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Abstract
UP and DOWN states, the periodic fluctuations between increased and decreased spiking activity of
a neuronal population, are a fundamental feature of cortical circuits. Understanding UP-DOWN state
dynamics is important for understanding how these circuits represent and transmit information in the
brain. To date, limited work has been done on characterizing the stochastic properties of UP-DOWN
state dynamics. We present a set of Markov and semi-Markov discrete- and continuous-time
probability models for estimating UP and DOWN states from multiunit neural spiking activity. We
model multiunit neural spiking activity as a stochastic point process, modulated by the hidden (UP
and DOWN) states and the ensemble spiking history. We estimate jointly the hidden states and the
model parameters by maximum likelihood using an expectation-maximization (EM) algorithm and
a Monte Carlo EM algorithm that uses reversible-jump Markov chain Monte Carlo sampling in the
E-step. We apply our models and algorithms in the analysis of both simulated multiunit spiking
activity and actual multiunit spiking activity recorded from primary somatosensory cortex in a
behaving rat during slow-wave sleep. Our approach provides a statistical characterization of UP-
DOWN state dynamics that can serve as a basis for verifying and refining mechanistic descriptions
of this process.
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1 Introduction
1.1 Neuronal State and Recurrent Networks

The state of the neural system reflects the phase of an active recurrent network, which organizes
the internal states of individual neurons into synchronization through recurrent network
synaptic activity with balanced excitation and inhibition.1 The neuronal state dynamics can be
externally or internally driven. The externally driven dynamics results from either sensory-
driven adaptation or encoding of sensory percept; the internally driven dynamics results from
changes in internal factors, such as attention shift. Different levels of neuronal state also bring
in the dynamics of state transition. Generally state transitions are network controlled and can
be triggered by the activation of single cells, which are reflected by changes in their intracellular
membrane conductance.

From a computational modeling point of view, two types of questions arise. First, how do
neurons generate, maintain, and transit between different states? Second, given the neuronal
(intracellular or extracellular) recordings, how can the neuronal states be estimated? The
computational solutions to the first question emphasize the underlying neuronal physiology or
neural mechanism, which we call mechanistic models, whereas the solutions to the second
question emphasize the representation or interpretation of the data, which we call statistical
models. In this article, we are taking the second approach to model a specific phenomenon
regarding the neuronal state.

1.2 Neuronal UP and DOWN States
The notion of neuronal UP and DOWN states refers to the observation that neurons have two
distinct subthreshold membrane potentials that are relevant for action potential (i.e., spike)
generation. A neuron is said to be depolarized (or excited) if its intracelluar membrane potential
is above the resting membrane potential threshold (around −70 to −80 mV) and is said to be
hyperpolarized (or inhibited) if its membrane potential is below the threshold. When a sufficient
level of excitation is reached, a spike is likely to occur. Essentially, membrane potential
fluctuations define two states of the neocortex. The DOWN state defines a quiescent period
during which little or no activity occurs, whereas the UP state corresponds to an active cortical
state with depolarized membrane potentials and action potential firing driven by synaptic input.
It was generally believed that the spontaneous UP and DOWN states are generated by a balance
of excitatory and inhibitory neurons in recurrent networks (Haider, Duque, Hasentaub, &
McCormick, 2006). In recent years, many neurophysiological studies have been reported
regarding the neuronal UP and DOWN states, ranging from intracellular or extracellular
recordings (e.g., Sanchez-Vives & McCormick, 2000; Haider, Duque, Hasentaub, Yu, &
McCormick, 2007). The UP and DOWN states that are characterized by the cortical slow
oscillation in intracellular membrane potentials are also reflected in extracellular recordings,
such as local field potential (LFP) or electroencephalograph (EEG), single-unit activity or
multiunit activity (MUA). In the literature, the UP and DOWN states have been characterized
by examining extracellular LFP recordings (Sirota, Csicsvari, Buhl, & Buzsáki, 2003;
Battaglia, Sutherland, & McNaughton, 2004; Wolansky, Clement, Peters, Palczak, & Dickson,
2006) in either the somatosensory cortex of anesthetized or awake animals (e.g., Haslinger,
Ulbert, Moore, Brown, & Devor, 2006; Luczak, Barthó, Marguet, Buzsáki, & Harris, 2007) or
the visual cortex of nonanesthetized animals during sleep (e.g., Ji & Wilson, 2007). Recently,
attention has also turned to multiunit spike trains in an attempt to relate spike firing activities
with EEG recordings (Ji & Wilson, 2007).

