, we mean gluing together the diametrically opposite points on the 3-sphere. 

 [76] that arise due to symmetries of the underlying crystals. For example, a right-

handed orthogonal coordinate system can be embedded in two different ways in a crystal with 

two-fold rotational symmetry ( 𝐶2(2) point group symmetry), as illustrated schematically in 

2 An equivalence relation is a relation defined on a set with the properties of reflexivity, symmetry and transitivity. It 
is indicated by “~”.  
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Figure 1.1. This results in two distinct rotations that describe the same orientation (and hence are 

defined to be symmetrically equivalent).  

 

Figure 1.1 Schematic illustrating equivalent descriptions of the orientation of a grain with two-fold rotational 
symmetry. Because of the underlying crystal symmetry, there are two distinct ways of embedding the crystal 
coordinate axes (denoted by subscript C). Hence, there are two distinct rotations 𝝅/𝟗 and 𝟏𝟎𝝅/𝟗, measured 
with respect to the reference coordinate axes (denoted by subscript S), that describe the orientation of this 
grain.  

In the general case, the rotational symmetry operations that belong to the crystallographic point 

group of the crystal, indicated by 𝑆𝑖, give rise to symmetrically equivalent descriptions:  

 𝑂 ∼ 𝑂𝑆𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑛. (1.3)  

where 𝑛 is the order of the corresponding rotational point group (i.e., the number of non-

equivalent rotational symmetry operations in a point group). The orientation space is defined as 

the rotation space with all the symmetrically equivalent orientations identified. From a 

topological perspective, the orientation spaces are quotient spaces3

                                                 
3A quotient space is a space derived from another space 𝑋 (referred to as the parent space) by identifying all the 
equivalent points defined by the set of equivalence relations 𝐸. The quotient space is denoted as 𝑋/𝐸. 

 [76] of the rotation space, 

and it is important to note that the topology of a quotient space is not inherited in an obvious way 
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from the parent space; the quotient topology depends on the equivalence relations that result in 

the quotient space. The symmetry operations that appear in the equivalence relations of Equation 

(1.3) depend on the rotational point group 𝐺 of the underlying crystal. The topological properties 

of the orientation spaces are discussed in section 2.3.2. 

1.1.3. Misorientation Space 

A misorientation between two grains A and B is defined as an active rotation operation that 

brings a crystal aligned with the coordinate axes of one grain (suppose grain A) into coincidence 

with the crystal coordinate axes of the other grain (suppose grain B). Suppose the orientation of 

grain A is 𝑂𝐴 and that of grain B is 𝑂𝐵, then the misorientation measured with respect to the 

crystal coordinate axes of grain A (the reference frame) is denoted as 𝑀𝐴𝐵 and is given by 𝑀𝐴𝐵 =

𝑂𝐴−1𝑂𝐵. It is now evident that distinct (yet symmetrically equivalent) orientation descriptions of 

grains A and B result in distinct rotations that describe the same misorientation. These distinct 

descriptions of the same misorientation are deemed equivalent and the equivalence relations for 

the misorientations are expressed as: 

 
𝑀𝐴𝐵 = 𝑂𝐴−1𝑂𝐵 and 𝑀𝐴𝐵

𝑖𝑗 = �𝑂𝐴𝑆𝐴𝑖�
−1�𝑂𝐵𝑆𝐵

𝑗� = �𝑆𝐴𝑖�
−1(𝑂𝐴−1𝑂𝐵)�𝑆𝐵

𝑗� ⇒ 

𝑀𝐴𝐵 ∼ �𝑆𝐴𝑖 �
−1
𝑀𝐴𝐵�𝑆𝐵

𝑗�               𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1, … ,𝑚 
(1.4)  

where 𝑆𝐴, 𝑆𝐵 refer to the rotational symmetry operations and 𝑛, 𝑚 refer to the order of the 

rotational point groups of crystals A and B respectively. Similarly, the misorientation with 

respect to grain B is denoted as 𝑀𝐵𝐴 and can be expressed in terms of 𝑀𝐴𝐵 as 𝑀𝐵𝐴 = 𝑀𝐴𝐵
−1. If 

grains A and B belong to distinct phases, a convention is adopted, for example, the phase with 

lower symmetry is assigned to be grain A and the misorientation is always measured with respect 

to the crystal coordinate axes embedded in grain A. But if grains A and B belong to the same 

phase, they are physically indistinguishable from each other, and it is not possible to explicitly 

select a reference grain. Misorientations associated with such boundaries, referred to as grain 

boundary misorientations, will be the focus of this work and hence will be elaborated in section 

1.1.5.   
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Analogous to the definition of the orientation space, the misorientation space is defined as the 

rotation space with all the symmetrically equivalent misorientations identified. The symmetry 

operations that appear in the equivalence relations in Equation (1.4) depend on the 

crystallographic point groups of grains A and B and hence misorientation spaces are classified 

according to the crystallographic point groups of the adjoining grains.  

1.1.4. Boundary Space 

In addition to misorientations, the structure of a boundary is determined by the boundary plane 

normal and other microscopic degrees of freedom. It has been usually argued that it suffices to 

consider only the macroscopic degrees of freedom, the boundary misorientation and the 

inclination, to establish structure-property correlations [46]. As previously discussed, three 

independent variables are required to uniquely specify a misorientation and the normal vector 

(denoted as 𝑛�⃗ ) can be represented using two variables. A boundary thus has five macroscopic 

degrees of freedom, which are referred to as the boundary parameters, and is denoted by 

𝓑 = (𝑀,𝑛�⃗ ).   

The usual method of determining grain boundary parameters, e.g. for a boundary as shown in 

Figure 1.2, first involves the selection of a grain as a reference and then the misorientation and 

the boundary inclination are measured with respect to the crystal coordinate axes of the reference 

grain. Suppose that grain A is selected as the reference; the boundary misorientation is well-

defined. But the direction of the boundary normal vector is not determined a priori, i.e. the vector 

can be directed towards or away from grain A. A convention is necessary (especially important 

for crystals without an inversion center) and the direction of the boundary normal is fixed to be 

directed away from the reference grain (i.e. grain A) [77]. The boundary between two grains A 

and B, measured with reference to grain A, is indicated as 𝓑𝑨𝑩 = (𝑀𝐴𝐵;  𝑛�⃗ 𝐴𝐵). Using this 

convention, the boundary parameters between grain B and grain A are given by 𝓑𝑩𝑨 =

(𝑀𝐵𝐴;  𝑛�⃗ 𝐵𝐴), where 𝑀𝐵𝐴 = (𝑀𝐴𝐵)−1 and 𝑛�⃗ 𝐵𝐴 = 𝐠(𝑀𝐵𝐴) ∗ (−𝑛�⃗𝐴𝐵) is the corresponding normal 

vector. 
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Figure 1.2 Boundary (a) is physically different from boundary (b) and this difference can be reflected in the 
measured parameters only if a fixed convention is followed in assigning the boundary plane normal. The 
convention here is that if the boundary parameters are measured with respect to grain A, then the boundary 
normal is always directed away from the reference grain A. Using this convention, the two boundaries in (a) 
and (b) are defined by distinct parameters (𝑴;𝒏��⃗ ) and (𝑴;−𝒏��⃗ ) respectively.   

As was the case with misorientation space, owing to various symmetries of the boundary and the 

underlying crystals, there are distinct parameters that describe the same physical boundary and 

hence are symmetrically equivalent. Due to rotational point group symmetries of the underlying 

crystals, a grain boundary with parameters 𝓑𝑨𝑩 = (𝑀𝐴𝐵;  𝑛�⃗ 𝐴𝐵) has distinct representations that 

are considered to be symmetrically equivalent and are expressed as: 

 
𝓑𝑨𝑩 = (𝑀𝐴𝐵;  𝑛�⃗𝐴𝐵) ∼ 𝓑𝑨𝑩

𝒊𝒋 = ��𝑆𝐴𝑖�
−1
𝑀𝐴𝐵�𝑆𝐵

𝑗�;   𝐠 ��𝑆𝐴𝑖�
−1
� ∗ 𝑛�⃗ 𝐴𝐵� 

where 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … ,𝑚 
(1.5)  

The conventions for the case where grains A and B belong to the same phase will be specified in 

the next section under the discussion of grain boundaries.  

The boundary space refers to the collection of these geometric parameters that determine the 

structure of a grain boundary along with the equivalence relations. The boundary inclination 

space is the unit-sphere in three dimensions (2-sphere, 𝑆2) since any normal vector can be 

represented as a point on the unit-sphere. The space of misorientations is the quotient space of 
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the rotation space �𝑆𝑂(3)�. Since the complete boundary inclination space (𝑆2) is accessible for 

any boundary misorientation, the boundary space is the quotient space of the product space of 

misorientations �𝑆𝑂(3)� and boundary inclinations (𝑆2), i.e. 𝓑 = 𝑆𝑂(3) × 𝑆2/𝐸, where 𝐸 

denotes the set of equivalence relations that arise due to various symmetries. 

1.1.5. Grain Boundary Space 

Grain boundaries are referred to as the interfaces between grains of the same phase, i.e. the 

grains are physically indistinguishable from one another. All other interfaces are referred to as 

interphase boundaries [78]. In the case of crystals that do not contain the inversion center 

symmetry, the convention by Morawiec is followed and the enantiomorphic forms of this crystal 

are treated as distinct phases and hence an interface between them is an interphase boundary 

[79]. According to this definition, any grain boundary misorientation can be specified by a 

proper rotation. 

The specification of grain boundary parameters requires an explicit selection of a reference grain. 

Since grains A and B that adjoin a grain boundary belong to the same phase and are physically 

indistinguishable, there is an uncertainty associated with the selection of the reference coordinate 

axes. This uncertainty results in what is called as the “grain exchange symmetry”4

 

 [56, 78] which 

results in the identification of the grain boundary parameters 𝓑𝑨𝑩 and 𝓑𝑩𝑨 measured with 

respect to both the adjoining grains, i.e.  

𝓑𝑨𝑩 = 𝓑 = (𝑀;𝑛�⃗ ) ∼  𝓑𝑩𝑨 = 𝓑−𝟏 = �𝑀−1; 𝐠(𝑀−1) ∗ (−𝑛�⃗  )� (1.6)  

The set of equivalence relations obtained by combining Equation (1.5) and the grain exchange 

symmetry can be described as: 

 
(𝑀;  𝑛�⃗ ) ∼ ��𝑆𝑖�

−1
𝑀�𝑆𝑗�;   𝐠 ��𝑆𝑖�

−1
� ∗ 𝑛�⃗ � ∼ �𝑀−1; 𝐠(𝑀−1) ∗ (−𝑛�⃗  )� 

∼ ��𝑆𝑗�
−1
𝑀−1�𝑆𝑖�;   𝐠 ��𝑆𝑗�

−1
𝑀−1� ∗ (−𝑛�⃗  )� 

(1.7)  

                                                 
4 The grain exchange symmetry is analogous to the rotational symmetries present in a crystal. The rotational 
symmetries result in an uncertainty in fixing unique right-handed coordinate-axes to the crystal. For example, there 
are 24 distinct ways of embedding a right-handed coordinate system in a crystal with cubic point group symmetry 
which result in 24 symmetrically equivalent descriptions for grain orientations. 
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If only the grain boundary misorientations are of interest, the set of equivalence relations on the 

grain boundary misorientation space can be expressed as: 

 𝑀 ∼ �𝑆𝑖�
−1
𝑀�𝑆𝑗� ∼ 𝑀−1 ∼  �𝑆𝑗�

−1
𝑀−1�𝑆𝑖� (1.8)  

There is an additional condition in the case of the grain boundary space, i.e. when the boundary 

inclination is considered, which manifests itself as a singularity, known as the ‘no-boundary’ 

singularity. The ‘no-boundary’ singularity refers to the zero misorientation boundaries. For 

interphase boundaries, at 𝑀 = 𝐼 (where 𝐼 represents the zero misorientation) there still exists a 

physical boundary that separates the two phases, and thus different boundary inclinations are 

physically distinguishable. However, in the case of grain boundaries, zero misorientation implies 

that there is no boundary at all; there are no additional inclination degrees of freedom for 𝑀 = 𝐼. 

This condition is expressed as: 

 𝓑𝑰 = (𝐼;𝑛�⃗ ) ∼  𝓑𝑰
′ = �𝐼;𝑛′���⃗ �       ∀ 𝑛�⃗ , 𝑛′���⃗ ∈ 𝑆2 (1.9)  

Therefore, the grain boundary space is defined as the collection of grain boundary parameters 

with the set of equivalence relations consisting of those described in Equation (1.5), the grain 

exchange symmetry and the ‘no-boundary’ singularity. It is noted that the equivalence relations 

that arise due to the grain exchange symmetry (Equation (1.6)) and the ‘no-boundary’ singularity 

(Equation (1.9)) significantly complicate the topology of the grain boundary space and severely 

undermine our ability to perform mathematical analysis on this space.  

1.1.6. Classification of Misorientation and Boundary Spaces 

The orientation and grain boundary misorientation spaces are quotient spaces of the rotation 

space 𝑆𝑂(3) and the complete grain boundary space is the quotient space of the product 

space 𝑆𝑂(3) × 𝑆2. The topology of the quotient space depends upon the type of equivalence 

relations imposed on the parent space. In the case of orientation and misorientation spaces, it is 

observed that only the rotational symmetry elements (in addition to the grain exchange symmetry 

for grain boundary misorientations) of a crystallographic point group appear in the equivalence 

relations (Equations (1.3) and (1.4)). Hence the topology of these spaces is determined entirely 

by the rotational point group of a corresponding crystallographic point group. For example, the 
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grain boundary misorientation spaces of crystallographic point groups 432, 4�3𝑚 and 𝑚3�𝑚 are 

identical and are completely determined by the rotational symmetry operations that belong to 

point group 432. Since, there are 11 rotational point group symmetries (corresponding to the 11 

Laue Groups) that are allowed in three-dimensional crystal systems (tabulated in Table 1.1), the 

orientation and grain boundary misorientation spaces are classified into 11 categories. 

However, the topology of complete grain boundary spaces not only depends on the rotational 

point group symmetries of the underlying crystals but also on the mirror and inversion 

symmetries. It suffices to consider the equivalence relations shown in Equations (1.7) and (1.9) 

for point groups with only proper rotational symmetry elements. The topological aspects of the 

boundary spaces of the remaining crystallographic point groups are obtained by considering the 

following equivalence relation in addition to the relations in Equations (1.7) and (1.9): 

 (𝑀𝐴𝐵;  𝑛�⃗𝐴𝐵) ∼ �(𝐴𝜔−1)𝑀𝐴𝐵(𝐴𝜔);  𝐠(𝐴𝜔−1) ∗ (−𝑛�⃗ 𝐴𝐵)� (1.10)  

where 𝐴𝜔, when expressed in axis-angle parameters, is (2𝜋, [0 0 1]) for the 11 Laue groups, 

 𝐴𝜔 = (𝜋, [0 0 1]) for point groups with a horizontal mirror plane (crystallographic point 

groups 𝐶𝑠(2�) and 𝐶3ℎ(6�)). If the crystallographic point group consists of a vertical mirror plane 

then 𝐴𝜔 = (𝜋, [0 1 0]) (𝐶2𝑣(𝑚 𝑚 2), 𝐶3𝑣(3 𝑚), 𝐶4𝑣(4 𝑚 𝑚), 𝐶6𝑣(6 𝑚 𝑚), 𝐷3ℎ(6�  𝑚 2)) and 

𝐴𝜔 = (𝜋, [1 1 0]) if the point group consists of the diagonal mirror plane (𝐷2𝑑(4�  2 𝑚) and 

𝑇𝑑(4�  3 𝑚)). Finally, 𝐴𝜔 = (𝜋/2, [0 0 1]) for the crystallographic point group 𝑆4(4�). Note 

that in systems where the crystallographic point groups of the crystals belong to one of the Laue 

groups, Equation (1.10) simplifies to the relation: 

 (𝑀𝐴𝐵;  𝑛�⃗𝐴𝐵) ∼ (𝑀𝐴𝐵;  −𝑛�⃗ 𝐴𝐵) (1.11)  

In this thesis, we investigate the topology of grain boundary spaces of crystals with only proper 

rotational symmetries and hence the grain boundary misorientation spaces and complete grain 

boundary spaces are classified into the 11 point groups tabulated below. 
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Table 1-1 The eleven crystallographic point groups with only proper rotational symmetry elements, which 
are used to classify orientation and grain boundary misorientation spaces. 
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1.2. Problem Statement 
Given the high-dimensionality of the grain boundary space, there is an immediate need for 

theoretical tools to better visualize and analyze the vast amount of experimental data available to 

materials scientists. For example, even though misorientations can be represented using three 

independent variables, many conceptual difficulties regarding the misorientation space arise due 

to the higher dimensionality of the rotation space [57]. Due to these complexities, much of the 

misorientation information is discarded during simple graphical representations, which is the first 

step in the analysis of grain boundary networks.  

Figure 1.3 shows some examples of these common methods of representing grain boundary 

types, using EBSD maps of specimens of polycrystalline copper-chromium alloy (Lattice: Face 

Centered Cubic, Point Group: 𝑚3𝑚) and Rhenium (Lattice: Hexagonal, Point Group: 6/𝑚𝑚𝑚).  

Figure 1.3(a) shows the microstructure with grain boundaries highlighted in black.  Figure 1.3(b) 

and Figure 1.3(c) show the same dataset, with grain boundaries differentiated by categories 

based on misorientation: Figure 1.3(b) classifies boundaries according to the misorientation 

angle differentiated by shading, and Figure 1.3(c) adds colors corresponding to some ‘special’ 

misorientations corresponding to coincidence site lattice numbers (Σ3, Σ9, and Σ27 for Cu-Cr 

and  Σ13 and Σ17 for Rhenium).  

Both of these types of maps are common in the literature, and abandon most of the available 

misorientation information captured in the original EBSD dataset.  In discarding most of the 

misorientation information, such maps are of little lasting value to the community, which can 

never recover the original data.  Additionally, the physical significance of the binning procedure 

is almost certainly deficient, and the binning procedure can in fact suppress important intuitive 

features of the data.  For example, the coloring schemes in Figure 1.3 lack an intuitive notion of 

“distance” in the misorientation space in these representations; it is not possible to appreciate 

how similar or dissimilar boundaries are in terms of both the axis and angle of the 

misorientation.  
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Figure 1.3 Deficiencies in existing grain boundary maps are illustrated using samples of (i) Cu-Cr and (ii) 
Rhenium alloys. (a) EBSD micrographs with grain boundaries highlighted. (b) Grain boundaries colored 
according misorientation angle alone (low- vs. high-angle). (c) Grain boundary map showing the specific 
coincidence misorientations (colored), as well as low angle (grey) and high angle (black) boundaries. These 
maps do not represent complete misorientation information and the coloring does not capture misorientation 
distances between the various boundaries.  
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The reason grain boundary networks are viewed with such rudimentary classification schemes is 

largely mathematical: the full spectrum of misorientations is not presented in such maps because 

there is no known method of doing so. The difficulty of establishing a mapping between 

misorientations and colors arises because of the apparent mismatch in topology between these 

two spaces. Color spaces, like the ones illustrated in Figure 1.4, are simply connected5

Figure 1.4

 [76] 

spaces in three-dimensional Eculidean space (ℝ3), and are represented as, e.g., a cube (the well-

known red-green-blue or RGB space, (a)), a solid ball (the so-called hue-saturation-

lightness or HSL space, Figure 1.4(b)), or a cone (the hue-saturation value HSV space, Figure 

1.4(c)). On the other hand, rotation space is not simply connected and is of higher dimensionality 

[80]. 

 

Figure 1.4 Common representations of the color space.  (a) RGB Color cube (b) HSL Color sphere (c) HSV 
color cone. Color spaces are simply connected in ℝ𝟑. 

It is also evident from the definition of the complete boundary space that the conditions imposed 

on the parameter space by the physical boundary space, i.e. the equivalence relations on the 

parameter space due to various crystal symmetries, the grain exchange symmetry and the ‘no-

boundary’ singularity, play a major role in the interpretation and analysis of experimentally 

obtained three-dimensional grain boundary information. The complications that arise during 

                                                 
5 A topological space with the property that any closed path (a path that originates and ends at the same point) in the 
space can be continuously shrunk to a single point is said to be simply connected 
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analysis of the complete grain boundary space due to the equivalence relations of Equations (1.6) 

and (1.9) are better appreciated by comparing the grain and interphase boundary spaces.  

The space of interphase boundaries is essentially the product space 𝑆𝑂(3) × 𝑆2 and the relevant 

equivalence relations arise only due to the crystal symmetries (Equation (1.5)). It is not necessary 

to consider the grain exchange symmetry since the two adjacent phases are physically 

distinguishable. Even the ‘no-boundary’ singularity does not exist since at the zero-

misorientation there exists a physical boundary that separates the two phases, and thus different 

boundary inclinations are physically distinguishable. The product space 𝑆𝑂(3) × 𝑆2 is well 

understood, and metrics and measures on this space have been recently developed [77]. Analysis 

on the space of interphase boundaries is facilitated by the standard basis functions on the rotation 

space �𝑆𝑂(3)� and the 2-sphere (𝑆2). 

However, the grain boundary space is equivalent to the product space of the misorientation space 

and the unit vector space but with the significant added caveat that all the normal vectors 

corresponding to the zero-misorientation boundary are collapsed into a single point. In order to 

define basis functions on the space of grain boundaries, it is necessary to resolve the singularity 

in the grain boundary space and understand the role of the grain exchange symmetry. The 

existence of basis functions is extremely beneficial not only because it facilitates harmonic 

analysis but also because any analytical function (e.g. a continuous grain boundary energy 

function) can be expanded as a linear combination of the basis functions.  

1.3. Layout of this thesis 
As described in section 1.2, there are a number of limitations related to analyzing grain boundary 

information that can be addressed uniquely through a rigorous topological analysis of the grain 

boundary parameter space. 

The thesis can be broadly classified into two parts. The central goal of the first part of the thesis 

is to address the deficiencies in the visualization of grain boundary misorientation information. 

