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Abstract: In the classic Coleman-Mandula no-go theorem which prohibits the unification
of internal and spacetime symmetries, the assumption of the existence of a positive definite
invariant scalar product on the Lie algebra of the internal group is essential. If one in-
stead allows the scalar product to be positive semi-definite, this opens new possibilities for
unification of gauge and spacetime symmetries. It follows from theorems on the structure
of Lie algebras, that in the case of unified symmetries, the degenerate directions of the
positive semi-definite invariant scalar product have to correspond to local symmetries with
nilpotent generators. In this paper we construct a workable minimal toy model making use
of this mechanism: it admits unified local symmetries having a compact (U(1)) component,
a Lorentz (SL(2,C)) component, and a nilpotent component gluing these together. The
construction is such that the full unified symmetry group acts locally and faithfully on
the matter field sector, whereas the gauge fields which would correspond to the nilpotent
generators can be transformed out from the theory, leaving gauge fields only with com-
pact charges. It is shown that already the ordinary Dirac equation admits an extremely
simple prototype example for the above gauge field elimination mechanism: it has a local
symmetry with corresponding eliminable gauge field, related to the dilatation group. The
outlined symmetry unification mechanism can be used to by-pass the Coleman-Mandula
and related no-go theorems in a way that is fundamentally different from supersymmetry.
In particular, the mechanism avoids invocation of super-coordinates or extra dimensions
for the underlying spacetime manifold.
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1 Introduction

One of the most important programmes in modern physics is concerned with model build-
ing in particle physics. Much of this endeavor is focused on the search for symmetries of
Lagrangian field theories, and their corresponding quantum field theories. The Lagrangian
of the Standard Model (SM) is essentially determined, up to a number of coupling con-
stants, by its local symmetry group. The presence of a large number of free parameters
reduces the predictive power of a physical theory, and for this reason it has been a long
standing question whether it is possible to find alternatives to the Standard Model with
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a reduced number of free parameters by enlarging the local symmetry group. The ensem-
ble of symmetries becomes the most restrictive whenever they form a non-direct product
(unified) group. This simple principle motivated the gauge-gauge and gauge-spacetime
symmetry unification strategies, which are sometimes referred to as GUT (Grand Unified
Theories) and ToE (Theories of Everything). The early no-go theorem by McGlinn [1], the
classic QFT no-go theorem by Coleman and Mandula [2], as well as the Poincaré group
extension classification theorem by O’Raifeartaigh [3, 4] strongly restrict the possibilities
for gauge-spacetime type unification. After the invention of supersymmetry (SUSY) [5–
7], it was widely believed that only that concept may provide a loophole to these no-go
theorems [8]. This is, however, only true under a certain set of assumptions.

It turns out that the primary ingredients of the above restrictive no-go theorems come
from the general structural theory of finite dimensional Lie algebras, and mainly not from
field theory itself, as discussed in [9], section 2, and the appendix A. Detailed study [10] of
the arguments of the above no-go theorems [1, 2] reveal that in order to obtain these pro-
hibitive results, the assumption that the Lie algebra of the internal symmetry group admits
a positive definite invariant scalar product is essential. That is, the above no-go theorems
only follow automatically when the group of internal symmetries is assumed to be purely
compact. In a previous paper [9] it was demonstrated that whenever the assumption on this
scalar product is somewhat weakened, by e.g. allowing it to be merely positive semi-definite,
then a loophole opens. Under the semi-definiteness assumption, the internal group may
not only be purely compact, but can also contain nilpotent generators. Since the nilpotent
generators may carry compact and Lorentz charges as well, a gauge-spacetime type symme-
try unification becomes group-theoretically possible. The main point of the present paper
is to construct a minimal workable toy model utilizing this group-theoretical loophole.

The requirement of compactness of the internal symmetry group in conventional gauge
theories has several motivations: (i) compact Lie groups are classified and their represen-
tation theory is well understood, (ii) the Standard Model gauge group U(1)×SU(2)×SU(3)
is compact, and (iii) Yang-Mills fields with compact gauge group admit a strictly positive
definite energy functional. In the more general case when an internal Lie algebra with
merely positive semi-definite invariant scalar product is considered, it follows that besides
the gauge fields with compact charges, some gauge fields with nilpotent charges occur,
and these have vanishing Yang-Mills kinetic Lagrangian. Correspondingly, they have zero
Yang-Mills kinetic energy term. This clearly raises the question of whether gauge fields
with such kind of charges are acceptable from a physical point of view: how should one
interpret a field theory with gauge field degrees of freedom, in which the gauge fields all
possess non-negative energy density, as usual, but there are some unusual modes of the
Yang-Mills fields which have zero kinetic energy? Surely these “exotic” components of the
gauge fields cannot have an Euler-Lagrange equation similar to a conventional Yang-Mills
equation, since they do not have a kinetic term.

In this paper we present a workable example of a unified local symmetry group of the
above kind, along with a corresponding toy model, where the above type gauge fields with
“exotic” (nilpotent) charges, necessary for a gauge-spacetime type symmetry unification,
can be transformed out from the Lagrangian. This gauge field elimination mechanism is
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due to a shift symmetry of the Lagrangian (see section 5, following eq. (5.1)). Therefore,
in the resulting field theory, the full unified symmetry group acts locally and faithfully on
the matter fields, but only the compact part of the internal symmetries has corresponding
physical gauge fields. The matter field sector, on the other hand, behaves as usual in gauge
theory, since it has a non-degenerate kinetic term.

The above mentioned fact, that there exists a Lagrangian with a local symmetry with-
out corresponding gauge field, is quite striking, and at a first glance it might seem that
such a theory must be very artificial. In section 3, however, we show that already the
ordinary Dirac kinetic Lagrangian, when viewed in appropriate field variables, does admit
an extremely simplified version of the above gauge field elimination mechanism, related to
the dilatation group.

In section 4 we construct the above mentioned unified structure group of our toy
model, involving compact (U(1)), Lorentz (SL(2,C)), and nilpotent generators, and then in
section 5 we constuct a corresponding invariant Lagrangian, with eliminable nilpotent gauge
fields. It is seen that the proposed symmetry unification mechanism allows for nilpotent
generators, and therefore may seem distantly analogous to SUSY. The main difference is,
however, that the base manifold of the constructed model is the ordinary 4-dimensional
Lorentzian spacetime, without super-coordinates or other extra dimensional objects.

In section 6 we show that at the classical level the constructed Lagrangian has a single
independent coupling constant. Finally, in section 7 we present our conclusions.

The paper is closed by appendix A, reviewing the structural theory of generic Lie alge-
bras (not necessary semisimple), and some recent results concerning that in more details.
These are relevant for applications of Lie algebra theory in model building.

2 Structural theorems for Lie groups and Lie algebras

Whenever some particle field theory has a classical field theory limit, one has a firm math-
ematical handle on the notion of its symmetry generators: the generators of the continuous
symmetries of the theory are smooth vector fields on some kind of a total space of fields
of the theory, which respect certain mathematical structures associated to the model. The
spacetime manifold can be thought of, at least locally, as an immersed submanifold in the
total space. Important information on the Lie algebra of these symmetry generating vector
fields of the total space is present in the first order factor Lie algebra, carrying information
about their formal Taylor expansion around a point of the spacetime manifold. In a clas-
sical field theory, by construction, this first order Lie algebra is always a finite dimensional
real Lie algebra. Therefore, in this section we recall some facts about the structure of finite
dimensional real Lie algebras [11–14] that we shall need to discuss for model building in
physics (see appendix A for more details).

For a relativistic physical theory based on fields without internal structure, one can
argue that the generators of first order local symmetries e must be the Poincaré Lie algebra
p. For fields with internal structure it is of interest to consider extensions of the Poincaré Lie
algebra, i.e. Lie algebras e with an injective homomorphism i : p→ e, and the investigation
of such extensions has been an important strategy of modern particle physics. For example,
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the local symmetry algebra of the Standard Model is of the form e = p⊕ u(1)⊕su(2)⊕su(3),
which in particular splits as a direct sum.

The strategy known as unification aims at finding a field theoretical description of
particle physics with a unified local symmetry group, i.e. a group such that its Lie algebra
e does not admit a direct sum decomposition e = i⊕ c (see a detailed review on a large
class of such models in [15]). As an example of a unified extension of the Poincaré group,
we mention the conformal Poincaré group, with Lie algebra isomorphic to so(2, 4), which
is a simple Lie algebra.

With these remarks in mind, we shall now recall the properties of extensions of the
Poincaré Lie algebra, and start by recalling an important general result on the structure
of Lie Algebras (see appendix A for a more didactic and detailed treatment).

The Levi-Mal’cev decomposition theorem [11–14] states that any finite dimensional
real Lie algebra e admits a semi-direct sum decomposition of the form

e = rad(e) I+ l (2.1)

where rad(e) is the maximal solvable ideal in e, called to be the radical, and l is the
maximal semisimple Lie sub-algebra of e, called to be the Levi factor, which is unique
up to inner automorphisms. The radical has a further important Lie sub-algebra, the
nilradical denoted by nil(e), which is the maximal nilpotent ideal of e. The importance
of the nilradical in gauge theory model building is justified by the fact that the elements
of nil(e) are precisely the nilpotent symmetry generators, and that nil(e) = {0} can hold
if and only if the Killing form on e is non-degenerate. As an example of the Levi-Mal’cev
decomposition, it is instructive to consider the Lie algebra of the Poincaré group,

p = tI+ `, (2.2)

where the radical t, i.e. the translations, is in fact abelian, and coincides with the nilradical.
As discussed in [9] and the appendix A, the Lie algebra of the super-Poincaré group can
also be considered as an example to the Levi-Mal’cev decomposition, with a non-abelian,
but two-step nilradical.

Based on the Levi-Mal’cev decomposition, the O’Raifeartaigh classification theorem [3,
4] states that if e is a finite dimensional extension of the Poincaré Lie algebra, then one of
the following three mutually exclusive cases must hold.

(A) Trivial extension, i.e. e = p⊕ {some Lie algebra}.

(B) Not (A), and the translation Lie algebra t is embedded into the radical rad(e) of the
enlarged Lie algebra, whereas the Lorentz Lie algebra ` is embedded into one of the
simple components of the Levi factor l of the enlarged Lie algebra.

(C) The entire Poincaré Lie algebra p = tI+` is embedded into one of the simple components
of the Levi factor l of the enlarged Lie algebra.

Remark 2.1. The O’Raifeartaigh theorem makes it easy to understand the principle of
the Coleman-Mandula no-go theorem, without invoking deep field theoretical notions and
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arguments. The Coleman-Mandula theorem [2] has a number of explicit and implicit as-
sumptions, of which the following two are most relevant for our purpose.

(i) There exists a positive definite scalar product on the generators of the non-Poincaré
part of the extended Lie algebra, which in finite dimensions implies that the extended
part is purely compact, and therefore it is a direct sum of copies of u(1) and a compact
semisimple part.

(ii) No symmetry breaking is present.

Assumption (i) rules out case (B) of the O’Raifeartaigh theorem, while assumption (ii)
rules out case (C). Thus, the only remaining possibility is case (A). (It is also useful to
note that in the Coleman-Mandula theorem there is another important implicit assumption
as well: it is assumed that symmetry generators preserve the one-particle Fock subspace.
This prohibits symmetry generators possibly stepping on the Fock space hierarchy, which
can eventually also be an important loophole.)

As noted in [9] and the appendix A, the case (B) of the O’Raifeartaigh theorem opens
the Lie algebra theoretical backdoor for the existence of the super-Poincaré group (SUSY).
Namely, when presented in appropriate variables, the SUSY algebra can be cast into the
form of a finite dimensional real Lie algebra extension of the Poincaré Lie algebra, with
nontrivial, two-step nilradical. It is also instructive to note that an example for case (C)
is the conformal Poincaré Lie algebra, isomorphic to the simple Lie algebra so(2, 4).

If we restrict to relativistic field theories based on fields taking values in a vector bundle
over a 4-dimensional spacetime, as is the case for the Standard Model, then there must be
Lie algebra homomorphisms

p
i−→ e

o−→ p (2.3)

such that o ◦ i : p→ p is the identity map, see [9, 16]. We shall call such extensions
conservative. Conservative extensions can always be cast in the form e = tI+ g, where g is
the Lie algebra of the structure group. In this paper, we construct a unified conservative
extension of the Poincaré Lie algebra, along with a corresponding minimal toy model
Lagrangian. We remark that for instance, the Lie algebra of the super-Poincaré group is not
a conservative extension of the Poincaré Lie algebra [9, 16]: it does not admit a surjective
homomorphism o : e→ p as in eq. (2.3), since it contains non-Poincaré generators whose
commutator is a Poincaré generator. Neither are the symmetries of extra dimensional,
Kaluza-Klein-like theories conservative, for the same reason.

Remark 2.2. In model building one often invokes a Yang-Mills-like kinetic Lagrangian
term, with the requirement that all gauge fields propagate. This requirement is satisfied if
and only if the Lie algebra of the internal group has an invariant, non-degenerate scalar
product. Such Lie algebras are called quadratic. Not all quadratic Lie algebras are clas-
sified as of now. An important sub-class of quadratic Lie algebras are the reductive ones,
admitting faithful finite dimensional completely reducible representations, which are most
commonly used in model building, and are always direct sums of copies of u(1) and of
simple Lie algebras. For instance, the Lie algebra of the Standard Model structure group,
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sl(2,C)⊕ u(1)⊕su(2)⊕su(3), is reductive. A quadratic Lie algebra is compact if its invari-
ant scalar product is positive definite. These are always reductive, and the Standard Model
internal Lie algebra u(1)⊕su(2)⊕su(3) provides an example. Thus, in traditional model
building, which involves only reductive Lie algebras, the radical must vanish or be central
(and hence abelian). Therefore due to the Levi-Mal’cev decomposition eq. (2.1), nilpotent
generators cannot play an important role in symmetry unification if only reductive Lie al-
gebras are considered. The mechanism outlined in the present paper hinges on the idea of
considering conservative Poincaré extensions. Due to the O’Raifeartaigh theorem, these
have to carry a nontrivial nilradical, if they are indecomposable (unified).

