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Abstract. We explore the phase structure of a holographic toy model of
superfluid states in non-relativistic conformal field theories. At low background
mass density, we found a familiar second-order transition to a superfluid
phase at finite temperature. Increasing the chemical potential for the probe
charge density drives this transition strongly first order as the low-temperature
superfluid phase merges with a thermodynamically disfavored high-temperature
condensed phase. At high background mass density, the system re-enters the
normal phase as the temperature is lowered further, hinting at a zero-temperature
quantum phase transition as the background density is varied. Given the unusual
thermodynamics of the background black hole, however, it seems likely that the
true ground state is another configuration altogether.
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1. Introduction

Non-relativistic (NR) superfluids provide a high-precision laboratory in which to probe many-
body physics in the extreme quantum regime ([1] and references therein). In an effort to bring
the tools of holography [2–4] to bear on these systems, considerable effort has been devoted
to studying NR deformations of relativistic examples2 which enjoy z = 2 scaling [7–11].
Unfortunately, such deformations generate highly atypical states in the resulting NRCFT whose
thermodynamic and other properties are tightly constrained by their relativistic births. In
particular, they are in general far from the superfluid ground states of the corresponding systems,
for which we currently have no description.

In this paper, we examine certain superfluid states in a holographic NRCFT in a probe
approximation. Our strategy is essentially the same as that in the AdS case (see e.g. [12, 13]):
we study an Abelian–Higgs theory in the background of a neutral asymptotically Schrödinger
black hole [9–11] in the probe approximation. Several features of the geometry, however,
make the resulting analysis qualitatively different. For example, we are now forced to turn
on two components of the bulk gauge field: At , dual to a boundary charge current, and
Aξ , dual to a boundary mass3 current. By itself, this is not a big deal. What is surprising

2 Since the NR conformal group is a subgroup of the relativistic group in one higher dimension, we can construct
a non-relativistic conformal field theory (NRCFT) by turning on an operator in a relativistic conformal field theory
(CFT) which breaks the relativistic group to its NR subgroup. Taking the operator to be marginal in the NRCFT
[5, 6] requires it to be irrelevant in the CFT. Holographically, this corresponds to a one-parameter deformation of
the geometry which alters the asymptotic geometry from anti-de Sitter (AdS), whose isometries form the relativistic
conformal group, to Schrödinger [7, 8], whose isometries fill out the NR conformal group.
3 In an NRCFT, each primary operator is characterized not only by a dimension 1 but also by its mass, M ,
where mass is the name of a central extension M̂ in the NR conformal group. In the case of free fermions,
M̂ = Mψ†ψ ; hence, it is often called the ‘number’ operator—we prefer ‘mass’ to disambiguate the various
meanings of ‘number’.
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given intuition from the relativistic case is that the boundary value of this second vector
component, Mo = Aξ |∂ , weasels its way into the dimension of the boundary order parameter
as1= 2 ±

√
4 + m2 + q2 M2

o . Specifying the boundary NRCFT thus requires specifying not just
the bulk matter fields and their interactions, but also the asymptotic fall-offs of some of the
bulk fields. Similar effects arise in the holographic renormalization of the theory, which as usual
requires introducing counterterms that depend on the boundary operator dimensions; here, these
counterterms will depend explicitly on the boundary values of some bulk fields, too (see e.g.
[14] for a discussion of such effects).

To build a truly NR superfluid then, we must generate a condensate for a boundary operator
with non-zero mass eigenvalue, M 6= 0. This is the role of the second component of the gauge
field—in a gauge where the phase of the condensate is constant, the mass eigenvalue is simply
M = −q Mo. The boundary value of the second component of the gauge field thus controls the
breaking of the mass symmetry in the superfluid phase.

While the background about which we perturb is a one-parameter deformation of a
relativistic example, the superfluid state we find is not, and indeed enjoys quite distinct
phenomenology from its AdS cousins. Fundamentally, the NR condensate is characterized by
one more quantum number than in the relativistic case—the mass eigenvalue, M , of the order
parameter—with the NR condensate breaking the symmetry generated by the mass operator,
a key signature of an NR superfluid. As we shall see, this leads to a host of interesting effects
in the strongly NR regime, including the appearance of a thermodynamically unstable high-
temperature condensed phase that drives the superconducting transition from second order to
first at a multicritical point, the persistence of a condensate even in the absence of a chemical
potential for the charge density, and re-entrance of the normal phase at low temperatures for a
sufficiently large background density.

It is tempting to interpret this re-entrance as signaling a zero-temperature quantum phase
transition as the background mass density is tuned. However, the re-entrant normal state is again
the simple one-parameter deformation which we do not expect to be the true equilibrium ground
state, so we do not expect this probe analysis to be the end of the story. Meanwhile, it remains
possible that the system is in fact re-entrant for all values of the background mass density as
T → 0, where our probe approximation becomes unreliable. Resolving these puzzles, however,
requires going beyond the truncated probe approximation discussed in this paper; we leave them
to a future study.