In Chapter 2, we present an unexpected mathematical discovery about grain boundary 

misorientation spaces, which in turn leads to a new method of coloring grain boundary networks 

such as those shown in Figure 1.3. We develop a method to label each boundary segment with a 

single color that uniquely (one-to-one) identifies its misorientation, with no part of the 
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misorientation information neglected, and where similar misorientations have similar colors 

(continuous).  Mathematically, we present an embedding [76] (defined as a continuous and one-

to-one mapping) of the grain boundary misorientation spaces for crystals of 𝐷2(222), 𝐷4(422), 

𝐷6(622), 𝑇(23) and 𝑂(432) point symmetries in three-dimensional Euclidean space (since the 

color space is embedded in ℝ3). In Chapter 3, we put these mappings to practical use by 

developing grain boundary misorientation maps, which provide an intuitive (unique and 

continuous) way to represent grain boundary networks without discarding any of the 

misorientation information. 

In the second part of the thesis, conditions under which the topology of the grain boundary space 

has been resolved are presented. In chapter 4, we initially focus on the topology of the grain 

boundary space of two-dimensional crystal systems. The analysis of 2D grain boundary space 

emphasized the necessity of a new parameterization that naturally accounts for the ‘no-boundary’ 

singularity and simplifies the equivalence relation associated with the grain exchange symmetry. 

Therefore, we develop a new parameterization that simplifies, to some extent, the equivalence 

relations on the grain boundary space. With the aid of this new parameterization, we resolve the 

topology of a subspace of the grain boundary space, i.e. the collection of grain boundary 

parameters with the misorientation axis confined to lie along a particular crystal direction. This 

development provides a rigorous framework for the description of statistics of grain boundaries 

with misorientations along a single axis.  
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2. Topology of Grain Boundary Misorientation Spaces 

2.1. Introduction 
We are interested in embedding the grain boundary misorientation spaces in three-dimensional 

Euclidean space (ℝ3) to obtain a coloring scheme that is both continuous and one-to-one. The 

minimum number of Euclidean dimensions in which a space can be embedded is a topological 

property. The purpose of this chapter is to investigate the topology of the grain boundary 

misorientation spaces with a focus on the effect of symmetry operations on their minimum 

embedding dimensions in Euclidean space. In addition to the embedding properties, a key 

property we use to investigate the topology of these quotient spaces is the fundamental group 

[76]. A topological space with the property that any closed path (one that originates and ends at 

the same point) in the space can be continuously shrunk to a point has a trivial fundamental 

group [76] and is said to be simply connected. For example, the color spaces are simply 

connected spaces in ℝ3 and hence, for an embedding in the color space, it is necessary for the 

misorientation space to be simply connected. 

Since the misorientation space is obtained by sequentially applying equivalence relations to the 

rotation and the orientation spaces, we provide a systematic analysis of the rotation, orientation 

and grain boundary misorientation spaces in this chapter. First, the topological properties of 

orientation and misorientation spaces of two-dimensional (2D) crystal systems are presented. 

This case of 2D crystal systems, albeit simple, provides an intuitive interpretation of various 

topological concepts that are relevant in this chapter. We show that the topologies of the 2D 

grain boundary misorientation spaces are very different and much simpler than that of the 2D 

rotation and 2D orientation spaces. Then, we investigate the embedding properties of the three-

dimensional rotation and misorientation spaces. 

2.2. Two-Dimensional Crystal Systems 

2.2.1. Two-Dimensional Rotation Space 

Embedding: Even though only one independent variable (𝜔) is required to uniquely represent 

2D rotations, a minimum of two variables (coordinates of a circle) are required for a one-to-one 

and continuous representation. Any bijective mapping 𝑓:𝐑𝟐𝐃 → [0,2𝜋), where 𝐑𝟐𝐃 represents 
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the 2D rotation space, is not continuous [76]. The discontinuity arises due to the equivalence of 

the rotations 𝜔 and 𝜔 + 2𝜋. However, there exist bijective mappings 𝑓:𝐑𝟐𝐃 → 𝑆𝑂(2) and 

𝑓:𝐑𝟐𝐃 → 𝑆1, which are continuous with a continuous inverse. This implies a topological 

equivalence of the 2D rotation space, 𝑆𝑂(2) and 𝑆1. 𝑓:𝐑𝟐𝐃 → 𝑆1 represents an embedding in ℝ2 

because a circle resides in ℝ2 (the two-dimensional Euclidean plane). 𝑆1 is the quotient space of 

a line segment with its end points identified. If the domain 𝜔 = [0, 2𝜋] is used to represent 

rotations, the rotations {0} and {2𝜋} are equivalent (connected in a topological sense). The 

minimum number of Euclidean dimensions required to establish this connectivity is two. Figure 

2.1(a) is a graphical representation of the rotation space using colors; each color uniquely 

determines the rotation (one-to-one) and similar colors represent similar rotations (continuity). 

 

Fundamental Group: The 2D rotation space has a non-trivial fundamental group, which is to 

say that there exist closed paths that cannot be continuously deformed into a single point. The 2D 

rotation space is homeomorphic to a circle and any closed path on a circle covers the entire circle 

and cannot be deformed into a single point without moving the path out of the circle. The 

fundamental group of 𝑆1 and hence the 2D rotation space is 𝒁 (the additive group of integers) 

[76]. 

2.2.2. Orientation Spaces of Two-Dimensional Crystal Systems 

The 2D orientation space is obtained by applying the equivalence relations in Equation (1.3) to 

the 2D rotation space. When expressed using the 𝜔 parameterization the equivalence relations 

take the form: 𝜔 ~ 𝜔 + 2𝜋/𝑛. In this case the unique representatives of 𝜔 (fundamental zone) 

belong to the interval [0, 2𝜋/𝑛). The quotient space of rotations obtained after applying this 

equivalence relation is equivalent to the rotation space with the same connectivity, except that 

the domain is scaled by 𝑛. Thus, from a topological point of view, the orientation space in 2D 

crystal systems is equivalent to the 2D rotation space. Figure 2.1(b) shows a graphical 

representation of the orientation space of the 𝐶2 system. It is color coded in a similar fashion to 

the rotation space in Figure 2.1(a). The coloring represents the connectivity and the topological 

equivalence. The topological equivalence implies that the minimum embedding dimension for 

the orientation spaces is two and the fundamental group is 𝒁. 
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Figure 2.1 The rotation, orientation and misorientation spaces represented on a circle and using 𝝎 
parameterization, color coded to show the inherent connectivity of these spaces. (a) The 2D rotation space: 
𝝎 ∈ [𝟎,𝟐𝝅) and the coloring indicates that 𝝎~𝟐𝝅 + 𝝎. (b) Orientation space of 𝑪𝟐 system: 𝝎 ∈ [𝟎,𝝅) 
and 𝝎~𝝅 + 𝝎. (a) & (b) are topologically equivalent. (c) Grain boundary misorientation space of 𝑪𝟏 
system: 𝝎 ∈ [𝟎,𝝅] and 𝝎~𝟐𝝅 −𝝎. The crucial difference is that the end points of the domain 𝟎 and 𝝅 are not 
identified. (d) Grain boundary misorientation space of 𝑪𝟐 system: 𝝎 ∈ [𝟎,𝝅/𝟐]. 

2.2.3. Grain Boundary Misorientation Spaces of Two-Dimensional Crystal Systems 

In the case of grain boundary misorientations, the grain exchange symmetry (Equation (1.8)) is 

added to the equivalence relations. We find that this additional equivalence relation reduces the 

embedding dimensions for the representation of grain boundary misorientations and also results 

in a trivial fundamental group for grain boundary misorientation space. The equivalence relations 

for the grain boundary space, when expressed using the 𝜔 parameterization, take the following 

form: 

 (a) 𝜔 ∼ 2𝜋𝑖
𝑛

+ 𝜔;        𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … ,𝑛 

(b) 𝜔 ∼ 2𝜋 − 𝜔 

(2.1)  
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Since the domain for unique representation (the fundamental zone) of the 2D rotation space 

is [0,2𝜋), if only the rotational symmetries are considered the fundamental zone is [0,2𝜋/𝑛). But 

applying the additional grain exchange symmetry equivalence relation reduces the fundamental 

zone to [0, 𝜋/𝑛]. The connectivity in this case is very different from the case of rotation and 

orientation spaces. The end points of the fundamental zone 𝜔 = 0 and 𝜔 = 𝜋/𝑛 represent 

distinct misorientations. Hence, the misorientation space represented using 𝜔 is a one-to-one and 

continuous mapping with a continuous inverse. The grain boundary misorientation space can 

therefore be embedded in one-dimensional Euclidean space ℝ1.  

The grain boundary misorientation spaces for systems 𝐶1 and 𝐶2 are color coded using only one 

variable (contrast) and shown in Figure 2.1(c&d). The purpose of this illustration is to point out 

the role of symmetry in the representations. For grain boundary misorientations, the coloring 

indicates the presence of mirror-lines at the boundaries (points in this case) of the fundamental 

zone. In contrast, for rotation and orientation spaces, the boundaries of the fundamental zone are 

connected as indicated by the coloring scheme. The grain boundary misorientation space is 

equivalent to a closed interval on the real line and admits a trivial fundamental group. Any 

closed path can be continuously deformed into a single point. Hence the grain exchange 

symmetry leads to a simpler topology of the misorientation space for grain boundaries. 

2.3. Three-Dimensional Crystal Systems 

2.3.1. Three-Dimensional Rotation Space 

Embedding: None of the parameterizations mentioned in section 1.1.1, except for the group of 

special orthogonal matrices 𝑆𝑂(3), provide a one-to-one and continuous mapping for the rotation 

space. The rotation matrices parameterize the group of rotations in a one-to-one, continuous 

manner with a continuous inverse. This establishes an embedding of the rotation space in ℝ9, but 

nine is not the minimum Euclidean dimension for an embedding of the rotation space. An 

embedding in six-dimensional Euclidean space [57] can be obtained from the orthogonality 

property of the rotation matrices. Eventually, Hopf [81] showed that five is the minimum number 

of variables required to parameterize the rotation space in a continuous and bijective manner.  

This embedding property of 𝑆𝑂(3) is most easily appreciated using the quaternion 

parameterization, which relates the rotation space to the 3-sphere (𝑆3). The group of unit 
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quaternions is related to 𝑆𝑂(3) by a two-to-one homomorphism [82]. Since +𝐪 represents the 

rotation (𝜔, �⃗�) and −𝐪 represents (2𝜋 + 𝜔, �⃗�), and the rotation (𝜔, �⃗�) is equivalent to the 

rotation (2𝜋 + 𝜔, �⃗�), the equivalence relation 𝐪~ − 𝐪 holds. There therefore exists a two-to-one 

homomorphism between unit quaternions and the rotation space. Using this equivalence, it is 

observed that the topology of the rotation space 𝑆𝑂(3) is the 3-sphere with diametrically 

opposite points (antipodal points) identified. Such a topological space is called the real projective 

space ℝP𝟑 and is topologically equivalent to the rotation space. Hopf [81] showed that ℝP𝟑 

embeds in ℝ5 and five is the minimum number of variables required to parameterize the rotation 

space in a continuous and bijective manner. 

Fundamental Group: To understand the property of simply connectedness, it is first necessary 

to visualize the rotation space. We prefer the quaternion parameterization for the representation 

of the rotation space not only because it is valuable for understanding the embedding property of 

the rotation space, but also because of other advantageous properties such as absence of 

singularities [59] and intuitiveness due its direct relation to the axis-angle parameters (Equation 

(1.2)). The only caveat of working with the quaternion representation is that it contains a 

redundant fourth variable, with the sum of squares of the quaternion parameters equal to unity. 

This raises the issue of projecting the 4-dimensional quaternion space into three dimensions. 

Visualization of the rotation space: Since there exists a two-to-one homeomorphism between the 

quaternion space and the rotation space (𝐪 ∼ −𝐪) it is enough to project only half of the 3-

sphere to completely visualize the rotation space in ℝ3. Commonly used projection schemes 

include:  

 

(a) Orthogonal projection: �⃗� ≡ (𝑞1,𝑞2, 𝑞3) ≡ �⃗� sin𝜔
2
 

(b) Geodesic projection (Rodrigues-vector map): 𝑟 ≡ �𝑞1
𝑞0

, 𝑞2
𝑞0

, 𝑞3
𝑞0
� ≡ �⃗� tan 𝜔

2
 

(c) Stereographic projection: 𝑟 ≡ � 𝑞1
1+𝑞0

, 𝑞2
1+𝑞0

, 𝑞3
1+𝑞0

� ≡ �⃗� �2 tan 𝜔
4
� 

(d) Homochoric (volume-preserving) projection: 𝑟 ≡ �⃗� �3
2
�𝜔
2
− sin𝜔

2
cos 𝜔

2
��
1/3 

 

(2.2)  

These projections are appropriate for visualization of rotations in ℝ3 because of their direct 

relation to the axis-angle parameters; any vector 𝑟 lies along the axis of rotation and its 
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magnitude is directly proportional to a monotonously increasing function, 𝑓(𝜔), of the rotation 

angle. It is important to note that these projections involve no loss of information and no 

sectioning of the space: they simply remove the redundant fourth variable in the quaternion 

parameterization, and present rotations (which comprise three independent parameters) in three-

dimensional space.  In each case the result is essentially a solid ball (shown in Figure 2.2(a)) 

where the origin represents the identity (no rotation), the outer surface represents a rotation of 𝜋, 

and the distance along any vector from the origin follows the rotation angle as 𝑓(𝜔). Each 

projection scheme in Equation (2.2) has its own merits, and the selection of a preferred mapping 

depends on the type of information that needs to be presented. Since the topological aspects of 

the rotation space do not depend on the projection scheme, the orthogonal projection will be used 

in this chapter because of its simplicity.  

 

Figure 2.2 (a) A parametric ball built using the quaternion vector parameter 𝒒��⃗ = 𝒂��⃗  𝒔𝒊𝒏 �𝝎
𝟐
� that represents 

the rotation space in ℝ𝟑. The polar coordinates (𝜽,𝝓) define the axis of rotation 𝒂��⃗  and 𝝎 is the angle of 
rotation. (b) The antipodal points, on the surface of the parametric ball, 𝑸𝟏 = (𝝅,𝒂��⃗ ) and 𝑸𝟏

′ = (𝝅,−𝒂��⃗ ) 
represent the same rotation and are identified. The closed path 𝑷𝑸𝟐𝑸𝟐

′ 𝑷 is obtained by continuously 
deforming the path 𝑷𝑸𝟏𝑸𝟏

′ 𝑷. 

Every point in the solid ball represents a unique rotation except for the points on its surface. Each 

surface point corresponds to a rotation of 𝜋 about the axis defined by the vector that joins it to 
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the origin. And, since any rotation 𝜋, �⃗� is equivalent to the rotation (𝜋,−�⃗�), the diametrically 

opposite surface points of the parametric ball represent the same rotation; these points (shown in 

Figure 2.2(b) as points 𝑄1 and 𝑄1′ ) are identified, resulting in a space that is not simply 

connected.  

To illustrate this property, we use a construction, developed by Wigner [83], for the rotation 

space to examine closed paths. Shown in Figure 2.2(b) are paths of two kinds: one that comprises 

a discontinuity or a jump (blue paths with colored jumps) and the other that is continuous and 

completely contained within the space (dashed black line). It is indeed possible to continuously 

shrink the dashed black line into the origin. To shrink the path 𝑃𝑄1𝑄1′ 𝑃 to a point, first, the 

discontinuous jump in the path needs to be removed. As shown in Figure 2.2(b), the initial path 

𝑃𝑄1𝑄1′𝑃 can be distorted continuously to a great extent, for example to the path 𝑃𝑄2𝑄2′𝑃, but the 

two surface points that define the jump (𝑄,𝑄′) are always diametrically opposite and the jump 

can never be removed. Hence, the path 𝑃𝑄1𝑄1′𝑃 cannot be continuously shrunk to a point 

illustrating that the rotation space is not simply connected.  

To evaluate the fundamental group of the rotation space explicitly, the class of manifolds called 

as the spherical 3-manifolds [84, 85] is introduced. A spherical 3-manifold is defined as the 

quotient space obtained by a properly discontinuous [86] action of a finite subgroup Γ of the 

four-dimensional rotation group 𝑆𝑂(4) on the 3-sphere, and are denoted by 𝑆3/Γ. Such a 

spherical 3-manifold has a finite fundamental group Γ and is not simply connected. The simplest 

example of a spherical 3-manifold is the rotation space itself. The rotation space 𝑆𝑂(3) is 

equivalent to 𝑆3/Γ where Γ is the binary cyclic rotation group 𝐶2∗ consisting of the identity (𝐼4) 

and the inversion �– 𝐼4� operations. Hence, the fundamental group of 𝑆𝑂(3) is the binary cyclic 

rotation group 𝐶2∗ and is not simply connected. This topological property makes the embedding 

of the rotation space in three-dimensional Euclidean space impossible. 

2.3.2. Orientation Spaces for three-dimensional crystal systems 

The orientation spaces have a finite fundamental group as well and are not simply connected. A 

graphical interpretation of this property for orientation spaces is shown in Figure 2.3 for the case 

of the octahedral 𝑂(432) orientation space. The jump in 432-orientation space has a similar 

character as the discontinuity observed in the closed paths of the rotation space. When a path 
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intersects the surface at point 𝑄 it reenters the space at a point that is obtained by rotating point 𝑄 

through a certain angle and reflecting it onto the opposite surface (𝑄′); this jump has a skewed 

character reminiscent of a Möbius strip [58]. No amount of distortion can remove the jump as the 

points 𝑄,𝑄′ are always on opposite faces of the orientation space. The closed path 𝑃𝑄1𝑄1′𝑃 can 

never be continuously shrunk into a point and hence the 432-orientation space is not simply 

connected. 

 

Figure 2.3 Path connectivity in the 432-orientation space. The dashed black line represents a continuous path 
completely contained within the space. The dashed blue lines represent paths with a jump (shown using green 
and red dashed lines). 

The explicit fundamental group of the orientation spaces is obtained by observing that the 

orientation spaces of all crystal systems can be classified as spherical 3-manifolds, i.e. the 

orientation spaces can be expressed as 𝑆3/Γ  by a suitable choice of Γ. The relation between 

subgroups of 𝑆𝑂(3) and the finite subgroup Γ of 𝑆𝑂(4) is obtained by using the following 

property of 𝑆𝑂(4): the quotient space of 𝑆𝑂(4) about its centre (±𝐼4: the identity and inversion 

operation) is isomorphic to the product group 𝑆𝑂(3) × 𝑆𝑂(3).  Hence a finite subgroup Γ of 

𝑆𝑂(4) can be determined from the finite subgroups 𝐺𝐿 and 𝐺𝑅 of 𝑆𝑂(3) which correspond to the 

point groups of the phases involved. For example, in the case of the orientation space of 

𝐷2(222), 𝐺𝐿 is the identity element (𝐼3) and 𝐺𝑅 is the dihedral group 𝐷2 of 𝑆𝑂(3). Since Γ is the 

preimage of the product group 𝐼3 × 𝐷2 (which is equivalent to 𝐷2) in 𝑆𝑂(4), it is the binary 

dihedral group 𝐷2∗. Similarly, the orientation spaces of point groups 𝐶1(1), 𝐶2(2), 𝐶3(3), 𝐶4(4) 

and 𝐶6(6) belong to the class of spherical 3-manifolds where the subgroup Γ (and hence the 
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fundamental group) corresponds to binary cyclic groups 𝐶2∗,𝐶4∗,𝐶6∗,𝐶8∗ and 𝐶12∗  respectively (note 

that 𝐶1-orientation space is the rotation space). The orientation spaces of 𝐷2 (222), 𝐷3 (32), 

𝐷4 (422) and 𝐷6 (622) are spherical 3-manifolds obtained by action of corresponding binary 

dihedral groups. The orientation spaces of point groups 𝑇(23) and 𝑂(432) are obtained by the 

action of binary tetrahedral and binary octahedral group respectively [85].  

Regarding embedding of the spherical 3-manifolds, literature only exists [87] for the orientation 

spaces of point groups 𝐶1(1), 𝐶2(2), 𝐶3(3), 𝐶4(4) and 𝐶6(6). The orientation spaces of these 

point groups belong to a class of spherical 3-manifolds called the lens spaces 𝐿(𝑝, 𝑞), and are 

𝐿(2,1), 𝐿(4,1), 𝐿(6,1), 𝐿(8,1) and 𝐿(12,1) respectively. According to [88], these lens spaces do 

not embed into ℝ4; however they all smoothly embed in ℝ5 [89]. To summarize, prior work has 

established that the fundamental groups of the orientation spaces are isomorphic to the 

corresponding Γ, the finite subgroup of 𝑆𝑂(4), and hence are not simply connected. The lens 

spaces require a minimum of five Euclidean dimensions for embedding. The orientation spaces 

are all closed 3-manfiolds which are not simply connected and cannot be embedded in three 

dimensions.  

2.3.3. Grain boundary Misorientation Spaces for three-dimensional Crystal Systems 

In the case of grain boundary misorientations, the equivalence relations shown in Equation (1.8) 

apply. The crucial relation here is the grain exchange symmetry 𝑀~𝑀−1. This symmetry 

relation cannot be expressed in terms of a rotation operation on 𝑆3. In order to realize the effect 

of the grain exchange symmetry on the topological properties of the 3D rotation space we again 

consider the parametric ball of Figure 2.2(a). In the absence of equivalence relations, every point 

inside the solid parametric ball represents a unique rotation, while for rotations that correspond 

to the surface (𝜔 = 𝜋) there exist two points (antipodal points) that represent the same rotation 

as illustrated in Figure 2.2(b).  In what follows we discuss the changes in this situation that arise 

when the grain exchange symmetry is added to the crystal symmetries. 

2.3.3.1. Point Group 𝐶1(1) 

Since the solid parametric ball considered here is an orthographic projection of the four-

dimensional quaternion space (i.e. the 𝑞0 component of the quaternion is dropped), every point is 

given by the 𝑞1, 𝑞2, 𝑞3 components of the quaternion. The equivalence relation 𝑀~𝑀−1 implies 
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that (𝑞0, 𝑞1, 𝑞2, 𝑞3)~(𝑞0,−𝑞1,−𝑞2,−𝑞3). In the orthographic projection this relation is 

equivalent to (𝑞1, 𝑞2, 𝑞3)~(−𝑞1,−𝑞2,−𝑞3), so the grain exchange symmetry 𝑀~𝑀−1 introduces 

an inversion center at the origin in the solid parametric ball, as shown in Figure 2.4(a). Due to 

this additional equivalence relation, the fundamental zone can now be represented in a 

hemisphere with positive 𝑞3 component (Figure 2.4(b)), as any misorientation corresponding to a 

negative 𝑞3 component has an equivalent description in the top half of the hemisphere.  

