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Abstract: Solubility of transition metal compounds plays a significant role in adverse health effects
because that is one of the most important factors of particulate matter bioavailability in the body.
In this study, we focus on the chemical analysis of particulate matter (PM) collected at different
locations in the area of Kraków, one of the most polluted cities in Poland, and compare them
with Standard Reference Material (SRM) 1648a from NIST. The content of four elements (carbon,
hydrogen, nitrogen, and sulfur) was determined by elemental analysis, and the ratio between organic
and inorganic carbon in PM extracts was confirmed by Total Organic Carbon analysis. Among
the most concentrated elements found there are calcium, magnesium, sulfur, silicon, and zinc,
whereas copper, iron, and manganese were present in lower concentrations. SEM-EDS analysis
showed a similar morphology of the SRM and PM collected in the urban area of Kraków, while PM
collected in the industrial area has smaller particles with a smooth surface. The reported analyses
are significant for the APARIC project (“Air Pollution versus Autoimmunity: Role of multiphase
aqueous Inorganic Chemistry”), which aims to identify the main inorganic components of PM and to
understand how they affect the development of immunological diseases.

Keywords: particulate matter; redox-active metal ions; air pollution; reactive oxygen species

1. Introduction

According to the European Environment Agency, Poland is one of the most polluted
countries in Europe. The annual mean PM2.5 concentration in 2016 was 24 µg/m3, which
is very close to the daily limit set by EU legislation (25 µg/m3) (2018) [1]. The Małopol-
ska voivodship is one of 16 voivodships of Poland. It covers the south-eastern part of
the country, the upper and partly middle Vistula river basin, and the upper Warta river
basin. The capital of the province is Kraków (50◦03′41′ ′N 19◦56′18′ ′E). Among the largest
emitters of pollutants in this province are steel mills, power plants, and chemical factories
near Kraków. An important reason for air pollution in Kraków is its location in the Vis-
tula river basin. On three sides it is surrounded by elevations of the terrain, which limit
the movement of air masses. There is often wind silence—about 22% of all days are wind-
less, and for the next 56% of the time, the wind does not exceed 2 m/s. Moreover, due
to the specific location of the city, there is a katabatic airflow [2]. Low-stack emissions
are a result of burning solid fuels (e.g., low-quality coal) and garbage in central heating
boilers. In Kraków, approximately 36% of the total emission of air pollution comes from
the municipal and residential sectors [3]. Moreover, it is worth mentioning that a low-
stack emission was responsible for 52% of overall PM10 emission sources in Poland and
88% of PM10 was due to individual house heating [4]. In the area of Kraków City, the
concentration of PMs is the highest during the winter season and reaches 4 times higher
values than during summer. In summer the PM2.5 concentration is around 22 µg/m3,
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whereas in winter it can reach up to 98 µg/m3; this is 2 times higher than in cities located
in central Poland and 3 times higher than in cities located on the coast of the Baltic Sea [5].
The PM concentration and elemental composition depend on the location. Urban and
rural air pollution during summer and winter was analyzed, and almost no difference in
the PM2.5 concentration was observed at different locations, but during the winter season,
the variability in urban areas is much higher than for rural areas. According to the report
of air quality assessment in the Małopolska voivodship in 2016, the highest PM2.5 con-
centration was monitored in the city center with an annual average of almost 38 µg/m3,
whereas in the industrial area close to the steelworks it was lower—around 30 µg/m3

(annual level) [6]. A similar observation was recorded for PM2.5 in 2017, during January
and February PM2.5 concentration was higher than 90 µg/m3 both in urban and rural
locations, but this level was exceeded for more days in urban locations [7]. Air pollution in
almost whole Europe is directly connected with the same sources: smoke from wood and
low-quality fuel burning for home-heating, exhaust fumes from old cars, and industrial
emissions. The Balkan area including Skopje, Sofia, Prishtina, and Sarajevo, was ranked
as the most polluted area in Europe. Skopje and nearby Tetovo, are predestined to air
pollution due to their localization in valleys and surrounding mountains. In this area, the
temperature inversion process also occurs, as in Kraków, which makes these cities more
susceptible to high air pollution [8]. Sofia is the next city with its geographical location
favorable for high levels of air pollution. It is surrounded by the Vitosha massif in the south
and the Balkan chain to the north [9]. The best air quality is found in Scandinavian coun-
tries. Helsinki has an extremely extensive network of bicycle routes and an excellent public
transportation system, which is one of the reasons why the air here is so clean. Moreover,
in Finland, a huge part of the energy comes from renewable energy sources. Reykjavik
uses natural energy sources, including geothermal energy. Therefore, Iceland does not deal
with air pollution problems related to coal combustion. Clearly, air pollution is not only
the consequence of human activity but also other, non-anthropogenic contributions.