The plan of this paper is as follows. In section 2, we quickly describe the basic strategy and
computational setup, with various details elaborated in the appendices. In section 3, we explore
the phenomenology and phase structure of holographic superfluids outside a Schrödinger black
hole (an analogous study in the background of a Schrödinger soliton [15] is performed in
appendix A—while this is not in the same ensemble as the black hole, it provides an alternate
example with surprising physics of its own). We end the paper in section 5 with a summary and
list of next steps.

2. The setup

Our basic strategy involves studying an Abelian–Higgs system,

Lprobe =
1

e2

(
−

1

4
F2

− |D8|
2
− m2

|8|
2

)
, (2.1)
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as a perturbation around the planar Schrödinger black-hole background,

ds2
=

(
− f +

( f − 1)2

4(K − 1)

)
dt2

Kr 4
+

1 + f

r 2K
dt dξ +

K − 1

K
dξ 2 +

dEx2

r 2
+

dr 2

f r 2
(2.2)

in the probe limit e2
→ ∞. Here, f = 1 − r 4(πT�)4/3, K = 1 + r 2�2 and the metric is given

in string frame. One can think of this as a rather extreme truncation of the charged Schrödinger
black-hole system [16, 17] where we drop the coupling of the vector to the scalar and massive
vector of the black-hole background, or simply as a holographic toy model. The geometry is
controlled by two physical parameters, the background mass density,�, and the temperature, T ,
with the horizon located at the radial coordinate rH = (πT�)−1/3.

For spatially homogeneous solutions, we can without loss of generality set EA = 0 and take
8= φ(r) and A = At(r)dt + Aξ (r)dξ . In the Einstein frame, the equations of motion take the
form

f 2r 2φ′′
− f (4 − f )rφ′

−

[
f
(
q2 A2

ξ + 2q2r 2 Aξ At + m2K 1/3
)

−
q2( f − 1)2

4(K − 1)

(
Aξ − 2r 4

H�
2 At

)2

]
φ = 0, (2.3)

f r 2 A′′

t −

(
2 −

f

3
(7K − 4)

)
r

K
A′

t −

(
2 + f ( f − 1)+

( f − 1)2

K − 1

)
1

Kr
A′

ξ − 2q2K 1/3φ2 At = 0,

(2.4)

f r 2 A′′

ξ −

(
4K − 2 −

2 + K

3
f

)
r

K
A′

ξ − 4(K − 1)
r 3

K
A′

t − 2q2K 1/3φ2 Aξ = 0. (2.5)

Note that Aξ 6= At .

2.1. Asymptotic behavior and the holographic dictionary

Near the boundary at r = 0, the vector components behave as

At = µQ + ρQ r 2 + · · · , Aξ = Mo + ρM r 2 + · · · , (2.6)

where the various · · · represent various (possibly non-normalizable) terms whose coefficients
are entirely fixed by the equations of motion and the values of these integration constants,
µQ , ρQ , Mo and ρM .4 As usual, µQ represents the chemical potential per unit charge, which

4 In particular, the leading term for At runs as −2ρM log(r). While formally the dominant term, it is determined by
the equations of motion and ρM and thus does not represent an independent mode of the system. Importantly, due
to factors of the inverse metric, this log running does not lead any components of the bulk stress tensor to diverge.
A complete holographic renormalization of this system would settle the dictionary, but is beyond the scope of this
paper; for the moment we simply take the above dictionary as a provisional interpretation which is supported by
the consistency of the results below. Interestingly, while At has no log in fully backreacted charged-black-hole
solutions [16, 17], linearizing the Maxwell equation around these solutions does generate a log without changing
any other of the asymptotics of the vector, so this log is likely a simple consequence of an extreme truncation of the
full charged-black-hole system. It would be interesting to study the full system and see what, if anything, changes.
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effectively sets the zero of energy in the boundary theory—the gauge-invariant bulk quantity
that becomes the boundary Hamiltonian acting on the operator dual to the bulk matter field of
charge q is (i∂t + q At); at the boundary, for plane waves e−iωt , this becomes (ω + qµQ). Thus,
one insertion of the charged operator O e−iωt costs δE = (ω + qµQ). As usual, ρQ computes the
induced charge density.

It might be tempting to think of Mo as a chemical potential for the mass operator, M̂ .
However, this is not quite right—it is a superselection parameter. Recall that, holographically,

M̂ ≡ P̂ξ |∂ = −i(∂ξ − iq Aξ )|∂, (2.7)

i.e. M̂ is the boundary value of the gauge-invariant ξ -momentum in the bulk. The mass
eigenvalue of a boundary operator dual to a bulk field with ξ -momentum ` and charge q is
thus M = (`− q Mo), where Mo = Aξ |∂ . Like a chemical potential, Mo sets a bias for the mass
M , shifting it away from its ξ -momentum, `. But the mass in an NRCFT is not a parameter; it is
part of the definition of the theory. Thus, once we fix gauge in the bulk, different values of Aξ |∂
correspond to distinct NRCFTs, not to a fixed theory with different background fields turned on.
In particular, as we will see momentarily, the dimensions of various boundary operators depend
on Aξ |∂ , an unfamiliar effect. ρM computes the mass density coupled to Aµ. Henceforth, we fix
gauge in the bulk such that `= 0 and M = −q Aξ |∂ .