1The neuronal state sometimes can refer to a single cell level, during which neurons exhibit different lengths or durations of depolarizing
shift (e.g., Fujisawa, Matsuki, & Ikegaya, 2005).
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In order to examine the relationship between sleep and memory in rats or animals, simultaneous
recordings are often conducted in the neocortex and hippocampus with the goal of studying
the cortico-hippocampal circuit and the functional connectivity of these two regions while the
animals perform different tasks. It has been reported (e.g., Volgushev, Chauvette, Mukovski,
& Timofeev, 2006) that during the slow wave sleep (SWS), which is characterized by 0.5 to
2.0 Hz slow oscillations (Buzsáki, 2006), neorcortical neurons undergo near-synchronous
transitions, every second or so, between UP and DOWN states. The process of the alternating
switch between the two states appears to be a network phenomenon that originates in the
neocortex (Ji & Wilson, 2007; Vijayan, 2007).

The work reported here was driven by the experimental data accumulated in our lab (Ji &
Wilson, 2007; Vijayan, 2007). The growing interest in UP and DOWN states in the
neuroscience literature motivated us to develop probabilistic models for the UP and DOWN
modulated MUA. Specifically, the UP-DOWN states are modeled as a latent two-state
Markovian (or semi-Markovian) process (Battaglia et al., 2004), and the modeling goal is to
establish the probability for state transition or the probability density of UP or DOWN state
duration and the likelihood model that takes into account both a global hidden state variable
and individual history dependence of firing. In comparison with the standard and deterministic
threshold-based method, our proposed stochastic models provide a means for representing the
uncertainty of state estimation given limited experimental recordings.

1.3 Markov and Semi-Markov Processes and Hidden Markov Models
A stochastic process is said to be Markovian if it satisfies the Markov property; the knowledge
of the previous history of states is irrelevant for the current and future states. A Markov chain
is a discrete-time Markov process with the Markov property. The Markov process and Markov
chain are both “memoryless.” A Markov process or Markov chain contains either continuous-
valued or finite discrete-valued states. A discrete-state Markov process contains a finite
alphabet set (or finite state space), with each element representing a distinct discrete state. The
change of the state is called the transition, and the probability of changing from one state to
the other is called the transition probability. For the Markov chain, the current state has only
finite-order dependence on the previous states. Typically the first-order Markov property is
assumed; in this case, the probability of Sk+1 being in a particular state at time k + 1, given
knowledge of states up to time k, depends on the state Sk at time k, namely, Pr(Sk+1 ∣ S0, S1,
…, Sk) = Pr(Sk+1 ∣ Sk). A semi-Markov process (the Markov renewal process) extends the
continuous-time Markov process to the condition that the interoccurrence times are not
exponential.

When the state space is not directly observable, a Markov process is called hidden or latent.
The so-called hidden Markov process is essentially a probabilistic function of the stochastic
process (for a review, see Ephraim & Merhav, 2002). In the discrete-time context, the hidden
Markov model (HMM) is a probabilistic model that characterizes the hidden Markov chain.
The HMM is a generative model in that its full model {π, P, B} (where π denotes the initial
state probability, P denotes the transition probability, and B denotes the emission probability)
completely characterizes the underlying probabilistic structure of the Markov chain. Generally
several conditions are assumed in the standard HMM: (1) the transition and emission
probabilities are stationary or quasi-stationary; (2) the observations, either continuous or
discrete valued, are assumed to be identically and independently distributed (i.i.d.); and (3) the
model generally assumes a first- or finite-order Markov property. In the literature, there are
several methods to tackle the inference problem in the HMM. One (and maybe the most
popular) approach is rooted in maximum likelihood estimation. A particular solution is given
by the expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977), which
attempts to solve the missing data problem in the statistics literature. This turns out to be also
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equivalent to the Baum-Welch algorithm proposed by Baum and Welch and colleagues (Baum,
Petrie, Soules, & Weiss, 1970; Baum, 1972). The Baum-Welch algorithm contains a forward-
backward procedure (E-step) and reestimation (M-step), and it iteratively increases the
likelihood of the incomplete data until the local maximum or the stationary point of the
likelihood function is reached. Another inference method is rooted in Bayesian statistics. The
Bayesian inference for HMM defines the prior probability for the unknown parameters
(including the number of state) and attempts to estimate their posterior distributions. Since the
posterior distribution is usually analytically intractable, a numerical approximation method is
also used. The Markov chain Monte Carlo (MCMC) algorithms try to simulate a Markov chain
to approach the equilibrium of the posterior distribution. The Metropolis-Hastings algorithm
is a general MCMC procedure to simulate a Markov or semi-Markov chain. When the state
space is transdimensional (this problem often arises from model selection in statistical data
analysis), the reversible-jump MCMC (RJMCMC) methods (Green, 1995; Robert, Rydén, &
Titterington, 2000) have also been developed. Due to the development of efficient inference
algorithms, HMM and its variants have been widely used in speech recognition,
communications, bioinformatics, and many other applications (e.g., Rabiner, 1989; Durbin,
Eddy, Krough, & Mitchison, 1998).

