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ABSTRACT

We describe IsoBase, a database identifying func-
tionally related proteins, across five major eukary-
otic model organisms: Saccharomyces cerevisiae,
Drosophila melanogaster, Caenorhabditis elegans,
Mus musculus and Homo Sapiens. Nearly all
existing algorithms for orthology detection are
based on sequence comparison. Although these
have been successful in orthology prediction to
some extent, we seek to go beyond these methods
by the integration of sequence data and protein–
protein interaction (PPI) networks to help in identify-
ing true functionally related proteins. With that
motivation, we introduce IsoBase, the first publicly
available ortholog database that focuses on func-
tionally related proteins. The groupings were
computed using the IsoRankN algorithm that uses
spectral methods to combine sequence and PPI
data and produce clusters of functionally related
proteins. These clusters compare favorably with
those from existing approaches: proteins within an
IsoBase cluster are more likely to share similar Gene
Ontology (GO) annotation. A total of 48 120 proteins
were clustered into 12 693 functionally related
groups. The IsoBase database may be browsed for
functionally related proteins across two or more
species and may also be queried by accession
numbers, species-specific identifiers, gene name
or keyword. The database is freely available for
download at http://isobase.csail.mit.edu/.

INTRODUCTION

The concept of gene homology, i.e. sets of genes across
species that have been derived from a common ancestor,
has been a powerful tool in comparative genomics
research. In addition to its usefulness in understanding
evolutionary relationships between genes, its practical ap-
plication allows us to extrapolate experimentally derived
insights from one species to another. In this article, we
focus on discovering orthologs, which are homologous
genes separated by speciation events (1). The concept of
gene orthology encompasses two interpretations: phylo-
genetic and functional. The phylogenetic interpretation
is that orthologs are genes/proteins in different species
that have evolved from the same gene in a common
ancestor. The functional interpretation is that orthologs
are genes/proteins that perform functionally equivalent
roles in different species. The two interpretations do not
always yield exactly the same answer, but they usually
yield similar answers (2). The functional interpretation
of orthology has been extremely useful in annotation
transfer tasks, for example, for identifying the human
gene that performs the same role as a given fly gene.
This practical use has also motivated a significant
amount of work in the identification of orthologs.
The pioneering work of Tatusov et al. (3) introduced the

Clusters of Orthologous Groups (COG) database, where
clusters of orthologous genes were inferred using exhaust-
ive sequence comparison of genes across multiple
genomes. The basic approach described there continues
to be used by much of the orthology detection community:
perform pairwise sequence comparison between all the
genes in the input set, and then cluster genes into groups
where the intra-group sequence similarity is high while the
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between-group similarity is low. The differences between
the various approaches lie in the details: how the se-
quences are compared (local versus global alignment);
the heuristics for choosing the seed gene pairs for each
cluster and how to combine/prune clusters (4–7). For
example, InParanoid uses an ‘outgroup’ species to cali-
brate when the pairwise score is high enough for the
genes to be co-clustered. As a pre-clustering step,
OrthoMCL normalizes sequence comparison scores to
adjust for differences in how far in the past speciation or
gene duplication may have occurred.
In this article, we describe a different approach to the

orthology detection problem. Our aim is to identify gene
correspondences across species that maximize functional
similarity. As our approach emphasizes functional similar-
ity over phylogenetic relationships, we refer to our predic-
tions as ‘isologs’, rather than ‘orthologs’. To compute
isologs across species, we integrate sequence data with
protein–protein interaction (PPI) data. It is now well es-
tablished that PPI data capture significant functional in-
formation: proteins that interact with each other are likely
to perform similar functions (8,9). Proteins that occupy
the same topological position in their respective
species-wide PPI networks are thus likely to perform the
same function. In our approach, sequence comparisons
still provide a strong signal, but they are supplemented
with PPI similarity information. We believe that this
provides a stronger approach to inferring functional simi-
larity than the sequence-only methods currently used.
We introduce IsoBase, a web database of functionally

related proteins based on the IsoRankN algorithm (10),
currently covering the major eukaryotic model organisms:
Saccharomyces cerevisiae, Drosophila melanogaster,
Caenorhabditis elegans, Mus musculus and Homo
Sapiens. IsoRank and IsoRankN (10,11) software was
used to globally align PPI networks across multiple
species and the results were then used to cluster proteins
across the various species such that these clusters best rep-
resent proteins with conserved biological function. The
software is efficient and automatically adjusts to the
wide variation in sizes of the known species-specific
networks. IsoBase will be continually updated as more
PPI data become available for additional as well as cur-
rently supported species.
The IsoBase database may be browsed for functionally

related proteins across two or more species. It may also be
queried in various ways: based on accession numbers,
species-specific identifiers (e.g. CG numbers), gene names
or descriptions. IsoBase allows batch querying by upload-
ing a file with multiple gene ids, names and/or keywords.
The database can also be bulk-downloaded. The displayed
results include mean normalized entropy scores for each
cluster, allowing users to further filter the data by cluster
consistency.
Compared with existing sequence-only approaches