3 A hidden symmetry of the general relativistic Dirac kinetic Lagrangian

In this section we recall a result from [17], namely a hidden symmetry of the general
relativistic Dirac kinetic Lagrangian. It is shown that the Dirac kinetic Lagrangian is
insensitive to the D(1) part1 of the spinor connection. That example serves as a prototype
for the gauge field elimination mechanism, which will be crucial in the toy model presented
in section 4 and after.

In order to show the hidden symmetry, let us formally define the general relativistic
Dirac kinetic Lagrangian [18]. We use Penrose abstract indices for the tangent bundle.
Let M be a four dimensional real smooth manifold. Assume it to be non-compact, and
to admit a Lorentz signature spin structure.2 Let (D(M), γa) be a Lorentzian Dirac
bispinor bundle over it, i.e. D(M) is a complex vector bundle with four dimensional fibers,
and γa : T (M)→ D(M)⊗D∗(M) is a pointwise real-linear vector bundle homomorphism,
with the Clifford property against some Lorentz metric. That is, the existence of a Lorentz
signature metric tensor field g(γ)ab on M is required, such that γaγb + γbγa = 2 g(γ)ab I
holds. In this presentation the fundamental field is γa and not g(γ)ab. It is well known [18],
that covariant derivations ∇a on the vector bundle D(M) exist which are lifts of the
unique Levi-Civita covariant derivation on T (M) associated to g(γ)ab. More concretely,
these covariant derivations are defined by the property that they are compatible with the
Clifford map γa, with the metric g(γ)ab, and are torsion-free on T (M). Such lifts of the
Levi-Civita covariant derivations are uniquely determined, up to adding a complex valued
covector field, which can be though of as a D(1)×U(1) gauge potential. Given a Dirac
bispinor bundle (D(M), γa), there exists a compatible pointwise antilinear injective vector
bundle homomorphism (·) : D(M)→ D∗(M), called the Dirac adjoint, which is uniquely
determined up to a pointwise real smooth nonzero scaling field.

Let us fix a Dirac adjoint together with the Dirac bispinor bundle, so that we have
(D(M), γa, (·)) given. Then, the covariant derivations ∇a compatible with these structures
are unique, up to adding an imaginary valued covector field. That is, they form an affine
space over the gauge potentials with U(1) charge. That ambiquity can be used to encode

1The group D(1) is defined to be R+ with the real multiplication.
2Geroch’s theorem states that such manifolds are precisely the parallelizable ones.
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a U(1) internal charge of the Dirac fields.3 As such, ∇a encodes a combined gravitational
and U(1) gauge connection, acting on the Dirac fields, being smooth sections Ψ of D(M).
Then, one can define the Dirac kinetic Lagrangian

LDirac(γ,Ψ,∇Ψ) := vγ Re
(

Ψ γa i∇aΨ
)

(3.1)

being a spacetime pointwise bundle morphism into the real volume forms. Here, vγ de-
notes the volume form field uniquely associated to the spacetime metric subordinate to the
Clifford map γa and to a chosen fixed spacetime orientation. The action functional is then
local integrals of the volume form eq. (3.1) over the compact regions of the spacetimeM.

Consider now the Lagrangian eq. (3.1) as part of a larger theory in which case the
Clifford map γa is also dynamical. Then, besides the U(1) internal charges of Ψ, one may
assign an action of the D(1) group on the fields in the following way:

Ψ
γa
∇b

 Ω∈R
+

7−→

Ω
− 3

2 Ψ
Ω γa
∇b

 , (3.2)

which can be considered as a D(1) gauge transformation with a constant Ω ∈ R+, and the
Dirac Lagrangian eq. (3.1) is evidently invariant to it. As it is well known, even more is
true: the Dirac Lagrangian eq. (3.1) is conformally invariant. This means that the positive
scaling field Ω>0 may be taken to be not necessarily constant, at the price of making the
transformation rule only slightly more complicated:Ψ

γa
∇b

 Ω>07−→

Ω
− 3

2 Ψ
Ω γa
∇b − 1

2 (iΣb
c − δbcI) (Ω−1dcΩ)

 , (3.3)

where Σab := i
2 (γaγb − γbγa) is the spin tensor. The transformation rule of the covariant

derivation ∇ comes from the requirement that its metricity, torsion and compatibility
with the Clifford map be unaffected by the rescaling, which unambiguously determines the
pertinent term. In the following we show that one can also endow the fields (Ψ, γa, ∇b)
with local D(1) charges in a different way, in which scenario the Dirac kinetic Lagrangian
eq. (3.1) manifests a hidden symmetry concerning the local D(1) rescaling, which is related
to spacetime pointwise rescaling of the physical measurement units.

3.1 The measure line bundle

In the works of Matolcsi [19] and of Janys̆ka, Modugno, Vitolo [20], a simple mathematical
framework was proposed which formalizes the notion of physical dimensional analysis. In
their formulation, the mathematical model of special relativistic spacetime is considered

3Alternatively, as rather done in the particle physics literature, one may fix such a reference covariant
derivation ∇a on D(M), and add by hand an imaginary covector field Aa, in order to encode the U(1)
gauge fields. We choose here, however, the notation not splitting ∇a. These two choices are mathematically
equivalent.
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to be a triplet (M, L, η), where M is a four dimensional real affine space (modeling the
flat spacetime), L is a one dimensional oriented vector space (modeling the one dimen-
sional vector space of length values), and η : ∨2 T → ⊗2 L is the flat Lorentz signature
metric (constant throughout the spacetime), where T is the underlying vector space ofM
(“tangent space”). The key idea in that construction is that the field quantities, such as
the metric tensor η, are not simply real valued, but they take their values in the tensor
powers of the measure line L.4 Due to the one-dimensionality of L, it can be shown that all
rational tensor powers of it makes sense as distinct vector spaces.5 Such a setting formal-
izes the physical expectation that quantities actually have physical dimensions (the metric
carries length-square dimension in this case), and that quantities with different physical
dimensions cannot be added since they reside in different vector spaces. It is seen that the
technique of measure lines is nothing but the precise mathematical formulation of ordinary
dimensional analysis in physics.

This formulation of dimensional analysis, although it may seem relatively obvious,
nearly tautological idea at a first glance, becomes a powerful tool when applied in a general
relativistic setting. Namely, let our spacetime manifold M be some four dimensional real
manifold, and let L(M) be a real oriented vector bundle over M, with one dimensional
fiber. The fiber of L(M) over each point of M shall model the oriented vector space of
length values, and the pertinent line bundle shall be called the measure line bundle, or line
bundle of lengths. We do not assume anything more about the line bundle L(M), and in
particular, we do not assume that a preferred trivialization is given. Just as in [19, 20], the
field quantities shall carry certain tensor powers of L(M).

For instance, considering the Dirac action discussed above, we assume that a Dirac
field Ψ is a section of the vector bundle

L
− 3

2 (M)⊗D(M), (3.4)

where D(M) is an ordinary (dimension-free) Dirac bispinor vector bundle. Simi-
larly, one can assume that the spacetime metric gab is a section of the vector bundle
L2(M)⊗ ∨2 T ∗(M), and that the Clifford map γa is a section of the vector bundle
L(M)⊗ T ∗(M)⊗D(M)⊗D∗(M). This differential geometrical formulation encodes the
physical idea that quantities occurring in the field theory have physical dimensions, and
that the units of measurements can only be a priori defined spacetime pointwise. In order
to transport the unit length to different spacetime points, a connection on L(M) must
be specified. Therefore, to make sense of the covariant derivative ∇aΨ of a section Ψ of
eq. (3.4), ∇a must be understood as the joint covariant derivation of the usual Clifford
connection on D(M), and some connection on the line bundle of lengths L(M), the two

4The term measure line was introduced by [19], whereas the same concept is called scale space by [20].
Apparently, these two group of authors discovered the pertinent rather useful notion independently.

5Indeed, L∗ denoting the dual vector space of L, for any non-negative integer n one can set Ln := ⊗n L

and L−n := ⊗n L∗ in order to make sense of any signed integer tensor powers of L. Moreover, due to the one-
dimensionality of L, the n-th tensorial root m

√
L of L also can be shown to make sense uniquely [19, 20],

via requiring the defining property ⊗m
(

m
√
L
)

= L. As such, all rational tensor powers Ln/m of a one
dimensional oriented vector space L makes sense, and they define distinct (not naturally isomorphic) vector
spaces with respect to the canonical action of GL(L).
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being naturally joined via the Leibniz rule. Since the natural structure group of the vector
bundle L(M) is D(1), one can think of this as assigning local D(1) gauge charges to Ψ and
γa and also including a corresponding D(1) gauge field within ∇a.

When constructing the Lagrangian as a volume form valued bundle morphism, one
should keep in mind that it must be dimension-free (carrying zero tensor powers of L(M)),
since only pure volume forms may be integrated over a manifold without any further as-
sumptions, so that the action functional can be defined. As such, with the above assignment
of dimensions, our example Lagrangian for the Dirac kinetic term eq. (3.1) indeed takes its
values purely as section of ∧dim(M)

T ∗(M), i.e. as a pure volume form.
On the above fields (Ψ, γa, ∇b), one finds that an L(M)→ L(M) pointwise vector

bundle automorphism acts by a smooth positive real valued field Ω over the spacetime
manifoldM, i.e. via a local D(1) gauge transformation

Ψ
γa
∇b

 Ω>07−→

Ω
− 3

2 Ψ
Ω γa

Ω
− 3

2 ∇b Ω
3
2 = ∇b + Ω

− 3
2 dbΩ

3
2

 . (3.5)

As trivially seen, eq. (3.1) is invariant to these, which means that the Lagrangian is invariant
to the pointwise rescaling of the measurement unit of lengths, and not only to eq. (3.3).

3.2 Connection shift invariance of the Dirac Lagrangian

An interesting observation, not yet emphasized in the literature, is that the Dirac La-
grangian eq. (3.1) understood in such variables, has a further hidden symmetry: it is in-
variant to the choice of the measure line bundle connection. Quite naturally, a change in the
L(M) connection is uniquely described by an affine shift transformation ∇a 7→ ∇a + Ca,
where Ca is a smooth real-valued covector field over the spacetime. Direct evaluation shows
that the Dirac Lagrangian eq. (3.1) is invariant with respect to such a shift transformationΨ

γa
∇b

 Cd7−→

Ψ
γa
∇b + Cb

 . (3.6)

In other terms, one could say that the Dirac Lagrangian eq. (3.1) is invariant with respect
to the choice of a D(1) gauge connection. The physical meaning of this fact is that the
Lagrangian is invariant to the choice of any parallel transport rule of measurement units
throughout spacetime, which is an additional symmetry on top of the usual conformal
invariance eq. (3.3) or pointwise measurement unit rescaling invariance eq. (3.5). It can
be shown [17], that all the Standard Model kinetic terms, when viewed in such variables,
admit this symmetry.

It is seen that due to the ∇a 7→ ∇a + Ca shift symmetry of the Lagrangian, Ca being
D(1) valued, the original D(1)×U(1) internal symmetry group, acting locally and faithfully
on the matter fields, gives rise to a gauge field only for the compact direction, i.e. with
U(1) degrees of freedom only. In our more complex toy model in this paper, we will
show that such a forgetting mechanism can also be invoked for larger internal groups,
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and even with non-direct product (unified) group structure. By construction, however, it
follows that the generators of the local symmetries whose gauge fields can be eliminated
in such a manner, must sit in an ad-invariant sub-Lie algebra. Because of that, the Levi-
Mal’cev decomposition theorem leads to strong constraints on how local internal symmetry
generators deprived of corresponding gauge bosons can accompany the usual ones.

4 The structure group of the proposed toy model

The toy model presented here will be a general relativistic spinorial (Dirac-like) classical
field theory of a fermion particle, invariant to some local nilpotent symmetry generators
in addition to the usual local symmetries. The mathematically simplest, i.e. lowest di-
mensional nonabelian nilpotent Lie algebra is the so-called Heisenberg Lie algebra with 3
generators, denoted by h3. The name Heisenberg Lie algebra of h3 comes from the formal
resemblance of its Lie algebra relations to the Heisenberg exchange relations: h3 is spanned
by three elements q, p and e, the only nonvanishing bracket relation being [p, q] = K e where
K is some nonzero real number. For different values of K the instances of h3 are naturally
isomorphic to each-other, therefore one can fix the value of the constant K to an arbitrary
preferred nonzero real number. The complexified 3-generator Heisenberg Lie algebra is
denoted by h3(C), and that shall be the nilradical of our example group. The Lie group
corresponding to h3(C) is denoted by H3(C).

It is straightforward to check, that the Lie algebra gl(2,C) ≡ u(1)⊕ d(1)⊕ sl(2,C) can
act as outer derivations on h3(C), via linearly mixing the first two generators q and p, while
merely scaling the third generator e with the trace.6 In fact, e.g. via the LieAlgebras
Maple package [21], one may verify that the Lie algebra of outer derivations of h3(C) is
gl(2,C). Thus, the largest indecomposable semi-direct sum Lie algebra with nilradical
h3(C) is nothing but h3(C) I+ gl(2,C). This Lie algebra is an indecomposable conservative
unification of the compact u(1) and of the Weyl Lie algebra d(1)⊕ sl(2,C), since one has

h3(C) I+ gl(2,C) ≡ h3(C) I+
(
u(1)⊕ d(1)⊕ sl(2,C)

)
. (4.1)

The Lie group corresponding to the Lie algebra h3(C) I+ gl(2,C) is the indecomposable,
semi-direct product group H3(C) o GL(2,C). The key ingredient for the structure group
of our toy model shall be that group. In order to construct the model, we first show that the
above is a matrix group, i.e. has a faithful linear representation. Then, we will demonstrate
that its lowest dimensional faithful linear representation, i.e. its defining representation,
carries a quite natural field theoretical meaning.

