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The initial conditions for Newtonian N-body simulations are usually generated by applying the
Zel’dovich approximation to the initial displacements of the particles using an initial power spectrum of
density fluctuations generated by an Einstein-Boltzmann solver. We show that in most gauges the initial
displacements generated in this way receive a first-order relativistic correction. We define a new gauge, the
N-body gauge, in which this relativistic correction vanishes and show that a conventional Newtonian
N-body simulation includes all first-order relativistic contributions (in the absence of radiation) if we
identify the coordinates in Newtonian simulations with those in the relativistic N-body gauge.
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I. INTRODUCTION

Cosmology has been flourishing during the last decade,
especially due to the ever increasing precision of the cosmic
microwave background (CMB) anisotropy data [1,2]. But
high-quality data are of no use if the theoretical predictions
cannot be computed to the same precision. This has been
made possible by using high-precision codes solving the
coupled system of Einstein-Boltzmann equations in per-
turbation theory [3–6]. The next big data input for
cosmology is large scale structure (LSS) data [7–9], and
to successfully extract all the information in these new data
sets, we will need to be able to compute the predicted LSS
statistics to sufficient accuracy [10].
While the CMB can be well described by perturbation

theory, the LSS is shaped by the fully nonlinear nature of
gravity, where perturbation theory ceases to be a valid
description on most scales of interest. The physics is still
completely captured by the Einstein-Boltzmann equations,
but solving its nonlinear version at the required resolution is
not feasible. Instead, it is common to useN-body simulations
that solve the Newtonian equations of motion for cold dark
matter (CDM) particles in full nonlinearity [11–13]. To
transfer information about the matter density and velocity
from the Einstein-Boltzmann solver to theN-body simulation
at some given initial time, one usually displaces the N-body
particles according to the Zel’dovich approximation [14] (or
its second-order extension, 2LPT [15]).
In this paper we discuss potential relativistic corrections

to the initial displacements used in N-body simulations and
identify a first-order correction to the Zel’dovich approxi-
mation (ZA) which should be taken into account when
setting initial displacements in a generic gauge. We identify
a novel gauge in which relativistic corrections to both the
ZA and the evolution equations used inN-body simulations
vanish at first order and in the absence of radiation.

II. GAUGES

From the point of view of general relativity (GR) there is
no preferred coordinate system and computations can be
done in any gauge. However, some gauges are more
convenient for making the connection to Newtonian phys-
ics [16–21]. For simplicity, we will consider only scalar
perturbations in a spatially flat background, but the
generalization to curved space is straightforward. The most
general line element in an arbitrary gauge is [16]

ds2 ¼ a2ð−ð1þ 2 ~AÞd~η2 − 2∂i
~Bd~xid~η

þ ½δijð1þ 2 ~HLÞ − 2Dij
~HT�d~xid~xjÞ: ð1Þ

Here a is the cosmic scale factor, Dij ≡ ∂i∂j − δij∇2=3,
and we have defined the scalar potential ~A, the scalar
potential of the shift ~B, the trace of the spatial perturbation
~HL and the trace-free spatial distortion ~HT. One may fix
the gauge by choosing explicit gauge conditions for a new
set of coordinates ðη; xiÞ, which read η ¼ ~ηþ T and
xi ¼ ~xi þ ∂iL. For example, a common gauge choice is
the longitudinal gauge (sometimes called the conformal
Newtonian gauge) where the gauge freedom is used to set
T ¼ ~B − _~HT and L ¼ − ~HT such that B ¼ HT ¼ 0 in the
new coordinates.
The energy content of the Universe is defined by the

components of the energy-momentum tensor Tμ
ν,

T0
0 ¼ −

X
α

~ρα ≡ −~ρ;

T0
i ¼

X
α

ð~ρα þ ~pαÞ∂ið ~vα − ~BÞ≡ ð~ρþ ~pÞ∂ið~v − ~BÞ;

Ti
j ¼

X
α

ð ~pαδ
i
j − ~pαDi

j
~ΠαÞ≡ ~pδij − ~pDi

j
~Π; ð2Þ
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where α runs over all species present in the Universe, and
~ρα, ~pα, ~vα and ~Πα are the density, pressure, velocity
potential and anisotropic stress of each species, respec-
tively. Quantities without subscript will refer to totals as
defined above.
We will be particularly interested in the class of

comoving-orthogonal gauges (hereafter referred to as
comoving gauges) defined by setting the shift equal to
the peculiar velocity potential, i.e., B ¼ v. This uniquely
fixes the temporal gauge with T ¼ ~B − ~v, while the spatial
gauge L can be chosen freely. The density contrast,
δ ¼ ðρ − ρ̄Þ=ρ̄, is independent of the spatial gauge trans-
formation L, so it is identical in all comoving gauges. The
same is true for the lapse perturbation ξ≡ A. Velocities,
however, depend on the time derivative of the spatial gauge
generator, i.e., on _L.
To first order in perturbation theory, the (00), ð0iÞ and