 

Figure 2.4 Grain boundary misorientation space of point group 𝑪𝟏(𝟏). (a) Represents the symmetry 𝒒��⃗ ~− 𝒒��⃗  
in the rotation space introduced by the grain exchange symmetry ( 𝑴~𝑴−𝟏). (b) The fundamental zone 
of 𝑪𝟏(𝟏) grain boundary misorientation space. (c) Represents the symmetry (𝒒𝟏,𝒒𝟐,𝟎)~(−𝒒𝟏,−𝒒𝟐,𝟎) on the 
plane 𝒒𝟑 = 𝟎 of the fundamental zone. This symmetry is equivalent to a two-fold rotational symmetry in the 
plane 𝒒𝟑 = 𝟎. 

The connectivity of this system can be understood by looking at the surfaces of this fundamental 

zone. The fundamental zone is bounded by two surfaces: (a) the top hemispherical shell and (b) 

the bottom plane (𝑞3 = 0). Every point inside the fundamental zone is unique in the sense that 

there are no equivalent descriptions in the fundamental zone. This is also true for the points on 

the hemispherical surface, where distinct points represent distinct misorientations. But for the 

points on the bottom plane, the inverse of any point (𝑞1, 𝑞2, 0) is (−𝑞1,−𝑞2, 0) and lies in the 

same plane. Therefore, there exist two distinct points that represent equivalent misorientations 

corresponding to the 𝑞3 = 0 plane of the fundamental zone as illustrated in Figure 2.4(c). The 

inversion center in the plane can also be considered as a two-fold rotation, since the action of an 

inversion center and two-fold rotation are the same in a plane. A path that intersects this plane, 

such as the path 𝑃𝑄1𝑄1′𝑃 shown in Figure 2.5(a), can be continuously deformed into a point. 
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Another crucial difference here is that the top hemispherical surface acts as a boundary (defined 

as the surface with the property that a path that intersects this surface gets reflected back into the 

fundamental zone at the same point; this is illustrated graphically for two paths in Figure 2.5(b)) 

for this space.  The rotation and the orientation spaces are boundary free.  The grain exchange 

symmetry thus results in a simply connected space with a boundary.  The fundamental zone is 

equivalent to a cone space on the real projective plane ℝ𝑃2 [90] which admits a trivial 

fundamental group [91]. Hence the rotation space with just the grain exchange symmetry 

applied, which is the grain boundary misorientation space of the 𝐶1 system, is simply connected.  

 

 

Figure 2.5 The character of the surfaces of 𝑪𝟏(𝟏) grain boundary misorientation space: (a) the dashed blue 
lines represent closed paths and the discontinuity in the path 𝑷𝑸𝟏𝑸𝟏

′ 𝑷 can be removed by continuously 
moving point 𝑸𝟏 towards the origin. (b) The hemispherical surface �𝒒𝟏𝟐 + 𝒒𝟐𝟐 + 𝒒𝟑𝟐 = 𝟏� of the misorientation 
space acts as a boundary. Any path that intersects this surface gets reflected back into the fundamental zone 
at the same point. 

2.3.3.2. Point Groups C2(2), C3(3), C4(4), C6(6) and D3(32) 

For the misorientation spaces of systems that exhibit crystal symmetries, the equivalence 

relations involve the symmetry operations that belong to the point symmetry group of the crystal 

in addition to the grain exchange symmetry. In this section we show that the topologies of 

misorientation spaces of point groups 𝐶2 (2), 𝐶3 (3), 𝐶4 (4), 𝐶6 (6) and 𝐷3 (32) are all 

equivalent to that of the 𝐶1 (1) misorientation space. The fundamental zones of the 
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misorientation spaces for these point groups are derived by Grimmer [72] and are shown in 

Figure 2.6, in three different perspective views labelled (i), (ii) and (iii). As we shall develop in 

the following, the colors used to plot the surfaces of the fundamental zones correspond to the 

type of symmetries present on them. The surfaces with rotational symmetries are colored red and 

boundary surfaces are colored grey; other colors (blue, cyan, magenta and pink) are used to 

represent surfaces with mirror-line symmetries. 

The fundamental zone for 𝐶2 (2) misorientation space is shown in Figure 2.6(a). Every distinct 

point inside the fundamental zone represents a unique misorientation. The fundamental zone is 

bounded by three surfaces: a) the plane 𝑂𝐴𝐵 (𝑞3 = 0) b) the plane 𝑂𝐴𝐶𝐵 (𝑞2 = 0) and c) the 

curved surface 𝐴𝐵𝐶. The symmetries on these surfaces are shown in Figure 2.6(a)(ii) & Figure 

2.6(a)(iii). The plane 𝑞3 = 0 does not have any symmetry (hence represents a boundary). The 

plane 𝑂𝐴𝐶𝐵 has a mirror-line symmetry along the line 𝑂𝐶. The surface 𝐴𝐵𝐶 has a four-fold 

rotational symmetry along the 𝑞3 axis.  

The fundamental zones for systems 𝐶3 (3), 𝐶4 (4) and 𝐶6 (6) with symmetries on their surfaces 

are shown in Figure 2.6(b), Figure 2.6(c) and Figure 2.6(d), respectively. It can be seen that the 

fundamental zones for these systems are also bounded by the same three types of surfaces as we 

have just seen for the 𝐶2 system: the planes of type 𝑂𝐴𝐵 (𝑞3 = 0) are surfaces that represent 

boundaries, those of type 𝑂𝐴𝐶𝐵 have mirror-line symmetry along 𝑂𝐶, and the curved surfaces of 

type 𝐴𝐵𝐶 have rotational symmetries (six-fold symmetry for 𝐶3, eight-fold for 𝐶4 and twelve-

fold symmetry for 𝐶6).  The similarity between these four spaces is consequential; they are in 

fact topologically equivalent.  This is illustrated through a series of continuous deformations in 

Figure 2.7. We begin with an object that is topologically equivalent to the fundamental zone of 

the 𝐶6 system. Figure 2.7(a) is obtained by stretching Figure 2.6(d)(i) continuously in the radial 

direction. Hence, Figure 2.6(d)(i) and Figure 2.7(a) are topologically equivalent. The next step of 

deformation is along the angular direction. The object in Figure 2.7(a) is stretched such that only 

the 𝜑 (angular) coordinate of the points change. The deformation from Figure 2.7(a) to Figure 

2.7(b) is such that if the fundamental zone is expressed in polar coordinates (𝑟,𝜃,𝜑), then the 

mapping is 𝜑 → 4
6
𝜑. The object in Figure 2.7(b) is topologically equivalent to Figure 2.7(c)(i) 

and they differ only by a stretch along the radial direction.  
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Figure 2.6 Grain boundary misorientation spaces with surface symmetries of point groups (a) 𝑪𝟐(𝟐), 
(b) 𝑪𝟑(𝟑), (c) 𝑪𝟒(𝟒), (d) 𝑪𝟔(𝟔) and (e) 𝑫𝟑(𝟑𝟐). (i),(ii) & (iii) show the fundamental zones from different views 
to illustrate the symmetries on their surfaces.  The surfaces with rotational and mirror-line symmetries are 
colored red and blue respectively and the boundary surfaces are colored grey. 
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Hence, the misorientation space of the 𝐶6 system is topologically equivalent to that of the 𝐶4 

system. Similar deformations establish the topological equivalence between systems 𝐶4 (Figure 

2.6(b)), 𝐶3 (Figure 2.6(c)) and 𝐶2 (Figure 2.6(d)). 

 

Figure 2.7 (a),(b),(c) and (d) represent misorientation fundamental zones of systems 𝑪𝟔(𝟔), 𝑪𝟒(𝟒), 𝑪𝟑(𝟑) and 
𝑪𝟐(𝟐), respectively, stretched along the 𝒒𝟑 axis. A continuous deformation in the angular direction illustrates 
the topological equivalence between these spaces. 

The topological equivalence between the 𝐶2 and 𝐶1 misorientation fundamental zones can be 

established by additional continuous deformation steps as shown in Figure 2.8. The first 

sequence of steps (Figure 2.8 (a) to Figure 2.8(c)) involve angular stretching similar to that seen 

earlier in Figure 2.7. The object in Figure 2.8(c) is a hemisphere with two-fold symmetry on the 

spherical surface of the hemisphere. Other points inside the volume and on the surface 𝑞3 = 0 

represent distinct misorientations. The planes 𝑂𝐴𝐶 and 𝑂𝐵𝐶 are glued together, which is allowed 

because of the mirror symmetry on the plane 𝑂𝐴𝐶𝐵. Further deformation steps (Figure 2.8 (c) to 

Figure 2.8(h)) involve impressing the top hemispherical solid into the bottom half such that the 

top hemispherical surface now becomes the plane 𝑞3 = 0 and the plane 𝑞3 = 0 is deformed into 

the bottom hemispherical surface. A rotation of 𝜋 along the x-axis will now result in an object 

identical to the misorientation fundamental zone of the 𝐶1 system with a two-fold rotational 

symmetry on the 𝑞3 = 0 plane. This demonstrates the topological equivalence between the 

misorientation spaces of the point groups 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶6. 
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Figure 2.8 A continuous deformation sequence illustrating topological equivalence between 𝑪𝟐(𝟐) and 𝑪𝟏(𝟏) 
grain boundary misorientation spaces. 

The misorientation space for point group 𝐷3 is more complicated than those described above. 

The fundamental zone and the symmetries on its surfaces are shown in Figure 2.6(e), and we 

note that they consist of similar symmetries as the surfaces of the fundamental zone of 𝐶2. The 

surface 𝐴𝐵𝐶𝐷 consists of a four-fold rotational symmetry (similar to the surface 𝐴𝐵𝐶 of 𝐶2 as 

shown in Figure 2.6(a)(iii)) and the surface 𝑂𝐴𝐵 contains a mirror-line (similar to the surface 

𝑂𝐴𝐶𝐵 of 𝐶2 as shown in Figure 2.6(a)(ii)).  This fundamental zone can be continuously 

deformed into the 𝐶2 fundamental zone as shown through various deformation steps in Figure 

2.9. Hence, the misorientation space of the point group 𝐷3 is topologically equivalent to 𝐶2. This 

implies that the minimum dimension of Euclidean space in which the misorientation spaces for 

systems 𝐶1(1), 𝐶2(2), 𝐶3(3), 𝐶4(4), 𝐶6(6) and 𝐷3 (32) can be embedded is the same and they 

are all topologically equivalent.  

The mappings between the various misorientation spaces of these point groups are given in 

Appendix A in analytical form (Equations (A1),(A2),(A3) and (A4)), corresponding to the 

specific deformations illustrated in Figure 2.7, Figure 2.8 and Figure 2.9. The minimum 

dimension which these systems can be embedded into is still unclear and is a topic for future 

research. However, these spaces cannot be embedded in the three-dimensional Euclidean space. 
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As already mentioned, the 𝐶1 misorientation space is equivalent to a cone of ℝ𝑃2  and an 

embedding of 𝐶1 in ℝ3 would give an embedding of ℝ𝑃2 in ℝ3 which is impossible [92]. 

 

 

Figure 2.9 A continuous deformation sequence illustrating topological equivalence between 𝑫𝟑(𝟑𝟐) 
and 𝑪𝟐(𝟐) grain boundary misorientation spaces. 

2.3.3.3. Point Groups D2(222), D4(422), D6(622), T(23) and O(432) 

The fundamental zones for the misorientation spaces of point groups 𝐷2 (222), 𝐷4 (422), 

𝐷6(622) and 𝑂(432) were derived by Grimmer [72], while that for point group 𝑇(23) was 

illustrated by Morawiec [93]. Figure 2.10 shows the fundamental zones for these point groups, 

along with the symmetries on their surfaces. The topology of these fundamental zones is 

highlighted by the fact that the surfaces either have no symmetry on the surface (i.e. a boundary) 
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or they contain only mirror-line symmetries; in Figure 2.10 colored surfaces are those with 

mirror-line symmetries, while grey surfaces are boundaries. Fundamental zones with only 

mirror-line symmetries on their surfaces are simply connected spaces, as the path discontinuities 

that occur on these surfaces can be removed by a continuous deformation of the path. Shown in 

Figure 2.11 are illustrations of closed paths of the type 𝑃𝑄1𝑄1′𝑃 in the 𝐷2(222) and 𝑂(432) 

fundamental zones. This path can be continuously deformed such that the points 𝑄1 and 𝑄1′  

converge onto 𝑄2 on the symmetry line 𝐴𝐺 (or 𝐴𝐶) and the path 𝑃𝑄2𝑃 can now be continuously 

shrunk to the point 𝑃. Hence the misorientation spaces of 𝐷2 and 𝑂 are simply connected. The 

same holds for the misorientation spaces of 𝐷4, 𝐷6 and 𝑇.  

 

 

Figure 2.10 Fundamental zones in orthographic projection of quaternion space for (a) 𝑫𝟐(𝟐𝟐𝟐) (b) 𝑫𝟒(𝟒𝟐𝟐) 
(c) 𝑫𝟔(𝟔𝟐𝟐) systems. These systems have three surfaces with mirror-line symmetries on them. The surfaces 
with mirror symmetries are colored (yellow, pink and magenta) and the surfaces with no symmetries are 
colored grey. Fundamental zones for (d) 𝑻(𝟐𝟑) and (e) 𝑶(𝟒𝟑𝟐) systems with the surface containing mirror 
symmetry colored blue. 
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Figure 2.11 The (a) 𝑫𝟐(𝟐𝟐𝟐) and (b) 𝑶(𝟒𝟑𝟐) grain boundary misorientation spaces are simply connected. 
The dashed blue lines represent closed paths and the discontinuity in the path 𝑷𝑸𝟏𝑸𝟏

′ 𝑷 can be removed by 
continuously moving point 𝑸𝟏 onto the line (a) 𝑨𝑮 in 𝑫𝟐(𝟐𝟐𝟐) fundamental zone and the line (b) 𝑨𝑪 in 
𝑶(𝟒𝟑𝟐) fundamental zone. 

As observed in the deformation sequences for the 𝐶2, 𝐶3, 𝐶4, 𝐶6 and 𝐷3 grain boundary 

misorientation spaces, the surfaces with mirror-line symmetries can be glued together and this 

removes path discontinuities that occur on these surfaces. However, since the grain boundary 

misorientation spaces of point groups 𝐷2 (222), 𝐷4 (422), 𝐷6(622), 𝑇(23) and 𝑂(432) consist 

of surfaces with only mirror-line symmetries these spaces can be deformed continuously so that 

all the discontinuities that occur in them can be removed; for these spaces it is possible to obtain 

an explicit one-to-one continuous mapping into ℝ3. Both the grain exchange symmetry and the 

crystal symmetries are necessary to embed these spaces in ℝ3. Application of the grain exchange 

symmetry simplifies the topology and results in simply connected spaces for 𝐶1(1), 𝐶2(2), 

𝐶3(3), 𝐶4(4), 𝐶6(6) and 𝐷3 (32) systems, but they cannot be embedded in  ℝ3; apparently it is 

only when a sufficient number of crystal symmetries are introduced that the spaces can be 

embedded in ℝ3.   
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Figure 2.12 A continuous deformation sequence illustrating the topological equivalence between the grain 
boundary misorientation spaces of point groups 𝑫𝟒(𝟒𝟐𝟐) and 𝑫𝟐(𝟐𝟐𝟐). 

To obtain an explicit one-to-one continuous mapping into ℝ3, we deform these spaces by folding 

the surfaces with mirror-line symmetries. The misorientation fundamental zones of point 

groups 𝐷2, 𝐷4 and 𝐷6 are very similar and their topological equivalence can be established 

through simple deformation steps from one space to the other as illustrated in Figure 2.12 for 𝐷4 

and 𝐷2. The mappings from 𝐷4 to 𝐷2 and 𝐷6 to 𝐷2 are given in Appendix A as Equation (A6) 

and Equation (A7) respectively.  

Since all three of these spaces are equivalent, establishing a mapping of 𝐷2 into ℝ3 is sufficient 

to address them all. The misorientation space of the 𝐷2 system can be deformed continuously 

and the surfaces with mirror symmetries can be glued together such that it can be embedded in 

ℝ3 as follows (Figure 2.13). First, Figure 2.13(b) is obtained by transforming the orthographic 

quaternion projection into that of Rodrigues vectors, which simplifies the space by rendering all 

the surfaces planar. Next, Figure 2.13(c) is obtained by simply rotating the cubic space such that 

the body diagonal coincides with the z-axis. Figure 2.13(e) is obtained by deforming the cube 

into a tetrahedron, which is then deformed into a hemisphere (Figure 2.13 (h)). The hemisphere 

is deformed into a sphere as shown in steps Figure 2.13(i,j,k). In these final deformation steps the 

mirror planes fold and glue together, also leading to a coincidence along the triple line between 

them, and resulting in a continuous mapping. This mapping from 𝐷2 to ℝ3 is expressed 

analytically in Appendix A in Equation (A8). 
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Figure 2.13 Deformation scheme representing the embedding of 𝑫𝟐(𝟐𝟐𝟐) grain boundary misorientation 
space in ℝ3. 
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Hence, the systems 𝐷2, 𝐷4 and 𝐷6 can be represented in a bijective and continuous manner using 

only three variables. These three variables can be used as color variables, and grain boundaries 

for these systems can be graphically represented using colors.  

The fundamental zone of the tetragonal point group 𝑇(23) is shown in Figure 2.10(d). The 

connectivity of the misorientation space for this system is different from the previous ones in the 

sense that only one mirror-line symmetry is present. The embedding of this system is shown 

through simple deformation schemes in Figure 2.14. The mapping is given in Appendix A in 

Equation (A9). 

To obtain a one-to-one continuous mapping for the 𝑂(432)-misorientation space into the color 

space, the former must be deformed continuously so that the path discontinuities are removed. 

We have developed such a mapping, as illustrated in Figure 2.15, which shows a sequence of 

deformations that maps the 432-misorientation space into the shape of a cone, with no surfaces 

that induce path discontinuities.  The cone shape was selected so that it can be directly fitted to 

the HSV color cone (see Figure 1.4c) to obtain a coloring scheme for misorientations. The most 

critical of the deformation steps is the folding of the space shown in frames Figure 2.15(h-j), 

which leads to the closure of the surface ABD upon itself in such a way that the path 

discontinuities are healed; the original two triangular planes ABC and ADC are glued together.  

The deformations shown graphically in Figure 2.15 may also be expressed analytically as shown 

in Appendix A in Equation (A10). 
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Figure 2.14 Deformation scheme representing the embedding of the grain boundary misorientation space of 
point group 𝑻(𝟐𝟑) in ℝ3. Fundamental zone of  𝑻(𝟐𝟑) misorientation space in (a) orthographic projection of 
quaternion space and in (b) Rodrigues-vector representation. (c)-(e) The space is deformed continuously into 
a cone such that the surfaces related to each other with mirror symmetry are glued together.  
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Figure 2.15 Continuous deformation of the 432-misorientation space. (a) Orthographic projection of 432-
misorientation space (432-MS). (b) A continuous mapping into a Rodrigues-vector representation of 432-MS 
with straight edges and planes. (c-e) the same space subsequently rotated and surfaces flattened. (e-g) 
Continuous deformation of (e) into a prism. (g-h) Prism to a half-cone. (h-j) Half-cone to a cone. This 
deformation is an embedding of 432-MS in ℝ𝟑 and the final cone obtained is a simply connected space in ℝ𝟑. 
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2.4. Conclusions 
The topological properties of orientation and grain boundary misorientation spaces have been 

examined. In the case of orientation spaces, the equivalence relations involve only rotational 

symmetries associated with the point symmetry of the crystals. These equivalence relations can 

be transformed to an action by a finite subgroup Γ of the four-dimensional rotations 𝑆𝑂(4) on 

the 3-sphere 𝑆3. Hence, all the orientation spaces can be classified under the so-called spherical 

3-manifolds with finite fundamental group Γ. These spaces are closed 3-manifolds; they are not 

simply connected and hence cannot be embedded in ℝ3. 

The topology of misorientation spaces between crystals of the same point group, however, is 

fundamentally different from the orientation spaces because of the “grain exchange symmetry”, 

𝑀~𝑀−1, which simplifies the topology and produces a boundary in the space. These grain 

boundary misorientation spaces can be divided into two groups. The first group comprises the 

systems 𝐶1(1), 𝐶2(2), 𝐶3(3), 𝐶4(4), 𝐶6(6) and 𝐷3 (32), which are shown here to be 

topologically equivalent and simply connected. These cannot be embedded in ℝ3, but can be 

embedded in ℝ5 [89].  The second group consists of grain boundary misorientation spaces for 

systems  𝐷2(222), 𝐷4(422), 𝐷6(622), 𝑇(23) and 𝑂(432). These systems were also shown here 

to be topologically equivalent and simply connected, and they can be embedded in a three-

dimensional Euclidean space. A three parameter representation that is continuous and bijective 

has been presented for these systems. 

This is the first time parameterizations using three variables which are continuous and bijective 

have been proposed for the misorientation spaces of point groups 𝐷2(222), 𝐷4(422), 𝐷6(622), 

𝑇(23) and 𝑂(432). Interestingly, these systems comprise orthorhombic, tetragonal, hexagonal 

and cubic crystals, which are the most common types of crystals in engineering materials.  The 

results therefore apply quite broadly to the characterization, mapping, and study of grain 

boundaries in such systems.  For example the three-dimensional parameterizations can be used as 

color variables to represent grain boundary information for these systems.  
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3. Application to EBSD Data 

3.1. Introduction 
In the previous chapter we proved that the grain boundary misorientation spaces of crystal 

systems with rotational point groups 𝐷2(222), 𝐷4(422), 𝐷6(622), 𝑇(23) and 𝑂(432) can be 

embedded in ℝ3. The grain boundary misorientation spaces of point groups 𝐷2(222), 𝐷4(422) 

and 𝐷6(622) are continuously deformed into a sphere and misorientation spaces of point groups 

𝑇(23) and 𝑂(432) are deformed into a cone. It is natural to map the sphere and the cone to the 

HSL color sphere HSV color cone respectively. The mapping sequence for grain boundary 

misorientation spaces of different point groups is summarized in the Figure 3.1 below.  