In the following, we shall use the ordinary two-spinor calculus [22, 23], and in particular
its variant which is most wide spread in general relativity (GR) literature. Fix an abstract
two dimensional complex vector space S, i.e. S ∼= C2. The space S is called the two-spinor
space or simply spinor space, and its dual space S∗ is called the co-spinor space. Their
complex conjugate vector spaces are denoted by S̄ and S̄∗, respectively. In the Penrose

6The symbol d(1) denotes the Lie algebra of D(1). In a purely Lie algebraic sense it is isomorphic to
u(1), but for clarity we distinguish the two, understood as the concrete Lie algebras of the distinct Lie
groups D(1) and U(1), respectively.
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abstract index notation [22, 23], elements of S, S∗, S̄, S̄∗ are denoted with upper index
(ξA), lower index (ξA), primed upper index (ξ̄A′), and primed lower index (ξ̄A′) spinors,
respectively, with the spinor indices being based on upper case latin letters. The symbol T
will denote a four dimensional real vector space (“tangent space”), with T ∗ being its dual.
As is common in the GR literature, Penrose abstract indices of elements of T and T ∗ are
denoted with lower case latin letter upper (ta) and lower (ta) indices. As usual, the index
symmetrization and antisymmetrization are be denoted by enclosing the indices in round
( ) or square [ ] brackets, respectively.

Let A be a complex Grassmann algebra with 2 generators (A ∼= Λ(C2)), i.e. A an
exterior algebra of a two-dimensional complex vector space without a fixed preferred Z-
grading. Whenever a preferred Z-grading is chosen, then Amay be identified as A ≡ Λ(S∗),
i.e. a spinorial representation of it can be given. Motivated by this, we shall call A the space
of generalized co-spinors. (The convention that we are representing A as Λ(S∗) and not
as e.g. Λ(S) is merely a matter of convenience for the Penrose abstract index formalism.)
Given an element a ∈ A, denote by La ∈ Lin(A) the linear operator of left multiplication
by a on A. Since A is a four dimensional complex unital associative algebra, the group of
its invertible elements can act on the space A via L.7 Denote by M(A) ⊂ A the so-called
maximal ideal of A, which happens to be the subspace of order at least one forms within
A. Then, all the invertible elements of A can be uniquely written as a nonzero complex
number times exp(m), with some element m ∈M(A). Thus, the group action of the left
multiplication by an invertible element of A on A can be uniquely written as a nonzero
complex scaling times exp(Lm) ∈ GL(A) with m ∈M(A).

The group {exp(Lm) |m ∈M(A)} can be easily seen to be isomorphic to H3(C). In
order to show this fact, it is enough to see that the Lie algebra defined by {Lm |m ∈M(A)}
is isomorphic to h3(C). That is most easily demonstrated by fixing some Z-grading
A ≡

⊕2
p=0 Λp, and then taking the unit element 1 ∈ Λ0, and canonical generators

a1, a2 ∈ Λ1, with which the basis {1, a1, a2, a1a2} spans the algebra A, whereas the ba-
sis {a1, a2, a1a2} spans its maximal ideal M(A). Since A was defined to be a Grassmann
algebra with two generators, it directly follows from the Grassmann relations that the Lie
algebra spanned by {La1 , La2 , La1a2} has the same commutation relations as h3(C), and
therefore LM(A) ≡ h3(C), and correspondingly one has exp(LM(A)) ≡ H3(C). As a conse-
quence, one has natural faithful linear representations of h3(C) and H3(C) on the space A.

On the algebra A, the group GL(2,C) ≡ GL(S∗) also has a natural representation.
That is because GL(S∗) ≡ GL(Λ1) ≡ GL(M(A)/M2(A)) describes the Z-grading preserv-
ing algebra automorphisms of A [24]. Therefore, one can construct the semi-direct product
group exp(LM(A)) o GL(Λ1) ≡ H3(C) o GL(2,C), which then by construction has a natu-
ral faithful complex-linear representation on A, which happens to be the defining represen-
tation, i.e. the smallest dimensional faithful linear representation of H3(C) o GL(2,C). The
structure of the algebra A along with the natural action of the group exp(LM(A)) o GL(Λ1)
on A is illustrated in figure 1.

7It is well known, and easy to check, that the invertible elements of a Grassmann algebra are those which
have nonvanishing scalar (zero-form) component. To put it differently: invertible elements are those which
are exponentials of any elements.
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(a)

Λ 0

Λ 1

Λ 2

A

(b) ξA

ε [CD]

φ

ψ

(c)

(d)

AB( )

(e)

A)M(

(f)

A)M(
2

(g)

A)Z(

(h) (i) (j)

A)M(

(k)

A)M(
2

Figure 1. Illustration of the structure of the complex unital associative algebra A ≡ Λ(S∗) and
the natural group action of the conservative Lorentz group extension exp(LM(A)) o GL(Λ1) over
it. Panel (a): the algebra A with a fixed Z-grading (Λp ≡ ∧p S∗). Panel (b): whenever a fixed Z-
grading is taken, an element ψ of A can be represented by a tuple of spinors. Panel (c): heuristically
speaking, the algebra A can be considered as a creation operator algebra of fermions with 2 funda-
mental degrees of freedom. Panels (d)–(e)–(f)–(g): important subspaces of the algebra A, namely
the scalar sector B(A), the maximal ideal M(A), and its second power M2(A), moreover the center
Z(A). Panels (h)–(i): illustration of the group action of the grading preserving part (GL(Λ1)) and
of the grading non-preserving part (expLM(A)) of the full symmetry group exp(LM(A)) o GL(Λ1).
The grading preserving part, by definition conserves the p-form subspaces, whereas the grading
non-preserving part mixes higher forms to lower forms. Panels (j)–(k): list of all the invariant sub-
spaces, which are invariant to the group action of the full symmetry group exp(LM(A)) o GL(Λ1).
It is seen that none of the invariant subspaces possess an invariant complementing subspace, and
thus the defining representation on A is indecomposable. In other words: the pertinent group action
puts A into a single multiplet. Note that in the representation space of a non-semisimple Lie group
an invariant subspace might not have invariant complement, i.e. a reducible representation might
still be an indecomposable (non-direct sum) multiplet.
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Since the group exp(LM(A)) o GL(Λ1) has a linear action on A, there is a canonical
faithful representation also on its complex conjugate space Ā, via the requirement of being
compatible with the natural A → Ā complex conjugation map. This is in analogy of
GL(S∗) having its canonical representation on S∗, and consequently having its canonical
representation on S̄∗, via requiring the invariance of the S∗ → S̄∗ complex conjugation map.

The actual representation space in our toy model shall be A := Ā ⊗ A, where ⊗ denotes
ordinary, i.e. vector space sense tensor product (not a graded tensor product).8 The algebra
A is a kind of doubled exterior algebra, which we shall call spin algebra, being a 16 dimen-
sional complex unital associative algebra. Since its components A and Ā play the role of
generalizations of the co-spinor space S∗ and the complex conjugate co-spinor space S̄∗, the
spin algebra A = Ā ⊗ A can be considered as a generalization of the mixed co-spinor space
S̄∗⊗S∗. In fact, whenever a preferred Z-grading of A is fixed, the spin algebra may be iden-
tified as A ≡

⊕2
p,q=0 ∧p S̄∗⊗∧q S∗, i.e. its representation can be given in terms of ordinary

two-spinors. By construction, the spin algebra A also carries a natural antilinear involution
(·) : A→ A, which we call charge conjugation, and which has the property x y = x y for all
x, y ∈ A. The pertinent charge conjugation map is simply defined by the composition of
the natural complex conjugation as a Ā ⊗ A → A⊗ Ā map and of the natural tensor prod-
uct swapping as a A⊗ Ā → Ā ⊗A map, hence giving rise to a natural Ā ⊗ A → Ā ⊗A
antilinear involution on A. It can be considered as a generalization of the hermitian con-
jugation S̄∗ ⊗ S∗ → S̄∗ ⊗ S∗ on the space of mixed co-spinors S̄∗ ⊗ S∗, as usual in the
ordinary two-spinor calculus. Since the group exp(LM(A)) o GL(Λ1) ≡ H3(C) o GL(2,C)
has a natural linear representation both on A and Ā, it also has a corresponding linear
representation on the spin algebra A = Ā ⊗ A.

The structure group of our toy model will be specified via its faithful linear represen-
tation on the spin algebra A = Ā ⊗ A. It is defined to be the group

G := C
× ×

(
exp(LM(A)) o GL(Λ1)

)
≡ C

× ×
(

H3(C) o GL(2,C)
)

≡
(
C
× × H3(C)

)
o GL(2,C) (4.2)

where C× denotes the scaling by nonzero complex numbers on A. The factor C×

is merely present because in fact in the toy model, a projective representation of
exp(LM(A)) o GL(Λ1) ≡ H3(C) o GL(2,C) is taken over A, and it is a notational con-
venience to view that projective representation instead a linear representation of G as in
eq. (4.2). The Lie algebra of G is correspondingly

g := C ⊕
(
LM(A) I+ gl(Λ1)

)
≡ C ⊕

(
h3(C) I+

(
u(1)⊕ d(1)⊕ sl(2,C)

))
≡
(
C⊕ h3(C)

)
I+
(
u(1)⊕ d(1)⊕ sl(2,C)

)
(4.3)

8If ⊗ were a graded tensor product, then Ā⊗A could be viewed as superfields. Here, we are not
considering that situation, since we would like A and Ā to describe fermionic degrees of freedom, and their
charge conjugates, respectively, and we would like to impose Pauli principle for these fields separately.
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where C denotes the scaling by complex numbers on A. The group G is invariant under
the conjugation by elements of the charge conjugation group {I, (·)} ≡ Z2, where I is the
identity map on A. Therefore, the semi-direct product G o {I, (·)} is meaningful. This de-
tail will be important because we will prescribe the charge conjugation group {I, (·)} ≡ Z2
to be global symmetry of the toy model. The structure of the spin algebra A along with
the natural action of the group G o {I, (·)} on it is illustrated in figure 2. It is seen
that although G o {I, (·)}-invariant subspaces within A do exist, but none of them has an
invariant complement, and thus the representation space A is direct-indecomposable.

Before we continue, we briefly mention the heuristic meaning of the representation
space A and the group action of G on it. Since A = Ā ⊗ A, the algebra A can be thought of
as a creation operator algebra of two kinds of fermions, each having 2 fundamental degrees
of freedom, and the two kinds being related to each-other via the charge conjugation oper-
ation (·). The finite dimensional real Lie group G acts naturally on A, and the meaning of
grading preserving transformations of G is clear: they induce gl(2,C) ≡ u(1)⊕ d(1)⊕ sl(2,C)
transformations on the generating sector Λ0̄1 and corresponding natural action on all of
the sectors Λp̄q, and thus on the entire A ≡

⊕2
p,q=0 Λp̄q. The grading non-preserving trans-

formations, isomorphic to H3(C), mix higher forms to lower forms, deforming the original
Z×Z-grading of A to an other equivalent one. In the heuristic picture of creation operator
algebras, the corresponding H3(C) action on an element Ψ ∈ A would mean left insertion
of equal amount of particles and corresponding charge conjugate particles into Ψ. (The
spin algebra A is not a CAR algebra, but is a related concept.)

In the following part we investigate important G-invariant functions on A, which will
be used to construct the invariant Lagrangian.

4.1 Important invariant functions on representations of the example group

In order to study the G-invariant functions on A, it is convenient to first study the invariants
of important “special” subgroup of it, in which the projective scaling group C× is omitted,
and that shall be denoted by Gs. By construction, the special subgroup Gs may not only
act on the full representation space A = Ā⊗A, but also on its individual factors A and
Ā alone. It is a further convenience to introduce some even smaller special subgroups
within Gs: the subgroups SGs and S

×Gs in which the D(1) and the D(1)×U(1) component
is omitted, respecively. These special subgroups within G are most concisely presented in
terms of the Lie algebra structure:

g ≡ C ⊕
(
h3(C) I+

(
sl(2,C)︸ ︷︷ ︸

Lie algebra of S×Gs

⊕ u(1)

︸ ︷︷ ︸
Lie algebra of SGs

⊕ d(1)
)

︸ ︷︷ ︸
Lie algebra of Gs

)

︸ ︷︷ ︸
Lie algebra of G

. (4.4)

(The subgroup SGs ⊂ Gs is defined by acting trivially on M4(A), whereas S×Gs ⊂ SGs is
defined by acting trivially also on M2(A).) Our strategy will be to first find invariants of
the representations of the special subgroups S×Gs on A and of SGs on A. Then, we will
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Figure 2. Illustration of the structure of the spin algebra A ≡ Λ(S̄∗)⊗ Λ(S∗) and the natu-
ral group action of G o {I, (·)} over it. Panel (a): the algebra A with a fixed Z×Z-grading
(Λp̄q ≡ ∧p S̄∗ ⊗ ∧q S∗). Panel (b): whenever a fixed Z×Z-grading is taken, an element Ψ of A
can be represented by a tuple of spinors. Panel (c): heuristically speaking, the algebra A can be
considered as a creation operator algebra of two distinct kind of fermions with 2 fundamental degrees
of freedom each, and the two kinds being charge conjugate to each-other. Panels (d)–(e)–(f): impor-
tant subspaces of the algebra A, namely the scalar sector B(A), the maximal ideal M(A), moreover
the center Z(A). Panels (g)–(h): illustration of the group action of the grading preserving part and
of the grading non-preserving part of the symmetry group G o {I, (·)}. Panels (i)–(n): list of all
the subspaces of A, which are invariant under the group action of the symmetry group G o {I, (·)}.
It is seen that no invariant complementing subspaces exist, i.e. A is an indecomposable multiplet.
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study the action of the dilatation D(1) group and the projective scaling group C× on the
ensemble of the found invariants, in order to construct invariants of the full group G.