ði ≠ jÞ components of the Einstein equations are

∇2

�
HL þ

∇2

3
HT −

_a
a
ðv − _HTÞ

�
¼ −4πGρ̄a2δ; ð3Þ

_a
a
ξ − _HL −

∇2

3
_HT ¼ 0; ð4Þ

ξþHL þ
∇2

3
HT −

� ∂
∂ηþ 2

_a
a

�
ðv − _HTÞ ¼ 8πGa2pΠ:

ð5Þ

The Einstein equations are supplemented by the continuity
and the momentum conservation equation,

� ∂
∂ηþ 3

_a
a

�
ρ̄δþ 3

_a
a
δp ¼ −ðρþ pÞð∇2vþ 3 _HLÞ; ð6Þ

ðρþ pÞξ ¼ 2

3
p∇2Π − δp; ð7Þ

with the pressure perturbation δp. Note that the continuity
equation (6) holds in the same form for each individual
component in a multicomponent universe, while the
momentum conservation reads

� ∂
∂ηþ 4

_a
a

�
ðρα þ pαÞðvα − vÞ

¼ 2

3
pα∇2Πα − δpα − ðρα þ pαÞξ: ð8Þ

The gauge invariant Bardeen potential Φ in comoving
gauges is given by [16]

Φ ¼ HL þ
∇2

3
HT −

_a
a
ðv − _HTÞ: ð9Þ

Equation (3) can then be identified as the relativistic
Poisson equation:

∇2Φ ¼ −4πGρ̄a2δ: ð10Þ
This is identical to the Newtonian Poisson equation solved
in an N-body simulation. Using the continuity equation (6),
the momentum conservation (8) and Eq. (5), we find the
following evolution equations for a pressureless fluid
component (pα ¼ Πα ¼ 0, e.g., for dark matter),

_δα þ ∇ · vα ¼ −3 _HL; ð11Þ
� ∂
∂ηþ

_a
a

�
vα ¼ ∇Φþ ∇γ; ð12Þ

where vα ¼ ∇vα, and we have defined

γ ≡ ḦT þ
_a
a
_HT − 8πGa2pΠ: ð13Þ

Equation (11) is identical to the Newtonian continuity
equation when _HL ¼ 0. The geodesic equation (12) agrees
with the Newtonian Euler equation used to update the
particle velocities in an N-body simulation when γ vanishes.
The geodesic equation (12) requires us to know the

potential, Φ, and we have seen that this can be obtained
from the Poisson equation (10) if we can compute the
comoving density. In a Newtonian simulation, the density is
computed by counting the number of particles in a volume
element:

ρcount ¼
1

a3
X

particles

mδð3ÞD ðx − xpÞ: ð14Þ

By contrast, the relativistic density, ρ, has to take into
account the inhomogeneous deformation of space. The
trace of the 3-metric, HL, modifies the volume by a factor
of ð1þ 3HLÞ, while HT leaves the volume unchanged:

ρ ¼ ð1 − 3HLÞρcount: ð15Þ

This means that even though the Poisson equation is
formally identical to its Newtonian counterpart, the density
in the simulation is not necessarily the comoving density
required by the relativistic Poisson equation.
Let us define the gauge in which the counting density

matches the comoving density by requiring a vanishingHL.
This fixes the spatial gauge transformation:

∇2L ¼ 3 ~HL − 3
_a
a
ð ~B − ~vÞ: ð16Þ

In the following, we shall call this the “N-body gauge.” In
this gauge, the continuity equation (11) has the Newtonian
form and the Poisson equation solved in an N-body
simulation is consistent with GR since the computed
density matches the comoving density to first order.
However, there is a potential correction to the geodesic
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equation (12) from γ. We will now demonstrate that this
correction vanishes in matter/Λ domination.
Equation (7) relates the lapse perturbation, ξ, directly to

the anisotropic stress and pressure perturbation. This
implies that ξ vanishes in any comoving gauge when
δp ¼ Π ¼ 0. Equation (4) then requires that _R ¼ 0 where
we identify the comoving curvature perturbation