1.4 Point Process and Cox Process
A point process is a continuous-time stochastic process with observations being either 0 or 1.
Spike trains recorded from either single or multiple neurons are point processes. We will give
a brief mathematical background for point process in a later section and refer the reader to
Brown (2005) and Brown, Barbieri, Eden, and Frank (2003) for the complete and rigorous
mathematical details of point processes in the context of computational neuroscience treatment.
An important feature of spike trains is that the point process observations are not independently
distributed; in other words, the current observation (either 0 or 1) is influenced by the previous
spiking activities. This type of history dependence requires special attention for probabilistic
modeling of the point process.

A Cox process is a doubly stochastic process, which defines a generalization of Poisson process
(Cox & Isham, 1980; Daley & Vere-Jones, 2002). Specifically, the time-dependent conditional
intensity function (CIF), often denoted as λt, is a stochastic process by its own.2 A
representative example of the Cox process is the Markov-modulated Poisson process, which
has a state-dependent Poisson rate parameter.

1.5 Overview of Relevant Literature
Hidden Markov processes have a rich history of applications in biology. Tremendous effort
has been devoted to modeling ion channels as discrete- or continuous-time Markov chains;
several inference algorithms were developed for these models (Chung, Krishnamurthy, &
Moore, 1991; Fredkin & Rice, 1992; Ball, Cai, Kadane, & O'Hagan, 1999). However, the
observations used in ion-channel modeling are continuous, and the likelihood is often modeled
by a gaussian or gaussian mixture distribution.

For discrete observations, Albert (1991) proposed a two-state Markov mixture model of a
counting Poisson process and provided a maximum likelihood estimate (MLE) for the
parameters. A more efficient forward-backward algorithm was later proposed by Le, Leroux,
and Puterman (1992) with the same problem setup. In these two models, the two-state Markov
transition probability is assumed to be stationary; although Albert also pointed out the
possibility of modeling nonstationarity, no exact algorithm was given. In addition, efficient

2The CIF is also known as the hazard rate function in survival analysis. The value λtΔ measures the probability of a failure or death of
an event in [t, t + Δ) given the process has survived up to time t.
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EM algorithms have been developed for discrete- or continuous-time Markov-modulated point
processes (Deng & Mark, 1993; Rydén, 1996; Roberts, Ephraim, & Dieguez, 2006), but
applying them to neural spike trains is not straightforward.

In the context of modeling neural spike trains, many authors (e.g., Radons, Becker, Dülfer, &
Krüger, 1994; Abeles et al., 1995; Gat, Tishby, & Abeles, 1997; Jones, Fontanini, Sadacca, &
Katz, 2007; Achtman et al., 2007; Kemere et al., 2008) used HMM for the purpose of analyzing
and classifying the patterns of neural spike trains, but their models are restricted to discrete
time and the Markov chain is homogeneous (i.e., the transition probability is stationary). In
these studies, the hidden states are discrete, and the spike counts were used as the discrete
observations for the likelihood models. Smith and Brown (2003) extended the standard linear
state-space model (SSM) with continuous state and observations to an SSM with a continuous
state Markov-modulated point process, and an EM algorithm was developed for the hidden
state estimation problem. Later the theory was extended to the SSM with mixed continuous,
binary, and point process observations (Coleman & Brown, 2006; Prerau et al., 2008; Eden &
Brown, 2008), but the latent process was still limited to the continuous-valued state. In a similar
context, Danóczy and Hahnloser (2006) also proposed a two-state HMM for detecting the
“singing-like” and “awake-like” states of sleeping songbirds with neural spike trains; their
model assumes a continuous-time Markov chain (with the assumption of knowing the exact
timing of state transitions), and the sojourn time follows an exponential distribution; in
addition, the CIF of the point process was assumed to be discrete in their work. All of these
restricted assumptions have limited the computational model for analyzing real-world spike
trains. Recently, more modeling efforts have been dedicated to estimating the hidden state and
parameters using an HMM (or its variants) for estimating the stimulus-response neuronal model
(Jones et al., 2007; Escola & Paninski, 2008). Xi and Kass (2008) recently also used a
RJMCMC method to characterize the bursty and nonbursty states from goldfish retinal neurons.