“Air Pollution versus Autoimmunity: Role of multiphase aqueous Inorganic Chem-
istry” (APARIC) is an interdisciplinary project supported by the National Science Cen-
ter in Poland comprising scientists in chemistry, medical biology, and clinical medicine.
The main aim of this project is the investigation of environmental pollution, in particular,
inorganic PM components, which can aggravate the course of autoimmune diseases, es-
pecially influence the immune system response [10]. Properties of particulate matter like
chemical composition, particle size, and solubility are crucial for the cellular toxicity mech-
anism. Inorganic particles can contain elements and ion compounds, which are responsible
for their pathogenic properties and reactive oxygen species (ROS) generation activity that
affects metabolism and neurotransmitter synthesis. For this reason, it is necessary to investi-
gate how inorganic compounds present in the particulate matter can influence cytotoxicity,
and thus—how they can affect human health.

The main goal of this study was to analyze the particulate matter collected in different
locations in Kraków in terms of physicochemical properties and to compare them with
Standard Reference Material (SRM 1648a) of urban air pollution obtained from the US
National Institute of Standard and Technology (NIST). As specified in the Certificate of
Analysis for the Standard Reference Material 1648a from NIST [11], this material is a
reference for urban particulate matter and is commonly used as a control reference material
for many tests. Among others, the NIST sample also contains particulate matter from
diesel or general urban dust, so the SRM1648a sample fits the best for our work. The main
goal of this project is to account for the influence of inorganic components of particulate
matter in Kraków on autoimmune disease development. Our work focused especially
on investigating the elemental composition of PM (in particular, PM2.5) and its water
extracts. Analysis of the particle size of particulate matter is crucial to understanding its
influence on human health. The particle size is one of the most important parameters
that control toxicity. PM10, containing particles with an aerodynamic diameter of up to
10 µm, can enter the respiratory tract and cause bronchitis, asthma, and upper respiratory
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tract infections. PM2.5 is considerably smaller, with the aerodynamic particle diameter
smaller than 2.5 µm. It can penetrate the lower respiratory tract and bloodstream causing
cardiovascular infection and diseases. Submicron particles (PM1 with aerodynamic particle
diameter up to 1 µm) penetrate deeper, into the bloodstream, and can cause more harmful
effects, for example, heart diseases. Nanoparticles with a diameter <100 nm, referred
to as ultrafine particulate matter (UFP) after inhalation are efficiently deposited in all
regions of the respiratory tract. With a decrease in particle size, the active surface area
of PM increases, showing higher catalytic activity in the generation of reactive oxygen
and nitrogen species. As a consequence, a decrease in particle size besides the deeper
penetration of the respiratory system should, in general, favor increased toxicity related
to catalytic ROS formation. As the size of inhaled PM decreases, their penetration range
increases [12]. The particle size distributions in aqueous solutions were measured after
different sample preparation times to assess the stability of the PM water extracts. There
is not so much information about the inorganic part of particulate matter extracts, their
composition of soluble components and size, as well as information about carbon content
in such PM. Here we propose a unique approach based on the removal of soot and organic
species before extracting water-soluble inorganic components. Therefore, the results of our
study can be useful for other scientists who wish to work with PM extracts deprived of
organic components, which may be responsible for their own toxicity and reactivity.

2. Materials and Methods
2.1. Materials

SRM 1648a was supplied by NIST. Methanol 99.9% was purchased from POCh,
phosphate-buffered saline, PBS (pH = 7.4) from Merck. The PBS buffer was used to
mimic the intracellular environment.

2.2. Particulate Matter Sampling and Extraction

Location of all PM collectors are presented in Figure 1.

Figure 1. Localization of PM collectors in Kraków.

PM2.5 Urban.A and PM2.5 Industrial samples were collected on quartz fiber filters
(diameter of 47 mm, pore size 2.2 µm) according to procedures of the Voivodship In-
spectorate for Environmental Protection (VIEP) in Kraków. The air quality assessment in
Poland was carried out based on relevant legal acts that define the air monitoring system,
and the scope and method of testing. The relevant regulations can be found on the web-
site http://monitoring.krakow.pios.gov.pl/ocena-jakosci-powietrza (accessed on 27 April
2021). The PM2.5 Urban. A collector was located in the city center close to busy roads and
traffic, while the industrial area (sample PM2.5 Industrial) is a suburb of Kraków in the