(Homologene (12), Inparanoid (6) and OrthoMCL-DB
(7)), we showed previously (10,11) and further demon-
strate in ‘Statistics’ on the IsoBase website that
incorporating PPI data helps significantly in finding func-
tionally related proteins. Compared with methods like
OrthoMCL, which explicitly claim to evolutionary

insights, our approach produces protein–protein corres-
pondences (which we refer to as ‘isologs’) that better
preserve Gene Ontology (GO) functional similarity within
each cluster. Furthermore, our isology mappings outper-
form those based on local network alignment (10,11),
such as NetworkBLAST-M (13) and Graemlin 2.0 (14).

DESIGN AND IMPLEMENTATION

Data

IsoBase is compiled from two forms of data: PPI networks
and sequence similarity scores between pairs of proteins.
PPI networks from five major eukaryotic model organisms
(H. sapiens, M. musculus, D. melanogaster, C. elegans and
S. cerevisiae) were constructed by combining data from
the Database of Interacting Proteins (DIP) (15),
BioGRID (16) and Human Protein Reference Database
(HPRD) databases (17). In total, these PPI networks con-
tained 48 120 proteins and 114 897 known interactions.
As new PPI data become available and are released by
DIP, BioGRID or HPRD, the IsoBase database will be
updated; please see the website for the currently used
version of the underlying data. Sequence similarity
scores of pairs of proteins were obtained from Ensembl
(18) and consisted of BLAST Bit-values of the sequences.

IsoRank and IsoRankN algorithm

We briefly describe the algorithm used in the database
construction. For a fuller description, along with
analysis and evaluations of the algorithms, please see
(10,11).

The input to the algorithm consists of PPI and sequence
data from multiple species. The algorithm first integrates
sequence and PPI data to construct pairwise scores
between the proteins in its input; it then uses these
scores to cluster the proteins. Both the stages use
spectral techniques. In the first stage, for every protein
pair (i,j), where i and j are from different species, we
compute the score Rij. We pose this computation as an
eigenvalue problem, explicitly modeling the tradeoff
between the twin objectives of high PPI network overlap
and high sequence similarity between the protein pairs.
Let R be the vector of scores Rij, normalized so that
�Rij=1. We require

R ¼ �AR+1��ð ÞE

Here, � is a free parameter and E is the vector of sequence
similarity scores Eij; we use the BLAST bit score. A is
a matrix that encodes the PPI networks’ connectivity in-
formation. Its rows and columns correspond to protein
pairs:

A½i,j�½u,v� ¼
1

NðuÞ
�� �� NðvÞ�� �� if PPI edges (i,u) and (j,v) exist

0 otherwise

(

The eigenvalue equation above captures the following in-
tuition: the score Rij for matching a protein pair (i,j) is a
weighted sum of the sequence similarity score Eij and the
total support provided to the match by each of the
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|N(i)||N(j)| possible matches between the neighbors of i
and j. In return, each candidate pair of matching
proteins (u,v) must distribute back its entire score Ruv

equally among the |N(u)||N(v)| possible matches between
its neighbors.

The scores Rij can be interpreted as a graph H, where
each protein i corresponds to a node and an edge (i,j)
exists with weight Rij, if Rij> 0. Given this graph, the
second stage of our algorithm uses a spectral clustering
approach. We choose an arbitrary species to start with
and for each protein v in it, compute the subgraph Sv

consisting of v and all nodes in H connected to it with a
large weight. We then use spectral partitioning to identify
S�v , a high-weight clique-like subset of Sv. If two clusters
S�v1 and S�v2 have edges with high weight between them, we
merge them. We repeat the entire process until all the
proteins have been assigned to clusters (please see (11)
for more details).

EVALUATION OF PREDICTIONS IN ISOBASE

The key motivation behind IsoBase is the hypothesis that
the combination of sequence and PPI data should enable
better identification of functionally related proteins across
species than just using sequence data. However, there is a
lack of standardized techniques for benchmarking how
well an orthology detection method captures functional
similarity (19). To that end, we create an evaluation
measure that can be used for benchmarking in an
unbiased way and make it available for download on the
IsoBase website.