Using the LieAlgebras Maple package [21], one can search for invariant functions of
the pertinent special groups. For instance, one can show that there is a single functionally
independent A → C map, which is invariant to the group action of S×Gs, and is nothing
but the scalar component function b : A → C, ψ 7→ bψ, where b picks out the scalar com-
ponent (bottom-form or zero-form) of an element of A. In a two-spinor representation
ψ ≡ (φ, ξA , εBC ) of an element ψ ∈ A, one has that bψ = φ. Similarly, one can search for
A×A → C functions, invariant to S×Gs, and these turn out to be functional combinations
of these three invariants:

(ψ,ψ′) 7→ bψ,

(ψ,ψ′) 7→ bψ′, (4.5)
(ψ,ψ′) 7→ λ(ψ,ψ′) := (b∂1ψ)(b∂2ψ

′)− (b∂2ψ)(b∂1ψ
′)− (bψ)(b∂2∂1ψ

′) + (b∂2∂1ψ)(bψ′)

where ∂1, ∂2 denote stepping down operators associated to some arbitrarily chosen
generators a1, a2 ∈ Λ1.9 In two-spinor representation by setting ψ ≡ (φ, ξA , εBC ) and
ψ′ ≡ (φ′, ξ′

A
, ε′

BC
) one has that

λ(ψ,ψ′) = 1
2ε

AB
(
ξAξ

′
B − ξ

′
AξB + φ ε′AB − φ

′ εAB

)
, (4.6)

where εAB ∈ ∧2 S∗ ≡M2(A) is an arbitrary but fixed nonzero maximal form in A, and εAB

is its corresponding inverse maximal form satisfying εAB ε
CB = δA

C . It is seen that λ is a
nondegenerate symplectic form, and that its choice is unique up to a complex multiplier, i.e.
up to the choice of εAB . One could say that the symplectic form λ is a generalization of the
symplectic form εAB from two-spinors to their exterior algebra. It is seen that λ is uniquely
determined up to complex normalization, where the ambiguity comes from the choice of the
nonzero maximal form εAB ∈M2(A). In order to fix this normalization ambiguity in the
formalism, one could consider instead the “densitized version” of λ. That can be defined
to be the unique Gs-invariant symplectic form λ : A×A →M2(A) satisfying the natural
normalization condition λ(1, ε) = ε for all maximal forms ε ∈M2(A).

Using again the LieAlgebras Maple package [21], one can search for SGs-invariant
functions of A. For instance, one can show that there is a single functionally independent
invariant A→ C function, namely b̄⊗b, picking out the scalar component (bottom-form or
zero-form) of an element in A. In the following we shall use the abbreviation b for b̄⊗b,
since their distinction is not relevant. Similarly, one can search for A×A→ C functions,

9The S
×
Gs invariance of the bilinear form λ : A×A → C can be easily understood via first verifying

the identity λ(ψ,ψ′) = (bψ)2 (b∂2∂1(ψ−1ψ′)
)
for any element ψ′ ∈ A and any invertible element ψ ∈ A,

where (·)−1 denotes the algebraic inverse in A. It is clear that the linear form b : A → C is invariant,
moreover, by construction of S

×
Gs, the map A×A → A, (ψ,ψ′)→ ψ−1ψ′ is invariant, thus the map λ

indeed has to be invariant when its first argument is restricted to the invertible elements. Then, one may
drop the assumption of the invertibility of the first argument, because any non-invertible element of A may
be written as difference of two invertible elements and because λ is linear in its arguments, in particular,
in its first argument.
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invariant to SGs, and these turn out to be functional combinations of these three invariants:

(Ψ,Ψ′) 7→ bΨ,
(Ψ,Ψ′) 7→ bΨ′, (4.7)
(Ψ,Ψ′) 7→ L(Ψ,Ψ′) :=

(
λ̄⊗λ

)
◦ (IĀ⊗J⊗IA) (Ψ⊗Ψ′)

where J denotes the A⊗ Ā → Ā ⊗A swapping map, whereas IĀ and IA denote the identity
map of Ā and A, respectively. If a preferred Z×Z-grading is taken along with generators
a1, a2 ∈ Λ0̄1, and corresponding stepping down operators ∂1, ∂2, then the concrete expres-
sion

L(Ψ,Ψ′) = b∂̄2∂̄1∂2∂1
(
(Ψ0̄0−Ψ1̄0−Ψ0̄1 +Ψ1̄1−Ψ2̄0−Ψ0̄2 +Ψ2̄1 +Ψ1̄2 +Ψ2̄2) Ψ′

)
(4.8)

holds for all Ψ,Ψ′ ∈ A. By construction, L is a nondegenerate symmetric bilinear form
with alternating signature (+1,−1,+1,−1, . . .). When expressed in terms of two-spinor
representation A ≡ Λ(S̄∗)⊗ Λ(S∗), then for two elements

Ψ ≡
(
φ, ξ̄(+)A′ , ξ(−)A

, ε̄(+)A′B′ , vA′B , ε(−)AB
, χ̄(+)A′B′C , χ(−)C′AB

, ω
A′B′AB

)
and

Ψ′ ≡
(
φ′, ξ̄′

(+)A′
, ξ′

(−)A
, ε̄′

(+)A′B′
, v′

A′B , ε
′
(−)AB

, χ̄′
(+)A′B′C

, χ′
(−)C′AB

, ω′
A′B′AB

)
one has the identity

L(Ψ,Ψ′) = 1
4ω

A′B′CD (4.9)

×
(
φω′

A′B′CD
+ ω

A′B′CD
φ′ + 4v

A′C v
′
B′D
− ε̄(+)A′B′ ε

′
(−)CD

− ε(−)CD
ε̄′

(+)A′B′

−2ξ̄(+)A′ χ
′
(−)B′CD

− 2ξ(−)C
χ̄′

(+)A′B′D
+ 2χ̄(+)A′B′C ξ

′
(−)D

+ 2χ(−)A′CD
ξ̄′

(+)B′

)
,

where ω
A′B′CD

∈ ∧2 S̄∗ ⊗ ∧2 S∗ ≡M4(A) is an arbitrary but fixed nonzero positive maxi-
mal form of A, and ωA′B′CD is its inverse maximal form with the normalization convention
ω

A′B′DE
ωC′B′F E = δ̄

A′
C′ δD

F . The invariant bilinear form L shall be shown to be a kind
of generalization of the form related to the Dirac adjoint, and will be a key object in
defining G-invariant Lagrangians. It is seen that L is uniquely determined up to com-
plex normalization, where the ambiguity comes from the choice of the nonzero maximal
form ω

A′B′CD
∈M4(A). In order to fix this normalization ambiguity in the formalism, one

could consider instead the “densitized version” of L. That can be defined to be the unique
Gs-invariant symmetric bilinear form L : A×A→M4(A) with the natural normalization
condition L(1,ω) = ω for all maximal forms ω ∈M4(A).

Before we can go on to the formulation of G-invariant theories, invocation of some
further invariant objects is necessary, related to the two-spinor calculus. As it is well
known [22, 23], in the ordinary two-spinor formalism the spinor space S is considered as a
representation space of GL(S), and by requiring the invariance of the duality pairing form
and of the complex conjugation map, a canonical representation of GL(S) is defined also
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on S∗, S̄, S̄∗, respectively. Therefore, one has a canonical representation on the tensor
product space S̄⊗S, as well as on its real part Re

(
S̄⊗S

)
. The formalism of two-spinor

calculus is based on the fact that on the four dimensional real vector space Re
(
S̄⊗S

)
the

canonical representation of GL(S) reduces to a representation of the Weyl group (dilatation
+ Lorentz group). More concretely, for any nonzero maximal form εAB ∈ ∧2 S∗ one has that
the form ω

A′B′AB
:= ε̄

A′B′ ⊗ εAB defines a nondegenerate, symmetric, Lorentz signature
(+,-,-,-) real-bilinear form on Re

(
S̄⊗S

)
, which is preserved by the action of GL(S) up to

positive multiplier. Therefore, if some other four dimensional real vector space T is taken
(which one may call “tangent space”), and a linear injection σA′A

a : T → Re
(
S̄⊗S

)
is fixed,

then the GL(S)-induced Weyl group representation is pulled back onto T , via requiring
the σA′A

a to be invariant [25]. By construction, this representation of GL(S) respects the
Lorentz metric g(σ,ω)ab := σA′A

a σB′B
b ω

A′B′AB
on T up to positive multiplier. The map σA′A

a

is called soldering form or Pauli map or Infeld-Van der Waerden symbol in the literature.
The pertinent philosophy naturally generalizes to the spin algebra case: the subspaces
M(A) ⊂ A and M2(A) ⊂M(A) are invariant under the canonical representation of Gs on
A, and therefore one has the natural Gs-invariant induced representation on the quotient
space S∗ ≡M(A)/M2(A), and on its dual S ≡

(
M(A)/M2(A)

)∗. Because of that, one can
take a real-linear injection σA′A

a : T → Re
(
S̄ ⊗ S

)
into the Gs-invariant space Re

(
S̄ ⊗ S

)
.

Clearly, fixing such a soldering form σA′A
a pulls back the natural real-linear representation

of the group Gs onto T , via the requirement of the soldering form σA′A
a to be invariant.

Similarly to the ordinary two-spinor case, this induced linear representation of Gs on T is
nothing but the Weyl group: the Lorentz group together with the metric rescalings.

It is sometimes useful to construct a further equivalent realization of the soldering form,
in the spin algebra context. Using the LieAlgebras Maple package [21], one can show
that the subspace of elements of Lin(A) which are invariant to the Heisenberg (nilpotent)
group action of expLM(A), is nothing but RA, i.e. the image of A in Lin(A) by the right
multiplication. Correspondingly, the Heisenberg-invariant elements in Lin(Ā) span RĀ.
Therefore, one has the natural Gs-invariant injections by right multiplication

S∗ → RA , ξB 7→ ξBRδB

S̄∗ → RĀ , ξ̄
B′ 7→ ξ̄

B′Rδ̄B′ (4.10)

of the co-spinor spaces into the space right multiplication operators RA ⊂ Lin(A) and
RĀ ⊂ Lin(Ā), respectively. We used Penrose indices on spinor side, and suppressed indices
on the algebra side in order to introduce the right injection operators RδB and R

δ̄B′ .
Analoguously, using the LieAlgebras Maple package [21], one can show that the subspace
of elements of Lin(A) which are Heisenberg-invariant is RA. After verifying these facts, it
follows that, up to a real multiplier, the only Gs-invariant T ∗ → Lin(A) real-linear injective
map is σb := σbB′B Rδ̄B′⊗RδB , where σbB′B : Re(S̄⊗S)→ T is the usual two-spinorial inverse
soldering form, uniquely determined via the relation σbB′B σ

B′B
a = δba. The normalization

of σb and σA′A
a can be uniquely interlinked via fixing the natural normalization identity(

(σb1)
/
M3(A)

)
B′B σ

B′B
a = δba.
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Given a fixed soldering form σA′A
a and a fixed real maximal form ω ∈ Re(M4(A)),

the previously introduced Lorentz metric g(σ,ω)ab is a naturally defined SGs-
invariant object. The normalization of the metric g(σ,ω)ab is, however, am-
biguous up to the choice of ω. In order to fix this normalization ambigu-
ity in the formalism, one could consider instead the “densitized version” of the
metric. That can be defined to be the unique Gs-invariant symmetric bilinear
form g(σ)ab : T × T → Re(M4(A))∗, satisfying (ua vb g(σ)ab |ω) = ua vb g(σ,ω)ab for all
ω ∈ Re(M4(A)) and ua, va ∈ T . The corresponding densitized inverse metric, being a
symmetric bilinear form g(σ)ab : T ∗ × T ∗ → Re(M4(A)), is uniquely determined by the
relation g(σ)ab g(σ)bc = δca. The densitized inverse metric can also be expressed in terms
of the ordinary, real valued inverse metric via the identity g(σ)ab = ω g(σ,ω)ab, given any
nonvanishing ω ∈ Re(M4(A)). Associated to the metric g(σ,ω)ab, also a unique volume
form in ∧4 T ∗ exists (up to orientation), and that is known to be expressable in the form

v(o, σ,ω)abcd
:= o

(
iσE′E

a σF ′F
b σB′A

c σA′B
d ω

E′A′EA
ω

F ′B′F B
− iσE′E

a σF ′F
b σB′A

d σA′B
c ω

E′A′EA
ω

F ′B′F B

)
[22, 23], where o = ±1 describes the chosen orientation sign. The normalization of
the volume form also depends on the choice of an ω ∈ Re(M4(A)). In order to
fix this normalization ambiguity, the corresponding densitized volume form is intro-
duced, which is the unique element v(o, σ) ∈ ∧4 T ∗ ⊗ Re(M4(A))∗ ⊗ Re(M4(A))∗ satis-
fying (v(o, σ) |ω⊗ω) = v(o, σ,ω) for all ω ∈ Re(M4(A)). By construction, the densitized
volume form v(o, σ) is also Gs-invariant.

The spin tensor is a further invariant function of σA′A
a according to the definition

Σ(σ)abC
D := iσA′D

a σbA′C − i g(σ)cb g(σ)ad σA′D
c σdA′C

which is a tensor of T ∗⊗T ⊗ S∗⊗S, using the identification S∗ ≡M(A)
/
M2(A) as previ-

ously. The spin tensor Σ(σ)abC
D , by construction, is also Gs-invariant.