 

Figure 3.1 The grain boundary misorientation spaces that can be embedded in ℝ𝟑 are mapped to either the 
HSL Color Sphere or the HSV Color Cone. 

Equipped with a continuous and one-to-one mapping from grain boundary misorientation spaces 

to the color space, we can represent grain boundary misorientation information more intuitively. 

A micrograph consisting of grain boundaries colored according to their misorientations with a 

legend for interpretation is called the “Grain Boundary Misorientation Map”. In the following 

sections, we discuss how to visualize misorientation information and construct color legends for 

misorientation maps. The mappings of misorientations to three-dimensional Euclidean space 

may also be used to develop better coloring schemes for the orientations of individual grains. 

Improved representation schemes for orientations are discussed in section 3.4. 
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3.2. Visualization of the Misorientation Space 
To infer misorientation information from color it is necessary to build a color legend. This is 

similar to the commonly used colored stereographic triangle as an inverse pole legend in EBSD 

micrographs. In order to construct a color legend, it is first necessary to visualize the 

misorientation space in a plane. As mentioned in section 2.2.1, we will be using the quaternion 

parameterization to represent rotations. Equations (2.2) show various projection schemes for 

projecting the unit-quaternion space into three-dimensions. We used the orthogonal projection in 

chapter 2 because of the simplicity of the projection scheme. But for the purpose of building a 

legend to infer misorientation information, we would like to use a projection scheme that will be 

consistently used by grain boundary engineers to represent misorientation information. Such 

consistency would facilitate the familiarity required with the legend for easier interpretation of 

the axis-angle information. 

Another instance where complete misorientation information is represented is while presenting 

information of misorientation statistics. When it comes to the representation of statistics of 

rotations, i.e., populations of many rotations such as in texture analysis or misorientation 

distribution data, the most important criterion in choosing an appropriate projection scheme is 

the ability to visualize departures from randomness. Only the volume-preserving projection of 

Equation (2.2)(d) has the property that a random distribution of rotations appears uniformly 

distributed. For this reason it has been proposed [94] that the volume-preserving projection 

scheme should be exclusively used to map the misorientation space into ℝ3. Therefore, we prefer 

using the same projection scheme to build color legends for grain boundary misorientation maps. 

The volume projections render the misorientation space into its true form as a three-dimensional 

manifold, which must be further processed to present it in the plane; two-dimensional sections of 

the rotation space must be projected into ℝ2. Usually, such sections are surfaces over which one 

parameter is kept constant, for example, constant Φ sections in the case of Euler angle 

parameterization [63]. The obvious disadvantage of such sections is the fact that the locus of 

points of constant Φ do not translate to any intuitive parameter of the rotation space. Instead, the 

most physical way of sectioning the misorientation space is using surfaces of constant 

misorientation angle 𝜔. Such sections are inherently intuitive to materials scientists, because 

they correspond to the well-known standard stereographic triangles for the various point group 
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symmetries. The radius of the parametric ball (Figure 2.2) is a monotonic function of just the 

rotation angle and hence the locus of points of constant rotation angle is a sphere, which can be 

projected in ℝ2 using one of the projection schemes described below in Equation (3.1). The 

stereographic projection and the area-preserving projection schemes are the two most common 

mappings of a spherical surface of radius 𝑟 onto a plane. When expressed using polar coordinates 

(𝑟,𝜃,𝜙), the mappings are: 

 
(a) Stereographic projection: 2𝑟 tan 𝜃

2
(cos𝜙 , sin𝜙) 

(b) Area-preserving projection: �𝑟�2(1 − |cos 𝜃|)� (cos𝜙 , sin𝜙) 
(3.1)  

Keeping in mind the visualization of random distribution of misorientations, the sections of 

constant angle of rotation in the parametric ball (obtained using volume-preserving projection) 

are projected in ℝ2 using the equal-area projection scheme described in Equation (3.1)(b).  

In Figure 3.2, we show the steps involved in projecting the misorientation information for all the 

five point groups. Figures 3.2(a-e)(i) illustrate the volume-preserved projection of the 

fundamental zones which are colored according to mappings obtained in the previous chapter. 

An important point to note here is that the colors directly reflect the symmetries present on the 

surfaces of the fundamental zones. This is due to the fact that the mappings of the misorientation 

spaces to the color space are consistent with the topology (connectivity) of these spaces. Sections 

of constant misorientation angle in the fundamental zone and their projections in 2D (using area-

preserving projection) are shown in Figures 3.2(a-e)(ii) and (a-e)(iii). Depending on the 

misorientation angle, two cases occur: (i) either the entire surface lies in the interior of the 

fundamental zone, in which case the projection is straightforward, (ii) or only a part of the 

surface lies within the fundamental zone. Sections that belong to the second category are shown. 

The area-preserving projections of these surfaces, shown in Figures  3.2(a-e)(iii), correspond to a 

part of the projected standard stereographic triangle. With the conventions for an intuitive 

projection scheme for representing and visualizing misorientation information established, we 

construct color legends for the grain boundary misorientation spaces of the five point groups that 

can be embedded in ℝ3. 



62 
 

 

Figure 3.2 An illustration of the projection schemes used for visualizing misorientation spaces of (a) 𝑫𝟐(𝟐𝟐𝟐), 
(b) 𝑫𝟒(𝟒𝟐𝟐), (c) 𝑫𝟔(𝟔𝟐𝟐), (d) 𝑻(𝟐𝟑) and (e)𝑶(𝟒𝟑𝟐). (i) Three-dimensional representation of the fundamental 
zones of misorientation spaces obtained by a volume-preserving projection of the four-dimensional 
quaternion space. (ii) Intersection of a surface of constant misorientation angle and the fundamental zone. 
(iii) Area-preserving projection of the two-dimensional section shown in (ii). In (i), (ii) and (iii) the 
misorientations are colored according to the mappings obtained in chapter 2. 
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3.2.1. Legends for Grain Boundary Misorientation Maps 

The mappings in Appendix A are used to construct color legends for the grain boundary 

misorientation spaces using the aforementioned projection and sectioning schemes.  The color 

legends are of 𝐷2(222), 𝐷4(422), 𝐷6(622), 𝑇(23) and 𝑂(432) misorientation spaces are 

presented shown in Figures 3.3, 3.4, 3.5, 3.6 and 3.7 respectively. The legends are a sequence of 

sections that each resembles the standard stereographic triangle of the corresponding point 

group; at large disorientation angles the standard region is truncated as the sectioning planes 

begin to exit the fundamental zone. Not only do the coloring schemes satisfy continuity and 

provide a unique color for every point in the space, but they have been constructed with several 

additional conveniences for intuitive interpretation.  For example, the contrast maps generally to 

the disorientation angle: high angle misorientations have darker colors, and low angles 

correspond to lighter colors, with white being located at the apex (𝜔 = 0). Red, green, and blue 

colors are located at the corners of the standard triangles.   

 

 

Figure 3.3 Color legend for grain boundary misorientations of crystals with 𝑫𝟐(𝟐𝟐𝟐) rotational point group 
symmetry. Each triangle is the well-known standard stereographic triangle for 222 point group. 
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Figure 3.4 Color legend for grain boundary misorientations of crystals with 𝑫𝟒(𝟒𝟐𝟐) rotational point group 
symmetry.  

 

 

Figure 3.5 Color legend for grain boundary misorientations of crystals with 𝑫𝟔(𝟔𝟐𝟐) rotational point group 
symmetry.   
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Figure 3.6 Color legend for grain boundary misorientations of crystals with 𝑻(𝟐𝟑) rotational point group 
symmetry.  

 

Figure 3.7 Color legend for grain boundary misorientations of crystals with 𝑶(𝟒𝟑𝟐) rotational point group 
symmetry, built using area-preserving projection of surfaces of constant misorientation angle 𝝎. Each 
triangle is the well-known standard stereographic triangle.   
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3.3. Grain Boundary Misorientation Maps 
With the legends shown in Figures 3.3, 3.4, 3.5, 3.6 and 3.7, we may now create grain boundary 

misorientation maps that contain complete misorientation information. Examples of such maps 

are shown in Figures 3.8 and 3.9, for the same sets of EBSD data already presented in Figure 1.3. 

The misorientation information can be directly inferred from the legend by matching the 

boundary color, reading the misorientation angle from the standard stereographic triangle in 

which it falls, and the misorientation axis from its position in the triangle. Comparing Figures 3.8 

and 3.9 to either of the two representations in Figure 1.3 reveals the qualitative power of the new 

mapping; whereas Figure 1.3 bins misorientations into classes and neglects most of the 

misorientation information, the grain boundary misorientation maps involve no loss of 

information and cover the entire misorientation spectrum.  The discovery of a continuous 

mapping of colors to misorientations also guarantees that boundaries of similar misorientation 

are colored similarly, and vice versa.   

 

Figure 3.8 Grain boundary misorientation map for a hexagonal closed packed material, Rhenium. The 
rotational point group of Rhenium is 𝑫𝟔(𝟔𝟐𝟐). Complete misorientation information (axis and angle) can be 
directly interpreted using the legend. Since the colors represent a continuous mapping, contrast in the colors 
represents misorientation distance.  
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Figure 3.9 Grain boundary misorientation map for the Cu-Cr sample with a coloring scheme that is one-to-
one and continuous.  
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3.4. Improved Representation of Orientation Maps 

The mappings of misorientation spaces to ℝ3 also have implications beyond the problem of 

coloring grain boundary maps. For example, the mapping of misorientations to three-

dimensional Euclidean space can be used to develop better coloring schemes for the orientations 

of individual grains. Orientations lack much of the symmetry of misorientations, and occupy a 

larger space.  As noted in section 2.3.2, the orientation spaces are not simply connected in three 

dimensions, so it is not formally possible to color orientations in a continuous and one-to-one 

manner.  However, we may capture most of the orientation information using an approximation: 

grain orientations can be considered as misorientations with respect to a fixed reference frame.  

For example, given a grain orientation lying in the 432-orientation fundamental zone, additional 

crystal symmetries and the grain inversion symmetry can be applied to find its equivalent 

parameters in the misorientation fundamental zone and thus a color can be attributed. The caveat 

is that there are 48 distinct orientations that will be mapped to the same misorientation and hence 

will have the same color.  

 

 

Figure 3.10 Representations of EBSD data using colors to denote grain orientations.  (a) Grain orientations 
colored according to their misorientations with respect to the sample reference frame, using the legend from 
Figure 3.7. (b) Grain orientations colored using traditional inverse pole figure representation, with the legend 
in the upper-right corner showing the mapping of color to surface normal vector. The grains in the dashed 
circle are used to show the advantages of this approximate coloring scheme using misorientations as 
compared to the inverse pole figure representation.  
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We apply this method to the coloring of grain orientations in Figure 3.10(a), which is the same 

set of EBSD data for Cu-Cr used in Figure 1.3. We choose a reference orientation aligned with 

the sample axes, and plot the grain color as the disorientation with respect to this reference 

frame. For comparison, shown in Figure 3.10(b) are grain orientation maps using a more 

traditional inverse pole figure representation, with the legend shown in the inset. Whereas the 

map in Figure 3.10(b) only contains information about the crystallographic vector normal to the 

viewing plane, the coloring scheme in Figure 3.10(a) captures far more information over the 

misorientation space.  For example, consider the grains circled in the lower right hand corner of 

this figure. Whereas the grains are colored in a very similar shade of yellow in (b), they abut a 

grain boundary and are actually oriented very differently; they are misoriented by a rotation in 

the plane that is not captured by examination of the surface normal vector alone.  In contrast, this 

orientation difference is captured by the coloring scheme of (a), which, by comparison to the 

grain boundary map in Figure 3.9, reveals a large misorientation of 60º.   

3.5. Industrial Collaboration: Incorporation in OIMTM Analysis Software 
Since most engineering materials belong to one of the five rotational point group symmetries, the 

utility of the novel grain boundary misorientation maps is very high. The coloring schemes do 

not discard any of the misorientation information during graphical representation and hence, 

these maps are of great value to the materials science community, which can recover all of the 

original data. This has been a significant motivating factor for us to collaborate with the industry 

in an effort to make the representation schemes practical and readily available. It is now possible 

for anybody in the field to use our newly developed coloring schemes, without the need of 

understanding the abstract topological details. 

The complete potential of the novel grain boundary misorientation maps may be realized only 

through increasing familiarity with the coloring schemes among the materials science 

community. The coloring schemes have been incorporated into the OIMTM Analysis Software 

during an internship lasting a week at the EDAX-TSL company (original developers of 

Orientation Imaging Microscopy) in Salt Lake City, Utah. Shown in Figure 3.11 is a screenshot 

of the GUI interface of the OIMTM Analysis Software with the new coloring scheme. 
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Figure 3.11 A screen-shot of the OIMTM Analysis Software with the grain boundary misorientation map built 
using coloring schemes developed in this thesis.  

3.6. Conclusions 

The embeddings of the grain boundary misorientation spaces in ℝ3 have immediate practical 

application in the representation of misorientation data from, e.g., electron backscatter 

diffraction, as it permits mapping of misorientations to colors with no loss of information. We 

have demonstrated the coloring of a grain boundary network in samples of copper and rhenium 

alloys as a proof of this concept. If a reference orientation is defined, the method also permits 

coloration of grain orientations in a new way that captures information lost in conventional 

“inverse pole figure” mapping common in the field. 

The embedding of misorientation space in ℝ3 also  opens the door to more nuanced views of 

how misorientations are related to one another: whereas the ‘distance’ between two 

misorientations is complicated by discontinuous jumps in the misorientation space, when 

embedded in ℝ3 the removal of discontinuities permits simple Euclidean distance calculations.  

The simplification of misorientations through this mapping is also a useful first step towards the 

development of a system for understanding the full five-parameter space of grain boundaries that 
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includes the plane normal vectors, the topology of which is presently unknown.  Finally, we note 

that although here we have used a simple two-dimensional example to illustrate the coloring of 

grain boundary misorientations, the technique should naturally apply to more sophisticated three-

dimensional datasets and computer simulations.  
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4. Topology of the Single-Axis Grain Boundary Space 

4.1. Introduction 
In the preceding chapters, we investigated the topology of the grain boundary misorientation 

spaces and developed new visualization tools for better interpretation of misorientation 

information. These coloring schemes are useful in representing complete misorientation 

information and also in elucidating the topological aspects of the grain boundary misorientation 

spaces. However, misorientation does not completely characterize a grain boundary and the 

structure of grain boundaries is determined by two macroscopic degrees of freedom: the 

boundary misorientation (𝑀) and the boundary inclination (𝑛�⃗ ). The boundary normal vectors 

require two independent variables and along with the misorientation, the grain boundary 

parameters are uniquely specified by five independent variables. Despite current experimental 

capabilities that allow a complete crystallographic characterization of grain boundaries, our 

theoretical understanding of the grain boundary space (defined in section 1.1) remains limited.  

The topology of the grain boundary space is complicated mainly due to the equivalence relations, 

mentioned in section 1.1.5, on this space. The equivalence relations relevant to crystallographic 

point groups with only rotational symmetry elements are reiterated below: 

 

(a) (𝑀;  𝑛�⃗ ) ∼ ��𝑆𝑖�
−1
𝑀�𝑆𝑗�;   𝐠 ��𝑆𝑖�

−1
� ∗ 𝑛�⃗ � 

(b) (𝑀;  𝑛�⃗ ) ∼ �𝑀−1; 𝐠(𝑀−1) ∗ (−𝑛�⃗ )� 

(c) (𝐼;  𝑛�⃗ ) ∼ �𝐼, 𝑛′���⃗ �          ∀  𝑛�⃗ ,𝑛′���⃗ ∈ 𝑆2 

(4.1)  

The difficulty in understanding the topological characteristics of the complete grain boundary 

space arises mainly due to the equivalences imposed by the ‘no-boundary’ condition, which 

results in a cone-type singularity [95] in the space. It requires collapsing all the boundary 

inclinations that correspond to the zero-misorientation boundary. In this chapter, we present 

developments that provide insights into the role of the relations in Equation (4.1) on the topology 

of the complete grain boundary space.  
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First, we focus on the topology of the grain boundary space of two-dimensional (2D) crystal 

systems. The case of 2D boundaries has all the critical features of the full three-dimensional (3D) 

problem and permits visualization of the results in a far more transparent manner, and provides a 

useful first step towards understanding the full 3D problem. Although the space of grain 

boundaries is complicated by the existence of a ‘no-boundary’ singularity, we show that when 

the grain exchange symmetry is applied to the grain boundary space in two-dimensional systems, 

the complication due to the ‘no-boundary’ singularity is removed. As mentioned in section 1.1.6, 

we confine our analysis to the crystallographic point groups with only proper rotational 

symmetries. 

4.2. Topology of the Grain Boundary Space for 2D Crystal Systems 
In this section we investigate the topology of grain boundary of two-dimensional systems, i.e., 

the space of the parameters describing the 1D linear boundaries between 2D crystals.  We start 

with visualizing the 2D grain boundary space without any equivalence relations associated with 

the space. The 2D grain boundary parameters are represented using the angles (𝜔,𝛽), where 𝜔 

describes the misorientation angle and 𝛽 is the angle made by the normal vector with the 

crystallographic 𝑥-axis. Shown below in Figure 4.1 is a schematic illustrating a 2D grain 

boundary with boundary parameters (𝜔,𝛽) = (𝜋/6, 5𝜋/6). 

 

Figure 4.1 Schematic illustrating the grain boundary parameters (𝝎,𝜷) of a 2D grain boundary. 
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The misorientation space for 2D grain boundaries defined by 𝜔 ∈ [0,2𝜋) is equivalent to a circle 

(𝑆1) with additional symmetries from the underlying crystals. The boundary inclinations for 2D 

boundaries are defined by the collection of unit vectors in the plane, which belongs to the points 

on a circle (𝑆1). Since the misorientations and inclinations of a boundary are independent of 

each other, the 2D grain boundary parameters belong to the product space 𝑆1 × 𝑆1 (which is a 

torus) as illustrated in Figure 4.2.  

 

 

 

Figure 4.2 The torus represents the product space 𝑺𝟏 × 𝑺𝟏. Any point on the torus can be defined using (𝝎,𝜷) 
parameters. Here 𝝎 represents the boundary misorientation and 𝜷 represents the boundary inclination and 
𝝎,𝜷 ∈ [𝟎,𝟐𝝅). 
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4.2.1. Two-dimensional Grain Boundary Space 

The grain boundary space is the quotient space of the torus with the equivalence relations in 

Equation (4.1) applied. These equivalence relations expressed in terms of (𝜔,𝛽) take the form: 

 

(a)  (𝜔,𝛽) ∼ �𝜔 − 2𝜋𝑖
𝑛

+ 2𝜋𝑗
𝑚

,𝛽 − 2𝜋𝑖
𝑛
� ; 𝑖, 𝑗 ∈ {1, … , 𝑛} 

(b) (𝜔,𝛽) ∼ (2𝜋 − 𝜔,𝜋 − 𝜔 + 𝛽) 

(c) (0,𝛽) ∼ (0,𝛽′) 

(4.2)  

where 𝑛 is the order of the rotational point group of the crystal system under consideration. The 

no-boundary equivalence requires collapsing the {𝜔 = 0} × 𝑆1 region in the torus to a single 

point, which can be achieved by shrinking the inner radius of the torus to zero; see the difference 

between Figures 4.2(a) and 4.2(b). The torus so obtained in Figure 4.2(b) is called a ‘horned 

torus’, which is equivalent to a 2-sphere with two antipodal points (the north and south poles) 

identified. The horned torus is mapped to a 2-sphere by expressing the polar coordinates of the 2-

sphere in terms of the boundary parameters as (𝜃,𝜙) = (𝜔/2,𝛽), which applies for the grain 

boundaries of crystals with 𝐶1 point symmetry. In the case of boundaries of crystals with 𝐶𝑛 

point group symmetry, the polar coordinates are related to the boundary parameters by the 

relation: 

 (𝜃,𝜙) = �
𝑛𝜔
2 ,𝑛𝛽� (4.3)  

where 𝜔 and 𝛽 are restricted to [0,2𝜋/𝑛]. This ensures that 𝜃 is confined to [0,𝜋] and 𝜙 is 

confined to [0,2𝜋]. In the domain 𝜔,𝛽 ∈ [0,2𝜋/𝑛], the equivalence relations due to crystal 

symmetries (Equation (4.2)(a)) need not be considered, which simplifies the subsequent analysis.  

In polar coordinates, the no-boundary equivalence relation takes the form (0,𝜙)~(𝜋,𝜙). This 

equivalence implies that the two poles, (0,0,1) and (0,0,−1) are identified. Even though the 

measure and metrics on a 2-sphere are familiar, the identification of the two poles makes the 

topology more complicated, and hence there is no immediately obvious method to define 

metrics. This singularity is a result of the ‘no-boundary’ condition at zero misorientation.  
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Figure 4.3 Colors are used to represents the connectivity of these spaces. (a) (i) 𝑺𝟏 × 𝑺𝟏 torus and its (ii) 
projection onto a plane. (b) (i) The horned-tours (inner radius = 0) and its (ii) projection. As represented by 
the coloring scheme, the points (𝝎 = 𝟎,𝜷) and (𝝎 = 𝟐𝝅,𝜷) are equivalent. (c) The horned-tours is mapped 
into a 2-sphere using the relation (𝜽,𝝓) = (𝝎/𝟐,𝜷). 

 

 

 



78 
 

We find, however, that this singularity can be resolved by invoking grain exchange symmetry. 

