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Summary: 
The paper presents recent results on the application of soft computing techniques 
for predictive modelling in the built sector. More specifically, an air-conditioned 
zone (Anglesea Building, University of Portsmouth), a naturally ventilated room 
(Portland Building, University of Portsmouth), and an endothermic building (St 
Catherine's Lighthouse, Isle of Wight) are considered. The zones are subjected to 
occupancy effects and external disturbances which are difficult to predict in a 
quantitative way and hence the soft computing approach seems to be a better 
alternative. In fact, the overall complexity of the problem domain makes the 
modelling of the internal climate in buildings a difficUlt task which is not always 
carried out in a satisfactory way by traditional deterministic and stochastic 
methods. The approach adopted uses fuzzy logic for modelling, as well as neural 
networks for adaptation and genetic algorithms for optimisation of the fuzzy 
model. The latter is of the Takagi-Sugeno type and it is built by subtractive 
clustering as a result of which the initial values of the antecedent non-linear 
membership functions and the consequent linear algebraic equations parameters 
are determined. A method of a combinatorial search over all possible fuzzy model 
structures for a specified plant order is presented. The model parameters are 
further adjusted by a back-propagation neural network and a real-valued genetic 
algorithm in order to obtain a better fit to the measured data. Modelling results 
with actual data from the three buildings are presented where the initial (fuzzy) 
and the final (fuzzy-neuro andfuzzy-genetic) models are shown. 
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1 Introduction 

Soft Computing (SC) is a heuristic methodology which has attracted significant 
interest in recent years and has shown to be successful in many areas such as 
modelling, control, fault diagnosis and pattern recognition. It is based on the 
implementation of different approaches such as Fuzzy Logic (FL), Neural 
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Networks (NN), Genetic Algorithms (GA), and some others [5], [6]. Each of these 
techniques is suited for solving specific types of problems. In this respect, FL is 
powerful for approximate modelling and reasoning, NN are well suited for 
learning-based adaptation while GA are efficient for evolutionary-based 
optimisation. The underlying idea of SC is to use these heuristic approaches in 
combination with each other as well as with some conventional approaches, rather 
than using them separately. 

Recent research in the field has shown a steady trend to hybrid solutions 
incorporating different SC approaches together as well as other classical 
approaches. A typical example is the so-called Takagi-Sugeno fuzzy models 
exploiting the idea of conventional dynamic modelling from numerical data 
embedded into a fuzzy logic inference framework. These models can be further 
improved by NN or GA to obtain a better fit to the measured data. 

However, Takagi-Sugeno models usually assume a structure of the plant which is 
given a priori rather than trying to find it by some search procedures. In this 
respect, the paper presents a method of a combinatorial search over all possible 
model structures for a specified plant order. The method is demonstrated for a 
fuzzy model which predicts internal temperature and relative humidity values in 
three different buildings but can be applied to other types of plants as well. 

2 Predictive Modelling Based Control 

The work proposed here is concerned with the efficient control of the internal 
climate in office buildings. The authors' aim is to develop good predictive models 
which will allow a proactive control policy to be adopted rather than the 
traditional reactive ones in current use. In other words, instead of applying a 
control action only on the basis of the current sensor readings, it is also necessary 
to predict the values over a certain time interval. The main advantage of this 
proactive philosophy lies in the possibility to apply heating and cooling control 
efforts more efficiently as a result of which the control becomes smoother, 
together with smaller overshoots and shorter settling times. This, in turn, leads to 
decreased energy consumption and reduced pollution of the environment. 
However, to obtain predictive models for these buildings is not an easy task 
because their performance is affected by climatic and occupancy effects which are 
characterised by significant complexity and uncertainty. 

The notion of a proactive control philosophy is the following. The control action 
at the current time instant k is computed not only on the basis of the measured 
output at the same time instant and the previous ones (k-l), (k-2), etc, but also by 
taking into account the predicted values of the output at the future time instants 
(k+ 1), (k+2), etc. 