As for our charged scalar, near the boundary at r → 0 it behaves as

φ ∼ φ1r
1− +φ2r

1+ + · · · , (2.8)

where

1± = 2 ±

√
4 + m2 + q2 M2

o . (2.9)

(Note that we will occasionally write 11 and 12 for 1− and 1+, respectively.) In the window
1<1− < 2, both components φ1,2 are normalizable, so we may interpret either of φ1,2 as the
vev 〈O〉, with the other representing the source J . These two choices correspond to alternate
quantizations of the boundary NRCFT [7, 18] encoding inequivalent physics. The ‘standard’
quantization fixes φ1 ∝ J as the source with φ2 ∝ 〈O〉 the response. We will mostly focus on
the ‘alternate’ quantization with J ∝ φ2 and 〈O〉 ∝ φ1 for reasons that will become clear in the
next section.

Importantly, the dimensions, 1±, depend not only on the mass of the bulk scalar, as in
AdS, but also on the boundary value of a bulk field, Mo = Aξ |∂ . As discussed above, by the
holographic relation M̂ ≡ −i(∂ξ − iq Aξ )|∂ , this quantity is nothing but the mass eigenvalue of
the dual operator,

M = −q Aξ |∂ = −q Mo.

Our expression for the dimensions above then becomes 1± = 2±
√

4 + m2 + M2, which is
the expected form [7, 8], including the quadratic dependence on M inside the radical.

Now, as discussed in [9–11], the free energy of the full system takes the form F ≡

E +µM M̂ , where µM =
−1

2�2r4
H

is determined by the background spacetime. The total free energy
per insertion of an operator dual to a bulk field with ξ -momentum `, frequency ω, and coupled
with charge q to our gauge field is thus δF = (ω + qµQ)+µM M , where M = (`− q Mo).
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2.2. Near-horizon behavior and setting up the calculation

In the bulk, we are thus left with a six-parameter family of solutions labeled by sources
(µQ, Mo, J ) and responses (ρQ, ρM, 〈O〉). Holographically, we expect boundary conditions
at the horizon, where the radial equations of motion degenerate, to impose three additional
constraints. Together with the two parameters T and� of the background geometry, this should
leave us with a five-parameter phase space. To verify this, we need to study the behavior of our
solutions near the horizon.

The equations of motion degenerate at the black-hole horizon, so we must impose boundary
conditions to pick the appropriate solutions. As usual, it suffices to impose regularity at the
horizon, which is in any case necessary for the validity of the probe approximation. Assuming
regularity, the equations of motion as presented in (2.3)–(2.5) degenerate into three algebraic
equations relating the six horizon values of the fields and their derivatives, as expected,(

Aξ (rH)− 2r 4
H�

2 At(rH)
)2
φ(rH)= 0, (2.10)

−2r 2
H A′

t(rH)+

(
2KH − 1

KH − 1

)
A′

ξ (rH)+ 2q2rHK 4/3
H φ2(rH)At(rH)= 0, (2.11)

4rHφ
′(rH)+

(
4KH(KH − 1)r 4

Hq2 A2
t (rH)+ m2K 1/3

)
φ(rH)= 0. (2.12)

This suggests a simple numerical strategy for constructing superfluid states of our holographic
NRCFT. To specify a solution to the full equations of motion, we fix any three ofµQ , Mo, J , ρQ ,
ρM and 〈O〉 at the boundary and impose the above regularity conditions at the horizon. Since
we are interested in spontaneously generated condensates, we will generally set J = 0. The
resulting two-point boundary value problem can be solved numerically in various ways. The
most straightforward is a brute-force shooting method, as typically employed in the relativistic
case.

In sweeping out parameter space, however, we must be careful to vary the parameters of
the NRCFT while holding the NRCFT itself fixed—i.e. while holding the spectrum of quantum
numbers fixed. This is straightforward in AdS, where fixing the set of dimensions reduces to
fixing the bulk mass m2 of the bulk scalar. Here, however, the dimension 1 and mass M
of the boundary scalar operator depend on the asymptotic value of Aξ as M = −q Aξ |∂ and
1± = 2 ±

√
4 + m2 + M2. Before sweeping out parameter space, then, we must fix Aξ |∂ = Mo.

As we have already set J = 0, fixing the system thus leaves us with a three-parameter phase
space labeled by µQ , � and T .