http://monitoring.krakow.pios.gov.pl/ocena-jakosci-powietrza
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neighborhood of a power plant and steelworks. We built our own homemade system for
PM collection, which is a modified version of conventional systems and allows for much
larger samples to be collected (sample name Urban.B). It was located in the city center,
200 m from the collector of urban PM2.5 of VIEP. A specially designed plexiglass cassette
with 16 holes was made for 16 polytetrafluoroethylene (PTFE) filters with a diameter of
47 nm and pore size of 2.5 µm. All filters were held with metal rings in fixed positions
in the cassette. This cassette was connected tightly to a pump which sucked the air from
outside (ca. 30 m3/h) through the filters and allowed the collection of particulate matter
on the filters. Filters were exchanged every week. All filters with particulate matter were
extracted with methanol and sonicated for 1 min (PTFE filters) or 15 min (quartz filters) in a
water-bath sonicator (SONIC-5, Polsonic, 620 W). Extraction of PM from quartz filters was
more difficult, which resulted in a longer sonication time (15 min). For Teflon filters, 1 min
of sonication was sufficient for the extraction process. Each of the filters were sonicated
2 times to assure total extraction of collected particulate matter. Subsequently, the PM was
dried overnight at 60 ◦C (Pol-Eko-Aparatura Sp. J.). Finally, altogether ca. 50 mg of dry
PM2.5 Urban.A and dry PM2.5 Industrial powders were collected. Due to a high airflow
the amount of PM Urban.B collected during 3 months was much higher, around 400 mg.

2.3. Preparation of Kraków PM Extracts

Appropriate amounts of dried powder of the particulate matter samples were sus-
pended in water and phosphate-buffered saline (pH 7.4) to reach the concentration of
1 g/L. Suspensions were incubated on a shaker for a maximum of 7 days at room temper-
ature. Extracts were prepared in 3 ways: the first sample—only incubation, the second
sample—incubation with additional centrifugation (1350 rpm, 10 min or 30 min), and the
third sample—incubation, filtration (syringe filter with 0.22 µm pores), and centrifugation.
Extracts prepared in these ways were analyzed for elemental composition (Inductively
Coupled Plasma—Optical Emission Spectrometer (Plasm 40, Perkin Elmer, Waltham, MA,
USA) and particle size (Dynamic Light Scattering measurements, Malvern Zetasizer ZS,
Malvern, UK). The three procedures for PM extract preparation were used to investigate
in detail the particles that actually occur in our body after inhalation. In general, PM in
the air is present in the solid state, but during rain, fog, or high humidity, we deal with a
totally different system. Many components of PM are soluble under such conditions. We
inhale them as the high humidity is common for seasons with the highest air pollution
(autumn and winter). After entering our body, PM components are also soluble in body
fluids. Limiting the particle size reflects particle size reduction after crossing the barriers in
our organisms.

2.4. Analysis of the Carbon, Nitrogen, Hydrogen, Sulfur Elemental Content and Removal of
Carbon Compounds

The removal of components containing carbon was performed as described in our
earlier study [13]. Low-temperature plasma enables the conversion of organic contaminants
into volatile products, leaving the inorganic components in their basic forms. PM samples
were treated with a low-temperature oxygen plasma for 2 h in the case of NIST [13] and 5,
10, and 15 h for Urban.C PM at the maximum power of the device (100 W) and referred to
as NIST SRM/2 h and Urban.C/5 h, Urban.C/10 h and Urban.C/15 h, respectively. For
PM collected in Kraków, plasma treatment was much longer (up to 15 h) compared to
NIST SRM 1648a (2 h treatment). This was due to fact that the carbon content in PM from
Kraków was 3 times higher than in the SRM 1648a sample. Elemental analysis was used to
monitor the contents of carbon, hydrogen, nitrogen, and sulfur (Elementar, Vario Micro
Cube, Okehampton, UK), and a total organic carbon analyzer (Shimadzu, Kioto, Japan,
TOC-V series) was used to determine the organic and inorganic carbon content.

2.5. Morphology Characterization and Elemental Analysis of Kraków PM

PM samples collected at different locations in Kraków were analyzed with a Scan-
ning Electron Microscope TESCAN (Brno, Czech Republic) Vega 3 LMU (LaB6 cathode)
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equipped with the EDS spectrometer (Oxford Instruments, X-act, SDD 10 mm2, Oxford,
UK). EDS spectra were collected for several areas of PM samples to check the sample
inhomogeneity. Results were compared with those collected for the Standard Reference
Material, NIST 1648a.

2.6. Determination of Elements Present in Water Extracts

The NIST SRM 1648a powder and NIST SRM 1648a after 2 h of plasma treatment were
suspended in distilled water (in concentration 1 g/L). After a few minutes of sonication,
samples were shaken for 24, 72, and 168 h. Different incubation times were applied to
assess whether it had any influence on the elemental composition of the PM extracts. After
incubation, each suspension was centrifuged and filtrated through a syringe PTFE filter
with 0.22 µm pores. Water extracts of Standard Reference Materials, as well as Kraków PM
extracts, were analyzed by Inductively Coupled Plasma—Optical Emission Spectrometry
(Plasm 40, Perkin Elmer).