The introduced formalism is all as usual in the ordinary two-spinor calculus [22, 23],
with the slight generalization of providing some extra representation space A ≡ Λ(S∗) for
the nilpotent Lie group component H3(C) of our symmetry group G, where G as acting on
A can be considered as a generalization of GL(S∗) as acting on S∗.

5 The example Lagrangian

In order to define our Lagrangian, we assume that our matter fields are sections of an
A-valued vector bundle over a four dimensional spacetime, as illustrated in figure 3. A
distantly similar construction was considered by Anco and Wald [26], but the algebra they
employed was too small in order to accommodate representation space for any symmetries
larger than the conventional direct product symmetries, based merely on reductive Lie
algebras.

In our construction, we consider a four dimensional real manifold M (which we shall
call the spacetime manifold), and a vector bundle overM with fiber A and structure group
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spin algebra valued fields

4d spacetime manifold

Figure 3. Illustration of the concept of spin algebra valued fields. The structure group of such a
theory can be set to be a conservative unification G of the Lorentz (or Weyl) and of the compact
U(1) symmetries.

G, as defined in eq. (4.2). As we shall see, such a structure exists wheneverM is spin. The
bundle A(M) is a spin algebra valued vector bundle of the form A(M) = Ā(M)⊗A(M)
with A(M) being a two generator complex Grassmann algebra bundle over M. Anal-
ogously to ordinary two-spinor calculus [22, 23], we assume a σA′A

a pointwise injective
T (M)→ Re

(
S̄(M)⊗S(M)

)
vector bundle morphism (soldering form) to be present, where

S∗(M) := M(A)(M)
/
M2(A)(M) plays the role of an ordinary lower index two-spinor bun-

dle. We see from the above that given a spacetimeM with co-spinor bundle S∗(M), and a
choice of soldering form σA′A

a , we can construct a spin algebra valued bundle A(M) overM.
The charge conjugation group {I, (·)} ≡ Z2, which has a canonical action on the sections
of A(M), will be required to be a global symmetry of the model.

Let ∇a be a covariant derivation operator on A(M). In the model, these will play
the role of mediator fields. The adjoining by the discrete group of charge conjuga-
tion {I, (·)} ≡ Z2 acts trivially on Gs ⊂ G, but acts nontrivially on the projective scaling
subgroup C× ⊂ G. Therefore, the charge conjugation map takes a covariant derivation
∇a in general to a different covariant derivation ∇a, according to the canonical action
∇aΨ := ∇aΨ, for any section Ψ of A(M). It is straightforward to check that the differen-
tial operator ∇R

a := 1
2
(
∇a +∇a

)
also defines a covariant derivation. By construction, the

charge conjugation (·) acts trivially on ∇R
a . Since on Gs the adjoining by charge conjugation

acts trivially, and also on the subgroup |C× | of the projective scaling group C× , one has
that the gauge potential ∇a−∇R

a is simply a covector field carrying gauge charge of merely
the quotient C×/|C× |. Therefore, the mapping ∇a 7→ ∇R

a takes a covariant derivation to an
other covariant derivation, with the gauge potential corresponding to the complex phase of
the projective subgroup C× zeroed. This slight complication with the distinction between
∇a and ∇R

a in the formalism comes from the convention that we would like to handle
projective representations of Gs via addressing linear representations of G, and it does not
have any particular physics meaning or relevance. The physically relevant part of ∇a will
turn out to be simply ∇R

a in the model.
Our action principle shall be Palatini-like, i.e. the metric will not be a distinguished

field. In fact, it will be a function of an other fundamental field: the soldering form
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σA′A
a . The matter field sector of the theory will consist of the soldering form σA′A

a and
of a section Ψ of the spin algebra bundle A(M). Moreover, as in the Palatini formalism,
the covariant derivation ∇a is independently varied from the matter field sector. That
is, ∇a physically describes a combined gravitational-and-gauge connection, without an a
priori splitting into a gravitational and an internal part. In total, the independent field
variables form a tuple

(
σA′A
a , Ψ, ∇b

)
. The subgroup Gs of the structure group G has a

canonical action on these, introduced in the previous sections. The charge conjugation
group {I, (·)} ≡ Z2 as a global symmetry group also has a natural action via representing
the charge conjugation map as

(
σA′A
a , Ψ, ∇b

)
7→
(
−σA′A

a , Ψ, ∇b
)
on the fields, which can be

understood as the action of a local CPT transformation. (The field Ψ is charge conjugated,
and simultaneously, the sign of the soldering σA′A

a of the spin algebra to the spacetime
vectors is reversed.) The projective scaling subgroup C× of G is defined to act on the fields
as
(
σA′A
a , Ψ, ∇b

)
7→
(
|z|σA′A

a , zΨ, z∇bz−1) for a projective scaling field z, being a section
of the C× valued line bundle. Thus at this point, the action of the structure group G and the
global charge conjugation group {I, (·)} ≡ Z2 on the fields

(
σA′A
a , Ψ, ∇b

)
is fully specified.

The actual Lagrangian shall be a real volume form valued pointwise vector bundle
mapping

(o, σA′A
a , Ψ, ∇aΨ, P (∇)ab) 7−→ L(o, σA′A

a , Ψ, ∇aΨ, P (∇)ab) (5.1)

with the requirement of being invariant to the vector bundle automorphisms of A(M)
compatible with the structure group G. The symbol P (∇)ab denotes the curvature tensor
of a covariant derivation ∇a, and o denotes the spacetime orientation sign (o = ±1). The
action functional is, as usually, defined to be local integrals of the pertinent volume form
over compact regions of the spacetime M. We also require the action functional of the
theory to be invariant to the change of the spacetime orientation o, which implies that the
Lagrangian should flip sign when changing the spacetime orientation o to opposite. This
explicitely forbids Chern-Simons-like terms in the model. In addition to these quite conven-
tional gauge-theory-like symmetry prescriptions, we require the Lagrangian to be invariant
to a shift transformation of the gauge-covariant derivation according to ∇a 7→ ∇a + Ca in
the manner of section 3, where Ca denotes a smooth covector field taking its values in the
ideal of G, corresponding to the C× ×

(
H3(C) o D(1)

)
part.10 This requirement means that

the Lagrangian should not depend on all the G-connection fields, but only on modes with
U(1) or SL(2,C) charges. The search for all such invariant volume form valued expressions
in principle can be addressed by the LieAlgebras Maple package [21]. However, due to the
relatively large dimension of the total pointwise degrees of freedom, the pertinent library
was not able to answer this question in its full generality. We were able to find, though, all
the invariant terms, with certain fixed polynomial degree in P (∇)ab and in ∇aΨ. There is
strong evidence that these are all the invariants. The pertinent invariant terms are enu-
merated in the following, listed according to their polynomial degree in P (∇)ab and ∇aΨ.

10For the sectors carrying faithful representation of the structure group G, such as the matter field sector,
it is enough to demand a connection shift invariance with respect to the C

×
×D(1) part of G. Under that

requirement, due to the local G-invariance of the Lagrangian, connection shift invariance with respect to
AdG

(
C

×
×D(1)

)
= C

×
×
(
H3(C) o D(1)

)
follows.
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Yang-Mills-like term. The tensor field v(o, σ) g(σ)ab g(σ)cd only depends on the orien-
tation o and the soldering form σ, and it is G-invariant. Due to the structure of the group
G, the curvature P (∇)ab of a covariant derivation ∇a does have a canonical action not
only as a Lin(A)-valued two-form, but also as a Lin(S∗)-valued two-form with the usual
identification S∗ ≡M(A)/M2(A) ∼= Λ0̄1. Therefore, its restricted trace Tr|Λ0̄1

P (∇)ab is
meaningful, and is a G-gauge covariant expression. With the introduced quantities, it does
not come as a surprise that the only invariant Lagrangian bilinear in the curvature P (∇)ab
and satisfying positive energy density condition for gauge fields is:

LYM(o, σA′A
a , Ψ, ∇aΨ, P (∇)ab)

:= v(o, σ) g(σ)ac g(σ)bd Im
(

Tr|Λ0̄1
P (∇R)ab

)
Im
(

Tr|Λ0̄1
P (∇R)cd

)
.

(5.2)

This is nothing but literally the Maxwell Lagrangian, as expressed in our field variables.
It is remarkable that only the U(1) part of the connection gives contribution, while the
expression being G-covariant.

Einstein-Hilbert-like term. The tensor field v(o, σ) g(σ)ab L(Ψ,Ψ) is G-invariant.
Thus, it is not surprising that the only invariant Lagrangian linear in the curvature P (∇)ab
is:

LEH(o, σA′A
a , Ψ, ∇aΨ, P (∇)ab)

:= v(o, σ) g(σ)ab L(Ψ,Ψ) Re
(

Tr|Λ0̄1

(
iΣ(σ)ac P (∇R)cb

))
.

(5.3)

This is nothing but a rather straightforward generalization of the Einstein-Hilbert La-
grangian, as expressed in spinorial variables. The only difference is that the prefactor of
the scalar curvature is the field L(Ψ,Ψ) instead of the constant11 (Planck length)−2 . It
is remarkable that only the SL(2,C) part of the connection gives contribution while the
full expression being G-covariant. An interesting feature of this Lagrangian term is that it
is invariant to the shift of the top-form component of Ψ, according to the transformation
Ψ 7→ Ψ + b(Ψ) iω with any Re

(
M4(A)

)
valued field ω.

Klein-Gordon-like term is not allowed. The field v(o, σ) g(σ)ab L
(
(·), ·

)
is G-invariant,

and therefore the expression

LKG(o, σA′A
a , Ψ, ∇aΨ, P (∇)ab) := v(o, σ) g(σ)ab L

(
i∇R

a (Ψ), i∇R
b (Ψ)

)
(5.4)

is G-invariant. However, it is not invariant to the shift symmetry ∇a 7→ ∇a + Ca with
Ca being smooth covector field taking its values in the ideal of G, corresponding to the
C× ×

(
H3(C) o D(1)

)
. Thus, a Klein-Gordon-like second order term in ∇aΨ is disallowed

by the shift symmetry requirement on the connection.

Dirac-like term. Here the calculations have to rely more intensively on the symbolic
Maple calculation. It turns out that the G-gauge-covariance, the diffeomorphism covari-
ance, along with the CPT covariance singles out 13 linearly independent Lagrangians, which
are first order in ∇aΨ. However, the requirement of connection shift invariance mentioned

11See e.g. [27] for a discussion of the impact of a dynamical Newton’s constant in cosmology. Such
mechanism is invoked in Brans-Dicke-type theories.
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Figure 4. Illustration of the fact that whenever a fixed Z×Z-grading of the spin algebra A is
taken, then the ±1 U(1) charge subspaces D+ := Λ1̄0⊕Λ2̄1 and D− := Λ0̄1⊕Λ1̄2 can be considered
as embedded Dirac bispinor spaces in A. Conversely: the spin algebra A can be considered as a
generalization of the Dirac bispinor / Clifford algebra concept.

above singles out 1 unique invariant combination of these, resembling to a generalization
of a Dirac term. It reads:

LD(o, σA′A
a , Ψ, ∇aΨ, P (∇)ab)

:= v(o, σ) 1
|b(Ψ)|

1√
2

Re
(

L
(

Ψ, γ(σ,Ψ,Ψ)a b(Ψ) i∇R
a

( 1
b(Ψ)Ψ

))) (5.5)

where one defines the map γ(σ,Ψ,Ψ′)a as a T ∗ → Lin(A)⊗ Re
(
M4(A)

)∗ pointwise linear
vector bundle mapping according to the formula

γ(σ,Ψ,Ψ′)a(·) := 1√
2
σaA′A

(
(RδA Ψ ) L

(
R
δ̄A′ Ψ′, ·

)
+ (R

δ̄A′ Ψ ) L
(
RδA Ψ′, ·

) )
. (5.6)

Here, the notation RδA and R
δ̄A′ denote the pointwise injections S∗ → RA and S̄∗ → RĀ,

defined previously in eq. (4.10). This Lagrangian is a kind of generalization of the Dirac
kinetic term in the following sense. Introduce a fixed Z×Z-grading of A, and take the U(1)
charged subspaces with charge ±1 which are D+ := Λ1̄0⊕Λ2̄1 and D− := Λ0̄1⊕Λ1̄2, respec-
tively. Then, consider a background field Ψ0 which takes its value in the spin-free subspace,
i.e. in the center Z(A) of the spin algebra A. With these conditions, the tensor γ(σ,Ψ0,Ψ0)a

can be seen to admit the Clifford property against g(σ)ab, over the subspaces D+ and D−
of A. In this sense, γ(σ,Ψ,Ψ)a can be considered as a kind of modified vertex function, in
field theory speak. Also, one can show that the nondegenerate sesquilinear invariant form
L
(
(·), ·

)
, when restricted to D+ or D−, corresponds to the one generated by the Dirac ad-

joint in ordinary Dirac bispinor formalism. This generalization scheme is illustrated in fig-
ure 4. It is remarkable, that the Dirac-like Lagrangian term eq. (5.5) is only meaningful for
invertible fields, i.e. for matter fields Ψ which have b(Ψ) 6= 0 (non-vanishing scalar compo-
nent). A further remarkable property of eq. (5.5) is that it does not depend on the top-form
subspace, i.e. the expression is invariant to a shift Ψ 7→ Ψ + ω by anyM4(A) valued field ω.

Fourth order self-interaction potential. Relying on the symbolic Maple calculation
it turns out that there are 5 linearly independent self-interaction terms, merely depen-
dent on Ψ and σA′A

a . These are all combinatorial variants of the Gs-invariant form field
v(o, σ) L(·, ·) L(·, ·). The number of 5 invariants can also be understood by taking the
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representation eq. (4.7) of the multilinear form L(·, ·)⊗ L(·, ·), which reads as

λ̄(·, ·)⊗ λ(·, ·)⊗ λ̄(·, ·)⊗ λ(·, ·),

and by subsequent enumeration of its linearly independent combinatorial contractions with
Ψ⊗Ψ⊗Ψ⊗Ψ, understood as a tensor of

A⊗A⊗A⊗A ≡ Ā ⊗A⊗ Ā ⊗ A⊗ Ā ⊗ A⊗ Ā ⊗ A.