Applying the equivalence relation from Equation (4.1)(b) to the polar coordinates of the 2-sphere 

results in the following equivalence relation: 

 �
2𝜃
𝑛 ,

𝜙
𝑛
� ∼ �

2𝜋
𝑛 −

2𝜃
𝑛 ,𝜋 −

2𝜃
𝑛 +

𝜙
𝑛
� 

⇒ �𝜃,
𝜙
𝑛
� ∼ �𝜋 − 𝜃,

(𝜋 − 2𝜃)
𝑛

+
𝜙
𝑛

+
(𝑛 − 1)𝜋

𝑛
� 

⇒ (𝜃,𝜙) ∼ (𝜋 − 𝜃, (𝜋 − 2𝜃) + 𝜙 + (𝑛 − 1)𝜋) 

(4.4)  

This is a complicated relation since the equivalence in the 𝜙 coordinate is dependent on 𝜃. This 

complication can be removed by using modified parameters (𝜃′,𝜙′) 

 (𝜃′,𝜙′) = �𝜃,𝜙 −
(𝜋 − 2𝜃)

2 � (4.5)  

which yields the following equivalence relation: 

 
�𝜃′,𝜙′ +

(𝜋 − 2𝜃)
2 � ∼ �𝜋 − 𝜃′,𝜙′ +

(𝜋 − 2𝜃)
2 + (𝑛 − 1)𝜋� 

⇒ (𝜃′,𝜙′) ∼ (𝜋 − 𝜃′,𝜙′ + (𝑛 − 1)𝜋) 

(4.6)  

Two situations arise when the boundary parameters are expressed in terms of (𝜃′,𝜙′). First, if 𝑛 

is odd, then the equivalence relation shown in Equation (4.6) is equivalent to (𝜃′,𝜙′)~(𝜋 −

𝜃′,𝜙′) (since 𝑛 − 1 is even and a multiple of 2𝜋). Second, if 𝑛 is even, then the equivalence 

relation is simplified to (𝜃′,𝜙′)~(𝜋 − 𝜃′,𝜙′ + 𝜋) (since 𝑛 − 1 is an odd number). The 

advantage of using the modified parameters in representing the boundary information is 

illustrated in Figure 4.4 and Figure 4.5 for odd- and even-fold rotational symmetry systems 

respectively. Using the modified parameters results in simple equivalence relations 

corresponding to either a mirror symmetry or an inversion symmetry on the 2-sphere. 
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Figure 4.4 The equivalence relations corresponding to Equations (4.4) and (4.6) for odd-fold rotational 
symmetry systems (a) Grain boundary information using (𝜽,𝝓) parameters. The path ABC in the upper 
hemisphere is equivalent to the path CDE in the lower hemisphere. This equivalence is better represented in 
its (ii) projection. (b)  Boundary information using (𝜽′,𝝓′) parameters. In this parameterization the paths 
ABC and CDE are related through mirror symmetry. 

 

 

 



80 
 

 

 

 

 

Figure 4.5 The equivalence relations corresponding to Equations (4.4) and (4.6) for even-fold rotational 
symmetry systems (a) Grain boundary information using (𝜽,𝝓) parameters. The path ABC1 in the upper 
hemisphere is equivalent to the path C2DE in the lower hemisphere. This equivalence is better represented in 
its (ii) projection. (b) Grain Boundary information using (𝜽′,𝝓′) parameters. In this parameterization the 
paths ABC1 and C2DE and are related by an inversion about the origin. The space is defined as the real 
projective plane (ℝ𝑷𝟐). 
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To summarize, modified parameters (𝜃′,𝜙′) are used to represent the grain boundary parameters. 

They are related to (𝜔,𝛽) by the following equation: 

 (𝜃′,𝜙′) = �
𝑛𝜔
2 ,𝑛𝛽 −

(𝜋 − 𝑛𝜔)
2 � (4.7)  

where 𝜔 and 𝛽 are restricted to [0,2𝜋/𝑛 ] and 𝑛 corresponds to the point group 𝐶𝑛 of the crystal. 

Any boundary with parameters 𝜔 > 2𝜋/𝑛 or 𝛽 > 2𝜋/𝑛 has a symmetrically equivalent 

description in the restricted domain, which is obtained by applying appropriate crystal 

symmetries. Examining the above results, we observe that the grain boundary spaces of the 𝐶1 

and 𝐶3 systems are topologically equivalent to that of a disc in the two-dimensional Euclidean 

plane. This is a result of the equivalence relation (𝜃′,𝜙′)~(𝜋 − 𝜃′,𝜙′). This relation expressed 

in terms of Cartesian coordinates is of the form (𝑥,𝑦, 𝑧)~(𝑥, 𝑦,−𝑧). Hence the topology of the 

grain boundary space for these systems is the quotient space of the 2-sphere with the equivalence 

relation (𝑥,𝑦, 𝑧)~(𝑥, 𝑦,−𝑧). This quotient space is equivalent to a disc (𝐷2) in two-dimensional 

Euclidean plane. The space is simply connected (admits a trivial fundamental group) and can be 

embedded in ℝ2.  

In the case of the 𝐶2, 𝐶4 and 𝐶6 systems (see Figure 4.5) the grain boundary space is equivalent 

to the real projective plane (ℝ𝑃2). The equivalence relation (𝜃′,𝜙′)~(𝜋 − 𝜃′,𝜙′ + 𝜋) expressed 

in terms of Cartesian coordinates is of the form (𝑥,𝑦, 𝑧)~(−𝑥,−𝑦,−𝑧), i.e. a 2-sphere with all 

antipodal points identified, or the real projective plane. The topological properties of ℝ𝑃2 are 

well documented. The minimum number of Euclidean dimensions in which it can be embedded 

is four [92]. It has a non-trivial fundamental group ℤ2 [76]. 

The parameterization in Equation (4.5) has several immediate practical consequences.  For 

example, the metrics on a 2-sphere can be used to express the “distance” between grain 

boundaries. This helps achieve meaningful answers to the question of how similar two 

boundaries are if they have different misorientations and boundary planes. The distance between 

two points denoted by (𝜃1′ ,𝜙1′ ) and (𝜃2′ ,𝜙2′ ) on a sphere is given by: 

 𝑠 = arccos(cos 𝜃1′ cos 𝜃2′ + sin𝜃1′ sin𝜃2′ cos(𝜙1′ − 𝜙2′ ))  𝑤ℎ𝑒𝑟𝑒 𝑠 ∈ [0,𝜋] (4.8)  
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The distance between two boundaries (𝜔1,𝛽1) and (𝜔2,𝛽2) is obtained in three steps: 

(i) The evaluation of symmetrically equivalent descriptions of (𝜔1,𝛽1) and (𝜔2,𝛽2) that lie in 

the domain [0,2𝜋/𝑛]. 

(ii) Evaluation of symmetrically equivalent descriptions of boundary parameters in the (𝜃′,𝜙′) 

parameterization using Equation (4.5). 

(iii)The distance between the two boundaries is finally obtained by taking the minimum of the 

distances between the equivalent representations calculated using Equation (4.8). 

Since the modified grain boundary parameters (𝜃′,𝜙′) reside on the surface of a unit-sphere, 

functions describing distributions of these parameters can be expanded as a linear combination of 

the Laplace spherical harmonics 𝑌𝑙𝑚 [96] which form a complete set of orthonormal functions. 

Any square-integrable function can be expressed as a linear combination of the spherical 

harmonics as: 

 𝑓(𝜃′,𝜙′) = � � 𝐶𝑙𝑚𝑌𝑙𝑚(𝜃′,𝜙′)
𝑙

𝑚=−𝑙

∞

𝑙=0

 (4.9)  

It is necessary that the function 𝑓 inherit the symmetries of the boundary space. This is achieved 

by using symmetrized spherical harmonics which are commonly used in pole distributions in 

representing texture [97]. Symmetrized spherical harmonics must reflect the mirror symmetry in 

the case of 𝐶1 and 𝐶3 boundary systems and the inversion symmetry in the case of 𝐶2, 𝐶4 and 𝐶6 

boundary systems. 

There are two crucial steps involved in resolving the topology of 2D grain boundaries: (a) the 

inner-radius of the torus is collapsed to a single point to account for the ‘no-boundary’ 

singularity and (b) the grain exchange symmetry is simplified using the modified 

parameters (𝜃′,𝜙′) introduced in Equation (4.5). In the following section, we develop a new 

parameterization for the grain boundary space of three-dimensional crystal systems, which is 

specifically aimed at accomplishing these two particular tasks.  
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4.3. New Parameterization for the Complete Grain Boundary Space 
The parameterizations for the two aspects of boundary parameters, i.e. the rotations (rotation 

matrices, Euler angles, axis-angle parameters, quaternions etc.) and the boundary normal vectors 

(either Cartesian or polar coordinates), are well-defined. Hence, the parameterization for the 

complete grain boundary space involving these quantities is mainly concerned with combining 

the two quantities in a convenient way that helps simplify the equivalence relations on the grain 

boundary space. We first review the two relevant methods of parameterizing the complete grain 

boundary space; both were proposed by Morawiec [77]. 

Interface Matrix: The interface matrix combines the misorientation and boundary normal vector 

parameters of a grain boundary so that the resulting matrix can be used to express the grain 

exchange symmetry in a convenient way. The interface matrix 𝚩𝑨𝑩, describing the boundary 

with respect to grain A is given as: 

 𝚩𝑨𝑩 = � 0 (𝑛�⃗ 𝐵𝐴)𝑇

𝑛�⃗ 𝐴𝐵 𝐠(𝑀𝐴𝐵)� 
(4.10)  

And the interface matrix with respect to grain B is given by 𝐁𝑩𝑨 = 𝐁𝑨𝑩𝑻 . Because the interface 

matrix uses 15 parameters to describe a boundary, it is not useful for analyzing the topological 

properties of the grain boundary space.  

Symmetric Parameterization: Morawiec also proposed a symmetric way of parameterizing grain 

boundaries. Given boundary parameters (𝑀,𝑛�⃗ ), a rotation matrix 𝑁 is defined, which 

corresponds to the same rotation axis as 𝑀, but where the rotation angle is half of that for 𝑀, 

such that 𝑁 ∗ 𝑁 = 𝑀. This definition is well-defined for rotation angles less than 𝜋. If 𝑀 

corresponds to a rotation of 𝜋, there exist two equivalent descriptions (𝜋, �⃗�) and (𝜋,−�⃗�) in axis-

angle parameters. Hence a convention is assumed for selection of the axis if 𝑀 corresponds to a 

rotation of 𝜋. The normal vector is defined as 𝑟 = 𝑁−1 ∗ (𝑛�⃗ ). The advantage of this 

representation of grain boundaries is that the grain exchange symmetry is considerably 

simplified, and is expressed as: 

 (𝑁; 𝑟) ∼ (𝑁−1;−𝑟) (4.11)  
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Even though this parameterization is convenient for representing boundary parameters, it has 

some significant flaws that render it ineffective. First, it is important to note that neither the 

interface matrix nor the symmetric parameterization account for the ‘no-boundary’ singularity, 

since different boundary inclinations linked to 𝑀 = 𝐼 give distinct representations. Second, no 

matter what convention is used to select the rotation axis for misorientations of angle 𝜋, there is a 

discontinuity in the mapping from (𝑀;𝑛�⃗ ) to (𝑁; 𝑟) (refer to Appendix B). Hence the grain 

boundary space 𝓑 is not equivalent to the space represented using the parameters (𝑁; 𝑟).  

It is possible to remedy these problems by utilizing the quaternion parameterization of the 

rotation space. In order to obtain a rigorous and topologically consistent mapping from the grain 

boundary space to the symmetric representation, the two copies of the rotation space, i.e. the 

complete 3-sphere with antipodal identifications needs to be taken into consideration. We also 

show that the ‘no-boundary singularity’ is essential for a topologically consistent definition of 

the symmetric representation. 

4.3.1. Topologically Consistent Parameters for the Grain Boundary Space 

Using the quaternion parameterization, i.e. 𝓑 = (𝐪;𝑛�⃗ ), the grain boundary space is equivalent to 

𝑆3 × 𝑆2/𝐸, where the set of equivalence relations 𝐸 include: 

 

(a) (𝐪;𝑛�⃗ ) ∼ (−𝐪;𝑛�⃗ )  

(b) (𝐪;𝑛�⃗ ) ∼ ��𝑆𝑖�
−1
𝐪�𝑆𝑗�;  𝐠 ��𝑆𝑖�

−1
� ∗ 𝑛�⃗ �  

(c) (𝐪;𝑛�⃗ ) ∼ �𝐪−1; 𝐠(𝐪−1) ∗ (−𝑛�⃗ )�  

(d) �(1,0,0,0);𝑛�⃗ � ∼ �(1,0,0,0);𝑛′���⃗ � 

(4.12)  

So far, we have only used the fact that the rotation space 𝑆𝑂(3) is homeomorphic to the 3-sphere 

𝑆3 with antipodal points identified. The equivalence relation in Equation (4.12)(a) is this 

antipodal symmetry which is also referred to as the trivial symmetry of the rotation space. The 

relations Equation (4.12)(b), (c) and (d) are obtained by expressing Equation (4.1) in the 

quaternion parameterization. 
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Since the symmetric parameterization is related to the axis-angle parameters of the 

misorientation, it will be useful to define the function that relates the axis-angle parameters to the 

quaternion space as 𝐴: [0,2𝜋] × 𝑆2 → 𝑆3: 

 𝐴(𝜔, �⃗�) = �cos �
𝜔
2� ,𝑎𝑥 sin �

𝜔
2� ,𝑎𝑦 sin �

𝜔
2� ,𝑎𝑧 sin �

𝜔
2��  (4.13)  

The domain of the function 𝐴 is [0,2𝜋] × 𝑆2, since we let 𝜔 ∈ [0,2𝜋] and the axis �⃗� ∈ 𝑆2. It is 

important to note that 𝐴 is not an injective map since 𝐴(0, �⃗�) = (1,0,0,0) and 𝐴(2𝜋, �⃗�) =

(−1,0,0,0) for any �⃗� ∈ 𝑆2. But if 𝜔 ≠ {0,2𝜋}, the mapping 𝐴 is injective. Now, we define the 

mapping 𝑃: (𝐪;𝑛�⃗ ) → (𝐪; 𝑟), where (𝐪;  𝑟) is the new desired parameterization. 

 (𝐪; 𝑟) = 𝑃(𝐪;𝑛�⃗ ) = �
�𝐪; 𝐠�𝑝(𝐪)� ∗ [𝐶(𝐪)(𝑛�⃗ )]�    𝑖𝑓 𝑞0 ≠ −1

�(−1,0,0,0);  0�⃗ �                      𝑖𝑓 𝑞0 = −1
� (4.14)  

The scalar function 𝐶(𝐪) is defined as: 

 𝐶(𝐪) = �1 − max{((𝐪 ∗ 𝐆)0)2} (4.15)  

where 𝐆 is the rotational point group of the crystal, 𝐪 ∗ 𝐆 is the left coset of 𝐆 in 𝑆𝑂(3) and 

(𝐪 ∗ 𝐆)0 is the set of the first quaternion components of the left coset 𝐪 ∗ 𝐆. To state it simply, 

𝐶(𝐪) is a smooth function on the quaternion space and takes the value zero when the boundary 

misorientation is either the identity or symmetrically equivalent to the identity. This condition 

results in a parameterization that is compatible with the no-boundary singularity. In the case of 

the grain boundary space of a crystal with rotational point group symmetry 𝐶1, 𝐆 = 𝐶1 = {𝐼}, 

(𝐪 ∗ 𝐆)0 = 𝑞0 and 𝐶(𝐪) = �1 − 𝑞02.  

The second aspect of the mapping is the definition of 𝑝(𝐪). There is a one-to-one 

correspondence between quaternions 𝐪 and axis-angle parameters (𝜔;  �⃗�) where 𝜔 ∈ (0,2𝜋) and 

�⃗� ∈ 𝑆2. Hence, for all quaternions that do not correspond to identity rotations (𝜔 ≠ {0,2𝜋} or 

equivalently 𝑞0 ≠ ±1 ), (𝜔, �⃗�) = 𝐴−1(𝐪) is well-defined. 𝑝(𝐪) is defined such that 𝐠�𝑝(𝐪)� =

𝐠 �𝜔
2

;−�⃗��, where (𝜔, �⃗�) = 𝐴−1(𝐪). In terms of quaternion parameters, 𝑝(𝐪) takes the form: 
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 𝑝(𝐪) =
1

�2(1 + 𝑞0)
(1 + 𝑞0 −𝑞1 −𝑞2 −𝑞3) (4.16)  

Even though the function 𝐴−1 is not well defined for 𝜔 = 0, i.e. 𝑞0 = 1, the function 𝑝(𝐪) is 

well-defined. When 𝜔 = 0, the rotation axis �⃗� is undetermined but this is not an issue in the 

definition of matrix 𝑝(𝐪). If misorientation 𝐪 corresponds to a rotation angle 𝜔 = 0, the rotation 

𝑝(𝐪) corresponds to a rotation angle  𝜔
2

= 0, and hence it is not necessary to determine the axis 

of rotation �⃗�. But when 𝜔 = 2𝜋, i.e. 𝑞0 = −1, the function 𝑝(𝐪) is undefined. In the definition 

of the function 𝑃, 𝑝(𝐪) appears only if 𝑞0 ≠ −1. The abrupt change in the definition of 𝑃 in the 

neighborhood of 𝑞0 = −1 does not result in any discontinuity of the mapping. Due to the no-

boundary singularity, the function 𝐶(𝐪) approaches zero in the neighborhood of 𝑞0 = −1, which 

is essential for the continuity of the mapping. These aspects of the map 𝑃, especially in the 

neighborhood of 𝑞0 = −1, are treated in Appendix B.  

The equivalence relations on the grain boundary space parameterized using (𝐪;  𝑟) are (refer to 

Appendix B for explicit derivations): 

 

(a) (𝐪; 𝑟) ∼ (−𝐪; 𝐠(𝜋, �⃗�) ∗ 𝑟)  

(b) (𝐪; 𝑟) ∼ ��𝑆𝑖�
−1
𝐪�𝑆𝑗�; 𝐠 �𝑝 ��𝑆𝑖�

−1
𝐪�𝑆𝑗�� �𝑆𝑖�

−1�𝑝(𝐪)�−1� ∗ 𝑟�  

(c) (𝐪; 𝑟) ∼ �𝐪−1;  (−𝑟)�  

(4.17)  

The first advantage of this parameterization is the absence of an additional condition specifying 

the ‘no-boundary’ singularity. The (𝐪; 𝑟) accounts for the identification of all the boundary 

normal vectors for zero-misorientation boundaries. The equivalence relation due to grain 

exchange symmetry (4.17)(c) is now simplified6

(4.17)

 considerably. But the equivalence relations due 

to the trivial symmetry (a) of the rotation space and the relations associated with the 

rotational symmetries (4.17)(b) of the crystals are more complicated. The relations in Equation 

(4.17)(b) have a simple form only when 𝑆𝑖 = 𝑆𝑗 and can be expressed as: 

                                                 
6 It is important to note that by 𝑞−1 we only mean (𝑞0,−𝑞1,−𝑞2,−𝑞3) and not (−𝑞0, 𝑞1,𝑞2,𝑞3) 
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 (𝐪; 𝑟) ∼ ((𝑆)−1𝐪(𝑆);𝐠((𝑆)−1) ∗ 𝑟), where 𝑆𝑖 = 𝑆𝑗 = 𝑆 (4.18)  

The relations in Equation (4.17)(a) and (b) cannot be simplified any further in a general case and 

it is due to these complications that the topology of the complete grain boundary space remains 

intractable. But the (𝐪; 𝑟) parameterization is very powerful in interpreting symmetries of grain 

boundary inclinations along a fixed axis of misorientation and allows for the identification of this 

subset of the grain boundary space as the 3-sphere (𝑆3). In the following sections, we present the 

analysis for distribution of inclinations for boundaries with misorientation axis along a fixed, 

high-symmetry crystal direction. 

4.4. Hyperspherical Harmonics for the Single-Axis Grain Boundary Space 
We are primarily concerned with the collection of boundary inclinations of boundaries with 

misorientations confined to a fixed, high-symmetry axis. This subset of the complete grain 

boundary space is particularly relevant because it belongs to the collection of grain boundaries of 

perfect fiber-textured materials (thin films and severely extruded metals). There have also been 

numerous studies where statistical analyses of boundary inclinations that correspond to 

misorientations along a specific axis (particularly along the symmetry axis of the crystal) are of 

interest [41, 42, 44, 45, 49, 98-102, 51, 103, 104, 47, 105]. We use the (𝐪;  𝑟) parameterization 

developed in the previous section where the vector 𝑟 is related to the measured boundary 

inclination vector 𝑛�⃗  by the relation 𝑟 = �𝐠�𝑝(𝐪)��−1 ∗ 𝐶(𝐪) ∗ 𝑛�⃗  (Equation (4.14)). The 

equivalence relations on the complete grain boundary space depend on the crystallographic point 

group and we begin our analysis with crystals corresponding to point group 𝐶1. The extension to 

the 32 crystallographic point groups can be made by sequential addition of rotational, inversion 

and mirror symmetries (refer to Appendix C). 

We revisit the 𝐶1-misorientation fundamental zone (shown in Figure 4.6(a)) and restrict the 

misorientations to the fundamental zone, i.e. the misorientation angle 𝜔 lies in the range [0,𝜋] 

and the axis of misorientation �⃗� is such that 𝑎3 ≥ 0 (𝑞0, 𝑞3 ≥ 0). We are interested in grain 

boundary misorientations along a single axis and since all the axes are equivalent, we investigate 

the boundary space with misorientations along the 𝑧-axis. The boundary inclination space is 

visualized by attaching a 2-sphere of radius 𝐶(𝐪) = �1 − 𝑞02 to each misorientation along this 
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axis. For example, the boundary normal space associated with the boundary misorientation 

𝐪 = (cos(𝜔/2), 0,0, sin(𝜔/2)), where 𝜔 = 𝜋/2, is shown in Figure 4.6(b).  