To evaluate our predicted clustering, we measured the
within-cluster consistency of GO (20) annotation of the
predicted clusters. The intuition here is that each cluster
should correspond to a set of genes with the same
function. Thus, consistency measures the functional uni-
formity of genes in each cluster, represented by mean
normalized entropies calculated for each predicted
cluster over all proteins within the PPI networks used by
IsoRankN. Clusters with greater consistency have lower
entropy and, therefore, a greater indication of proteins
sharing the same function. The entropy of a given
cluster S*

v is:

H S�v
� �
¼ H p1,p2, . . . pdð Þ ¼ �

Xd
i¼1

pi log pi

where pi is the fraction of S*
v with GO term i, and d is the

number of GO terms in each cluster. Mean entropy was
then normalized by the number of distinct GO terms in a
cluster so that �H S�v

� �
¼ 1

log dH S�v
� �

.
An important factor we considered when evaluating GO

enrichment of clusters was the use of standardized sets of
GO terms. It would not make sense to conclude that a
group of genes are not functionally related if all that
differs is the level of detail in their GO annotation;
recall that GO terms are related to each other as part of
a directed acyclic graph (DAG). The use of GO Slim sets
has become popular for similar reasons (18). We created a
standardized set by projecting GO terms to a common
level of GO hierarchy. Details on the set of GO terms
used and scripts for mapping GO terms to a common
level in the GO hierarchy can be found on the
‘Download’ page of the IsoBase website.
Using the benchmark described above, we compared

IsoRankN predictions to that of Homologene and
OrthoMCL on five major eukaryotic networks (yeast,
worm, fly, mouse and human). We did not compare to
InParanoid, because it only provides pairwise orthology
predictions, rather than multispecies groupings. Of 87 737
total proteins, IsoRankN clustered 48 120 (54.8%)
proteins into 12 693 isologous groups. It outperformed
the other methods in terms of within-cluster consistency
of GO annotations. Across all predicted clusters, mean
normalized entropy for IsoRankN (0.0586) was substan-
tially lower than Homologene (0.255) and OrthoMCL
(0.215) (Table 1). Additionally, mean normalized
entropies for predictions on pairs of species produced
similar results. Clusters consisting of only one protein
were not considered in the entropy comparisons because
these cases provide no information regarding functional
relatedness between orthologs. Details on the entropy
comparisons among IsoBase, Homologene and
OrthoMCL can be found on the ‘Statistics’ page of the
IsoBase website.
We also measured the fraction of predicted clusters that

are ‘exact’, i.e. all contained proteins have the same GO
term. We find that IsoRankN predicts a higher fraction of
exact clusters (0.489) than that for Homologene (0.355)
and OrthoMCL (0.237) (Table 1).
In addition, we evaluated IsoRankN, Homologene and

OrthoMCL predictions on human–fly orthologs in par-
ticular. Upon closer examination, we find that
IsoRankN predicts a higher number of clusters (151)

Table 1. Comparative consistency on the five eukaryotic networks

IsoRankN Homologene OrthoMCL

Mean entropy 0.0740 0.284 0.241
Mean normalized entropy 0.0586 0.255 0.215
Exact cluster ratioa 0.489 (6204/12 693) 0.355 (4470/12 579) 0.237 (1973/8326)
Exact protein ratiob 0.539 (25 929/48 120) 0.469 (13 134/27 988) 0.364 (5796/15 940)

Mean entropy and mean normalized entropy of predicted clusters. Note that the boldface numbers represent the best performance with respect to
each measure.
aThe fraction of predicted clusters that are ‘exact’, that is all contained proteins have the same GO term.
bThe fraction of proteins in exact clusters.
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involving many fly genes mapped to one human gene than
either Homologene (3) or OrthoMCL (1). For example, all
methods predict fly gene CG8399 as an ortholog for
human gene FRRS1. But IsoRankN also predicts
CG14515 and CG7532 as orthologs. A closer look at
these two fly genes reveals domain overlap with FRRS1.
Another example shows all methods identifying fly
homolog Dcr-1 for human DICER1, a ribonuclease that
plays a key role in the RNA interference (RNAi) pathway;
but IsoRankN solely identifies fly homolog Dcr-2 (with
domain and GO overlap) as well. See the ‘Statistics’
page for further examples.
In our previous work, we showed that IsoRankN out-

performs other related techniques for PPI network align-
ment (NetworkBLAST-M (13) and Græmlin2K (14)) in
terms of number of clusters predicted, within-cluster con-
sistency and GO/Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment. See Liao et al. (10) for
details. We also showed that IsoRank, the basis of
IsoRankN, compares favorable to InParanoid on pairs
of species (11).