2.7. Effect of Sonication Time, Filtration and Centrifugation on Particle Size Distribution
(SRM/2 h and SRM 1648a)

The NIST SRM 1648a and NIST SRM/2 h samples were suspended in distilled water
(in concentration 1 g/L). After a few minutes of sonication, samples were shaken for 72 h,
centrifuged for 10, 30, or 40 min, and 2 mL of each suspension was collected. Then, one
part of the samples were filtrated through a syringe PTFE filter with 0.2 µm pores. Samples
prepared in this way were analyzed by the Dynamic Light Scattering technique (Malvern
Zetasizer ZS, Malvern, UK).

3. Results
3.1. Analysis of the Carbon, Nitrogen, Hydrogen, Sulfur Elemental Content and Removal of
Carbon Compounds

The content of carbon, hydrogen, nitrogen, and sulfur was measured by elemental
analysis and summarized in Figure 2.

Figure 2. Comparison of the C, H, N, and S elemental content in NIST SRM 1648a, particulate matter collected in Kraków,
and plasma-treated samples.

In comparison to our earlier data [13] PMs collected in Kraków are much richer in
organics than standard reference urban particulate matter NIST SRM 1648a. The carbon
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content in NIST SRM 1648a is certified as 12.7% [11] and we obtained a similar value
of 13.5%. For all PM samples collected in Kraków (Urban.A, Urban.B, Industrial), sam-
ples contain more than 40% of carbon. Black carbon is one possible form of carbon in
air pollution and it is produced during the incomplete combustion of fossil fuels (e.g.,
soot). Organic carbon which can be formed in the atmosphere as a result of chemical
and photochemical reactions is another component of PM [14]. Four main factors affect
the organic carbon content in PM: biomass combustion, traffic, secondary organic aerosol,
and long-range transport. In Poland, people heat their homes often using coal, or low-
quality fuels, which contribute to the production of PM rich in soot. During winter,
emissions of PM are 4–5 times higher than those measured during summer [6,7]. A wide
range of different polycyclic aromatic hydrocarbons (PAHs) can be found in the particulate
matter collected in Kraków. Among them, fluoranthene, pyrene, benzo[α]anthracene,
and chrysene are the most concentrated components [15]. Extremely high concentrations
of organics in Kraków air pollution can be because the samples were collected mostly
during the winter season, and the propensity of aggregation of organics from air pollution
to total suspended particles increases with decreasing temperature [16]. Removal of the
organic content from PM Urban.B was performed in the same way as for NIST 1648a, i.e.,
using the low-temperature oxygen plasma. For Urban.B, 2 h of plasma treatment were not
sufficient to obtain the carbon-free fraction of air pollution, and even after 15 h of plasma
treatment (Urban.B/15 h) the remaining carbon content (52%) was higher than in the NIST
SRM/2 h sample.

Furthermore, the nitrogen content is higher in Kraków PM (around 7.4%) than in
NIST SRM (2.8%). From the decreasing content of nitrogen upon plasma treatment (mainly
in the case of NIST SRM 1648a), it can be concluded that a certain amount of nitrogen
may be due to the presence of PAHs. The most concentrated nitro-PAH in Kraków air is
2-nitrofluoroanthene, the same as in NIST SRM 1648a, but in fifty times higher concentra-
tion, viz. 12.9 compared to 0.2 mg/kg, respectively [15]. The sulfur content is two times
lower than in NIST SRM 1648a. The main source of this element in PM is ascribed to
the combustion of fossil fuels and some minerals (e.g., gypsum) [13].

3.2. Analysis of Organic and Inorganic Carbon Content

The carbon content was also examined using the Total Organic Carbon Analyzer,
which enabled us to distinguish between organic and inorganic forms of carbon.
The obtained results are summarized in Table 1. In the first procedure, only 3 days of
incubation were applied. In the case of inorganic carbon (IC), the extracted content was
higher in PBS than in the water in every sample. This can confirm the presence of less
water-soluble, better PBS-soluble species of IC in the PM. Moreover, the content of IC
in all investigated samples was very low, which means low carbonate content. For total
organic carbon (TOC) this relation is not discernible, since carbon compounds seem to be
similarly soluble in both solvents. After 10 min of centrifugation of incubated suspensions
of PM, the general content of carbon decreased a few times. Probably, centrifugation causes
the separation of larger particles that are richer in carbon compounds and only soluble
carbon compounds remain in the solvent. Following centrifugation, a trend with higher
solubility of carbon compounds in PBS was observed, mainly for IC, whereas in aqueous
solution the amount of IC was almost zero. For TOC we observed a higher content of
organic carbon compounds in PBS; only for the reference material (both before and after
plasma treatment) the amount of TOC is higher in water. Additional filtration during the
preparation of extracts did not have a significant impact on the carbon content, since all
values were comparable. Consequently, it can be concluded that the content of carbon
from carbon-containing compounds soluble in water/PBS can be estimated just after incu-
bation and short centrifugation, while filtration does not affect the TOC/IC content. PBS
seems to be a better solvent for organic carbon-containing compounds present in Kraków
particulate matter.
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Table 1. Inorganic carbon (IC) and total organic carbon (TOC) content of prepared extracts.