R≡HL þ
∇2

3
HT: ð17Þ

In the N-body gauge (HL ¼ 0), this implies that HT is
constant and therefore γ vanishes when δp ¼ Π ¼ 0.
Another popular comoving gauge choice is the total

matter (TOM) gauge [16] in which the metric potential HT
is set to zero but HL ≠ 0. In the absence of anisotropic
stress (Π ¼ 0) there are no corrections to the classical Euler
equation, while the Poisson equation is unmodified in all
the comoving gauges. However, the counting density in an
N-body simulation (14) would not match the comoving
density due to the volume deformation if HL ≠ 0, leading
to relativistic corrections.
We conclude that the N-body gauge is uniquely

suited for N-body simulations, with GR corrections
appearing at most at second order in the evolution
equations. Thus, although it has not previously been
noted in the literature, conventional Newtonian N-body
simulations actually use initial displacements correspond-
ing to those in the N-body gauge.

III. THE ZEL’DOVICH APPROXIMATION

The ZA is the first-order solution for the Lagrangian
displacement field, ψ. We use the Lagrangian map
q↦xðq; ηÞ, where

xðq; ηÞ ¼ qþ ψðq; ηÞ ð18Þ

denotes the trajectory of a fluid particle from its initial
position q to its subsequent coordinate position at time η.
The velocity is the (Lagrangian) time derivative of the
position, vðxðq; ηÞÞ ¼ _xðq; ηÞ, or simply

vα ¼ _ψα; ð19Þ

where the (peculiar) velocity vα obeys the geodesic equa-
tion for pressureless matter. The continuity equation for the
matter overdensity δα in Newtonian theory reads

_δα þ ∇ · vα ¼ 0: ð20Þ

In the infinite past the displacement is zero so that the
distribution of matter is uniform, hence integrating
Eqs. (19)–(20) we find the well-known ZA

−∇ · ψα ¼ δα: ð21Þ

The derivation of the ZA assumes a Newtonian con-
tinuity equation, but for a general gauge choice the
corresponding continuity equation (11) includes a relativ-
istic correction. Typically, (e.g., in TOM or longitudinal
gauge) these corrections vanish during matter domination,
but the ZA is computed by integrating over the whole past
history of the Universe, including the preceding period of
radiation domination.
Therefore, we derive the relativistic ZA using the con-

tinuity equation (11) for the matter components. In GR the
density changes due to two different effects. First particle
movement generates over- and underdense regions which is
captured by the velocity divergence, ∇ · vα, as in Newtonian
theory. But in addition space can be deformed in GR in an
inhomogeneous way, described by the metric term _HL on the
right-hand side of Eq. (11), which creates over- or under-
dense regions without requiring any particle movement.
In contrast to the density, the displacement field only traces
the movement of particles. Combining Eqs. (19) and the
relativistic continuity equation (11), and integrating over the
past history of the Universe starting from a homogeneous
distribution we obtain the ZA including the GR correction,

−∇ · Fα ¼ δα þ 3HL; ð22Þ

where Fα is the relativistic displacement field. The counting
density is then given by ρcount;α ¼ ðρ̄0;α=a3Þð1 − ∇ · FαÞ.
Using (22) we then obtain

ρcount;α ¼
ρ̄0;α
a3

ð1þ δα þ 3HLÞ: ð23Þ

Substituting this last expression into Eq. (15), we recover

ρα ¼
ρ̄0;α
a3

ð1þ δαÞ; ð24Þ

which is the definition of the comoving density contrast.
We have thus shown that if we generate initial conditions

for N-body simulations with the relativistic displacement
(22), the distribution of particles correctly reproduces the
comoving gauge density. As a consequence, this relativistic
correction should be included in the initial displacement in
an arbitrary gauge.
The impact of the correction for the CDM and baryons in

TOM gauge is illustrated in Fig. 1. It shows the power
spectrum of the comoving density compared to the power
spectrum of HL, which is equal to the comoving curvature
perturbationR in the TOM gauge (HT ¼ 0). On very large
scales, HL dominates leading to a considerably modified
initial displacement, while small scales are not affected by
the relativistic correction. Figure 2 shows the scalar
potential of the displacement field for the classical ZA
in the left panel and the relativistic correction from 3HL in
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the right panel. The displacement caused by the relativistic
correction is two orders of magnitude larger than the
classical ZA, but it is only present on large scales. In
the N-body gauge, however, HL ¼ 0 and there is no
relativistic correction to the displacement.
In a realistic cosmology, there is residual radiation at

high redshifts, which should be taken into account when
setting up the initial conditions for N-body simulations in
any gauge. In our N-body gauge only the relativistic
geodesic equation is modified by the presence of radiation,
described by γ in Eq. (12), which is missing in conventional