ISOBASE WEB INTERFACE

IsoBase provides a variety of ways to access functionally
related proteins through its web interface. Query options
and search results detailing fully annotated orthologs are
summarized in Figure 1. We provide an online ‘Help’ page
at the website which describes possible query options, sup-
ported gene ids and interpretation of search results.

Gene search

The user can search for isologs of their favorite protein
based on gene name, gene symbol or a wide array of gene
identifiers, including ‘ids’ from Ensembl, Entrez,
GenBank, RefSeq, UniProtKB, Wormbase, Mouse
Genome Informatics, FlyBase, Saccharomyces Genome
Database, HPRD and DIP (Figure 1A). Upon submitting
a query, IsoBase returns a cluster of functionally related
proteins as well as a mean normalized entropy score
computed for the cluster (Figure 1C). IsoBase annotates
and interactively links each isolog to GO, KEGG and
various genome databases. Batch querying is also sup-
ported, giving users the option to upload a list of query
proteins or genes in any of the supported identifier
formats. IsoBase then returns a cluster of isologs for
each query gene or protein in its search results (Figure
1B).

Keyword search

In addition, users can search using a single keyword, such
as a description or general function of a protein. IsoBase
will retrieve all clusters having identifiers or descriptions
containing the keyword. For example, a non-exact match
for a keyword ‘YAL’ will retrieve an identifier
‘YAL027W’, while an exact match would not.

Browse

IsoBase can be browsed in its entirety. Users can filter
through the entire set of clusters by selecting which eu-
karyotic PPI networks are included in the PPI network
alignment. For instance, if three species are selected,
IsoBase returns clusters that include proteins from only
those three species. Entropy score cut-offs can also be
lowered to increase the consistency of GO and KEGG
annotations within each cluster, with an entropy of 0
indicating maximum consistency. In the ‘Statistics’ page
of the website, we discuss the evaluation of our results
using mean normalized entropy and how entropy is
computed.

Data availability

Although isolog predictions are accessible through query
and browse functions from the IsoBase web interface, pre-
dictions are also freely available via bulk download. In
addition, the website contains the set of clusters for all
species, mean normalized entropy scores associated with
each cluster and KEGG/GO annotations for each pre-
dicted isolog. IsoBase also provides mappings between
IsoBase internal identifiers and identifiers from a variety
of external genome databases. We further provide the GO
information used in entropy calculations, the GO hier-
archy (represented as a DAG) and scripts to generate
DAGs and identify all the GO terms at a given level.
PPI networks for all eukaryotic species (fly, yeast,
mouse, worm and human) and BLAST data have been
made available in addition to the executables for
running IsoRank and IsoRankN algorithms. The initial
database covers the five species for which significant
amount of PPI data are available; in the future, we
anticipate that more PPI data may enable us to support
additional species as well as better support the cur-
rent species. We plan to update IsoBase on a semi-yearly
basis.

DISCUSSION

We have presented IsoBase, a database that contains
groups of proteins predicted to be functionally related.
Unlike much of the existing work in sequence-based
orthology detection, IsoBase is primarily designed to
provide function-oriented ortholog detection. This focus
on functional relationships is of significant practical value
(2). Although our approach is not based on phylogenetic
considerations, the phylogenetic and functional interpret-
ations of orthology are closely related. In keeping with this
intuition, sequence similarity information provides a large
part of the signal used by our prediction algorithm, and
our predictions broadly agree with existing sequence-
based orthology predictions. The key contribution of
IsoBase is the simultaneous use of PPI and sequence
data in the prediction process. With the rapid growth of
PPI data, the functional information provided by such
data can be valuable in identifying functionally related
proteins across species. The integrative approach used
here allows us to make predictions where the within-
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cluster GO annotation similarity is better than in the pre-
dictions from sequence-only approaches.

In future work, we intend to explore synergies between
our approach and existing sequence-only approaches. For
example, using our method as a post-processing step after
these approaches may help identify orthologs for proteins

outside the existing methods’ coverage. Also, in cases where
existing methods produce multiple matches, our method
may be used to rank them in the order of functional similar-
ity.Wealso intend to expand thenumber of species available
in our database. Finally, asmore PPIdata become available,
we will update the database with improved predictions.

Figure 1. Web interface and output of IsoBase. (A and B) Webserver entry page. (C) Example of an output page when choosing to browse through
all ortholog clusters predicted over the PPI network alignment of two species, D. melanogaster and S. cerevisiae. Mean entropy scores normalized by
the number of distinct GO terms for an ortholog cluster are displayed along with external sequence database links for each ortholog and associated
KEGG and GO annotations.
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