Apart from invariance requirements, there is a clear guideline to select physically relevant
combinations from the 5 invariant potential terms: the requirement of non-negativity of the
potential. Two of the five invariants, based on L

(
Ψ,Ψ

)
L
(
Ψ,Ψ

)
and on L

(
Ψ,Ψ

)
L
(
Ψ,Ψ

)
,

are easily seen to be positive semidefinite. It is not easy to judge whether the remaining
three invariants can be cast to a positive semidefinite form: generally, it is known not to be
a simple problem to automatically deduce if a quartic form is positive semidefinite, unless
it obviously can be written as sums of squares. A possible guideline to select a preferred
combination of the 5 invariant potentials could be that one requires the symmetries as all
the other invariant Lagrangian terms do obey, in particular that eq. (5.3) obeys. Namely,
that the Lagrangian should be invariant to the shift of the top-form component according
to Ψ 7→ Ψ + b(Ψ) iω with ω being a Re

(
M4(A)

)
valued field. That requirement can be

shown to uniquely select the invariant based on L
(
Ψ,Ψ

)
L
(
Ψ,Ψ

)
, namely:

LV(o, σA′A
a , Ψ, ∇aΨ, P (∇)ab) := v(o, σ) L

(
Ψ,Ψ

)
L
(
Ψ,Ψ

)
. (5.7)

In section 6, we shall present a further symmetry argument, which also suggests that the
above invariant Lagrangian is a preferred unique combination for a self-interaction potential
term.

As mentioned before, due to the high dimensionality of the problem we were not able
to formally prove that the above invariants exhaust the set of all linearly independent
invariant Lagrangians, but there is strong evidence that these are all. In any case, the
linear combination of the known invariants

LAYM, AEH, AD, AV := AYM LYM + AEH LEH + AD LD + AV LV (5.8)

with real coupling constants AYM, AEH, AD, AV provides also an invariant Lagrangian. The
question naturally arises: to what degree the behavior of such a theory depends on these
coupling constants? We address this question in the following.

6 The number of truly independent couplings in the toy model

In this section we show that at the classical level, 3 of the 4 independent coupling con-
stants AYM, AEH, AD, AV can be eliminated by field redefinition transformations. Thus,
there remains only one independent coupling constant, which can be attributed e.g. to the
strength of the gravitational interaction in the model.
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In order to address the question of how many of the coupling factors of the toy model
are truly independent, one first needs to establish the notion of equivalence of two instances
of the theory. An instance(

M′, A′(M′), G′(M′), (A′YM, A
′
EH, A

′
D, A

′
V), L′A′YM, A

′
EH, A

′
D, A

′
V

)
of the theory is defined to be equivalent to an other instance(

M, A(M), G(M), (AYM, AEH, AD, AV), LAYM, AEH, AD, AV

)
if and only if there exists a principal bundle isomorphism G′(M′)→ G(M) with underlying
vector bundle isomorphism A′(M′)→ A(M) and underlying diffeomorphism M′ →M,
such that LAYM,AEH,AD,AV is pulled back to L′A′YM,A

′
EH,A

′
D,A

′
V
, up to a nonzero real multiplier.

The overall normalization can be disregarded for a classical field theory, since the Euler-
Lagrange equations do not depend on the absolute normalization of the Lagrange form,
and the relative hierarchy of the Noether charges is also independent of that. Assume that
we have one instance of the theory with all the coupling constants AYM, AEH, AD, AV being
nonzero. Then, by means of the above definition, all such theories are equivalent to an
instance with coupling factors 1, AEH

AYM
, AD
AYM

, AV
AYM

, i.e. when the Yang-Mills coupling factor
is fixed to 1, by convention. Thus, it is enough to study theories with coupling factors
1, AEH, AD, AV.

We now address the question whether some of the remaining couplings 1, AEH, AD, AV
can be eliminated by field redefinition transformations. By counting the homogeneity
degree of the terms of LYM , LEH , LD , LV , we establish the fact that some further coupling
factors can be eliminated, using a kind of “classical renormalization”, while keeping the
invariant observables intact. In order to make the argument more exact, we need to formally
introduce the deformation theory of Lagrangians, and thus of action functionals.

Let S : R×F → R, (a, f) 7→ S(a, f) be some continuously differentiable functional,
with F being some topological affine space with a norm type topology, and S taking its
values in some topological vector space R. Let us denote the underlying vector space of F
by δF . For instance, S may be the action functional from the space of a deformation pa-
rameter (R), and the field configuration space (F) over some compact region of spacetime,
mapping onto the real numbers (the space R is R in that case), and the underlying vector
space δF of F is then the space of field variations with the uniquely and naturally defined
Ck norm topology. Over such spaces, the ordinary Fréchet differentiability, i.e. the usual
notion of differentiability based on the ordo functions, is meaningful and uniquely defined.
We call such a map (a, f) 7→ S(a, f) a deformation family of the functional f 7→ S(1, f).

Recall that given a ∈ R and f ∈ F , the partial Fréchet derivative in the second variable
D2S(·, ·)

∣∣
(a,f) is a continuous linear map δF → R. Given a closed subspace δ◦F of δF ,

one may consider the restriction of the above linear map to that subspace, denoted by
Dδ◦F

2 S(·, ·)
∣∣
(a,f). For instance, δ

◦F may be the subspace of field variations δF which vanish
on the boundary of the compact region over which the action functional is considered. With
that example, the equation Dδ◦F

2 S(·, ·)
∣∣
(1,f) = 0 would be equivalent to the Euler-Lagrange

equation of the action S(1, ·), at a field configuration f ∈ F (variation with fixed boundary
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values). Let then F : R×F → F , (a, f) 7→ F (a, f) be a continuously differentiable map
such that for all parameters a ∈ R the mapping f 7→ F (a, f) is one-to-one and onto, and
that F (1, ·) is the identity of F . We call (a, f) 7→ F (a, f) a deformation family of the
space F . We then say that a deformation family (a, f) 7→ S(a, f) of a functional and
a deformation family (a, f) 7→ F (a, f) of its configuration space F are compatible if for
all parameters a ∈ R one has that S(a, F (a, ·)) = S(1, ·). This, for the case of an action
functional, would mean that the deformation of the action is compensated by a counter-
deformation of the field configuration space.

Assuming that S and F are compatible, one has that
D (S(a, F (a, ·)))

∣∣
f

= D2 (S(·, ·))
∣∣
(1,f) for all a ∈ R and f ∈ F . The left hand side of

that equation can be reformulated via the chain rule of differentiation, thus one infers
D2(S(·, ·))

∣∣
(a,F (a,f)) D2(F (·, ·))|(a,f) = D2 (S(·, ·))

∣∣
(1,f). We call a deformation family

(a, f) 7→ F (a, f) of the space F to be regular, whenever for all parameters a ∈ R and
configurations f ∈ F the δF → δF linear map D2(F (·, ·))

∣∣
(a,f) is onto. Moreover, we

call it regular over a closed subspace δ◦F of δF , whenever for all parameters a ∈ R and
configurations f ∈ F the δF → δF linear map D2(F (·, ·))

∣∣
(a,f) can be restricted as a

δ◦F → δ◦F linear map which is onto. If S and F are compatible, and F is regular over
δ◦F , then from the above chain rule argument one infers that

Dδ◦F
2 (S(·, ·))

∣∣
(1,f) = 0 =⇒ Dδ◦F

2 (S(·, ·))
∣∣
(a,F (a,f)) = 0. (6.1)

Applying this identity to our specific case, S being the action functional, this means that
under such conditions, taking a field configuration f ∈ F which solves the Euler-Lagrange
equation Dδ◦F

2 (S(·, ·))
∣∣
(1,f) = 0, then for all a ∈ R its deformed version F (a, f) ∈ F is also

a solution of the deformed Euler-Lagrange equation Dδ◦F
2 (S(·, ·))

∣∣
(a,F (a,f)) = 0. One can

make a rather evident observation that whenever the deformation family of the field con-
figurations a 7→ F (a, ·) is spacetime pointwise, then it is regular over δ◦F (and over the
entire δF) if and only if for all a ∈ R the spacetime pointwise derivative of F (a, ·) against
the field configurations is onto. That is an easily testable (finite dimensional) condition,
which we will use.

With the above arguments we have shown that under appropriate conditions, one can
generate a flow of corresponding solutions a 7→ F (a, f) for a flow a 7→ S(a, ·) of theories,
from a single instance of the theory S(1, ·) and its solution f . For different parameters
a ∈ R, however, the deformed solution F (a, f) of the deformed theory S(a, ·) might even-
tually describe physically different configurations. For instance, from the above first prin-
ciples, there is no guarantee that the physically relevant invariants, such as some relevant
Noether charges of the solutions, are the same throughout the deformation family. In the
following we investigate that under what additional conditions the Noether charges are
constant throughout the deformation flow a 7→ F (a, f) of a solution.

Consider a spacetime pointwise deformation family of a Lagrangian a 7→ L(a, ·) to-
gether with a spacetime pointwise regular and compatible counter-deformation a 7→ F (a, ·)
of the field configuration space. We assume a Palatini-like variational principle, i.e. for
a fixed a ∈ R, the field configuration f is a pair (v,∇), v being section of a vector bun-
dle V (M) (matter fields), and ∇ being covariant derivative on V (M) (combined gauge
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and gravitational connection). The Lagrangian is assumed to depend on three field vari-
ables, the matter fields (v), the matter field covariant derivatives (∇bv), and the curvature
(P (∇)cd), and hence it is a mapping

(
a, (v, ∇bv, P (∇)cd)

)
7→ L

(
a, (v, ∇bv, P (∇)cd)

)
. We

shall check under what conditions the Noether current densities along the deformation
family a 7→ L(a, ·) are constant with respect to the deformation parameter a ∈ R. As a
shorthand notation, we will use

( (a)
v,

(a)∇
)
for the image of a field configuration (v,∇) by

the field deformation map F (a, ·). Let £ be a first order differential operator over the
sections of V (M) which generates a local vector bundle automorphism over V (M). Let
ub be the tangent vector field of the base manifold M, subordinate to £, describing its
corresponding flow on the base manifold. Assume that for all a ∈ R the symmetry gener-
ator £ leaves the Lagrangian L(a, ·) intact, i.e. that the Lagrangian L(a, ·) is £-covariant.
Assuming that (v,∇) is an Euler-Lagrange solution of L(1, ·), then because of the above
conditions,

( (a)
v,

(a)∇
)
shall also be an Euler-Lagrange solution of L(a, ·) for all a ∈ R.

Moreover for any fixed a ∈ R, the volume form valued vector field

Jb£
(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

))
:= Db

2,2L
(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

))
£
((a)
v
)

+ 2D[bc]
2,3 L

(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

)) [
£, (a)∇c

]
− L

(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

))
ub (6.2)

will be the corresponding £-Noether current density, which is divergence free. (A vector
density, i.e. a volume form valued vector field has a naturally defined divergence operator.)
The symbols D2,1L, D2,2L, D2,3L denote the spacetime pointwise partial derivative of L
against its 2,1-th, 2,2-th and 2,3-th variable, respectively, i.e. against the matter fields,
against the matter field covariant derivatives, and against the curvature. (In the above
notation, the 1-st variable is reserved for the deformation parameter a ∈ R itself.) From
the formula eq. (6.2) of the Noether current density, one can directly read off a rather
evident sufficient condition for a 7→ Jb£

(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

))
to be constant along

the deformation parameter a ∈ R. Assume that the following conditions hold:

(i)
(
a, (v, ∇v, P (∇))

)
7→ L

(
a, (v, ∇v, P (∇))

)
is a spacetime pointwise deformation fam-

ily of the Lagrangian.

(ii)
(
a, (v, ∇v, P (∇))

)
7→ F

(
a, (v, ∇v, P (∇))

)
is a spacetime pointwise deformation fam-

ily of the field configurations which is regular.

(iii) the deformation family a 7→ L(a, ·) and a 7→ F (a, ·) are compatible, i.e. for any field
configuration (v,∇) one has L

(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

))
= const along a ∈ R.

(iv) for all deformation parameters a ∈ R the symmetry generator £ leaves the Lagrangian
L(a, ·) invariant, i.e. the Lagrangian L(a, ·) is £-covariant.

(v) for all deformation parameters a ∈ R the symmetry generator £ leaves the deforma-
tion mapping F (a, ·) invariant, i.e. F (a, ·) is £-covariant.

– 27 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
0

(vi) one has the compatibility condition that for any field configurations (v,∇) and (v′,∇′)

Db
2,2L

(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

)) ((a)
v′−(a)

v
)

+ 2D[bc]
2,3 L

(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

)) ((a)∇′c−
(a)∇c

)
= const

holds along a ∈ R.

Then, for all the Euler-Lagrange solutions (v,∇) of L(1, ·) the corresponding deformed
field configuration

( (a)
v,

(a)∇
)
is an Euler-Lagrange solution of the deformed Lagrangian

L(a, ·) for any a ∈ R, moreover the Noether current density Jb£
(
a,
((a)
v,

(a)∇((a)
v), P ((a)∇)

))
is constant along the deformation parameter a ∈ R.

Using the above formalism for the deformation of a theory, one can generalize the notion
of equivalence of instances of a theory with different coupling factors. We define instances of
a theory within a deformation family to be equivalent in the generalized sense, if there exists
a regular compatible counter-deformation map of the field configurations, for which also the
£-Noether current density is constant along the deformation family, for all the vector bun-
dle automorphism generators £, respecting the structure group. The rationale behind this
notion of equivalence is that one can generate the corresponding solutions of the deformed
instances of the theory from each-other, moreover these corresponding solutions will have
the same Noether charges for all the fundamental symmetry generators. Therefore, it seems
to be rational to regard such a deformation family as describing the same physics through-
out the flow of the deformation parameter. The sufficient conditions (i)–(vi) outlined above,
are useful tools for recognizing such generalized equivalence of theory instances, and will be
applied in the following to our toy model in order to eliminate some of the coupling factors.