N-body simulations. Thus to get a smooth transition from a
relativistic to a Newtonian description, N-body simulations
should not be initialized at high redshifts, when radiation
is still important. In Fig. 3 we show the ratio of jγj=Φ,
describing the correction to the geodesic equation. N-body
simulations which are initialized at redshifts higher than 49
receive larger than percent level corrections to the Euler
equation initially. There is an inevitable tension between
the need to minimize radiation corrections (that require the
N-body start time to be at lower redshifts) with the need to
reduce nonlinear corrections to the initial conditions (which
are minimized at early times) [10]. The usual solution is
using Newtonian 2LPT to set initial conditions at lower
redshifts. However to do this while consistently including
relativistic corrections has not yet been done and remains a
challenge for future work.

IV. CONCLUSIONS

We have shown that the initial displacements for par-
ticles in an arbitrary gauge receive relativistic corrections.
These corrections, however, vanish in our novel N-body
gauge, where the Newtonian ZA is recovered, and the
relativistic evolution equations take the Newtonian form for
vanishing pressure perturbations and anisotropic stress.
Therefore, the initial displacements and the output of
Newtonian N-body simulations should be understood in
terms of our N-body gauge. By contrast, the density that
would be computed in N-body simulations using the TOM
gauge would not agree with the comoving density because
of the relativistic volume deformation, which is absent in
Newtonian simulations.
When comparing simulations to LSS surveys (e.g., SKA

and Euclid [7,8]), the particle positions in the N-body
simulation must be converted to observable coordinates
[22]. This conversion depends on the gauge used and, as
argued above, the N-body positions should be interpreted
in the N-body gauge. However, some quantities do not

FIG. 1 (color online). To illustrate the GR correction to the
initial conditions, we plot the power spectrum of ∇ · Fα (blue
[dotted] line) according to equation (22) at redshift z ¼ 100 in the
TOM gauge. δM ¼ δc þ δb includes CDM plus baryons. We also
plot the individual power spectra for CDM and baryons, as well
as the power spectrum of the correction term 3HL alone. The
displacement fields in TOM gauge and longitudinal gauge
coincide at first order.

FIG. 2 (color online). We show the potential of the displace-
ment field in TOM gauge at z ¼ 100. The initial scalar displace-
ments, shown as arrows, are the gradient of this field. All arrows
have been multiplied by a factor 4000 for improved visibility.
Note that since HT ¼ 0 in the TOM gauge, the spatial displace-
ments are the same as those in the longitudinal gauge at first
order. The left side shows the potential for the classical
Zel’dovich displacement ψ , while the right side shows the
relativistic correction to ψ.

FIG. 3 (color online). Ratio of jγj in the N-body gauge
compared to the Bardeen potential Φ, illustrating the impact of
radiation contaminants on conventional N-body simulations.
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depend on the spatial gauge used. For example, the density
is identical in all comoving gauges, and therefore quantities
derived from it, such as the matter power spectrum, are the
same in all comoving gauges.
In the commonly used longitudinal gauge, the authors of

[18,19] showed that there are a number of GR terms in the
relativistic equations which are apparently missing in the
Newtonian equations; these extra terms then rather mysteri-
ously cancel. We have shown that, in fact, these additional
GR terms are nothing other than the gauge transformations
from quantities defined in the longitudinal to those defined in
the N-body gauge, in which gauge the relativistic equations
coincide precisely with the Newtonian ones.
Finally, let us briefly discuss conventions for the matter

power spectra in available Boltzmann codes, namely in
CAMB [3] and CLASS [4]. The matter power spectrum
computed by CAMB is in the synchronous gauge; this
differs slightly from the N-body gauge matter power
spectrum on large scales due to the (small) total velocity
contribution from baryons, neutrinos and photons. In CLASS

the matter power spectrum is computed in a gauge
comoving with the nonrelativistic species. Again, this
differs from the matter power spectrum in the N-body

gauge on large scales. We have modified CLASS to also
output the comoving density power spectra in the N-body
gauge for cold dark matter, baryons, the sum of cold dark
matter and baryons, warm dark matter and massive neu-
trinos. It is available at https://Github.com/ThomasTram/
NbodyCLASS. These densities can be used to generate
the displacement field using the ZA (to first order) in the
N-body gauge. A Newtonian N-body simulation starting
from these initial conditions (or its 2LPTextension to second
order) computes the relativistic evolution up to first order.
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