This peculiar behavior—that the definition of the boundary CFT depends on the boundary
behavior of the bulk fields—is a very general phenomenon in the Schrödinger holography.
Indeed, renormalizing the boundary stress tensor, say, or other operators in the boundary
NRCFT requires counterterms which are local in time and space, but which depend explicitly
on dimensions, 1, and thus on the asymptotic values of Aξ , in a mildly non-local fashion. Such
field-dependent counterterms have appeared previously in attempts to renormalize holographic
NRCFTs, most recently in [14]. A complete understanding of the holographic renormalization
of these theories is clearly of considerable interest.
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2.3. Conductivity

We can compute the conductivity in our superconducting background by studying the linear
response to a time-dependent vector potential Ax ∼ e−iωt . As usual, this boils down to solving
the equation of motion for the bulk gauge component Ax linearized about the superfluid
background and subject to infalling boundary conditions at the horizon. Setting Ax = a(x) e−iωt ,
we have

f r 2a′′

x −

(
4 − f

2 + 7K

3K

)
ra′

x +

(
ω2r 4(K − 1)

f
− 2q2K 1/3φ2

)
ax = 0. (2.13)

Near the horizon, this reduces to(
ω2 +

(
4ε

r 3
H�

d

dε

)2
)

ax(ε)' 0, (2.14)

where r = rH − ε. The infalling solutions thus take the form

Ax = a0 e−iωt(r − rH)
−iω/4πT (1 + a1(r − rH)+ · · ·). (2.15)

Near the boundary,

Ax = A0 + A2
r 2

2
+ · · · .

A short computation then verifies that the conductivity is given by

σ(ω)=
〈Jx〉

〈Ex〉
= −i

〈Jx〉

ω〈Ax〉
= −i

A2

ωA0
.

Note that since we are solving a linear equation but only care about this ratio, the overall scale
of Ax is immaterial. We can use this freedom to set a0 = 1, which simplifies the numerical
problem.

Notably, we can analytically determine the ω-dependence of σ for large and small ω via
standard power-series analysis. The scaling superfluid turns out to be independent of 1 and M .
At small frequency, we find that

Im[σ(ω� 1)] ∝ ω−1, (2.16)

whereas for large ω, we have

Re[σ(ω� 1)] ∝ ω−1/3 Im[σ(ω� 1)] ∝ ω−1/3. (2.17)

This last result unsurprisingly differs from the AdS case, where Re[σ(ω� 1)] = 1.
Reassuringly, they both match the numerical results presented below, a nice sanity check.

3. Phases of a Schrödinger superfluid

Thus armed, we now get down to the business of finding a superfluid state in our NR
holographic CFT and exploring its phase diagram. A priori, the phase space is fairly high-
dimensional—specifying a point involves fixing 1 and M to fix the theory, then tuning µQ ,
T and � to sweep out the phase diagram. For simplicity, we will begin by picking convenient
values 1= 6/5, M = 1/2 and µQ = 1/8 and then dial the background mass density, �. This
will reveal a zero-temperature quantum phase transition at a critical value �∗. We will then fix
� and vary µQ , which will drive the superconducting phase transition from the second to first
order.
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Figure 1. At small �, the behavior of the superfluid is essentially the same
as that in AdS, with a second-order mean-field phase transition at the onset
of superconductivity at Tc, including the familiar gap-and-pole form in the ac
conductivity, leaving us in a happy superfluid state at T = 0. Here, (µQ, �)=

(1/8, 1/16), with TC = 0.505.
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Figure 2. At large �, in addition to the original transition to a superconducting
state at Tc, the system now exhibits re-entrance of the normal phase at a new
low-temperature second-order transition at TL, again with mean-field exponents.
Below TL, σ behaves like the normal gas. Here (µQ, �)= (1/8, 1) with TC =

0.149 and TL = 0.009.

3.1. Varying � and a quantum phase transition?

We begin by fixing 1= 6/5 and M = 1/2, then set µQ = 1/8 and vary � between 0 and 1.
The basic results are presented in figures 1–3, which plot the condensate 〈O(T )〉 as a function
of temperature, as well as the ac conductivities Re[σ(ω)] and Im[σ(ω)], for � = 1

16 , 3
8 and 1,

respectively. These results are discussed in detail below.

• ���∗. For very small �, the geometry remains essentially AdS until very close to the
boundary, so we expect most low-energy physics—such as superfluid condensation—to
very closely track familiar AdS results. This turns out to be almost correct, modulo a
surprise we will explore shortly.
Figure 1(a) shows the condensate as a function of temperature for the alternate quantization
(〈O〉 ∼ φ1) for �= 1/16. As is clear by eye and can be checked precisely from the
numerics, the resulting condensate turns on at T = Tc with classic mean-field behavior
(βc =

1
2 ) and grows as the temperature is lowered. Figures 1(b) and (c) then show the real

and imaginary parts of the ac conductivity for various temperatures indicated by color, from
high (violet) to low (red). These demonstrate the appearance of a superconducting state at
Tc, with the gap growing as the temperature is lowered. Note, too, that the conductivity
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Figure 3. At intermediate �, we again have a second-order mean-field transition
into a superfluid state at Tc. At low temperatures, however, the system undergoes
a non-mean-field transition to an apparently insulating state. Here (µQ, �)=

(1/8, 3/8) with TC = 0.123.

in the superfluid phase has Im[σ(ω→ 0)] ∼ 1/ω, while Re[σ(ω→ ∞)] ∼ Im[σ(ω→

∞)] ∼ ω−1/3. This scaling is expected on general grounds, so gives us confidence in our
numerical results.