Content (in %)

Sample Solvent
Sample Preparation: 3 Days

of Incubation
Sample Preparation: 3 Days of

Incubation, 10 Min Centrifugation
Sample Preparation: 3 Days of

Incubation, Filtration,
10 Min Centrifugation

TOC IC TOC IC TOC IC

NIST SRM 1648a H2O 21.6 ± 0.5 0.1 ± 0.1 4.9 ± 0.3 - 3.1 ± 0.1 0.1 ± 0.1
PBS 19 ± 3 1.5 ± 0.1 3.6 ± 0.1 0.5 ± 0.1 4.1 ± 0.3 0.4 ± 0.1

NIST SRM/2 h H2O 4.0 ± 0.2 0.2 ± 0.1 2.3 ± 0.3 - 3.9 ± 0.2 -
PBS 3.4 ± 0.4 0.5 ± 0.1 1.2 ± 0.2 0.4 ± 0.1 1.6 ± 0.1 0.3 ± 0.1

PM2.5 Urban.A H2O 31 ± 2 0.2 ± 0.1 14.4 ± 0.3 0.1 ± 0.1 11.0 ± 0.7 0.1 ± 0.1
PBS 45 ± 4 1.3 ± 0.1 16.9 ± 0.2 0.6 ± 0.1 16.5 ± 0.2 0.5 ± 0.1

PM2.5 Industrial H2O 47.4 ± 0.2 0.2 ± 0.1 7.4 ± 0.2 0.1 ± 0.1 11.9 ± 0.1 -
PBS 38 ± 3 1.2 ± 0.1 10.0 ± 0.4 0.8 ± 0.1 10.3 ± 0.5 0.5 ± 0.1

PM Urban.B H2O 48 ± 5 0.2 ± 0.1 10.4 ± 0.6 0.1 ± 0.1 9.5 ± 0.3 0.1 ± 0.1
PBS 46 ± 3 1.0 ± 0.1 14 ± 1 0.5 ± 0.1 11 ± 1 0.5 ± 0.1

PM Urban.B/10 h H2O 19 ± 2 0.1 ± 0.1 9.2 ± 0.1 0.3 ± 0.1 11.1 ± 0.4 0.1 ± 0.1
PBS 25 ± 3 0.7 ± 0.1 11.1 ± 0.4 0.7 ± 0.1 12.8 ± 0.2 0.8 ± 0.1

3.3. Analysis of Morphology of Particulate Matter from Different Kraków Locations

Scanning electron microscopy images of PM from Kraków do not show significant
differences in morphology. In all samples, relatively large aggregates of particles of different
shapes and sizes, from nano- to even a few micrometers, were observed. Samples collected
in the urban areas (Urban.A, Urban.B) are characterized by particles similar in size and
surface morphology to the reference material, while PM2.5 Industrial consists of smaller
aggregates, up to 20 µm, showing a smooth surface (Figure 3). Elemental analysis was
performed by Energy Dispersive Spectroscopy (Figure 4). The mass content of elements
was determined for selected sites and is also presented in Figure 4. Carbon is the most
common element; the content of this element in the PM2.5 Industrial is comparable with
NIST SRM 1648a, whereas the content of this element in the PM2.5 Urban.A is higher. This
may be associated with increased exhaust gas emissions because our collectors of urban
PM samples are located in the center of the city and is one of the most crowded streets in
Kraków. Interestingly, EDS measurements revealed nitrogen only for the NIST SRM 1648a
sample, but it can be explained by selectively determining the content of elements in one
point of the samples. All PM2.5 samples contain comparable amounts of sulfur and silicon,
whereas iron was found in larger quantities for PM2.5 Urban.A. This might be related to
the abrasion of brake pads. The amount of copper in all samples is negligible, but this
result may originate from local analysis of elements in one particle, while the total content
of elements may be different. Samples collected in the urban area contain small amounts of
titanium, which is not present in the PM2.5 from the industrial area. The content of Na and
Cl in the PM from Kraków can be explained by the fact that the PM was collected mainly
during the winter period when roads are salted.