 

 

Figure 4.6 Single-axis grain boundary space for point group 𝑪𝟏. (a) Grain boundary misorientation 
fundamental zone for 𝑪𝟏 point group in orthogonal projection and with misorientations along the 𝒛-axis 
highlighted. (b) There is a boundary inclination space (2-sphere) associated with every boundary 

misorientation. This is represented by attaching the north-pole of a sphere (of radius 𝑪(𝐪) = �𝟏− 𝒒𝟎𝟐 ) to 

each boundary misorientation. Shown here is a 2-sphere of radius 𝟏
√𝟐

 attached to the misorientation 

corresponding to (𝝎,𝒂��⃗ ) = �𝝅
𝟐

, [𝟎 𝟎 𝟏]�, .i.e. 𝒒��⃗ = �𝟎,𝟎, 𝟏
√𝟐

 �. (c) A solid parametric ball obtained by considering 
all the boundary inclinations with 𝒛-axis as the misorientation axis. (d) A schematic illustration of the mirror 
symmetry on the surface of the parametric ball; any vector [𝒓𝟏 𝒓𝟐 𝒓𝟑] ∼ [𝒓𝟏 𝒓𝟐 −𝒓𝟑]. 
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The boundary parameters that are symmetrically equivalent to the boundary �(𝑞0, 0,0, 𝑞3 ); 𝑟� are 

given as: 

 

�(𝑞0, 0,0,𝑞3 ); 𝑟� ∼ (−(𝑞0, 0,0, 𝑞3 );𝑅 ∗ 𝑟) ∼ �(𝑞0, 0,0,−𝑞3 );−𝑟� 

∼ �(−𝑞0, 0,0, 𝑞3 );𝑅 ∗ (−𝑟)� 

where 𝑞0 = cos �𝜔
2
�, 𝑞3 = sin �𝜔

2
�,  𝑅 = 𝐠(𝜋, [0 0 1]). 

(4.19)  

These equivalences are obtained from Equation (4.17) by substituting 𝑞2 = 𝑞3 = 0. None of the 

equivalent boundaries have misorientations that lie in the misorientation fundamental zone 

except for boundaries with misorientation angle 𝜔 = 𝜋 (i.e. 𝑞0 = 0). It can be observed from the 

above equation (by substituting 𝑞0 = 0 and 𝑞3 = 1) that the boundary inclination space 

associated with misorientation angle 𝜋 has the special symmetry: 

 �(0,0,0, 1 ); 𝑟� ∼ �(0,0,0, 1 ); 𝐠(𝜋, [0 0 1]) ∗ (−𝑟)� (4.20)  

The operation 𝐠(𝜋, [0 0 1]) ∗ (−𝑟) is a rotation by 𝜋 along the 𝑧-axis and an inversion about 

the origin, which is equivalent to a mirror perpendicular to the 𝑧-axis. This symmetry applies 

only to the boundaries with misorientations of angle 𝜋. The single-axis boundary space, obtained 

by considering all the misorientation angles 𝜔 ∈ [0,𝜋] along the 𝑧-axis, is simply a solid sphere 

(similar in concept to the parametric ball for the rotation space) where each point parameterizes 

the boundary; the boundary inclination lies along the vector joining the origin and the point in 

the solid sphere and the boundary misorientation angle is proportional to the magnitude of the 

vector �= �1 − 𝑞02 = sin(𝜔/2)� (Figure 4.6(c)).  

Any boundary associated with a misorientation angle less than 𝜋 has a unique representative in 

this solid parametric ball. For boundaries with misorientation 𝜋, there are two distinct (yet 

symmetrically equivalent) representatives, which are related through a mirror perpendicular to 

the 𝑧-axis, as illustrated in Figure 4.6(d). This parametric ball with identifications on the surface 

is equivalent to a 3-sphere (𝑆3) with an appropriate equivalence relation. Therefore, we define 

parameters (𝑤, 𝑥, 𝑦, 𝑧) ∈ 𝑆3, such that  
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 𝑤 = cos �
𝜔
2� ;  𝑥 = 𝑟1;𝑦 = 𝑟2; 𝑧 = 𝑟3 (4.21)  

It is necessary to extend the misorientation angle beyond 𝜋 to complete the mapping of the 

boundary parameters to the 3-sphere. The equivalence relation that relates the boundaries in the 

fundamental zone (𝜔 ≤ 𝜋) to the boundaries with misorientation angle 𝜔 ≥ 𝜋 is obtained from 

Equation (4.19)  and is given by: 

 

��cos �
𝜔
2� , 0,0, sin �

𝜔
2�� ; 𝑟� 

∼ ��cos �
2𝜋 − 𝜔

2
� , 0,0, sin�

2𝜋 − 𝜔
2

�� ; 𝐠(𝜋, [0 0 1]) ∗ −𝑟� 

⇒ (𝑤, 𝑥,𝑦, 𝑧) ∼ (−𝑤, 𝑥,𝑦,−𝑧) 

(4.22)  

This equivalence relation is obtained by using the grain exchange symmetry and is necessary to 

obtain a mapping from the 𝑧-axis grain boundary space to the 3-sphere. The equivalence relation 

is compatible with the surface identifications on the parametric ball; the surface of the parametric 

ball has 𝑤 = 0 and the equivalence relation is essentially (0, 𝑥,𝑦, 𝑧) ∼ (0, 𝑥,𝑦,−𝑧) (a mirror-

plane perpendicular to the 𝑧-axis). Hence, the 𝑧-axis boundary space is expressed as:  

 𝓑[0 0 1] = 𝑆3/[(𝑤, 𝑥,𝑦, 𝑧) ∼ (−𝑤, 𝑥,𝑦,−𝑧)] (4.23)  

This formulation can be generalized to the boundary space corresponding to any axis �⃗� by 

defining the parameters (𝑤, 𝑥,𝑦, 𝑧) such that 

 𝑤 = 𝑞0 = cos(𝛼) ; �
𝑥
𝑦
𝑧
� = 𝐠 �𝜃, �cos �𝜙 −

𝜋
2� sin �𝜙 −

𝜋
2� 0�� ∗ �

𝑟1
𝑟2
𝑟3
� (4.24)  

where (𝜃,𝜙) are the polar coordinates of the axis �⃗�, and the rotation matrix 𝐠 in the above 

equation rotates the vector described by �⃗� into coincidence with the positive 𝑧-axis. The 

boundary space along �⃗� is equivalent to the 𝑧-axis boundary space and is given by: 

 𝓑𝒂��⃗ = 𝑆3/[(𝑤, 𝑥,𝑦, 𝑧) ∼ (−𝑤, 𝑥,𝑦,−𝑧)] (4.25)  
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where the parameters (𝑤, 𝑥,𝑦, 𝑧) are defined by Equation (4.24). Summarized in Figure 4.7 are 

the symmetries present in the boundary inclination space (2-sphere) corresponding to each 

misorientation along the 𝑧-axis. 

 

Figure 4.7 The equivalence relations on the boundary space can used to determine the symmetries associated 
with the boundary inclination space (2-sphere). (a) Corresponding to any misorientation with angle 𝝎 ∈
[𝟎,𝝅), the boundary inclination space has no symmetries (𝑪𝟏). (b) Corresponding to misorientation 
angle 𝝎 = 𝝅, the boundary inclination space has the symmetry 𝑪𝒔. 

In principle, it is possible to express the grain boundary space for any crystallographic point 

group along any arbitrary axis as a quotient space of the 3-sphere. The equivalence relations to 

be imposed on the 3-sphere depend on the location of the misorientation axis and the 

crystallographic point group. Due to significant amount of interest in boundary distributions that 

are associated only with high-symmetry axes, we confine our analysis to these special axes and 

the appropriate equivalence relations depend upon the point group and the type of the symmetry 

axis. These equivalence relations are closely related to the well-know bicrystal symmetries [78] 

and are discussed in great detail in Appendix C. 

The existence of a mapping from the single-axis grain boundary space to the quotient space of 

the 3-sphere (𝑆3/𝐸) suggests that the ‘no-boundary’ singularity can be resolved for perfect fiber-

textured grain boundary space. Any square-integrable function defined on the 3-sphere can be 

expanded as a linear combination of the hyperspherical harmonics [59], which are the standard 

basis functions on the 3-sphere (analogous to spherical harmonics on the 2-sphere and the 
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Fourier series on a unit-circle). Therefore, a probability distribution of grain boundaries with 

misorientations along a single axis may be expanded as an infinite linear combination of the 

hyperspherical harmonics 𝑍𝑙,𝑚𝑛 (𝛼, 𝜂, 𝜒) [106] as: 

 𝑓(𝛼, 𝜂,𝜒) = �� � 𝑧𝑙,𝑚𝑛
𝑙

𝑚=−𝑙

𝑛

𝑙=0

∞

𝑛=0

 𝑍𝑙,𝑚𝑛 (𝛼, 𝜂, 𝜒) (4.26)  

where 𝛼 corresponds to the misorientation angle and (𝜂,𝜒) correspond to the polar coordinates 

of the boundary normal. The coefficients 𝑧𝑙,𝑚𝑛  are determined from the inner product of the 

function 𝑓(𝛼, 𝜂,𝜒) and the appropriate harmonics. It is also necessary that the function 𝑓 inherit 

the symmetries of the boundary space (tabulated in Table C.1). The symmetrization procedure of 

the hyperspherical harmonics has been well developed and utilized for the expansion of 

Orientation Distribution Functions [59]. The same formulation can be directly extended to 

symmetrize the hyperspherical harmonics using appropriate symmetries.  

4.5. Conclusions 

The grain exchange symmetry (𝑀;  𝑛�⃗ ) ∼ �𝑀−1; 𝐠(𝑀−1) ∗ (−𝑛�⃗ )� has profound implications for 

the topology of the grain boundary misorientation spaces. We have shown that for the 2-D 

systems, when the grain exchange symmetry is applied to the grain boundary space, the 

complication due to the ‘no-boundary’ singularity is removed. Similar analysis revealed the 

topology of the single-axis grain boundary space to be equivalent to the quotient space of the 3-

sphere (with equivalence relations that depend on the crystal direction and crystallographic point 

group). With this advance, it is now possible to express continuous functions on the space of 

single-axis grain boundaries as a linear combination of hyperspherical harmonics.  
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5. Closing Remarks 
Understanding the abstract mathematical space inhabited by the grain boundary parameters and 

the effect of various symmetries on the topology of these spaces is essential for analyzing the 

vast amount of experimental data available on grain boundaries. To this end, the topology of the 

misorientation spaces was investigated in order to improve the visualization of grain boundary 

misorientations. It has also been shown that the ‘no-boundary singularity’ can be resolved for the 

2D grain boundary space and the fiber-textured grain boundary space, which are simplified 

subspaces of the complete five-parameter grain boundary space. Resolving the singularity is 

crucial for developing analytical functions relating grain boundary structure and property, for 

incorporating grain boundary distribution information in modeling and microstructure sensitive 

design of polycrystalline materials. The major results and implications are summarized below. 

5.1. Visual Maps for Grain Boundary Misorientations 
The first step in the analysis of grain boundary networks is usually graphical representation, 

since visualization is, in many cases, tantamount to understanding. Despite recent advances in 

characterization techniques, there remain fundamental problems in representing grain boundary 

network information. This situation has arisen in part because grain boundary misorientations 

have no known mapping to a simple Euclidean space; conventional wisdom suggests that the 

misorientation space is equivalent to the rotation space, which is known to require five variables 

for a continuous one-to-one mapping. Contrary to this expectation, it has been shown that the 

misorientation spaces for grain boundaries of crystals with rotational point groups 𝐷2(222), 

𝐷4(422), 𝐷6(622), 𝑇(23) and 𝑂(432) can indeed be mapped to three-dimensional Euclidean 

space.  

The effect of the symmetries (Equation (1.8)) on the topology of the grain boundary 

misorientation space is non-trivial. The grain exchange symmetry simplifies the topology of the 

rotation spaces and results in simply connected spaces, as demonstrated in this thesis for the first 

time. However, this work has also shown that a combination of the rotational symmetry 

operations and the grain exchange symmetry is essential for an embedding in ℝ3. With this 

advance, grain boundary misorientation maps have been constructed where grain boundary 

networks can now be “colored”, with every color uniquely reflecting the full misorientation 

information of every boundary in the network. The continuity of the coloring schemes adds to 
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the intuitiveness of these maps since it is possible to directly interpret the distance between 

boundary misorientations from the difference in contrast of the boundary colors. 

Implication for future work: The coloring schemes developed for grain boundary misorientations 

may also be used for representing any information that involves rotational differences. As shown 

in section 3.4, the coloring schemes can be utilized to develop more accurate orientation maps. 

These coloring schemes may prove useful in representing changes in orientations of individual 

grains during phase transformations such as martensitic phase transformation, or in representing 

microstructural evolution during plastic deformation etc.  

5.2. Topology of the Single-Axis Grain Boundary Space 
Insight into the topology of the five-parameter space has been gained in this thesis by first 

investigating simplified subsets of the grain boundary space. Analysis of the 2D grain boundary 

space underscored the importance of the grain exchange symmetry in resolving the topology of 

the grain boundary space. This work reveals some important simplifications to this space. First, 

when the grain exchange symmetry is applied to the 2D grain boundary space, the complication 

due to the ‘no-boundary’ singularity is removed. New parameters (𝜃 ′,𝜙′) (Equation (4.5)) have 

been introducted to represent the grain boundary parameters and the topology of the boundary 

space expressed using this parameterization was found to be equivalent to the quotient space of a 

2-sphere (𝑆2).  

Since the grain exchange symmetry has a complicated form in the full five-parameter space, a 

new parameterization has been developed to simplify this relation to some extent (Equation 

(4.14)). Using this parameterization and extending the analysis of the 2D grain boundary space, 

the topology of the grain boundary space along a single-axis has been resolved and it was 

observed that this subspace can be expressed as the quotient space of the 3-sphere, with 

equivalence relations depending upon the crystal direction and the crystallographic point group 

under consideration. As a result of these findings, the round metric on the 3-sphere may be used 

to define distances between grain boundaries with common misorientation axis, and symmetrized 

hyperspherical harmonics (Equation (4.26)) can be used to express single-axis grain boundary 

distributions.  



95 
 

Implication for future work: The single-axis grain boundary space is a good approximation for 

the grain boundaries of fiber textured materials such as thin films. With the aid of the 

hyperspherical harmonic formulation it is now possible to express distributions of grain 

boundaries in these materials using continuous functions. Such functions are very useful in 

simulating microstructures of fiber-textured materials. This framework presents the possibility of 

expressing the energy of grain boundaries in these materials using a continuous function, and the 

derivatives of this energy function provide an estimate for the driving force for evolution of grain 

boundaries. Hence, the expansion of energy function as a linear combination of hyperspherical 

harmonics may prove extremely valuable in understanding microstructural evolution in these 

materials. 

5.3. Comments on the Five-parameter Grain Boundary Space 
Our analysis of the single-axis grain boundary space revealed a critical and previously 

unappreciated role of grain exchange symmetry in understanding the topology of the space of 

grain boundary parameters. A new parameterization has been developed in the effort to simplify 

the grain exchange symmetry but there still remain complications with the equivalence relations 

on the complete boundary space. The extent of simplification can be better appreciated by 

comparing the symmetries on the complete grain boundary space for point group 𝐶1 in (𝐪;𝑛�⃗ ) 

and (𝐪; 𝑟) parameterizations. 

Equivalence relations using (𝐪;𝑛�⃗ ) parameterization: 

 

(a) �(𝑞0,𝑞1, 𝑞2,𝑞3); 𝑟� ∼ �(−𝑞0,−𝑞1,−𝑞2,−𝑞3); 𝑟� 

(b) �(𝑞0, 𝑞1, 𝑞2, 𝑞3); 𝑟� ∼ �(𝑞0,−𝑞1,−𝑞2,−𝑞3);𝐠(𝜔,−�⃗�) ∗ 𝑟� 

(c) �(𝑞0,𝑞1, 𝑞2,𝑞3); 𝑟� ∼ �(−𝑞0,𝑞1,𝑞2,𝑞3); 𝐠(𝜔,−�⃗�) ∗ 𝑟� 

(5.1)  

Equivalence relations using (𝐪; 𝑟) parameterization: 

 

(a) �(𝑞0,𝑞1, 𝑞2,𝑞3); 𝑟� ∼ �(−𝑞0,−𝑞1,−𝑞2,−𝑞3);𝐠(𝜋, �⃗�) ∗ 𝑟� 

(b) �(𝑞0,𝑞1, 𝑞2,𝑞3); 𝑟� ∼ �(𝑞0,−𝑞1,−𝑞2,−𝑞3);−𝑟� 
(5.2)  



96 
 

(c) �(𝑞0,𝑞1, 𝑞2,𝑞3); 𝑟� ∼ �(−𝑞0,𝑞1,𝑞2,𝑞3); 𝐠(𝜋, �⃗�) ∗ −𝑟�  

Whereas the relations in (𝐪;𝑛�⃗ ) depend on both the angle (𝜔) and axis (�⃗�) of the misorientation, 

the equivalences expressed using (𝐪; 𝑟) depend only on the axis of misorientation. Such a 

simplification suffices when the single-axis grain boundary space is under consideration since 

the misorientation axis �⃗� is fixed. However, in order to incorporate complete boundary 

information, the grain exchange symmetry needs to be simplified further. Other important 

aspects of the equivalence relations are the crystallographic point group symmetries, which, as 

observed in the analysis of the misorientation spaces, have a non-trivial effect on the topology of 

the grain boundary space. It is suspected that a combination of the rotational symmetry elements 

and the grain exchange symmetry will be necessary to resolve the ‘no-boundary’ singularity in 

the complete grain boundary space.  
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Appendix A: Explicit Mappings for Misorientation Spaces 
The explicit mappings for grain boundary misorientation spaces are presented in this appendix. 

Equations (A1), (A2), (A3), (A4) and (A5) provide continuous and bijective mappings from the 

misorientation spaces of 𝐶2(2), 𝐶3(3), 𝐶4(4), 𝐶6(6) and 𝐷3(32) to the 𝐶1(1) misorientation 

space and hence demonstrate topological equivalence between them. Topological equivalence 

between the grain boundary misorientation spaces of point groups 𝐷2(222),  𝐷4(422) and 

𝐷6(622) is provided by continuous maps from 𝐷4(422) to 𝐷2(222) in Equation (A6) and the 

map from 𝐷6(622) to 𝐷2(222) in Equation (A7) . The embeddings of misorientation spaces of 

𝐷2(222), 𝑇(23) and 𝑂(432) in ℝ3 are provided in Equations (A8), (A9) and (A10) respectively. 

The mapping from 𝐶2 to 𝐶1 is given by: 

 

1) (𝑥1, 𝑦1, 𝑧1) ≡ �𝑞12+𝑞22+2𝑞32

𝑞12+𝑞22+𝑞32
(𝑞1,𝑞2,𝑞3) 

2) (𝑥2,𝑦2, 𝑧2) ≡ ��𝑥12 + 𝑦12 cos 2𝜙 ,�𝑥12 + 𝑦12 sin 2𝜙 , 𝑧1� ; 

𝜙 = tan 𝑦1
𝑥1

  

3) (𝑥3,𝑦3, 𝑧3) ≡ �𝑥2,𝑦2, 𝑧2 − �1 − 𝑥22 − 𝑦22� 

4) | �𝑥4    𝑦4    𝑧4〉 ≡ 𝐠(𝜋, [100]) ∗ | �𝑥3    𝑦3    𝑧3〉; 

(A1)  

 

The mapping from 𝐶3 to 𝐶1 is given by: 

 

1) (𝑥1,𝑦1, 𝑧1) ≡ �𝑞12+𝑞22+4𝑞32

𝑞12+𝑞22+𝑞32
(𝑞1,𝑞2,𝑞3) 

2) (𝑥2, 𝑦2, 𝑧2) ≡ ��𝑥12 + 𝑦12 cos 3𝜙 ,�𝑥12 + 𝑦12 sin 3𝜙 , 𝑧1� ; 

𝜙 = tan 𝑦1
𝑥1

  

3) (𝑥3, 𝑦3, 𝑧3) ≡ �𝑥2, 𝑦2, 𝑧2 − �1 − 𝑥22 − 𝑦22� 

4) | �𝑥4    𝑦4    𝑧4〉 ≡ 𝐠(𝜋, [100]) ∗ | �𝑥3    𝑦3    𝑧3〉; 

(A2)  
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The mapping from 𝐶4 to 𝐶1 is given by:  

 

1) (𝑥1,𝑦1, 𝑧1) ≡ �𝑞12+𝑞22+�1+�1+√2�
2
�𝑞32

𝑞12+𝑞22+𝑞32
(𝑞1,𝑞2, 𝑞3) 

2) (𝑥2, 𝑦2, 𝑧2) ≡ ��𝑥12 + 𝑦12 cos 4𝜙 ,�𝑥12 + 𝑦12 sin 4𝜙 , 𝑧1� ; 

𝜙 = tan
𝑦1
𝑥1

 

3) (𝑥3, 𝑦3, 𝑧3) ≡ �𝑥2, 𝑦2, 𝑧2 − �1 − 𝑥22 − 𝑦22� 

4) | �𝑥4    𝑦4    𝑧4〉 ≡ 𝐠(𝜋, [100]) ∗ | �𝑥3    𝑦3    𝑧3〉; 

(A3)  

 

The mapping from 𝐶6 to 𝐶1 is given by:  

 

1) (𝑥1,𝑦1, 𝑧1) ≡ �𝑞12+𝑞22+�1+�2+√3�
2
�𝑞32

𝑞12+𝑞22+𝑞32
(𝑞1,𝑞2,𝑞3) 

2) (𝑥2,𝑦2, 𝑧2) ≡ ��𝑥12 + 𝑦12 cos 6𝜙 ,�𝑥12 + 𝑦12 sin 6𝜙 , 𝑧1� ; 

𝜙 = tan 𝑦1
𝑥1

  

3) (𝑥3,𝑦3, 𝑧3) ≡ �𝑥2,𝑦2, 𝑧2 − �1 − 𝑥22 − 𝑦22� 

4) | �𝑥4    𝑦4    𝑧4〉 ≡ 𝐠(𝜋, [100]) ∗ | �𝑥3    𝑦3    𝑧3〉; 

(A4)  
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The mapping from 𝐷3 to 𝐶1 is given by:  

 

1) (𝑥1,𝑦1, 𝑧1) ≡ 1

�1−𝑞12−𝑞22−𝑞32
(𝑞1,𝑞2,𝑞3) 

2) (𝑥2,𝑦2, 𝑧2) ≡ � 𝑥12

𝑥12+𝑦12
, 𝑥1𝑦1
𝑥12+𝑦12

, 𝑧1 ��
3
2
�� 

3) (𝑥3,𝑦3, 𝑧3) ≡ ��𝑥22 + 𝑦22 cos 3𝜙 ,�𝑥22 + 𝑦22 sin 3𝜙 , 𝑧2� ; 