It would be interesting to see, if the SC methodology can provide good models for 
Building Management Systems (BMS). Some investigations have recently been 
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carried out in this domain but most of them are too narrow and are thus leading to 
limited conclusions. In most cases, they are focused on one modelled parameter in 
one building during one season, and make use of separate SC techniques, rather 
than adopt a coordinated SC methodology. In other words, the potential of SC 
methodology for BMS has still not been explored in any detail. 

This paper presents recent results from a research project aimed at investigating in 
a systematic way the capabilities of the SC methodology for predictive modelling 
of internal parameters in buildings, namely temperature and relative humidity [1], 
[2], [3], [4]. In this respect, air conditioned, naturally ventilated and endothermic 
types of buildings are considered. The three specific buildings under investigation 
are: Anglesea Building (University of Portsmouth), Portland Building (University 
of Porsmouth) and St Catherine's Lighthouse (Isle of Wight). These types of 
buildings are widely used nowadays and it must be pointed out that they differ 
substantially in their mode of functioning. Therefore, it is intended to find how the 
SC methodology is suited to each type of building. 

3 Data Based Fuzzy Modelling 

The approach adopted is based on a Takagi-Sugeno (TS) fuzzy model which has 
received considerable attention recently because of its suitability for processing 
information from input-output measurements. This is the case in BMS where the 
main information source is numerical data from sensor readings rather than expert 
knowledge which is difficult to obtain because of the multi variable and coupled 
nature of the process [2], [5]. Another advantage of the TS fuzzy model is its 
capability to approximate non-linear input-output mappings by a number of 
locally linearised models. 

The TS fuzzy model consists of linguistic if-then rules in the antecedent part and 
linear algebraic equations in the consequent part. There are two types of 
parameters in this model: non-linear (in the membership functions in the 
antecedent part) and linear (in the algebraic equations in the consequent part). The 
task of the fuzzy model is to determine the initial values of both types of 
parameters on the basis of the input-output data. The method used in the paper is 
based on the idea of subtractive clustering, i.e. by assuming that each data point is 
a potential cluster centre and gradually finding the final clustering. 

The Takagi-Sugeno fuzzy model for a system with two rules, two inputs (u" U2) 
and one output (y) is presented by Equation (1). The linguistic labels 
(membership functions) of the inputs are denoted by Ai, B;, i=1,2 and their 
parameters are the non-linear antecedent parameters. The coefficients ai, hi, 
i=I,2,3 are the linear consequent parameters used for the computation of the 
output. 

lful is Al and U2 is A2 then y = al.Ul + a2.u2 + a3 
ifUl is Bl and U2 is B2 then y = bl,Ul + b2,U2 + h3 

(1) 
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Equation (1) represents a static Takagi-Sugeno fuzzy model which does not 
contain the time argument in the input and the output variables. However, in order 
to predict future temperatures, the time argument needs to be included in the 
equation, i.e. the model must be a dynamic one. In this respect, two types of 
dynamic models are introduced and investigated in the paper, namely Regression 
Delay (RD) and Proportional Difference (PD). Examples of such models are 
represented by Equations (2) and (3), respectively. 

If Yk-I is AI and Yk-Z is Az and UI.k-1 is A3 and UI.k-Z is A4 and UZ,k-Z is A5 (2) 
then Yk = al·Yk_1 + aZ·Yk-Z + a3· u /,k-1 + a4' UI,k-Z + a5· UZ,k-Z + a6 

If Yk.1 is AI and DYk_1 is A z and UI,k_1 is A3 and DU2.k_1 is A4 (3) 
then Yk = al'Yk-1 + aZ.DYk-z + a3· ul,k-1 + a4.DuZ,k_1 + a5 

where DYk-I = Yk-I - Yk-Z , DUZ,k_1 = UZ,k-1 - UZ,k-Z 

It can be seen that Equation (2) contains two auto-regressive terms of the output Y, 
two regressive terms of the input UI and one delay term of the input Uz. As opposed 
to this, Equation (3) contains one proportional and one derivative term of the 
output Y, one proportional term of the input UI and one derivative term of the input 
Uz. For simplicity, each of the equations includes only one rule, but in general the 
number of rules is higher. More specifically, it is equal to the number of the 
linearised submodels applicable to the respective local regions of the whole 
operating range. 