Using the above notions, one can see that an instance of our toy model with nonva-
nishing coupling coefficients 1, AEH, AD, AV is equivalent in the generalized sense to an
instance with couplings 1, AEH/a

2, AD/a
3, AV/a

4. That is simply seen by observing the
homogeneity degree of the invariant Lagrangians in the soldering form σB′B

b , from which one
infers that a deformation a 7→ LAYM, AEH/a2, AD/a3, AV/a4 of the Lagrangian may be compen-
sated by a compatible counter-deformation (σB′B

b , Ψ, ∇c) 7→ (a σB′B
b , Ψ, ∇c), which satis-

fies (i)–(vi) for all a 6= 0. Choosing specifically a = A1/3
D , we arrive at the conclusion that

such an instance of the theory is equivalent to the instance 1, AEH/A
2/3
D , 1, AV/A

4/3
D . It is

thus enough to study instances of the theory with couplings 1, AEH, 1, AV.
Further applying the above deformation theory, one can eliminate another independent

coupling constant from the set 1, AEH, 1, AV. For that, one needs to use the fact that both
the Yang-Mills-like term, the Dirac-like term and the Einstein-Hilbert-like term is invariant
to an affine shift transformation Ψ 7→ Ψ + b(Ψ) iω with ω being a Re

(
M4(A)

)
valued field.

In the previous section we suggested this symmetry requirement to be imposed also on the
self-interaction term LV , in which case the only surviving potential term can be eq. (5.7).
We now suggest a further symmetry argument to support that requirement. One may
observe that the field deformation family(
σB′B
b ,Ψ,∇c

)
7−→

((a)
σB′B
b ,

(a)Ψ, (a)∇c
)

:=
(
σB′B
b ,

(
Ψ+(a−1) 1

2b(Ψ)
L(Ψ,Ψ)

)
,∇c

)
(6.3)
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satisfies (i)–(vi) for all a 6= 0, moreover it leaves the Yang-Mills-like term as well as
the Dirac-like term invariant, whereas it acts as a scaling on the quadratic expression
Ψ 7→ L

(
Ψ,Ψ

)
: one has the identity L

((a)Ψ, (a)Ψ
)

= aL(Ψ,Ψ). Therefore, it acts on the
Einstein-Hilbert-like term as a scaling transformation by a. On the potential term eq. (5.7),
which is proportional to L(Ψ,Ψ)2, the pertinent field deformation acts as a scaling by a2.
With these conditions, the instance of the theory with couplings 1, AEH, 1, AV is equivalent
in the generalized sense to an instance 1, AEH/a, 1, AV/a

2, specifically to 1, 1, 1, AV/A
2
EH.

Thus, it is enough to study the theory with couplings 1, 1, 1, AV, i.e. with a single free
coupling factor AV, describing the intensity of the self-interaction. Alternatively, one may
transform this one free parameter to the pre-factor of the Einstein-Hilbert-like action, in
which case it is enough to consider couplings 1, AEH, 1, ±1. Since only a single coupling
is left as a free parameter, such a toy model can be considered as unified.

The flat spacetime limit of the toy model can be deduced from the Lagrangian, when
the instance of the theory with couplings 1, AEH, 1, ±1 is considered at the limit AEH →∞.
(Here, the coupling AEH plays the role of scaling (Planck length)−2, so in order to switch
off the gravity, that has to go to infinity.) It is seen, that in the flat spacetime limit, the
theory is left with no freely adjustable coupling constants.

Remark 6.1. Since the model turns out to have a single independent coupling, it is
quite natural to ask the question about the remaining degrees of freedom of the mat-
ter field sector after a gauge fixing. Initially, a section Ψ of the spin algebra bundle
A(M) ≡ Λ

(
S̄∗(M)

)
⊗ Λ

(
S∗(M)

)
can be represented by a tuple of spinor-tensor fields

Ψ ≡
(
φ, ξ̄(+)A′ , ξ(−)A

, ε̄(+)A′B′ , vA′B , ε(−)AB
, χ̄(+)A′B′C , χ(−)C′AB

, ω
A′B′AB

)
.

By a gauge transformation with the component C× of G, one can fix a gauge such that
b(Ψ) = 1, i.e. φ = 1 in the above representation. Then, by the H3(C) part of G, one can
choose a gauge that for instance ξ(−)A

= 0 and ε(−)AB
= 0 holds (“Dirac sea gauge”, i.e.

only the net fermion content is present in the description). One can then use the affine
symmetry Ψ 7→ Ψ + b(Ψ) iω with ω being a Re

(
M4(A)

)
valued field. That can make sure

that in the above gauge, the top form ω
A′B′AB

is hermitian. Finally, the D(1) component
of G can be used to fix the scale of the top form, so that ω

A′B′AB
= ω

A′B′AB
, where ω

A′B′AB

is a fixed prescribed (non-dynamical) hermitian top form. (In a GR-like formalism, on
would write ω

A′B′AB
= ± ε̄

A′B′⊗ εAB with εAB fixed.) In the gauge field sector, due to the
affine shift symmetry ∇b 7→ ∇b + Cb, with Cb being a C× ×

(
H3(C) o D(1)

)
charged gauge

potential, only the U(1) and SL(2,C) sector of the connection gives contribution.

Remark 6.2. The fact that the Lagrangian admits an internal symmetry implies the exis-
tence of a corresponding Noether current, which is conserved on-shell, i.e. for fields satisfy-
ing the Euler-Lagrange equations. If in addition to the internal symmetry, the Lagrangian
is invariant to shifts of the connection ∇d 7→ ∇d + Cd with Cd valued in an ideal i of the
internal symmetry Lie algebra, then one can show that Noether currents corresponding to
symmetries i vanish on-shell. In our model, this implies the (on-shell) vanishing of the
C× ×

(
H3(C) o D(1)

)
Noether current. For the case of the ordinary Dirac Lagrangian,
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discussed in section 3, this implies the (on-shell) vanishing of the Noether current associ-
ated to the dilatation charges. Despite the fact that nilpotent symmetries do not provide
additional nonzero conserved charges, they do constrain the matter content and the set of
allowed coupling constants.

7 Concluding remarks

In this paper a toy model of a unified general relativistic gauge theory is constructed
which exhibits a curious behavior: not all its local internal symmetry generators, which
act locally and faithfully on the matter fields, are accompanied by corresponding gauge
boson fields. As an introductory example it was shown that already the ordinary Dirac
kinetic Lagrangian exhibits an extremely simplified version for such behavior: the gauge
boson field corresponding to an internal dilatation symmetry does not give rise to any
physically observable fields. In other words: the Lagrangian has a hidden affine symmetry,
namely it is invariant with respect to an affine shift of the dilatation gauge connection.
We showed that such behavior can also be exhibited by more complicated internal
symmetry groups, and even by indecomposable (unified) ones. The necessary condition,
however, is that these “exotic” symmetry generators, whose gauge boson fields can be
transformed out, span an ad-invariant sub-Lie algebra of the internal symmetries. Due
to a general structural theorem of Lie algebras (Levi-Mal’cev decomposition), this implies
that only theories having some nilpotent internal symmetry generators besides the usual
compact ones can show such behavior. We have constructed a Lagrangian that exhibits
these properties. The symmetries of the constructed theory, to linearized order, has the
structure of a unified group, with compact, Poincaré and nilpotent components, the latter
part acting as a “glue” in the unification.

Heuristically speaking, the constructed model describes the field equations of a classi-
cal field, which spacetime pointwise has degrees of freedom similar to a second quantized
fermionic theory, i.e. with pointwise degrees of freedom obeying Pauli principle. As such,
it may be a kind of semiclassical limit of a QFT-like model. In this QFT heuristic pic-
ture, besides the usual compact gauge, Lorentz and dilatation symmetries, the theory is
symmetric to the transformation when equal amount of fermions and charge conjugate
fermions are injected into a configuration spacetime pointwise, and this happens to be
isomorphic to a pointwise H3(C) Heisenberg internal group action. It also turns out that
the “exotic”, H3(C) gauge fields can be completely transformed out from the theory due
to the extra affine shift symmetry on the connection, which is a symmetry similar to what
ordinary Dirac equation exhibits against the dilatation gauge fields. Thus, the nilpotent
symmetries H3(C), necessary for the unification, do act locally and faithfully on the matter
fields, without being accompanied by physical gauge boson fields.
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A On the structure of generic Lie groups and Lie algebras

As it is well known, the universal covering group of a connected Lie group is uniquely
characterized by its Lie algebra, which can be studied by purely algebraic methods. Thus,
for studying Lie groups it is important to first understand the structure of Lie algebras.
In the following we shall recall some general known facts concerning the structure of finite
dimensional real Lie algebras. Not all of these are well known in the folklore of gauge theory
literature for model building, since in the traditional model building, only semisimple or
reductive Lie algebras are considered.

A.1 Ideal, semi-direct sum, direct sum

A subspace i of a Lie algebra e is said to be an ideal if [x, y] belongs to i for all x ∈ e and
y ∈ i. Notice that this condition is strictly more restrictive than the requirement of i being
a sub-Lie algebra of e. An example for an ideal is the translation generator sub-Lie algebra
inside the Lie algebra of the Poincaré group, while the Lorentz generator sub-Lie algebra
is not an ideal within, merely a sub-Lie algebra. The notion of ideal is arguably the most
important concept in the theory of Lie algebras. The usual notation adx y := [x, y] shall
occasionally be applied (x, y ∈ e) in the following.

For every ideal i ⊂ e one can always find a (non-unique) complementary linear subspace,
i.e. a linear subspace C ⊂ e such that i∩C = {0} and i+C = e. In the Lie algebra theory
literature, such disjoint linear sum, being simply the vector space sense direct sum, is often
denoted as e = i u C. Given an ideal i, in general there need not exist a complementary
subspace which is also a sub-Lie algebra of e. Whenever such a complementary sub-Lie
algebra c does exist, we say that e is a semi-direct sum of i with c, and denote it by e = iI+c.
For instance, the Poincaré Lie algebra is a semi-direct sum of the translation and of the
Lorentz Lie algebra. If the complementing sub-Lie algebra c is also an ideal, then elements
of i commute with elements of c, and e is said to be a direct sum of i and c, denoted by
e = i⊕c. For instance, the Standard Model (SM) internal Lie algebra is a direct sum u(1)⊕
su(2)⊕su(3). On the other hand, for instance the Poincaré Lie algebra is a semi-direct sum,
but not a direct sum of the translation and of the Lorentz Lie algebra. When a Lie algebra
is not a direct sum of other smaller Lie algebras, it is called direct-indecomposable, or simply
indecomposable, or in physics it is called unified. The GUT strategy aims at finding a field
theoretical description of particle physics, admitting a unified internal symmetry group.

– 31 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
0

A.2 A measure of non-commutativity: abelian, nilpotent, solvable, and
semisimple Lie algebras

It is natural to cathegorize Lie algebras according to the degree of their non-commutativity.
Quite naturally, the least non-commutative Lie algebras e are the abelian ones, i.e. the ones
satisfying [e, e] = {0}, or equivalently, which satisfy adx = 0 for all x ∈ e. A next, slightly
less commutative class of Lie algebras is the class of nilpotent Lie algebras. Their defining
property is that the so-called lower central series terminates in a finite number of steps: with
the definition e1 := e, ek+1 := [e, ek], one has that ek = {0} for some finite non-negative
integer k. It is known (Engel’s theorem) [11–14] that this condition is equivalent to the
property that operator adx is nilpotent for every x ∈ e, hence the name. Such Lie algebras
play a role in physics, for instance in SUSY. An even less commutative class of Lie algebras
is the class of solvable Lie algebras, which satisfy the property that their so-called derived
series vanish in finite steps: with the definition e(0) := e, e(k+1) := [e(k), e(k)] one has that
e(k) = {0} for some finite non-negative integer k. The structure of solvable Lie algebras is
slightly more complex than that of nilpotent ones. One could say, that the least commuta-
tive Lie algebras are the semisimple ones, which are defined by the property that they do
not contain solvable ideals other than the trivial {0}. Usually in gauge theory only semisim-
ple Lie algebras, e.g. direct sums of su(N), are considered, along with abelian ones, which
are always direct sums of some copies of the u(1). Typically, general Lie algebras, possibly
containing nilpotent or solvable component, are not used for field theory model building. In
the present paper we address this more general possibility, and also discuss the rationale be-
hind the traditional approach in gauge theory, while pointing out possible loopholes within.

A.3 Structure of general Lie algebras: the Levi-Mal’cev decomposition theo-
rem

In every Lie algebra e there exists a very distinguished ideal: the solvable ideal of the largest
possible dimension, which is called the radical of e and is denoted by rad(e). A further
distinguished ideal is the largest dimensional nilpotent ideal, called the nilradical of e and
is denoted by nil(e). By construction, the radical and nilradical are unique, and one always
has nil(e) ⊂ rad(e). One of the foundational results about Lie algebras is the Levi-Mal’cev
decomposition theorem [11–14], which states that the radical does admit a complementary
sub-Lie algebra l, called Levi factor. That is, one has the semi-direct sum splitting eq. (2.1),
where the Levi factor l is semisimple and isomorphic to the quotient Lie algebra e

rad(e) . As
such, the Levi factors are isomorphic to each other, but they are not a uniquely determined
embedded sub-Lie algebra in e. However, the choice of a Levi factor is unique up to an
inner automorphism, defined by the conjugation by the exponential of adz for some element
z ∈ nil(e). In this sense Levi factors are essentially unique. Also, a side result of the Levi-
Mal’cev theorem is that any semisimple sub-Lie algebra of e must be contained within a
Levi factor, i.e. a Levi factor is the maximal semisimple sub-Lie algebra with respect to
the inclusion relation. An enlightening example of Levi-Mal’cev decomposition is provided
by the Lie algebra of the Poincaré group eq. (2.2), in which case, the radical coincides with
the nilradical, and it is abelian. As outlined in [9], the Lie algebra of the super-Poincaré
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group can also be considered as an example to the Levi-Mal’cev decomposition, with a
non-abelian, but two-step nilpotent radical.