In modeling the hidden semi-Markov processes or semi-Markov chains, in which the sojourn
time is no longer exponentially distributed, Guon (2003) developed an EM algorithm for a
hidden semi-Markov chain with finite discrete-state sojourn time, but the computational
complexity of the EM algorithm is much greater than the conventional HMM.3

1.6 Contribution and Outline
In this article, with the goal of estimating the population neuron's UP or DOWN state, we
propose discrete-state Markov or semi-Markov probabilistic models for neural spikes trains,
which are modeled as doubly stochastic point processes. Specifically, we propose discrete-
time and continuous-time SSMs and develop the associated inference algorithms for tackling
the joint (state and parameter) estimation problem.

Our contributions have three significant distinctions from the published literature: (1) the point-
process observations are not i.i.d. Specifically, the rate parameters or the CIFs of the spike
trains are modulated by a latent discrete-state variable and past spiking history. (2) In the
continuous-time probabilistic models, the state transition is not necessarily Markovian; in other
words, the hidden state is semi-Markovian in the sense that the sojourn time is no longer
exponentially distributed. (3) The maximum likelihood inference algorithms are derived for
discrete-time and continuous-time probabilistic models for estimating the neuronal UP or
DOWN states, and the proposed Monte Carlo EM (MCEM) algorithm is rooted in a RJMCMC
sampling method and is well suited for various probabilistic models of the sojourn time.

3In the worst case, the complexity is (NT(N + T)) in time, in contrast to (N2T)) for the HMM, where N denotes the number of discrete
state and T denotes the total length of sequences.
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The rest of the article is organized as follows. In section 2, we present the discrete-time HMM
and the EM-based inference algorithm. In section 3, we develop the continuous-time
probabilistic Markov and semi-Markov chains and their associated inference algorithms. In
section 4, we demonstrate and validate our proposed models and inference algorithms with
both simulated and real-world spike train data. We present some discussions in section 5,
followed by the conclusion in section 6.

1.7 Notation
In neural spike analysis, we examine spike trains from either single or multiunit activity. Due
to digitalized recordings, we assume that the time interval [0, T] of continuous-time neural
spike train observations is properly discretized with a small time resolution Δ, so the time
indexes are discrete integers within k ∈ [1, K], such that kΔ ∈ ((k − 1)Δ, kΔ] and KΔ = T. Let

 denote the counting process for spike train c at time tk, and let  denote the
indicator variable for 0/1 observation:  if there is a spike and 0 otherwise. Other notations
are rather straightforward, and we will define them in the proper places. Most notations used
in this article are summarized in Table 1.

2 Discrete-Time Markov Modulated Probabilistic State-Space Model
To infer the neuronal UP and DOWN states, in this section we develop a simple, discrete-time
Markov modulated state-space model that can be viewed as a variant of the standard HMM
applied to spike train analysis. The underlying probabilistic structure is Markovian and
homogeneous, and the inference algorithm is efficient in identifying the statistics of the hidden
state process. Based on that, in the next section we develop a continuous-time probabilistic
model in order to overcome some of limitations imposed by this discrete-time probabilistic
model.

2.1 Hidden Markov Model
Let us consider a discrete-time homogeneous Markov chain. By discrete time, we assume that
the time is evenly discretized into fixed-length intervals, which have time indices k = 1, …,
K. The neuronal UP or DOWN state, which is characterized by a latent discrete-time first-order
Markov chain, is unobserved (and therefore hidden), and the observed spike trains or the spike
counts recorded from the MUA are functionally determined by the hidden state. The standard
HMM is characterized by three elements: transition probability, emission probability,4 and
initial state probability (Rabiner, 1989). At the first approximation, we assume that the
underlying latent process follows a two-state HMM with stationary transition and emission
probabilities.

• The initial probability of state is denoted by a vector π = {πi}, where πi = Pr(S0 = i)
(i = 0, 1). Without loss of generality, we assume that the amplitude of the hidden state
is predefined, and the discrete variable Sk ∈ {0, 1} indicates either a DOWN (0) or
UP (1) state.