Figure 3. Comparison of PM collected in different locations in Kraków.
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Figure 4. Energy dispersive spectroscopy mapping of PM samples and contents of selected elements (in wt%) of Kraków
PM samples determined by EDS analysis. BD—below the detection limit.

3.4. Determination of Elements Present in Water and PBS Extracts from Kraków and NIST SRM
Particulate Matter

One of the aims of PM incubation in water was to determine elements in the water-
soluble components of PM and to investigate whether longer incubation times affect
the element concentration in water. Principally, the same elements were found for both
NIST SRM 1648a before and after plasma treatment, but in extracts of NIST SRM/2 h
higher amounts of different elements were found (Figure 5). Sulfur is present in the highest
amount among water-soluble elements analyzed both for NIST SRM and NIST SRM/2
h water fractions with concentrations of 160 and 200 mg/L, respectively. Silicon occurs
in the NIST SRM 1648a in large amounts (12.8%), whereas the ICP-OES analysis shows
that a negligible concentration of this element is present in both extracts. This indicates
that silicon is present in the form of insoluble compounds. The concentration of calcium is
the second highest and is five times lower than the sulfur concentration. The third element
with the highest concentration is phosphorus with an average concentration of 7 mg/L in
both extracts.

Among the most interesting elements from the standpoint of bioinorganic redox
chemistry, manganese is one with the highest concentration and its concentration in extracts
is two times higher for plasma-treated PM samples. A similar situation occurs for copper,
but compared to manganese, its concentration in the extracts is two times lower. The iron
concentration is higher in the PM extract before oxygen plasma treatment. More interesting,
the concentration of iron in NIST SRM 1648a is the highest among all metals (of around
3.9%), but in extracts, the amount of iron is much lower, viz. 0.05 mg/L, which can indicate
that iron also exists mainly in an insoluble form. The last element of interest is nickel,
whose content in the water extracts of both PM is comparable. Only in the case of elements
with high concentrations, the time of PM incubation has a small influence on the number
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of elements in the water extracts, viz. the concentration of these elements in the extract
increases slightly with longer incubation time.

Elements of Kraków PM extracts were examined in two solvents: water and PBS.
Elements that are included in the composition of phosphate-buffered saline buffer were
not considered. Calcium, magnesium, sulfur, silicon, and zinc are among the elements
with the highest concentration, whereas sulfur is the most concentrated element in all
extracts, similar to extracts of the standardized PM where this value is two times smaller
(Figure 6). Interestingly, a high concentration of sulfur was observed for PM Urban.C/10 h,
a plasma-treated sample of PM with 4 times higher sulfur concentration than in the sample
before plasma treatment. This concentration was also confirmed in elemental analysis
where the content of this element was 4 times higher. This also means that nearly all
sulfur-containing compounds are soluble in water.

Figure 5. Concentrations of elements in water extracts of NIST SRM 1648a and plasma-treated NIST SRM 1648a samples.
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Figure 6. Selected elements for water and PBS soluble compounds from Kraków particulate matter (I—incubation,
F—filtration, C—centrifugation).

Sulfates are a common group of compounds present in particulate matter, and the
most abundant are calcium and sodium sulfates [17]. Large amounts of sulfates are
generated by sulfur dioxide oxidation, which is produced by the combustion of fossil fuels.
The next one is calcium, its concentration in Kraków PM extracts is a few times lower than
in extracts of NIST SRM 1648a. Magnesium, silicon, zinc are present in Kraków samples in
comparable amounts, similar to the standard reference sample. Elements with moderate
concentration are copper, iron, and manganese, which are interesting from the standpoint
of their redox activity. The iron content is the highest among these three elements and
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its concentration is 10 times higher in Kraków PM sample extracts than for NIST SRM
1648a extracts, especially for PM collected near crowded streets [13]. In plasma-treated
PM Urban.B/10 h, iron is present even in a higher concentration, up to 4 mg/L, which
makes this element important to study due to its redox activity as in the Fenton reaction.
It was reported that the solubility of iron is around 10–30% [18], thus it has to exist in a
form of insoluble or slightly soluble compounds, like oxides [19], and it is not attached
to highly soluble ions like sulfates and nitrates [20]. According to our studies, iron is
quite well soluble in water after 10 h of plasma treatment. Copper and manganese are
present in a similar concentration as in the NIST SRM 1648a and NIST SRM/2 h extracts;
only for PM Urban.B/10 h this concentration is around 2 times higher. The quantity of
elements that form the last group with the lowest concentrations is similar in all Kraków
samples, as well as in the standardized PM sample. Noteworthy is that after plasma
treatment, the concentration of elements like iron, copper, chromium, titanium, and lead
is higher than in PM before the treatment. Increased concentration of these elements
means increased availability of these elements in the collected PM, which means that
plasma sawing somehow releases the bulk of transition metals. In the case of chromium,
the concentration of this element after treatment is 1 mg/L, whereas in the original PM
sample this concentration was below the detection level. It was hypothesized that a high
soot content reduces the dissolution of chromium [20,21]. There is a strong dependence
of the concentrations of elements on the type of solvent. Several papers describing water-
soluble elements from particulate matter and their concentrations show that the content of
soluble components strongly depends on localization. PM2.5 from Bologna contains zinc
and cadmium among the most soluble elements, while aluminum compounds showed
the least solubility [22]. Similar results were obtained by Jiang—the highest concentration
among water-soluble cations was observed for zinc, calcium, and cadmium. Aluminum
was found in the smallest amount, similarly to chromium [23]. Chromium was also found
among the least water-soluble metal compounds in PM2.5 collected near Katowice in
Poland [24]. However, not too many authors consider the solubility in PBS buffer, which
imitates body fluids. Almost all soluble elements are present at higher concentrations in
water extracts than in PBS, e.g., sulfur in all Kraków PM extracts is two times, and zinc
five times more concentrated in water extracts than in PBS buffer. It is crucial to recognize
the prevalent elements in extracts to understand and account for their role in further
APARIC studies.