Results above indicate that constructive characterization of the radical, nilradical and
Levi factor is quite important. That can be done via Cartan’s criterion [11–14], which
employs the well known notion of Killing form. The Killing form K(x, y) := Tr (adx ady)
for x, y ∈ e is an invariant symmetric bilinear form, i.e. is a naturally given scalar product
on e (possibly of indefinite signature and possibly degenerate). The statement of Cartan’s
criterion can be formulated as: (i) the radical rad(e) is the subspace within e which is
orthogonal to [e, e] with respect to the Killing form, moreover (ii) Levi factor l of e is a
maximal dimensional sub-Lie algebra on which the Killing form is nondegenerate.

Another important property of semisimple Lie algebras, and hence of the Levi factor of
every Lie algebra, is the Weyl’s theorem on complete reducibility [11–14]. Its consequence
is that every ideal of a semisimple Lie algebra has a complementing ideal, and therefore
any semisimple Lie algebra is a direct sum of simple Lie algebras: these are Lie algebras
which do not have any ideals apart from the trivial ones, i.e. apart from the zero and the
entire Lie algebra. Knowing the above properties, one can draw the following “big picture”
of the structure of general Lie algebras:

e︸︷︷︸
arbitrary
Lie algebra

= rad(e)︸ ︷︷ ︸
maximal

solvable ideal,
Killing form
is degenerate
(radical)

I+

no ideals
inside

(simple)︷︸︸︷
l1 ⊕. . .⊕

no ideals
inside

(simple)︷︸︸︷
ln︸ ︷︷ ︸

maximal
semisimple sub-Lie algebra,

Killing form
is nondegenerate
(Levi factor)

. (A.1)

The structure of simple Lie algebras is rather thoroughly explored: they are classified by
the Dynkin diagrams. In physics literature by the standard theory of Lie algebras, mostly
the theory of simple Lie algebras is meant. If nontrivial radicals are also allowed, the
classification theory of simple Lie algebras is not enough, and one needs to look at the
possible structure of solvable Lie algebras as well.

A.4 Structure of radicals of Lie algebras

The classification of all finite dimensional real or complex Lie algebras with nonvanishing
radical is unresolved, moreover is known to be a “wild problem” in mathematics. Complete
classification exists only for low dimensional Lie algebras. There are however, some results
on the generalities of the possible structure of such Lie algebras. For completeness, we
recall some of these results, mostly from [14, 28].

Let us consider a finite dimensional real Lie algebra with Levi-Mal’cev decomposition
eq. (2.1). The identities nil(e) ⊂ rad(e), [e, rad(e)] ⊂ nil(e), [l, l] = l are well known. If e is
indecomposable, i.e. not a direct sum of smaller Lie algebras, then the representation of l
by ad on rad(e) is known to be faithful [14]. From now on, assume that e is indecomposable.
Then, one has the result by Turkowski, recalled in [14, 28], that there exists a (non unique)
subspace q within rad(e) complementing the ideal nil(e), i.e. rad(e) = nil(e)uq, such that the
action of l by the ad on q vanishes. The subspace q, however, may not always be a sub-Lie
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algebra, i.e. the preceding u may not be a semi-direct sum I+. Whenever the subspace q is
sub-Lie algebra, then it is necessarily abelian: [q, q] = {0}. The structure of the nilradical
can be characterized by results of Šnobl [14, 28]: there exists a (non unique) tuple of
complementing subspaces m1, . . . ,mk within nil(e), such that nil(e) = mk u · · ·um1, with
nil(e)j = mj u nil(e)j+1, and mj+1 ⊂ [m1,mj ], and adlmj ⊂ mj (j = 1, . . ., k), moreover l
acts by ad on m1 faithfully. All this can be summarized in a “big picture” of the structure
of indecomposable Lie algebras:

(arrows: nonvanishing, faithful, adjoint action)

e︸︷︷︸
arbitrary
indecomp.
Lie algebra

= mku. . .um1︸ ︷︷ ︸
nil(e), the maximal
nilpotent ideal,

Killing form is zero
(nilradical)

u q

︸ ︷︷ ︸
rad(e), the maximal

solvable ideal,
Killing form
is degenerate
(radical)

I+ l1︸︷︷︸
no ideals
inside

(simple)

⊕. . .⊕ ln︸︷︷︸
no ideals
inside

(simple)︸ ︷︷ ︸
l, a maximal

semisimple sub-Lie algebra,
Killing form

is nondegenerate
(Levi factor)

.

(A.2)

Remark A.1. A further constraint on the structure of radical is a theorem of Šnobl
(2010) [28]: if e is an indecomposable Lie algebra over C, and its Levi factor l acts ir-
reducibly by ad on the top subspace m1 of nil(e), then the complementing subspace q to
the nilradical nil(e) within the radical rad(e) is 0 or 1 complex dimensional. In the latter
case, one has that q ∼= d(1)⊕ u(1), i.e. q closes as an (abelian) sub-Lie algebra. Also, it
is seen that under such conditions, there can be maximum one copy of the u(1) compo-
nent within. (This might remind us about the structure of the Standard Model Lie algebra,
which also has merely one copy of u(1), and thus well may be the factor e

nil(e) of some larger
indecomposable Lie algebra e.)

Remark A.2. In the case when e is the Lie algebra of a real linear algebraic group, there
are some further constraints on the structure of rad(e). Such constraints are implied by
Mostow’s decomposition theorem of linear algebraic groups [29]: a connected real linear al-
gebraic group can be decomposed as a semi-direct product of an idempotent normal subgroup
and of a so-called reductive subgroup.

A.5 Lie algebras in traditional model building: quadratic, reductive and com-
pact Lie algebras

As outlined, every Lie algebra has an ad-invariant, but possibly indefinite and possibly
degenerate scalar product: the Killing form. It is often of interest to consider Lie algebras
with a nondegenerate (possibly indefinite) invariant scalar product. Such Lie algebras are
called quadratic. Quadratic Lie algebras play a natural role as internal Lie algebras in gauge
theory, since the nondegeneracy of the invariant scalar product would ensure that all gauge
fields would propagate. Not all possible quadratic Lie algebras are fully classified as of now.

An important class of quadratic Lie algebras are called reductive. These can be defined
by the following equivalent properties: (i) its adjoint representation is completely reducible
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(direct sum of irreducible ones), (ii) it admits a faithful finite dimensional completely re-
ducible representation, (iii) its radical coincides with its center, (iv) it is a direct sum of
an abelian ideal and of a semisimple Lie algebra. As such, a reductive Lie algebra e has
the structure: e = u(1)⊕. . .⊕ u(1)⊕ l1⊕. . .⊕ ln, where the components l1, . . . , ln are simple.
Clearly, a reductive Lie algebra is quadratic: the semisimple part l1⊕. . .⊕ ln has the non-
degenerate Killing form, whereas u(1) has its invariant scalar product by its identification
with the imaginary numbers iR. It is instructive to note that for every Lie algebra e the
quotient by the nilradical e

nil(e) is reductive [30]. Usually, in field theory model building,
the most general Lie algebras appearing are the reductive ones. For example, the vector
bundle of fermion fields in the Standard Model having electromagnetic, weak and strong
charges will have the reductive Lie algebra u(1)⊕ su(2)⊕ su(3)⊕ sl(2,C) as the Lie algebra
of their structure group. In case of a generic Lie algebra e, one could say that nil(e) is
responsible for the deviation from reductivity, as seen from eq. (A.2).

A quadratic Lie algebra, whose invariant scalar product is positive definite is called
compact. These are always isomorphic to the Lie algebra of some compact Lie group, and
conversely, the Lie algebra of every compact Lie group is compact in this sense, hence the
name. Compact Lie algebras are always reductive, therefore they admit decomposition of
the form e = u(1)⊕. . .⊕ u(1)⊕ l1⊕. . .⊕ ln, where now the components l1, . . . , ln are compact
simple. The internal symmetries in a traditional gauge theory are encoded by compact Lie
algebras. The rationale of this requirement is that the Yang-Mills kinetic energy density
contains this internal scalar product, and that is required to be positive definite. Quite
naturally, the Standard Model internal Lie algebra u(1)⊕ su(2)⊕ su(3) is compact.

A.6 Constraints on symmetry unification patterns by the Levi-Mal’cev de-
composition

If one studies the possible enlargements of Lie groups, the Levi-Mal’cev theorem gives im-
portant constraints: the Lie algebra enlargement must respect the Levi-Mal’cev decomposi-
tion eq. (A.1). In particular, their Lie algebras must obey the following rule: the embedded
image of a Levi factor of the smaller Lie algebra, being semisimple, must sit in some Levi
factor of the larger Lie algebra. In particular it has to intersect trivially with the radical of
the larger algebra. Moreover, in the embedded image, every simple component of the Levi
factor of the smaller Lie algebra has intersection with precisely one simple component of the
Levi factor of the larger one. From this observation, O’Raifeartaigh developed a classifica-
tion theorem [3, 4] of the finite dimensional real Lie algebra extensions of the Poincaré Lie
algebra, as recalled in section 2. The O’Raifeartaigh theorem can be illustrated as follows:

case (A) and (B):

e = rad(e) I+ l1⊕. . .⊕ln

p = t I+ `

case (C):

e = rad(e) I+ l1⊕. . .⊕ln

p = t I+ `

(A.3)

– 35 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
0

A.7 Levi-Mal’cev decomposition and the Lie algebra of the super-Poincaré
group

Although the SUSY algebra is usually presented as a super-Lie algebra, but via choosing
appropriate variables, it can be cast into a real Lie algebra form, as recalled e.g. in [9]. It
is the Lie algebra of a concrete finite dimensional real Lie group, called to be the super-
Poincaré group. The Lie algebra of the super-Poincaré group is of the form

(arrows: nonvanishing adjoint action)

(
t︸︷︷︸

translation
generators

u ts︸︷︷︸
supertransl.
generators

)
I+ `︸︷︷︸

Lorentz
generators︸ ︷︷ ︸

Lie algebra of the super-Poincaré group

(A.4)

It has a two-step nilradical, consisting of tu ts, and its Levi factor is `. The super-Poincaré
Lie algebra has extended versions, being of the form

(arrows: nonvanishing adjoint action)

((
t︸︷︷︸

translation
generators

u text
s︸︷︷︸

extended
supertransl.
generators

)
I+ q︸︷︷︸

compact
abelian
internal

generators

)
I+
(
l1⊕. . .⊕ ln︸ ︷︷ ︸

compact
non-abelian
internal

generators

⊕ `︸︷︷︸
Lorentz

generators

)

︸ ︷︷ ︸
Lie algebra of the extended super-Poincaré group

(A.5)

It is instructive to compare its structure to that of the generic Lie algebras eq. (A.2) and to
the scheme of the O’Raifeartaigh theorem eq. (A.3). The (extended) super-Poincaré group
demonstrates the case (B) of the O’Raifeartaigh theorem.

A.8 Conservative extensions of the Poincaré group

The conservative extensions of the Poincaré Lie algebra was defined via the requirement
eq. (2.3). Due to O’Raifeartaigh theorem, if it is indecomposable, then it must be
O’Raifeartaigh case (B), similar to the (extended) super-Poincaré. For a conservative
Poincaré extension e, one has e

nil(e) = u(1)⊕. . .⊕ u(1)⊕ l1⊕. . .⊕ ln⊕ `, with l1, . . . , ln being
simple, and ` ≡ sl(2,C) being the Lorentz Lie algebra. In a gauge theory like setting,
it is natural to require that the non-Lorentz part of e

nil(e) is compact, i.e. that e
nil(e)/`

is compact. As discussed in [9, 16], in that case the conservative Poincaré Lie algebra
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extensions have the structure
(arrows: nonvanishing adjoint action)

(
t︸︷︷︸

translation
generators

⊕
(

n︸︷︷︸
nilpotent
internal

generators

u q︸︷︷︸
compact
abelian
internal

generators

)

︸ ︷︷ ︸
solvable
internal

generators

)
I+
(
l1⊕. . .⊕ ln︸ ︷︷ ︸

compact
non-abelian
internal

generators

︸ ︷︷ ︸
all internal (gauge) symmetry generators

⊕ `︸︷︷︸
Lorentz

generators

)

︸ ︷︷ ︸
conservative Poincaré extension generators, acting on matter fields

(A.6)

It is istructive to compare this structure to that of the generic Lie algebras eq. (A.2) and
to the scheme of the O’Raifeartaigh theorem eq. (A.3).

In a conservative Poincaré extension, all the non-Standard-Model-like symmetry gen-
erators are expelled into the ideal of nilpotent internal symmetries n. The unification
happens because n carries both compact and Lorentz charges, similarly to the case of
SUSY. An important property of the conservative unification pattern is that despite of
the indecomposable (unified) structure eq. (A.6), there is a forgetful homomorphism back
onto the usual direct sum of the Poincaré symmetries and the compact internal symmetries
(tI+ `)⊕ q ⊕ l1⊕. . .⊕ ln. That is, one could think of a theory in which a unified symmetry
concept like eq. (A.6) acts on the fundamental field degrees of freedom, whereas the usual
Poincaré plus Standard Model compact gauge symmetries act on some derived field quan-
tities, which are functions of the fundamental field degrees of freedom. One could call such
a mechanism “symmetry hiding”, in contrast to symmetry breaking.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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