• ���∗. As we increase the background number density, the story changes dramatically.
Figure 2 shows the same plots as figure 1 but with �= 1 rather than �= 1/16. The most
obvious difference is that the order parameter vanishes at a sufficiently low temperature,
T 6 TL, doing so again with mean-field behavior. As is clear from the finite value of
Re[σ(0)], the extreme low-temperature phase is again metallic.
Consider now the behavior of the system at zero temperature as a function of the
background number density, �. As �→ 0, the system is superconducting. As �→ 1, the
metallic phase is re-entrant. At some critical�∗, then, the zero-temperature system appears
to undergo a superconductor–metal quantum phase transition.

• �→�∗. It is tempting to try to determine what happens as we tune � towards this
critical �∗. Figure 3 shows the same system at � slightly above �∗.
As before, there is a phase transition at Tc with standard mean-field behavior. The zero-
temperature behavior, however, differs dramatically from mean-field expectations; rather,
at low temperature, the condensate decays exponentially, as does the superfluid density,
while the normal density remains vanishing and the conductivity heavily suppressed at
small but non-vanishing ω, suggesting that the T = 0 state is not metallic. It is tempting to
read this as indicating a translationally invariant insulating phase.
However, numerical results in this region should be taken with a sizeable grain of
salt. Indeed, at a sufficiently low temperature, the numerics simply fail to converge.
More physically, in this regime, the probe approximation is becoming dangerously
unreliable—the matter field profiles which generate the required boundary values grow
rapidly deep in the bulk (and in particular near the horizon) as we approach T = 0 or
�∗. Backreaction may thus qualitatively alter the low-temperature physics, either near the
transition at �∼�∗ or for sufficiently low T at any �.
Indeed, it is entirely possible that the backreacted solution is re-entrant at any value of
�; our analysis is only reliable sufficiently far away from T = 0. To unambiguously
exclude re-entrance at small� as T → 0 requires including backreaction, which is beyond
the scope of this paper. Note, however, that the probe approximation shows no signs
of inconsistency for �>�∗, so we can be quite confident that the system is definitely
re-entrant at sufficiently large �.
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Figure 4. Surprisingly, there is another condensed phase at high temperatures.
Here (µQ, �)= (1/8, 1/16).

3.2. High-temperature condensates and the free energy

The surprise alluded to above involves the high-temperature limit. Figure 4 shows the same
system but now extending to higher temperatures. The surprise is the appearance of a high-
temperature condensate at T > TH. Troublingly, the condensate appears to grow without bound
as the temperature increases5.

Before we panic, however, we should verify that this high-temperature condensate is in
fact thermodynamically favored over the trivial vacuum. Holographically, this means we are
computing the holographically renormalized on-shell action. Unfortunately, in asymptotically
Schrödinger spacetimes, holographically renormalizing the action is exceedingly complicated.
Happily, a simple strategy allows us to compute the difference in free energy between condensed
and vacuum states without performing a full renormalization of the action6.

The basic idea goes as follows. Generally, specifying the non-normalizable (source) mode
φ1 of the bulk scalar determines the normalizable (response) mode, φ2. Smoothly varying
the source thus traces out a curve φ2(φ1) in the (φ1, φ2) plane. Along this flow, we can
ask how the free energy—aka the Euclidean action—varies. Given the properly renormalized
action, the variation of the full bulk action takes the form δSeff = · · · δφi + · · · δAi where δφi

and δAi are the variations of the bulk fields and the · · · correspond to the bulk equations
of motion. So long as we satisfy the bulk equations of motion, this reduces to a simple
boundary term, δS = (11 −12)

∫
∂M
φ2 δφ1 − 2

∫
∂M
(ρM δµQ + ρQ δMo). Moreover, if we fix the

asymptotic values of Ai (corresponding to fixing the values of the chemical potential µQ = At |∂

and the mass M = Aξ |∂), this further simplifies to δS = (11 −12)
∫
∂M
φ2 δφ1. We can thus

compute the relative free energy density ( FA −FB) between any two states A and B connected
by such a flow by integrating δS along the flow,

FB −FA = −T
∫ B

A

δSE

VD
= −T (11 −12)

∫ B

A
φ2 dφ1, (3.1)

5 Such a high-temperature instability was predicted by Cremonesi et al [19] whenever 16 4.
6 We thank Nabil Iqbal for illuminating discussions on this topic; see [20] in which this approach is developed
further.
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Figure 5. (a) The low-T condensate has smaller free energy than the non-
condensed phase, FC −FN < 0. (b) The high-T condensate has larger free
energy than the non-condensed phase, FC −FN > 0. One can determine the sign
of FC −FN from the orientation of the curve. Here (µQ, �)= (3/8, 1/16).

where VD is the volume of the boundary theory and the integral is performed along the flow
specified above. By construction, this agrees with what we would get by evaluating the fully
holographically renormalized free energy for each solution and subtracting. Happily, this allows
us to compute the correct free energy without having to worry about the full holographic
renormalization of the theory (for a further comparison of holographic renormalization and
our method, see [14, 21, 22]).