Equations (2)-(3) represent examples of fuzzy model structures. Usually, these 
structures are obtained on the basis of evaluation of a number of structures in 
accordance with a performance criterion that is usually the Root Mean Squared 
Error (RMSE). The latter is a measure of the closeness of the model to the plant. 

However, the majority of identification techniques apply partial rather than 
extensive model structural searching. They tend to represent the plant dynamics by 
either regression or delayed terms. As far as proportional or difference terms are 
concerned, they are usually considered up to the most recent data point in the past. 
This might be a serious disadvantage as the dynamics of the plant are not fully 
explored and some important terms in the model structure might be missed. 

This paper presents a method of extensive searching of the model structures to 
explore the possible dynamics of the plant for a specified order. This method is 
demonstrated here for Takagi-Sugeno fuzzy models but can be also applied to any 
other types of models, including traditional ones. In this case, for a plant with m 
input variables and backward horizon equal to b, the whole number of 
investigated models is given by the equation: 

c= (2.b) m -1 (4) 
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It is evident from Equation (4) that the number of investigated models is an 
exponential function of the number of inputs and the backward horizon which 
leads to a considerable increase of the computational complexity as the order 
grows. This is the price to pay for the extensive searching. 

4 Neural Adaptation and Genetic Optimisation 

The task of neural adaptation is to adjust the model parameters in order to obtain a 
better fit to the measured data. The method used in the paper is based on the idea 
of back-propagation, i.e. by iterative propagating of the model error (the 
difference between the real and the modelled plant output) from the consequent to 
the antecedent part of the fuzzy rules until a specified number of iterations is 
reached. 

The neural adaptation algorithm involves the following steps: 
1. Fix the antecedent parameters Ai in the non-linear membership functions. 
2. Estimate the consequent parameters ai by a least squares procedure. 
3. Compute the model output Yk. 
4. Keep the consequent parameters ai in the linear equations fixed. 
5. Estimate the antecedent parameters Ai by a gradient descent procedure. 
6. Compute the RMSE of the model. 
7. Go to step 1 ifthe specified number of iterations has not been reached. 
8. Stop. 

The purpose of genetic optimisation is also to adjust the model parameters as an 
alternative to the neural adaptation. The method used in the paper is based on the 
idea of real-valued coding, i.e. by representing the individuals with real valued 
genes and sequential evaluation of the model error until a pre-specified number of 
generations is reached. 

The genetic optimisation algorithm involves the following steps: 
1. Define the variation ranges for the antecedent and the consequent parameters Ai 
andai. 
2. Create initial generation of individuals containing the parameters Ai and ai as 
genes. 
3. Evaluate the fitness function of all individuals by the RMSE of the model. 
4. Select the fitter half of individuals for crossover. 
5. Apply crossover on these individuals and create new ones. 
6. Replace the less fit half of individuals with the new ones. 
7. Apply mutations on some individuals 
8. Evaluate the fitness function of all individuals by the RMSE. 
9. Go to step 4 if the specified number of generations has not been reached. 
10. Stop. 
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5 Experimental Results 

This section presents modelling results from the three buildings under study. The 
results show that the outputs (temperature and relative humidity) can be predicted 
to a high level of accuracy on the basis of measurements. The most important 
variables used in the modelling are chosen by carrying out a cross-correlation 
analysis involving temperatures and relative humidities in the same and 
neighbouring zones, as well as external (weather) variables, e.g. solar radiance, 
wind speed and direction, etc. To ensure systematic modelling, both regression­
delay and proportional-difference types of fuzzy model structures have been 
considered. The best model structure corresponding to the smallest training 
(identification) error was chosen by evaluating all possible structures of models up 
to some specified order, i.e. involving all combinations of input terms. Afterwards, 
the quality of the models was evaluated with new data and the validation errors 
obtained to give a measure of the prediction accuracy of these models. The 
validation errors are the difference between the model predictions and the actual 
outputs. The membership functions of the inputs in the fuzzy model were chosen 
to be of the Gaussian type while the selected options for the neural network and 
the genetic algorithm were 500 iterations and 50 generations with 10 individuals 
each, respectively. These options seem to give a good comparison between the 
two model improvement techniques used in our work. 