• The transition probability matrix is written as

(2.1)

4The term emission probability arose from the HMM literature in the context of speech recognition; it refers to the probability of observing
a (finite) symbol given a hidden state (finite alphabet).
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with P01 = 1 − P00 and P10 = 1 − P11 corresponding to the transition probabilities
from state 0 to state 1 and from state 1 to state 0, respectively.

• Given the discrete hidden state Sk, the observed numbers of total spikes across all
tetrodes (i.e., MUA), y1, y2, …, yK (yk ∈ ℕ), follow probability distributions that
depend on the time-varying rate λk,

(2.2)

where the parameter λk is determined by

(2.3)

where exp(μ) denotes the baseline firing rate and Sk denotes the hidden discrete-state
variable at time k. The term Nk−1 − Nk−J represents the total number of spikes observed
during the history period (k − J, k − 1], which accounts for the history dependence of
neuronal firing. The choice of the length of history dependence is often determined
empirically based on the preliminary data analysis, such as the histogram of the
interspike interval (ISI). Equations 2.2 and 2.3 can be understood in terms of a
generalized linear model (GLM) (e.g., McCullagh & Nelder, 1989; Truccolo, Eden,
Fellow, Donoghue, & Brown, 2005), where the link function is a log function and the
distribution is Poisson. Note that when β = 0 (i.e., history independence is assumed),
we obtain an inhomogeneous Poisson process, and λk reduces to a Poisson rate
parameter.

Taking the logarithm to both sides of equation 2.2, equation 2.3 can be rewritten as

(2.4)

where ñk = Nk−1 − Nk−J. More generally, we can split the time period (k − J, k − 1] into several
windows (say, with equal duration δ), and equation 2.4 can be rewritten as

(2.5)

where β = {βj} and ñk = {ñk, j} are two vectors with proper dimensionality, and ñk, j = Nk−jδ −
Nk−(j+1)δ denotes the observed number of multiunit spike counts within the time interval (k −
(j + 1)δ, k − jδ]. If we further assume that the observations yk at different time indices k are
mutually independent, the observed data likelihood is given by

(2.6)
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Note that λk ≡ λ(Sk) is functionally dependent on the latent process Sk, although we have omitted
it from the notation for brevity. In statistics, the hidden variables {Sk} are treated as the missing
data, {yk} as the observed (incomplete) data, and their combination {Sk, yk} as the complete
data. Let θ denote all of the unknown parameters; then the complete data likelihood is given
by

(2.7)

And the complete data log likelihood, denoted as , is derived as (by ignoring the constant)

(2.8)

where ξk(i, j) = Pr(Sk−1 = i, Sk = j).

2.2 Forward-Backward and Viterbi Algorithms
The inference and learning procedure for the standard HMM is given by an efficient estimation
procedure known as the EM algorithm, which is also known as the Baum-Welch algorithm
(Baum et al., 1970; Baum, 1972). Rooted in maximum likelihood estimation, the EM algorithm
iteratively and monotonically maximizes (or increases) the log-likelihood function given the
incomplete data (Dempster et al., 1977). In the E-step, a forward-backward procedure is used
to recursively estimate the hidden state posterior probability. In the M-step, based on the
missing state statistics (estimated from the E-step), the reestimation procedure and Newton-
Ralphson algorithm are used to estimate the unknown parameters θ = (π, P, μ, α, β). In each
full iteration, the EM algorithm iteratively maximizes the so-called Q-function,

(2.9)

the new θnew is obtained by maximizing the incomplete data likelihood conditional on the old
parameters θold; and the iterative optimization procedure continues until the algorithm
ultimately converges to a local maximum or a stationary point. For the self-containing purpose,
we present a brief derivation of the EM algorithm (Rabiner, 1989) for the two-state HMM
estimation problem.

2.2.1 E-Step: Forward-Backward Algorithm—In the E-step, the major task of the
forward-backward procedure is to compute the conditional state probabilities for the two states:

(2.10)
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(2.11)

as well as the conditional state joint probability:

(2.12)

To make the notation simple, in the derivation below, we let the conditional θ be implicit in
the equation.

To estimate equations 2.10 and 2.11, we first factorize the joint probability as

(2.13)

where

and the forward and backward messages ak(l) and bk(l) can be computed recursively along the
discrete-time index k (Rabiner, 1989):

where Pil denotes the transition probability from state i to l.