3.5. Effect of Sonication Time, Centrifugation and Filtration on Particle Size Distribution (NIST
SRM/2 h and NIST SRM 1648a)

For plasma-treated NIST SRM 1648a, there is a large difference in particle size distri-
bution for samples centrifuged for 10 and 30 min (Figure 7). After a short centrifugation
time, particles in the water extract of NIST SRM/2 h are homogeneous in size during
3 subsequent measurements, and the mean particle size from these measurements is ca.
850 nm. Longer centrifugation causes a fluctuation in size, which means a low instability.
In our experiments, even after filtration through filters with 0.22 µm pores, particles with
a larger diameter than the pores were observed in the extracts. In the case of 10 min
of centrifugation and filtration, there is almost no change in the size distribution of the
particles. The mean diameter from 3 measurements is 0.8 µm and particles are smaller than
before filtration but larger than the filter pores. This may point to the aggregation of smaller
particles, but they do not sediment and the size distribution remains similar during the
measurements. In the case of NIST SRM 1648a, the size distribution dependencies are very
similar to results obtained for plasma-treated samples (Figure 7). Shorter centrifugation
times are better because the particle size distribution in these experiments is homogeneous
and remains almost intact during the experiment (mean diameter is 0.74 µm). Longer
centrifugation time causes extension of the size range from 0.3 to even 2 µm with a mean
diameter of 0.9 µm. Particles are 0.2 µm larger than after shorter centrifugation times.
Moreover, filtration after 10 min centrifugation does not affect the size distribution.
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Figure 7. The particle size of NIST SRM 1648a and SRM/2 h prepared in different methods (C10, C30, C40—centrifugation
time in minutes, F—filtration). Each sample has been analyzed in triplicate.

3.6. The Influence of the Extract Preparation Procedure on Particle Size Distribution (Kraków
PM Samples)

Kraków PM extracts were prepared from PM Urban.B in two solvents, viz. water
and PBS, and in different ways: incubation, incubation with centrifugation, incubation
with centrifugation, and additional filtration. For all analyzed samples we observed
the general trend that the particle size is the largest immediately after incubation and
the smallest after the 3 step protocol for extract preparation (Figure 8). Extracts prepared
by 3 days of incubation contain particles in two size ranges: smaller (0.1–0.5 µm) and larger
(0.5–1.5 µm). Our purpose was to decrease the size to obtain particles smaller than 1 µm
by using filtration and centrifugation. 10 min of centrifugation seems to be enough to
remove particles from the larger size range and the obtained particles are between 50 and
300 nm. This size is satisfactory for animal tests using the nebulizer device. The samples
after incubation, filtration, and centrifugation, contain even smaller particles, from 10 to
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150 nm, but this step is not essential since the decrease in size is not spectacular. Particles
after incubation and centrifugation are of an ideal size for biological studies. Considering
the results for different solvents (water, PBS), the differences are not discernible and the
general size ranges are similar in both cases. Furthermore, there were no major differences
between the two PM samples collected in Kraków. This may be because these PM samples
were collected at the same location using different sampling procedures that did not affect
the size.

Figure 8. The particle size of Kraków particulate matter in water and PBS after preparation using different procedures. Each
sample has been analyzed in triplicate.