Each one of the above model structures was chosen from a set of 1023 possible 
models, representing all the combinations of (auto)regression and (auto)delay 
terms. The backward (dynamic memory) horizon was chosen equal to 2, i.e., the 
model predictions at time k are obtained on the basis of measurements at times k-J 
and k-2 . The plant and model outputs for each of these models and for each 
building are shown in Figures 1-3. 

6 Conclusions 

Both the neural adaptation and the genetic optimIsation schemes lead to a 
substantial improvement of the prediction capabilities of fuzzy model that have 
been formulated using traditional TS methods. These methods can be improved by 
incorporating a model structure selection capacity. The improvement can be 
considerable, especially in the cases where the model is not very good. The quality 
of the temperature prediction is better than the humidity prediction for all three 
buildings because of the smaller variational range and smoother profile. 

The proportional-difference fuzzy model performs better than the regression-delay 
model in most cases for all the buildings indicating that it can capture the 
dynamics of the buildings more precisely. Concerning the model improvement, 
using genetic algorithms is in most cases superior to using neural networks for 
both temperature and relative humidity, for both types of regression-delay and 
proportional-difference fuzzy models, as well as for all three buildings. It has to be 
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Figure 1. Temperature and relative humidity for Anglesea Building. 
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Figure 2. Temperature and relative humidity for Portland Building. 
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Figure 3. Temperature and relative humidity for St Catherine 's Lighthouse. 



150 

noted that the best prediction results have been obtained for the naturally 
ventilated room, while the results for the air-conditioned zone and the ambient 
energy building are not as good but are comparable to each other. 

With respect to the comparison between the two model improvement techniques, 
genetic algorithms seem to be superior. They show considerably better 
convergence properties and the best model parameters are usually obtained from 
the last genetic generations. In contrast, when using neural networks, the best 
model parameters are in most cases found from the first neural iterations. Taking 
also into account the parallel search capabilities of genetic algorithms, it is 
possible to conclude that they offer a far more reliable approach for improving 
fuzzy models than neural networks. 

Acknowledgement 

This work was carried out within an EPSRC funded project 'Soft Computing 
Models for Building Applications - a Feasibility Study' (Ref: GRJL84513). This 
funding is gratefully acknowledged. In addition, the project involves collaboration 
with Satchwell Control Systems, Caradon Trend Ltd, Ambient Energy Systems 
Ltd, Hampshire County Council, the Building Research Establishment and Trinity 
House Lighthouse Service. The technical and financial support provided by these 
partners is also greatly appreciated. 

References 

[1] Gegov, A, Virk, G, Azzi, D, Haynes, Band Alkadhimi, K, "Soft-computing 
based predictive modeIling of building management systems", International 
Workshop on Recent Advances in Soft Computing, Leicester, UK, 69-77,1999. 
[2] Gegov, A, Virk, G, Azzi, D, Haynes, Band Alkadhimi, K, "Soft-computing 
based modelling of the internal climate in office buildings", UK Workshop on 
Fuzzy Systems, Uxbridge, UK, 145-152, 1999. 
[3] Gegov, A, Virk, G, Azzi, D, Haynes, B, Alkadhimi, K and Matthews, I, 
"Neuro-fuzzy adaptive modelling of air-conditioning systems", European 
Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 267-
268, 1999. 
[4] Gegov, A, Virk, G, Azzi, D, Haynes, B, Alkadhimi, K, "Soft computing 
models of naturally ventilated buildings", CIBSE National Conference, London, 
UK, 421-428,1999. 
[5] Haupt, R and Haupt, S, "Practical Genetic Algorithms", John Wiley & Sons, 
New York, 1998. 
[6] Jang, J, Sun, C and Mizutani, E, "Neuro-Fuzzy and Soft Computing", Prentice 
Hall, Upper Saddle River, 1997. 