Now consider the case of our holographic superfluid in alternate quantization, where
φ2 = J is the source and φ1 = 〈O〉 is the response. In this case, the curve φ1(φ2) is multivalued
over φ2 = 0, with one solution corresponding to the trivial vacuum, 〈O〉 = 0, and one to the
non-trivial condensate, 〈O〉 6= 0. As outlined above, these two solutions are connected by a very
specific flow in the (φ1, φ2) plane. To compute the properly renormalized relative free energy,
then, all we must do is find this flow and integrate along it,

FC −FN = −T (11 −12)

∫ C

N
φ2 dφ1, (3.2)

where the integration is again along the flow defined above. If this difference is negative, the
condensate is thermodynamically favored.

Figure 5 plots two such flows. On the left, we have a flow connecting the trivial vacuum
(φ1 = φ2 = 0) to a symmetry-breaking vacuum (φ1 6= 0, φ2 = 0) in the alternate quantization in
the low-temperature regime, with the flow indicated by the solid line and the direction of flow
defining the direction of integration. The area under the curve, corresponding to the free energy
of the condensed state, is negative. On the right is the analogous flow in the high-temperature
regime—here the free energy is positive. We thus deduce that the low-temperature condensate
is thermodynamically stable, while the high-temperature condensate is unstable, in the alternate
quantization.

What about the standard quantization? Figure 6(a) plots the condensate in standard
quantization as a function of temperature. Note that there is no separate low- versus
high-temperature condensate, just a single continuous instability whose profile grows with
temperature. Figure 6(b) then shows a typical flow at typical temperature. Importantly, the
enclosed area is negative for every temperature, indicating a thermodynamic instability even at
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Figure 6. (a) Condensate as a function of T for the standard quantization, with
12 = 13/5. (b) Typical flow at generic temperature, indicating a thermodynamic
instability at every temperature.
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Figure 7. At µQ > µ∗ ∼ 0.192, the transition goes first order. Here, �= 1/16.

arbitrarily high temperature. This is why we quietly chose the alternate quantization in section 2.
It would be interesting to understand the meaning of this instability in detail.

3.3. Varying µQ and a multicritical point

The thermodynamic instability of the high-temperature condensate leads to an important
physical effect as we vary µQ . Figure 7(a) plots Tc(µQ) and TH(µQ), the critical temperatures
for the low- and high-temperature condensates as a function of the chemical potential µQ . As
we crank up µQ , holding all other parameters fixed, Tc increases while TH decreases. At a
critical value, µ∗, the two critical points merge; above µ∗, the condensate is non-zero for all
temperatures. This is clear from figure 7(b), where we plot the order parameter as a function of
temperature for values of the chemical potential above and below this critical µ∗.

However, we have already checked that the condensed phase is thermodynamically
disfavored at high temperatures. For µQ > µ∗, then, there must be a critical temperature, T∗,
above which the smoothly varying, non-vanishing condensate becomes thermodynamically
disfavored. This temperature is indicated by the red dashed curves in figures 7(a) and (b).

We can verify this by computing the relative free energy of the condensed phase as
we vary the temperature. Figure 8(a) shows the flows associated with points to the left
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Figure 8. (a) Flow lines in the neighborhood of the critical temperature, for
µQ = 3/8. (b) The flow switches direction discontinuously (lower solid to upper
dashed curves) at a critical temperature T∗ indicated by the red dashed curve
in figure 7, leading to a first-order phase transition at T∗. Here, µQ = 3/8 and
�= 1/16.

and right of the critical temperature where the low- and high-temperature instabilities meet
(indicated by the red dashed curve in figure 7(b)). Figure 8(b) focuses on the immediate
neighborhood of the transition temperature for µQ > µ∗. For all temperatures below the critical
temperature, the flows go below the horizontal axis, corresponding to a negative free energy and
a thermodynamically stable condensate. For all temperatures above the critical temperature, the
flows go above the horizontal axis, so the condensate is thermodynamically disfavored at high
temperatures. Indeed, while the value of the condensate is non-vanishing and in fact completely
smooth as we flow through T∗, the path that carries us from the trivial state to the condensate
changes discontinuously as we pass through T∗. As a result, the integrated area—and thus the
free energy—also changes discontinuously at T∗. Moreover, as we take µQ → µ∗, the value of
the condensate at the transition goes to zero, 〈O(T∗)〉 → 0; this ensures that the latent heat of
the transition goes to zero at the multicritical point where the transition switches from first to
second order, as expected on general grounds.