4. Discussion

Air pollution is currently one of the most significant environmental problems in many
countries. The problem of air pollution is an enormous challenge for the City of Kraków,
and the consequences for people in the form of deterioration of health and numerous
allergies. That is the reason why the APARIC project wants to face this problem, by
investigating how air pollution affects the development of immunological diseases. PM in
the air is present in the solid state, but during rain, fog, or high humidity, we deal with
a totally different system. Many components of PM are soluble yielding more ions and
soluble elements. We inhale them together with moisture, in particular during seasons with
the highest air pollution and humidity (autumn and winter). After entering our bodies,
PM is also dissolved and/or suspended in body fluids, so in fact, soluble components of
particles are very important.

PM collected in Kraków is richer in organics than the employed standard NIST
SRM 1648a. Samples from all locations in the City of Kraków contain more than 40% of
carbon, which can suggest an increased amount of polycyclic aromatic hydrocarbons. The
content of nitrogen is two times higher than in NIST SRM 1648a, which is connected with
the presence of nitro substituted organic compounds in the PM. As seen from the data
presented in Figure 2, the carbon content decreases upon plasma treatment of PM Urban.B
samples, pointing to an efficient removal of soot and organic compounds. This conclusion is
consistent with the drop in hydrogen content. A nearly constant level of nitrogen suggests
an almost equal content of this element in organic and inorganic components. Only
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the sulfur content increases upon plasma treatment, which can be interpreted as evidence
for inorganic sulfur, which is more available for analysis when organic components are
removed. SEM-EDS analysis showed a similar morphology for standard and PM collected
in the city center, while PM collected in the industrial area has smaller particles with a
smooth surface. Extracts of PM were prepared in two solvents in three different ways
to optimize the protocol which enables to obtain particles with a size under 1 µm. From
ICP-OES analysis we can perceive that the same elements come from soluble compounds
and suspended nanoparticles in water both for NIST SRM 1648a before and after plasma
treatment, but in extracts, from NIST SRM/2 h a higher content of different elements can
be found. Among the elements with the highest concentrations in Kraków PM extracts
are calcium, magnesium, sulfur, silicon, and zinc, whereas moderate concentrations were
found for copper, iron, and manganese. In plasma-treated PM Urban.C, the concentration
of these elements is higher. This is because during treatment with plasma a large part of
the sample is removed, viz. organic compounds, constituting a large part of the sample
that is converted to CO2 and H2O. The sample after combustion in the plasma is poorer
in the organic fraction, and thus richer in inorganic compounds. For the experiments
with extracts, we took the same amount of samples to obtain suspensions with the same
concentration. Therefore, the samples after the plasma treatment contain an increased
amount of soluble elements such as iron or copper. There is a strong dependence between
the concentration of elements and the selected solvent: all soluble elements are present
in PBS extracts at a higher concentration than in water. During NIST SRM 1648a and
NIST SRM/2 h extract preparation, it is sufficient to centrifuge samples for 10 min. For
all analyzed Kraków PM extract samples, we observed the general trend that the particle
size is the largest immediately after incubation and the smallest after the 3 step protocol for
extract preparation (in the range from 50 to 300 nm) suitable for biological experiments.

5. Conclusions

The APARIC project was initiated with the idea to recognize relationships between
transition metal-containing particulate matter and the course of autoimmune diseases.
Results presented in this study are crucial for the health of people in the City of Kraków
and are important for them to be aware of the threat to their health resulting from air
pollution. All presented results show the importance of the air pollution problem in Kraków.
The first is the high content of organic carbon compounds. Next is the concentration of
important elements like iron and copper which are redox-active and catalytically active
metal ions that can affect ROS generation. Redox chemistry also plays a crucial role in
targeting the redox balance in inflammatory skin conditions. Finally, the particle size of PM
is extremely important.

In this work, we focused mainly on PM2.5. It is worth mentioning that the mean
concentration in air of this PM fraction in the spring of 2015 was around 27 ± 19 µg/m3,
while the annual concentration for PM2.5 was 25 µg/m3 and PM1 concentration was
19 ± 14 µg/m3 [10]. The main conclusion from our study is that PM in Kraków contains
much more organics than the standard reference material of particulate matter, which is
responsible for many diseases. Carbon cannot be removed totally from PM collected in
Kraków by using oxygen plasma. PM is constituted rather of agglomerates of smaller
particles after collection on filters, and the average grain size is around 50–150 µm, while
after suspending in water/PBS the average size is 1 µm. Extracts of PM contain much
smaller particles up to 200 nm which are appropriate for cell tests. Among the most
concentrated elements are calcium, magnesium, sulfur, silicon, and zinc, whereas copper,
iron, and manganese are present in lower concentrations in all sample extracts. This report
may be very useful for many scientists working with PM since in the literature there is still
a lack of information about particulate matter extract preparation, their composition of
soluble components and size.
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