𝜙 = tan 𝑦2
𝑥2

  

4) (𝑥4,𝑦4, 𝑧4) ≡ �𝑥3�1 − 𝑧32,𝑦3�1 − 𝑧32, 𝑧3� 

5)  | �𝑥5 𝑦5 𝑧5〉 ≡ 𝐠 �2𝜋
3

, [1 1 1]� ∗ | �𝑥4 𝑦4 𝑧4〉; 

6) (𝑥6,𝑦6, 𝑧6) ≡ �
(𝑥5, 𝑦5, 𝑧5); 𝑟 = �𝑦52 +  𝑧52                 𝑓𝑜𝑟 𝑟 ≤ 1

√2

(𝑥5, 𝑟 sin(𝜙1), 𝑟 cos(𝜙1));                   𝑓𝑜𝑟 𝑟 > 1
√2

 
                    

� 

 𝜙1 =
arcsin�𝑦5𝑟 � 

arcsin� 1
√2𝑟

�
�𝜋
2
�  

7) (𝑥7,𝑦7, 𝑧7) ≡ ��𝑥62 + 𝑦62 cos 2𝜙 ,�𝑥62 + 𝑦62 sin 2𝜙 , 𝑧6� ; 

𝜙 = tan 𝑦6
𝑥6

  

8) (𝑥8,𝑦8, 𝑧8) ≡ �𝑥7,𝑦7, 𝑧7 − �1 − 𝑥72 − 𝑦72� 

9) | �𝑥9 𝑦9 𝑧9〉 ≡ 𝐠(𝜋, [100]) ∗ | �𝑥8 𝑦8 𝑧8〉; 

(A5)  
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The mapping from 𝐷4 to 𝐷2 is given by:  

 

1) (𝑥,𝑦, 𝑧) ≡ 1

�1−𝑞12−𝑞22−𝑞32
(𝑞1,𝑞2,𝑞3) 

2) (𝑥1,𝑦1, 𝑧1) ≡

⎩
⎪
⎨

⎪
⎧� 𝑥2

�𝑥2+𝑦2
, 𝑥𝑦
�𝑥2+𝑦2

, 𝑧
tan�𝜋8�

�  𝑓𝑜𝑟  tan �𝑦
𝑥
� ≤ 𝜋

8

� 𝑥(𝑥+𝑦)
�2(𝑥2+𝑦2)

, 𝑦(𝑥+𝑦)
�2(𝑥2+𝑦2)

, 𝑧
tan�𝜋8�

�  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

� 

3) (𝑥2,𝑦2, 𝑧2) ≡ � 𝑥12−𝑦12

�𝑥12+𝑦12
, 2𝑥1𝑦1

�𝑥12+𝑦12
, 𝑧1� 

4) (𝑥3,𝑦3, 𝑧3) ≡ �
𝑥2�𝑥22+𝑦22

max(𝑥2,𝑦2) ,
𝑦2�𝑥22+𝑦22

max(𝑥2,𝑦2) , 𝑧2� 

5) (𝑥4,𝑦4, 𝑧4) ≡ 1

�1+𝑥32+𝑦32+𝑧32
(𝑥3, 𝑦3, 𝑧3) 

(A6)  

 

The mapping from 𝐷6 to 𝐷2 is given by:  

 

1) (𝑥,𝑦, 𝑧) ≡ 1

�1−𝑞12−𝑞22−𝑞32
(𝑞1,𝑞2, 𝑞3) 

2) (𝑥1,𝑦1, 𝑧1) ≡

⎩
⎪
⎨

⎪
⎧� 𝑥2

�𝑥2+𝑦2
, 𝑥𝑦
�𝑥2+𝑦2

, 𝑧
tan� 𝜋12�

�  𝑓𝑜𝑟  tan �𝑦
𝑥
� ≤ 𝜋

12

� 𝑥�√3𝑥+𝑦�
2�(𝑥2+𝑦2)

, 𝑦�√3𝑥+𝑦�
2�(𝑥2+𝑦2)

, 𝑧
tan� 𝜋12�

�  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

� 

3) (𝑥2, 𝑦2, 𝑧2) ≡ � 4𝑥13

𝑥12+𝑦12
− 3𝑥1, 3𝑦1 −

4𝑦13

𝑥12+𝑦12
, 𝑧1� 

4) (𝑥3, 𝑦3, 𝑧3) ≡ �
𝑥2�𝑥22+𝑦22

max(𝑥2,𝑦2) ,
𝑦2�𝑥22+𝑦22

max(𝑥2,𝑦2) , 𝑧2� 

5) (𝑥4, 𝑦4, 𝑧4) ≡ 1

�1+𝑥32+𝑦32+𝑧32
(𝑥3,𝑦3, 𝑧3) 

(A7)  
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The embedding 𝐷2 in ℝ3 is given by:  

 

1) (𝑥,𝑦, 𝑧) ≡ 1

�1−𝑞12−𝑞22−𝑞32
(𝑞1,𝑞2, 𝑞3) 

2) (𝑥1,𝑦1, 𝑧1) ≡ √3max(𝑥,𝑦,𝑧)
𝑥+𝑦+𝑧

(𝑥,𝑦, 𝑧) 

3) | �𝑥2    𝑦2    𝑧2〉 ≡ 𝑅 ∗ | �𝑥1    𝑦1    𝑧1〉; 

𝑅 = 𝐠 �−acos � 1
√3
� , [−110], � ∗ 𝐠 � 𝜋

12
, [1 1 1]�   

4) (𝑥3, 𝑦3, 𝑧3) = �
𝑥2𝑠𝑖𝑛�

𝜋
6+𝑚𝑜𝑑�𝜙1,2𝜋3 ��

sin�𝜋6� 
,� �
𝑦2𝑠𝑖𝑛�

𝜋
6+𝑚𝑜𝑑�𝜙1,2𝜋3 ��

sin�𝜋6� 
, 𝑧2 − 1� ;  

𝜙1 = atan �𝑦2
𝑥2
� where "𝑚𝑜𝑑" represents the modulo operation. 

5) (𝑥4, 𝑦4, 𝑧4) ≡
��𝑥32+𝑦32−𝑧3�

�𝑥32+𝑦32+𝑧32
(𝑥3,𝑦3, 𝑧3) 

6) (𝑥5, 𝑦5, 𝑧5) ≡ ��𝑥42 + 𝑦42 cos�
3�𝑚𝑜𝑑�𝜙2,2𝜋3 ��

2
� ,� ��𝑥42 + 𝑦42 sin�

3�𝑚𝑜𝑑�𝜙2,2𝜋3 ��

2
� , 𝑧4� ; 

𝜙2 = atan �
𝑦4
𝑥4
� 

7) (𝑥6, 𝑦6, 𝑧6) ≡ �𝑥5,�𝑦52 + 𝑧52 sin(2𝜙3), �  �−�𝑦52 + 𝑧52 cos(2𝜙3)� ; 

𝜙3 = atan �
𝑦5
−𝑧5

�  

8) (𝑥7, 𝑦7, 𝑧7) ≡ ��𝑥62 + 𝑦62 cos�2𝜙4
3

+ �𝜙2 − 𝑚𝑜𝑑 �𝜙2, 2𝜋
3
��� , � 

��𝑥62 + 𝑦62 sin�
2𝜙4

3 + �𝜙2 −𝑚𝑜𝑑 �𝜙2,
2𝜋
3
��� , 𝑧6�  ;  𝜙4 = atan �

𝑦6
𝑥6
� 

(A8)  
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The embedding 𝑇 in ℝ3 is given by:  

 

1) (𝑥,𝑦, 𝑧) ≡ 1

�1−𝑞12−𝑞22−𝑞32
(𝑞1,𝑞2,𝑞3) 

2) | �𝑥1    𝑦1    𝑧1〉 ≡ 𝑅 ∗ | �𝑥    𝑦    𝑧〉; 

𝑅 = 𝐠 �−acos � 1
√3
� , [−110]� ∗ 𝐠 �−𝜋

4
, [1 1 1]�  

3) (𝑥2,𝑦2, 𝑧2) ≡ �𝑥1�√3𝑦1+𝑥1��𝑥1+√3𝑦1��𝑥1−√3𝑦1�
2�𝑥12+𝑦12�

3
2

, � �𝑦1�√3𝑦1+𝑥1��𝑦1+√3𝑥1��√3𝑥1−𝑦1�
2�𝑥12+𝑦12�

3
2

, 𝑧1� 

(A9)  

 

The embedding 𝑂 in ℝ3 is given by:  

 

1) (𝑥,𝑦, 𝑧) ≡ 1

�1−𝑞12−𝑞22−𝑞32
(𝑞1,𝑞2,𝑞3) 

2) (𝑥1,𝑦1, 𝑧1) ≡ ��𝑥, 𝑥(𝑦+𝑧)
(1−𝑥) , 𝑥𝑧(𝑦+𝑧)

𝑦(1−𝑥) �  𝑓𝑜𝑟 𝑥 ≥ 1
3

 𝑎𝑛𝑑 tan �𝑧
𝑦
� ≥ �1−2𝑥

𝑥
�

(𝑥, 𝑦, 𝑧)                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           
� 

3) | �𝑥2,𝑦2, 𝑧2〉 ≡ 𝐠 �[100], 3𝜋
8
� ∗ | �𝑥1 − tan �𝜋

8
� ,𝑦1, 𝑧1〉 

4) (𝑥3,𝑦3, 𝑧3) ≡ �𝑥2,𝑦2 �1 + 𝑦2
𝑧2

tan �𝜋
8
�� , 𝑧2 + 𝑦2 tan �𝜋

8
�� 

5) (𝑥4,𝑦4, 𝑧4)  ≡ �𝑥3,
y3cos�

𝜋
8�

tan�𝜋8�  
, 𝑧3 −

𝑥3
𝑐𝑜𝑠 �𝜋8�

� 

6) (𝑥5,𝑦5, 𝑧5)  ≡ (𝑥4(sin𝜙 + |cos𝜙|), 𝑦4(sin𝜙 + |cos𝜙|), 𝑧4); 

𝜙 = atan �−
𝑥4
𝑦4
� 

7) (𝑥6,𝑦6, 𝑧6)  ≡ �−�𝑥52 + 𝑦52 cos 2𝜙1 ,�𝑥52 + 𝑦52 sin 2𝜙1 , 𝑧5� ; 

𝜙1 = atan �−
𝑦5
𝑥5
� 

(A10)  
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Appendix B: Mathematical Aspects of the Symmetric Parameterization 

B.1. Discontinuity in Morawiec’s Symmetric Parameterization 

The discontinuity in the symmetric parameterization arises due to the convention necessary to 

define this representation. For example, consider two grain boundary parameters (𝑀1;   𝑛�⃗ ) =

�(𝜔, �⃗�);    𝑛�⃗ � and (𝑀2;    𝑛�⃗ ) = �(𝜔,−�⃗�);   𝑛�⃗ �. As 𝜔 → 𝜋, (𝑀1;    𝑛�⃗ ) → (𝑀;    𝑛�⃗ ) = �(𝜋, �⃗�);    𝑛�⃗ � 

and (𝑀2;    𝑛�⃗ ) → (𝑀;    𝑛�⃗ ) = �(−𝜋, �⃗�);   𝑛�⃗ �. Since (𝜋, �⃗�) ∼ (−𝜋, �⃗�), which is the trivial 

symmetry of the rotation space, the distance 𝑑�(𝑀1;    𝑛�⃗ ), (𝑀2;    𝑛�⃗ )� approaches zero as 𝜔 → 𝜋. 

If the mapping 𝑓: (𝑀;    𝑛�⃗ ) → (𝑁;    𝑟) is continuous then 𝑑�𝑓(𝑀1;    𝑛�⃗ ),𝑓(𝑀2;    𝑛�⃗ )� must 

approach zero as 𝜔 → 𝜋. But, 

 

lim
𝜔→𝜋

(𝑁1;   𝑟1���⃗ ) = �𝐠 �
𝜋
2 , �⃗�� ;    �

𝜋
2 ,−�⃗�� ∗ 𝑛�⃗ � 

lim
𝜔→𝜋

(𝑁2;    𝑟2���⃗ ) = �𝐠 �
𝜋
2 ,−�⃗�� ;    �

𝜋
2 , �⃗�� ∗ 𝑛�⃗ � 

(B1)  

And, 

 lim
𝜔→𝜋

𝑑�𝑓(𝑀1;   𝑛�⃗ ),𝑓(𝑀2;    𝑛�⃗ )� = 𝑑�(𝑁1;   𝑟), (𝑁2;   𝑟)� ≠ 0 (B2)  

Since 𝑑(𝑁1,𝑁2) ≠ 0 and 𝑑(𝑟1, 𝑟2) ≠ 0. Hence the mapping proposed for the symmetric 

representation is not continuous and is not topologically consistent (not a homeomorphism).  
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B.2. Continuity of the (q; r) parameterization in the neighborhood of ω=2π 

The topological consistency of the mapping defined in section 4.3.1 hinges on the definition of 

the mapping in the neighborhood of 𝜔 = 2𝜋. To prove that the mapping is continuous we prove 

the following condition: 

 

lim
𝜔→2𝜋

𝑃(𝐪;    𝑛�⃗ ) = P�(−1,0,0,0); 𝑛�⃗ � = �(−1,0,0,0); 0�⃗ � 

for all �⃗� ∈ 𝑆2 where 𝐴−1(𝐪) = (𝜔, �⃗�) 

(B3)  

Since 𝑃(𝐪;    𝑛�⃗ ) = �𝐪;𝐠�𝑝(𝐪)� ∗ [𝐶(𝐪)(𝑛�⃗ )]�, we obtain 

 

lim
𝜔→2𝜋

𝑃(𝐪;    𝑛�⃗ ) = lim
𝜔→2𝜋

�𝐪; 𝐠�𝑝(𝐪)� ∗ [𝐶(𝐪)(𝑛�⃗ )]�

= lim
𝜔→2𝜋

�𝐪; 𝐠 �
𝜔
2 , �⃗�� ∗ [𝐶(𝐪)(𝑛�⃗ )]�

= �(−1,0,0,0); 𝐠(𝜋, �⃗�) ∗ � lim
𝜔→2𝜋

𝐶(𝐪)(𝑛�⃗ )�� 

(B4)  

The important requirement here is lim
𝜔→2𝜋

𝐶(𝐪) = 0, which is trivially satisfied since 𝑞0 → −1 

and max {((𝐪 ∗ 𝐆)0)2} → 1 as 𝜔 → 1. Even though the matrix 𝐠(𝜋, �⃗�) depends on the choice of 

�⃗�, the scaling function approaches zero as 𝜔 → 0 and hence the mapping is continuous in the 

neighborhood of 𝑞0 = −1. 
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B.3. Equivalence Relations in the (q; r) parameterization 

The equivalence relations expressed using the symmetric parameters (𝐪; 𝑟)  depend upon the 

type of symmetry under consideration. For example, the trivial symmetry of the rotation space in 

the quaternion parameterization implies that 𝑃(𝐪;  𝑛�⃗ ) ∼ 𝑃(−𝐪;   𝑛�⃗ ). This equivalence relation 

expressed in terms of the parameters (𝐪;  𝑟) is: 

 𝑃(𝐪;  𝑛�⃗ ) ∼ 𝑃(−𝐪;   𝑛�⃗ ) ⇒ �𝐪;   𝐠 �
𝜔
2 ,−�⃗�� ∗ 𝑛�⃗ � ∼ �−𝐪;    𝐠 �𝜋 −

𝜔
2 , �⃗�� ∗ 𝑛�⃗ � (B5)  

where 𝐴−1(𝐪) = (𝜔, �⃗�). According to the definition of (𝐪;  𝑟), we observe that 

 𝑟 = 𝐠 �𝜔
2

,−�⃗�� ∗ 𝑛�⃗ ⇒ 𝑛�⃗ = �𝐠 �𝜔
2

,−�⃗���
−1
∗ 𝑟 and 𝑟 ′ = 𝐠 �𝜋 − 𝜔

2
, �⃗�� ∗ 𝑛�⃗   (B6)  

By substituting 𝑛�⃗  in the equation of 𝑟′, we obtain 

 
𝑟 ′ = 𝐠 �𝜋 − 𝜔

2
, �⃗�� ∗ �𝐠 �𝜔

2
,−�⃗���

−1
∗ 𝑟 = 𝐠(𝜋, �⃗�) ∗ 𝑟  

(𝐪;  𝑟) ∼ (−𝐪;  𝑟′) ⇒ (𝐪; 𝑟) ∼ (−𝐪;  𝐠(𝜋, �⃗�) ∗ 𝑟)   

(B7)  

Hence, the relation (𝐪;  𝑟) ∼ (−𝐪;  𝐠(𝜋, �⃗�) ∗ 𝑟) is the trivial symmetry of the rotation space 

expressed in the symmetric parameterization. 

The grain exchange symmetry can be derived in a similar fashion. If 𝐪 = (𝑞0, 𝑞1, 𝑞2, 𝑞3) then 

there are two possibilities for 𝐪−𝟏 = ±(𝑞0,−𝑞1,−𝑞2,−𝑞3), which are related to each other by 

the trivial symmetry. In this formulation, we use 𝐪−𝟏 = (𝑞0,−𝑞1,−𝑞2,−𝑞3). Hence, if 𝐴−1(𝐪) =

(𝜔, �⃗�), then 𝐴−1(𝐪−𝟏) = (𝜔,−�⃗�). The grain exchange symmetry is now obtained as follows: 

 

𝑃(𝐪;   𝑛�⃗ ) ∼ 𝑃(𝐪−𝟏; 𝐠(𝐪−𝟏) ∗  −𝑛�⃗ ) 

⇒ �𝐪;   𝐠 �
𝜔
2 ,−�⃗�� ∗ 𝑛�⃗ � ∼ �𝐪−𝟏;    𝐠 �𝜋 −

𝜔
2 , �⃗�� ∗ 𝐠(𝜔,−�⃗�) ∗ −𝑛�⃗ � 

(B8)  

And, 
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𝑟 = 𝐠 �
𝜔
2 ,−�⃗�� ∗ 𝑛�⃗ ⇒ 𝑛�⃗ = �𝐠 �

𝜔
2 ,−�⃗���

−1
∗ 𝑟 

 𝑟 ′ = 𝐠 �𝜋 −
𝜔
2

, �⃗�� ∗ 𝐠(𝜔,−�⃗�) ∗ −𝑛�⃗   

= 𝐠 �𝜋 −
𝜔
2

, �⃗�� ∗ 𝐠(𝜔,−�⃗�) ∗ �𝐠 �
𝜔
2

,−�⃗���
−1
∗ −𝑟  

= −𝑟 

(B9)  

Therefore, the grain exchange symmetry is given by: 

 �(𝑞0,𝑞1,𝑞2, 𝑞3); 𝑟� ∼ �(𝑞0,−𝑞1,−𝑞2,−𝑞3);  −𝑟� (B10)  

Similarly, the equivalence relations due to the rotational symmetry operations can be expressed 

as: 

 

𝑃(𝐪;   𝑛�⃗ ) ∼ 𝑃(𝐪−𝟏;𝐠(𝐪−𝟏) ∗  −𝑛�⃗ ) ⇒ 

(𝐪; 𝑟) ∼ ��𝑆𝑖�
−1
𝐪�𝑆𝑗�;𝐠 �𝑝 ��𝑆𝑖�

−1
𝐪�𝑆𝑗�� �𝑆𝑖�

−1�𝑝(𝐪)�−1� ∗ 𝑟� 
(B11)  
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Appendix C: Bicrystal Symmetries 
In section 4.4, we presented the mapping between the single-axis grain boundary space for any 

crystal direction and the quotient space of the 3-sphere for crystals that belong to 

crystallographic point group 𝐶1. In order to extend this formulation to the single-axis grain 

boundary space for any crystallographic point group, it is essential to derive the bicrystal 

symmetries pertaining to the crystal direction and the point group under consideration. In this 

section we derive the relevant symmetries of the grain boundary space with the misorientation 

axis confined to a high-symmetry axis in all the remaining rotational point group symmetries 

using the (𝐪; 𝑟) parameterization. 

C.1. Point Groups C2, C3, C4 and C6 

Analogous to the analysis of the single-axis grain boundary space of 𝐶1 point group, we restrict 

the grain boundary misorientations to the fundamental zone of the 𝐶2 point group (shown in 

Figure 2.6(a)), i.e. 𝑞0 ≥ 0, 0 ≤ 𝑞3 ≤ 𝑞0 and 𝑞2 ≥ 0. In the case of 𝐶2 point group, boundary 

distributions along the 𝑧-axis are of interest. The boundary parameters have the form (𝐪; 𝑟) =

��cos �𝜔
2
� , 0,0, sin �𝜔

2
�� ; 𝑟�, where 𝜔 ∈ �0, 𝜋

2
�. The relevant symmetries, such that the 

misorientations of the symmetrically equivalent boundaries fall within the fundamental zone, 

obtained from Equation (4.17)  are the following: 

 

(a) �(𝑞0, 0,0,𝑞3 ); 𝑟� ∼ �(𝑞0, 0,0,𝑞3 );𝑅 ∗ 𝑟� 

(b) ��cos �𝜋
4
� , 0,0, sin �𝜋

4
�� ; 𝑟� ∼ ��cos �𝜋

4
� , 0,0, sin �𝜋

4
�� ; 𝐠 �𝜋

2
; [0 0 1]� ∗ (−𝑟)� 

where 𝑞0 = cos �𝜔
2
�, 𝑞3 = sin �𝜔

2
�, 𝜔 ∈ [0,𝜋/2],  𝑅 = 𝐠(𝜋, [0 0 1]). 

(C1)  

The first equivalence relation suggests that the boundary inclination space (2-sphere) associated 

with any boundary misorientation along the 𝑧-axis has a two-fold rotational symmetry (i.e. 𝐶2  

point symmetry). The second equivalence relation, confined to the misorientation (𝜔, �⃗�) =

(𝜋/2, [0 0 1]), has the symmetry 𝑆4(4�). The symmetries on the inclination space for 

different misorientation angles are summarized in Figure C.1.  
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Figure C.1 Symmetries associated with the boundary inclination space for crystals with point group 
symmetry 𝑪𝟐, (a) corresponding to any misorientation with angle 𝝎 ∈ [𝟎,𝝅/𝟐) and misorientation axis 𝒂��⃗ =
[𝟎 𝟎 𝟏], the boundary inclination space has a two-fold rotational symmetry (𝑪𝟐). (b) Corresponding to 
misorientation angle 𝝎 = 𝝅/𝟐, the boundary inclination space has the symmetry 𝟒�. 