The upshot of all of the above is that as we raise µQ , the phase transition from high-
temperature metal to low-temperature superfluid switches from second order to first, with the
transition occurring at a multicritical point where the low- and high-temperature superfluid
phases collide. Near the phase transition boundaries, including the multicritical point, the order
parameter scales with simple mean-field exponents. More precisely, near the finite temperature
second-order phase transition, 〈O〉 ∼ (Tc − T )1/2, while near the first-order phase transition
boundary when µQ > µ∗ the condensate jumps discontinuously at T∗, with 〈O(T∗)〉 ∼ (µQ −

µ∗)
1/2. This can be succinctly encoded in a simple mean-field free energy, F(ϕ)=

1
2c2(T −

Tc(µQ))ϕ
2 + 1

4c4(µ∗ −µQ)ϕ
4 + 1

6c6ϕ
6, with ϕ ∼ 〈O〉 and with coefficients c2, c4, c6 > 0.

3.4. Setting µQ = 0 and the persistence of condensates

Fundamental to our construction is that the scalar operator carries a charge q under a global
symmetry of the boundary theory. µQ tells us the energy cost for adding a unit of this charge to
the system. In AdS, superfluid condensation is often induced by tuning µQ beyond a threshold.
Is this also necessary in the NR case?
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Figure 9 plots the condensate at µQ = 0 as a function of T , revealing that condensation
persists even without turning on a chemical potential for the global charge. The form of this
curve is similar to the large-� case studied above with µQ 6= 0, modulo an overall scaling of
the condensate. It is tempting to speculate that this indicates two distinct pairing mechanisms,
one involving the charge and one involving the mass eigenvalue alone. It would be interesting
to explore this point further.

4. Conclusions and open questions

In this paper, we have constructed a toy model of superfluid states in holographic NRCFTs and
studied the resulting phase diagram, thus finding several unanticipated features. Firstly, as we
lower the temperature in the disordered metallic state, the system generally undergoes a phase
transition to a superfluid state. At small (and even vanishing) chemical potential, this transition
is second order with mean-field exponents; at large chemical potential, however, the transition
runs strongly first order. Secondly, for large background mass density, the superfluid state only
appears in a finite temperature window, with the metallic state re-entering at sufficiently low
temperature. Finally, at zero temperature, the re-entrance of the metallic phase leads to an
apparent quantum phase transition from superconducting to metallic as the background mass
density is varied.

Several features of our results deserve further scrutiny. Firstly, our low-temperature results
derive from a probe analysis which is not valid at zero temperature—indeed, as we push
the temperature to zero near or below the putative quantum phase transition at �∗, the bulk
profiles of various fields grow rapidly, diverging as we approach zero temperature. To be
sure, we checked the consistency of the probe approximation in each calculation presented
above. However, it is entirely possible that several of our results could change qualitatively
when we include backreaction. To nail down the T = 0 physics, we must incorporate
backreaction.

We have tacitly assumed that the neutral black-hole geometry is the dominant saddle at
T = 0. However, for a variety of reasons including the strange thermodynamics of this black
hole, this seems unlikely to be the case. It is tempting to speculate that the low-temperature
phase is dominated by a Schrödinger soliton analogous to the AdS soliton that dominates the
relativistic case à la Hawking–Page [4, 23]. Indeed, such a simple Schrödinger soliton solution is
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known, and we repeat the above analysis for this geometry in an appendix. However, the black
hole and the soliton enjoy incommensurate asymptotic periodicity conditions, so they cannot
contribute to the same ensembles. Understanding the true low-temperature ground state of the
neutral black hole, even in the absence of any charge density in the system, is of considerable
interest.

To this end, it is worth emphasizing that the basic trouble with the thermodynamics of
this—and indeed all known—asymptotically Schrödinger black holes is the light-cone relation
between the near-horizon killing vector ∂τ and the asymptotic time-like killing vector, ∂t . In
most constructions, this follows from the structure of the salient solution-generating technique.
The challenge, then, is to build solutions that do not flow to AdS black holes near the horizon.

Meanwhile, it is important to keep in mind that the simple Abelian–Higgs theory we study
is an extremely stripped down toy model for which we do not have an explicit charged black-
hole solution. In the few examples where such a solution is known [16, 17], the matter sectors
are considerably more complicated, which is why we worked with the toy model at hand as a
first step. It would be interesting to repeat our analysis in one of these more elaborate systems
to disentangle the peculiarities of our toy model from general features of NR holographic
superfluids.

Finally, several intriguing features of this system still need to be interpreted. Why does the
standard quantization have a thermodynamically dominant high-temperature instability, what
does that instability signal and is there a simple low-energy way of seeing that this quantization
is disfavored? Our conductivity calculations reveal a number of quasiparticle peaks with rather
peculiar behavior, particularly near the critical point at �∗—are these artifacts of the probe
approximation or do they signal real physics, and if so, what are they telling us? Does a proper
holographic renormalization of the full system (which remains an open problem) alter any of
our results, and if so, how? What about the pairing mechanism—what is the fermion spectral
function in these systems and can we correlate pairing of probe fermions with the condensation
seen above? We hope to return to some of these questions in future work.
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Appendix A. Superfluids in a Schrödinger soliton

It is interesting to apply the approach developed above to a slightly different geometry, the
so-called Schrödinger soliton [15],

ds2
soliton,Str =

(
− fs +

( fs − 1)2

4(Ks − 1)

)
dt2

Ksr 4
+

1 + fs

r 2Ks
dt dξ +

Ks − 1

Ks
dξ 2 +

dEx2

r 2
+

dr 2

fs r 2
, (A.1)
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Figure A.1. (a) We found a second-order phase transition at µc = 1.17.
(b) When µQ < µc, Im[σ(ω→ 0)] is finite, indicating an insulating phase.
(c) For µQ > µc, we found a superconducting 1

ω
pole, as well as two gapped

poles at finite ω.

where Ks = 1 − r 2�2 and fs = 1 − r 4/r 4
s , with rs controlling both the gap and the radius of

the ξ -direction, Lξ =
π

�rs
. Here, the radial direction is cut off smoothly by a spacelike circle

shrinking rather than by a black-hole horizon—and indeed this solution was obtained by double
Wick rotating the Schrödinger black hole with the compact ξ -direction (which is spacelike near
the horizon).7

As in the black-hole case, a probe superfluid in the soliton geometry is characterized by
five parameters: two define the theory (the dimension 1 and mass M), two are properties of
the background which fix thermodynamic quantities (the mass density � and mass gap of the
soliton, mG =

1
Lξ

) and, finally, the U (1)-charge chemical potential µQ determined by the non-
normalizable mode of the bulk gauge field At . In the remainder of this appendix, we briefly
summarize the results.

A.1. Varying µQ

Figure A.1(a) shows the condensate as a function of the chemical potential µQ , revealing a
critical minimum value µc at which the system undergoes a second-order transition with mean-
field exponent. For µQ < µc, Im[σ(ω→ 0)] → finite, indicating a translationally invariant
insulating phase. For µQ > µc, by contrast, Im[σ(ω→ 0)] ∼

1
ω

, indicating superconductivity.
We would thus find a second-order insulator–superconductor quantum phase transition by
varying µQ . However, in addition to this ω→ 0 pole, we found two more mysterious poles
at ω1 and ω2 separated by a finite gap. This is reminiscent of the paired poles we found in the
black-hole system at intermediate values of the background density near the critical point at�∗.
This transition also recalls the AdS transitions studied in [24].

7 It is tempting to identify this solution as a low-temperature confined phase of the Schrödinger black hole studied
above, analogous to the Hawking–Page transition from the AdS black hole to AdS soliton [4, 23]. However, this
is not correct: regularity of the Euclidean solutions imposes incompatible periodicity conditions. More precisely,
for the black hole, smoothness of the global Euclidean geometry and compactness of the direction dual to the mass
operator require the periodicities itb ≡ itb + n/T and ξb ≡ ξb + nµQ/T +wLξ . For the soliton, on the other hand,
we need its ≡ its − in/Ts and ξs ≡ ξs + inµQ/Ts +wLξ . The inequivalence of these conditions (note, in particular,
the extra factor of i in Ts) tells us that these solutions correspond to inequivalent ensembles.
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A.2. Varying �

In the black-hole case, tuning � drove us through a superfluid–conductor phase transition at
zero temperature. The (zero-temperature) soliton shows the same effect, with the spontaneous
condensate disappearing in a second-order transition as � passes through a critical value,
�c ∼ 0.163, as shown in figure A.2(a). Here, however, the normal phase is an insulator
(cf figure A.2(b)) with the gap controlled by (�−�c) and a double-pole structure as seen
above. Interestingly, this double-pole structure persists into the superconducting phase, with the
gapped poles merging with the zero-frequency poles at a finite value of �∼

1
2�c.

A.3. Varying mG and the gap

In the above, we have fixed mG. As it turns out, the only effect of varying mG is to rescale the
gaps in all the above (see figure A.3). This fits nicely with naive intuition for the effect of the
compactification radius of the ξ -direction.

Appendix B. Scaling symmetries

The system described by (2.1) and (2.2) enjoys three distinct scaling symmetries, which we can
use to fix various parameters to convenient values. Re-introducing G N and RA in the action and
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metric, the three scaling symmetries act as

Scaling symmetry t ξ xi r T � rH ds2 φ At Aξ G N q m
α1 0 0 0 0 0 0 0 −4 0 −2 −2 0 2 2
α2 0 0 0 0 0 0 0 0 −2 −2 −2 4 2 0
α3 −2 0 −1 −1 2 1 −1 0 0 2 0 0 0 0

(B.1)

The first two symmetries can be used to fix 1
16πG N

= 1 and RA = 1. The third, which is the basic
scaling symmetry of the Schrödinger system with dynamical exponent z = 2, can be used to
fix rH to a convenient reference value, r0. Given that T =

1
π�r3

H
, this fixes a relation between

T and �. To access more general values of these parameters, corresponding to (r ′

H, T ′, �′),
we simply map the system to (r0, T, �)= (λ−1r ′

H, λ
2T ′, λ1�′), with all physical parameters

correspondingly rescaled. (As usual, taking q → ∞ while fixing q8 for each matter field 8
gives us a probe limit in which backreaction is negligible [25].)
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