The collection of all the boundary inclinations for misorientation angles 𝜔 ∈ [0, 𝜋/2] along the 

𝑧-axis is a solid parametric ball of outer radius sin(𝜋/4), with additional symmetries on the 

surface. The equivalence between this 𝑧-axis boundary space and the 3-sphere can be established 

by using the parameters (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 such that 

 

𝑤 =
�𝑞02−�cos�

𝜔𝑚𝑎𝑥
2 ��

2

sin�𝜔𝑚𝑎𝑥
2 �

   ;    �⃗� = �
𝑥
𝑦
𝑧
� = 1

sin�𝜔𝑚𝑎𝑥
2 �

�
𝑟1
𝑟2
𝑟3
� where (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 

𝓑 = 𝑆3/𝐸 

(a) (𝑤, �⃗�) ∼ (𝑤, �⃗�′)             �⃗�′   = 𝐠�𝜔𝑚𝑎𝑥;𝑏�⃗ � ∗ �⃗� 

(b) (𝑤, �⃗�) ∼ (−𝑤,−�⃗�′′)      �⃗�′′  = 𝐠 �𝜔𝑚𝑎𝑥
2

; 𝑏�⃗ � ∗ �⃗�    

where 𝜔𝑚𝑎𝑥 = 𝜋 and  𝑏�⃗ = [0 0 1] 

(C2)  

The above formulation can be generalized to point group 𝐶𝑛, .i.e. the grain boundary space along 

the 𝑧-axis for crystals with point group 𝐶𝑛 is equivalent to the quotient space 𝑆3/𝐸 and the 

equivalence can be established by using the parameters (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 such that 
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𝑤 =
�𝑞02−�cos�

𝜔𝑚𝑎𝑥
2 ��

2

sin�𝜔𝑚𝑎𝑥
2 �

   ;    �⃗� = �
𝑥
𝑦
𝑧
� = 1

sin�𝜔𝑚𝑎𝑥
2 �

�
𝑟1
𝑟2
𝑟3
� where (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 

𝓑 = 𝑆3/𝐸 

(a) (𝑤, �⃗�) ∼ (𝑤, �⃗�′)             �⃗�′   = 𝐠�𝜔𝑚𝑎𝑥;𝑏�⃗ � ∗ �⃗� 

(b) (𝑤, �⃗�) ∼ (−𝑤,−�⃗�′′)      �⃗�′′  = 𝐠 �𝜔𝑚𝑎𝑥
2

; 𝑏�⃗ � ∗ �⃗�    

where 𝜔𝑚𝑎𝑥 = 2𝜋
𝑛

 and  𝑏�⃗ = [0 0 1] 

(C3)  

The symmetry relations imply an n-fold rotational symmetry (𝐶𝑛) for the boundary inclination 

space (2-sphere) for all misorientation angles 𝜔 ∈ [0, 𝜋/𝑛) and 2𝑛���� (rotation of 𝜋/𝑛 followed by 

inversion) symmetry for the boundary inclination space corresponding to a misorientation angle 

of 𝜔 = 𝜋/𝑛. The symmetries of the boundary inclination space for point groups 𝐶3, 𝐶4 and 𝐶6 

are summarized in Figure C.2. 

 

Figure C.2 Symmetries associated with the boundary inclination space for misorientations along the 𝒛-axis for 
crystals with point group 𝑪𝒏: (a) 𝑪𝟑(𝒏 = 𝟑), (b) 𝑪𝟒(𝒏 = 𝟒), and (c) 𝑪𝟔(𝒏 = 𝟔). (i) Corresponding to any 
misorientation with angle 𝝎 ∈ [𝟎,𝝅/𝒏), the boundary inclination space has no symmetries (𝑪𝒏). (ii) 
Corresponding to misorientation angle 𝝎 = 𝝅/𝒏, the boundary inclination space has the symmetry 𝟐𝒏����. 
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C.2. Point Groups D2, D3, D4, D6, T and O 

In the case of 𝐷2 point group symmetry, boundary distributions along the 𝑥, 𝑦 and 𝑧-axes, which 

are the 2-fold rotational symmetry axes, are of interest. Since these three high-symmetry axes are 

equivalent to each other, we consider the distributions only along the 𝑧-axis here. The boundary 

parameters have the form (𝐪; 𝑟) = ��cos �𝜔
2
� , 0,0, sin �𝜔

2
�� ; 𝑟�, where 𝜔 ∈ �0, 𝜋

2
�. The boundary 

space is similar to the 𝑧-axis boundary space of the 𝐶2 point group but there exist additional 

symmetries due to the 2-fold symmetries along the 𝑥 and 𝑦-axes. The relevant symmetries 

obtained from Equation (4.17) are the following: 

 

(a) �(𝑞0, 0,0,𝑞3 ); 𝑟� ∼ �(𝑞0, 0,0,𝑞3 );𝑅1 ∗ 𝑟� 

(b) �(𝑞0, 0,0, 𝑞3 ); 𝑟� ∼ �(𝑞0, 0,0, 𝑞3 );𝑅2 ∗ −𝑟� 

(c) ��cos �𝜋
4
� , 0,0, sin �𝜋

4
�� ; 𝑟� ∼ ��cos �𝜋

4
� , 0,0, sin �𝜋

4
�� ;𝑅3 ∗ (−𝑟)� 

where 𝑞0 = cos �𝜔
2
�, 𝑞3 = sin �𝜔

2
�,  𝑅1 = 𝐠(𝜋, [0 0 1]), 𝑅2 = 𝐠(𝜋, [0 1 0]), 

𝑅3 = 𝐠 �𝜋
2

, [1 0 0]� 

(C4)  

The equivalence relations in (a) and (b) suggest that the boundary inclination space (2-sphere) 

associated with boundary misorientation (𝜔, [0 0 1]) and 𝜔 ∈ [0,𝜋/2) has the symmetry 𝐶2𝑣 

or 𝑚𝑚2 (illustrated in Figure C.3). The equivalence relation (c) needs to be considered in 

addition to (a) and (b) for the boundary inclination space corresponding to the misorientation 

�𝜋
2

, [0 0 1]�, which results in 𝐷2𝑑(4�  2 𝑚) symmetry on the 2-sphere. The equivalence 

between this 𝑧-axis boundary space and the 3-sphere can be established by using the 

parameters (𝑤, 𝑥, 𝑦, 𝑧) ∈ 𝑆3 such that  

 
𝑤 =

�𝑞02−�cos�
𝜔𝑚𝑎𝑥

2 ��
2

sin�𝜔𝑚𝑎𝑥
2 �

   ;    �⃗� = �
𝑥
𝑦
𝑧
� = 1

sin�𝜔𝑚𝑎𝑥
2 �

�
𝑟1
𝑟2
𝑟3
� where (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 

𝓑 = 𝑆3/𝐸 

(C5)  
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(a) (𝑤, �⃗�) ∼ (𝑤, �⃗�′)                 �⃗�′   = 𝐠�𝜔𝑚𝑎𝑥; �⃗�1� ∗ �⃗� 

(b) (𝑤, �⃗�) ∼ (𝑤,−�⃗�′′)             �⃗�′′  = 𝐠�𝜋; �⃗�2� ∗ �⃗� 

(c) (𝑤, �⃗�) ∼ (−𝑤,−�⃗�′′′)       �⃗�′′′ = 𝐠 �𝜔𝑚𝑎𝑥
2

; �⃗�1� ∗ �⃗�          

where 𝜔𝑚𝑎𝑥 = 𝜋, 𝑏�⃗ 1 = [0 0 1] and 𝑏2 = [1 0 0] 

 

 

Figure C.3 Symmetries associated with the boundary inclination space for crystals with point group 
symmetry 𝑫𝟐, (a) corresponding to any misorientation with angle 𝝎 ∈ [𝟎,𝝅/𝟐) and misorientation axis 𝒂��⃗ =
[𝟎 𝟎 𝟏], the boundary inclination space has the symmetry 𝑪𝟐𝒗. (b) Corresponding to misorientation angle 𝝎 =
𝝅/𝟐, the boundary inclination space has the symmetry 𝑫𝟐𝒅. 

The 𝑥-axis boundary space is equivalent to the 𝑧-axis boundary space and is obtained by 

replacing 𝑏�⃗ 1 by [1 0 0] and 𝑏�⃗ 2 by [0 0 1]. Similarly, the 𝑦-axis boundary space is 

obtained by replacing 𝑏�⃗ 1 by [0 1 0] and 𝑏�⃗ 2 by [0 0 1].   

Similar analysis reveals the grain boundary space along the 𝑧-axis for crystals with point 

group 𝐷𝑛 (where 𝑛 ∈ {3,4,6}) to be equivalent to the quotient space 𝑆3/𝐸. This equivalence can 

be established by using the parameters (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 such that 
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𝑤 =
�𝑞02−�cos�

𝜔𝑚𝑎𝑥
2 ��

2

sin�𝜔𝑚𝑎𝑥
2 �

   ;    �⃗� = �
𝑥
𝑦
𝑧
� = 1

sin�𝜔𝑚𝑎𝑥
2 �

�
𝑟1
𝑟2
𝑟3
� where (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 

𝓑 = 𝑆3/𝐸 

(a) (𝑤, �⃗�) ∼ (𝑤, �⃗�′)                 �⃗�′   = 𝐠�𝜔𝑚𝑎𝑥; �⃗�1� ∗ �⃗� 

(b) (𝑤, �⃗�) ∼ (𝑤,−�⃗�′′)             �⃗�′′  = 𝐠�𝜋; �⃗�2� ∗ �⃗� 

(c) (𝑤, �⃗�) ∼ (−𝑤,−�⃗�′′′)       �⃗�′′′ = 𝐠 �𝜔𝑚𝑎𝑥
2

; �⃗�1� ∗ �⃗�          

where 𝜔𝑚𝑎𝑥 = 2𝜋
𝑛

, 𝑏�⃗ 1 = [0 0 1] and 𝑏2 = [1 0 0] 

(C6)  

The equivalence relations (a) and (b) suggest that the boundary inclination space (2-sphere) 

associated with boundary misorientation (𝜔, [0 0 1]) and 𝜔 ∈ [0,𝜋/𝑛) has the symmetry 

𝐶𝑛𝑣. Corresponding to the misorientation �𝜋
𝑛

, [0 0 1]�, the equivalence relation (c) needs to 

be considered in addition to (a) and (b), which results in 𝐷3ℎ(6�  𝑚 2), 𝐷4𝑑(8�  2 𝑚) and 

𝐷6𝑑(12���� 2 𝑚) symmetry for point groups 𝐷3,  𝐷4 and 𝐷6 respectively (Figure C.4). 

 

Figure C.4 Symmetries associated with the boundary inclination space for misorientations along the 𝒛-axis for 
crystals with point group 𝑫𝒏: (a) 𝑫𝟑 (𝒏 = 𝟑), (b) 𝑫𝟒(𝒏 = 𝟒), and (c) 𝑫𝟔(𝒏 = 𝟔). (i) Corresponding to any 
misorientation with angle 𝝎 ∈ [𝟎,𝝅/𝒏), the boundary inclination space has no symmetries (𝑪𝒏𝒗). (ii) 
Corresponding to misorientation angle 𝝎 = 𝝅/𝒏, the boundary inclination space has the symmetry 𝑫𝟑𝒉 (𝒏 =
𝟑), 𝑫𝟒𝒅 (𝒏 = 𝟒) and 𝑫𝟔𝒅 (𝒏 = 𝟔). 
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In fact, the mapping from any high-symmetry axis grain boundary space to the 3-sphere can be 

classified into two categories: (i) Type I has symmetries that can be expressed as Equation (C3), 

where the parameters 𝜔𝑚𝑎𝑥 and 𝑏�⃗  depend on the point group symmetry and (ii) Type II has 

symmetries that be expressed as Equation (C6) with variables 𝜔𝑚𝑎𝑥, 𝑏�⃗ 1 and 𝑏�⃗ 2. These two types 

are mentioned in the equations below: 

 

Type I Boundary Space with variables 𝜔𝑚𝑎𝑥 and 𝑏�⃗  

 

𝑤 =
�𝑞02−�cos�

𝜔𝑚𝑎𝑥
2 ��

2

sin�𝜔𝑚𝑎𝑥
2 �

   ;    �⃗� = �
𝑥
𝑦
𝑧
� = 1

sin�𝜔𝑚𝑎𝑥
2 �

�
𝑟1
𝑟2
𝑟3
� where (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 

𝓑 = 𝑆3/𝐸 

(a) (𝑤, �⃗�) ∼ (𝑤, �⃗�′)             �⃗�′   = 𝐠�𝜔𝑚𝑎𝑥;𝑏�⃗ � ∗ �⃗� 

(b) (𝑤, �⃗�) ∼ (−𝑤,−�⃗�′′)      �⃗�′′  = 𝐠 �𝜔𝑚𝑎𝑥
2

; 𝑏�⃗ � ∗ �⃗�    

 

(C7)  

Type II Boundary Space with variables 𝜔𝑚𝑎𝑥 and 𝑏�⃗ 1, 𝑏�⃗ 2 

 

𝑤 =
�𝑞02−�cos�

𝜔𝑚𝑎𝑥
2 ��

2

sin�𝜔𝑚𝑎𝑥
2 �

   ;    �⃗� = �
𝑥
𝑦
𝑧
� = 1

sin�𝜔𝑚𝑎𝑥
2 �

�
𝑟1
𝑟2
𝑟3
� where (𝑤, 𝑥,𝑦, 𝑧) ∈ 𝑆3 

𝓑 = 𝑆3/𝐸 

(a) (𝑤, �⃗�) ∼ (𝑤, �⃗�′)                 �⃗�′   = 𝐠�𝜔𝑚𝑎𝑥;𝑏�⃗ 1� ∗ �⃗� 

(b) (𝑤, �⃗�) ∼ (𝑤,−�⃗�′′)             �⃗�′′  = 𝐠�𝜋;𝑏�⃗ 2� ∗ �⃗� 

(c) (𝑤, �⃗�) ∼ (−𝑤,−�⃗�′′′)       �⃗�′′′ = 𝐠 �𝜔𝑚𝑎𝑥
2

;𝑏�⃗ 1� ∗ �⃗�          

 

(C8)  

 



114 
 

The table below summarizes the mapping type and the symmetries of the grain boundary 
inclination space (2-sphere) for various point groups and high-symmetry axes. 

Table C.1 Mappings for the grain boundary space with misorientations confined to a single high-symmetry 
axis in various point groups and crystal directions. The mappings corresponds to either Equation (C7) (Type 
I with variables 𝝎𝒎𝒂𝒙, 𝒃��⃗ ) or Equation (C8) (Type II with variables 𝝎𝒎𝒂𝒙, 𝒃��⃗ 𝟏 and 𝒃��⃗ 𝟐). 

Point 

Group 

Symmetry 

Axes 

Mapping 

(𝜔𝑚𝑎𝑥) 
𝑏�⃗ / �𝑏�⃗ 1,𝑏�⃗ 2� Symmetries for 

Inclination Space 

𝐶1 ∀ �⃗� ∈ 𝑆2 Type I (2𝜋) 𝑏�⃗ = �⃗� 𝑪𝟏�𝜔 ∈ [0, 𝜋)� 

𝟐�(𝜔 = 𝜋) 

𝐶2 �⃗� = [0 0 1] Type I (𝜋) 𝑏�⃗ = [0 0 1] 𝑪𝟐 �𝜔 ∈ �0,
𝜋
2�� 

𝟒� �𝜔 =
𝜋
2� 

𝐶3 �⃗� = [0 0 1] Type I �2𝜋
3
� 𝑏�⃗ = [0 0 1] 𝑪𝟑 �𝜔 ∈ �0,

𝜋
3�� 

𝟔� �𝜔 =
𝜋
3� 

𝐶4 �⃗� = [0 0 1] Type I �𝜋
2
� 𝑏�⃗ = [0 0 1] 𝑪𝟒 �𝜔 ∈ �0,

𝜋
4�� 

𝟖� �𝜔 =
𝜋
4� 

𝐶6 �⃗� = [0 0 1] Type I �𝜋
3
� 𝑏�⃗ = [0 0 1] 𝑪𝟔 �𝜔 ∈ �0,

𝜋
6�� 

𝟏𝟐���� �𝜔 =
𝜋
6� 

𝐷2 �⃗� ∈ 2-fold 

Symmetry 

axes 

Type II (𝜋) 𝑏�⃗ 1 = �⃗� 

𝑏�⃗ 2 = �
[0 0 1]  𝑖𝑓 �⃗� ≠ [0 0 1]
[1 0 0]  𝑖𝑓 �⃗� = [1 0 0]

� 

𝑪𝟐𝒗 �𝜔 ∈ �0,
𝜋
2�� 

𝑫𝟐𝒅 �𝜔 =
𝜋
2� 
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𝐷3 �⃗� = [0 0 1] 

3-fold 

Symmetry 

axes 

Type II �2𝜋
3
� 𝑏�⃗ 1 = [0 0 1] 

𝑏�⃗ 2 = [1 0 0] 

𝑪𝟑𝒗 �𝜔 ∈ �0,
𝜋
3�� 

𝑫𝟑𝒉 �𝜔 =
𝜋
3� 

�⃗� ∈ 2-fold 

Symmetry 

axes 

Type I (𝜋) 𝑏�⃗ = �⃗� 𝑪𝟐 �𝜔 ∈ �0,
𝜋
2�� 

𝟒� �𝜔 =
𝜋
2� 

𝐷4 �⃗� = [0 0 1] 

4-fold 

Symmetry 

axes 

Type II �𝜋
2
� 𝑏�⃗ 1 = [0 0 1] 

𝑏�⃗ 2 = [1 0 0] 

𝑪𝟒𝒗 �𝜔 ∈ �0,
𝜋
4�� 

𝑫𝟒𝒅 �𝜔 =
𝜋
4� 

�⃗� ∈ 2-fold 

Symmetry 

axes 

Type II (𝜋) 𝑏�⃗ 1 = �⃗� 

𝑏�⃗ 2 = [0 0 1] 

𝑪𝟐𝒗 �𝜔 ∈ �0,
𝜋
2�� 

𝑫𝟐𝒅 �𝜔 =
𝜋
2� 

𝐷6 �⃗� = [0 0 1] 

4-fold 

Symmetry 

axes 

Type II �𝜋
3
� 𝑏�⃗ 1 = [0 0 1] 

𝑏�⃗ 2 = [1 0 0] 

𝑪𝟔𝒗 �𝜔 ∈ �0,
𝜋
6�� 

𝑫𝟔𝒅 �𝜔 =
𝜋
6� 

�⃗� ∈ 2-fold 

Symmetry 

axes 

Type II (𝜋) 𝑏�⃗ 1 = �⃗� 

𝑏�⃗ 2 = [0 0 1] 

𝑪𝟐𝒗 �𝜔 ∈ �0,
𝜋
2�� 

𝑫𝟐𝒅 �𝜔 =
𝜋
2� 

𝑇 �⃗� ∈ 2-fold 

Symmetry 

axes 

Type II (𝜋) 𝑏�⃗ 1 = �⃗� 

𝑏�⃗ 2 = �
[0 0 1]  𝑖𝑓 �⃗� ≠ [0 0 1]
[1 0 0]  𝑖𝑓 �⃗� = [1 0 0]

� 

𝑪𝟐𝒗 �𝜔 ∈ �0,
𝜋
2�� 

𝑫𝟐𝒅 �𝜔 =
𝜋
2� 
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�⃗� ∈ 3-fold 

Symmetry 

axes 

Type I �2𝜋
3
� 𝑏�⃗ = �⃗� 𝑪𝟑 �𝜔 ∈ �0,

𝜋
3�� 

𝟔� �𝜔 =
𝜋
3� 

𝑂 �⃗� ∈ 4-fold 

Symmetry 

axes 

Type II �𝜋
2
� 𝑏�⃗ 1 = �⃗� 

𝑏�⃗ 2 = �
[0 0 1]  𝑖𝑓 �⃗� ≠ [0 0 1]
[1 0 0]  𝑖𝑓 �⃗� = [1 0 0]

� 

𝑪𝟒𝒗 �𝜔 ∈ �0,
𝜋
4�� 

𝑫𝟒𝒅 �𝜔 =
𝜋
4� 

�⃗� ∈ 3-fold 

Symmetry 

axes 

Type II �2𝜋
3
� 𝑏�⃗ 1 = �⃗� 

𝑏�⃗ 2 =

⎩
⎪
⎨

⎪
⎧[1�  1 0]   𝑖𝑓 �⃗� = [1 1 1]

[1 1 0]   𝑖𝑓 �⃗� = [1�  1 1]
[1�  1 0]   𝑖𝑓 �⃗� = [1�  1�  1]
[1 1 0]   𝑖𝑓 �⃗� = [1 1�  1]

� 

𝑪𝟑𝒗 �𝜔 ∈ �0,
𝜋
3�� 

𝑫𝟑𝒉 �𝜔 =
𝜋
3� 

�⃗� ∈ 2-fold 

Symmetry 

axes 

Type II (𝜋) 𝑏�⃗ 1 = �⃗� 

𝑏�⃗ 2 = �
[0 0 1]   𝑖𝑓 𝑎3 = 0
[0 1 0]   𝑖𝑓 𝑎2 = 0
[1 0 0]   𝑖𝑓 𝑎1 = 0

� 

𝑪𝟐𝒗 �𝜔 ∈ �0,
𝜋
2�� 

𝑫𝟐𝒅 �𝜔 =
𝜋
2� 

 

The symmetries of the grain boundary inclination space listed in the table above can be derived 

from the well-known bicrystal symmetries for grain boundaries [78, 107]. The purpose of 

deriving these symmetries in this appendix is to show the utility of the (𝐪; 𝑟) parameterization 

and to present the mappings of these grain boundary spaces to the 3-sphere. We only considered 

the 11 point groups with rotational symmetry operations in this appendix. The symmetries of the 

grain boundary space for the remaining crystallographic point groups are obtained by 

considering the relations in Equation (1.10).  
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