Given {ak, bk}, we can estimate equation 2.12 by

(2.14)

Furthermore, we can compute the observed likelihood (of the incomplete data) by
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(2.15)

Given equations 2.13 and 2.15, the state posterior conditional probability is given by Bayes'
rule,

(2.16)

In the term of the computational overhead for the above-described two-state HMM, the
forward-backward procedure requires a linear order of computational complexity (4K) and
memory storage (2K).

2.2.2 M-Step: Reestimation and Newton-Ralphson Algorithm—In the M-step, we
update the unknown parameters (based on their previous estimates) by setting the partial

derivatives of the Q-function to zeros: , from which we may derive either closed-form
or iterative solutions.

Let ξk(i, j) = Pr(Sk−1 = i, Sk = j ∣ y1:K, θ) and γk(i) = Pr(Sk = i ∣ y1:K, θ) denote, respectively, the
conditional marginal and joint state probabilities (which are the sufficient statistics for the
complete data log likelihood 2.9). From the E-step, we may obtain

(2.17)

The transition probabilities are given by Baum's reestimation procedure:

(2.18)

Specifically the transition probabilities P01 and P10 are estimated by closed-form expressions,

(2.19)

(2.20)
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Next, we need to estimate the other unknown parameters (μ, α, β) that appear in the likelihood
model. Since there is no closed-form solution for μ, α, and β, we may use the iterative
optimization methods, such as the Newton-Ralphson algorithm or the iterative weighted least
squares (IWLS) algorithm (e.g., Pawitan, 2001), to optimize the parameters in the M-step.

Let  denote the computed mean statistic of a hidden state at time k; by setting
the derivatives of  with regard to the parameters α, μ, and β (and similarly for vector β), to
zeros, we obtain

(2.21)

(2.22)

(2.23)

respectively. Typically, a fixed number of iterations is preset for the Newton-Ralphson
algorithm in the internal loop within the M-step.

Finally, the convergence of the EM algorithm is monitored by the incremental changes of the
log likelihood as well as the parameters. If the absolute value of the change is smaller than
10−5, the EM algorithm is terminated.

2.2.3 Viterbi Algorithm—Upon estimating parameters θ = (π, P, μ, α, β), we can run the
Viterbi algorithm (Viterbi, 1967; Forney, 1973) for decoding the most likely state sequences.
The Viterbi algorithm is a dynamical programming method (Bellman, 1957) that uses the
“Viterbi path” to discover the single most likely explanation for the observations. Specifically,
the maximum a posteriori (MAP) state estimate Ŝk at time k is

(2.24)

The computational overhead of the forward Viterbi algorithm has an overall time complexity
(4K) and space complexity (2K).

3 Continuous-Time Markovian and Semi-Markovian State-Space Models
The discrete-time probabilistic model discussed in the previous section imposes strong
assumptions on the transition between the UP and DOWN states. First, it is stationary in the
sense that the transition probability is time invariant; second, the transition is strictly
Markovian. In this section, we relax these assumptions and further develop continuous-time,
data-driven (either Markovian or semi-Markovian) state-space models, which is more
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appropriate and realistic in characterizing the nature or statistics of the state transitions. In
addition, the inference algorithm for the continuous-time models uses the estimation output
from the discrete-time model (developed in section 2) as the initialization condition, which
also helps to accelerate the algorithmic convergence process.

3.1 Continuous-Time Probabilistic Model
One important distinction between the discrete-time and continuous-time Markov chains is
that the former allows state changes to occur only at regularly spaced intervals, whereas the
latter is aperiodic, in that the time between state changes is exponentially distributed. Therefore,
the notion of a “single-step transition probability” is no longer valid in continuous time since
the “step” does not exist. In fact, the transition probability in continuous time is characterized
by either the transition rate or the sojourn time probability density function (pdf) between the
two state change events. Let us assume that the pdf of the sojourn time for state j characterized
by a parameter vector θj. Hence, the transition probability between state 0 (DOWN) and 1 (UP)
is characterized by the corresponding pdfs p(θ0, z) and p(θ1, z), respectively, where z is now
the random variable in terms of holding time. For example, given the current state status (say,
state j) and current time t, the probability of escaping or changing the current state (to other
different state) will be computed from the cumulative distribution function (cdf):

(3.1)

and the probability of remaining in the present state will be computed from

(3.2)

which is known as the survival function in reliability and survival analysis. As seen, the
transition probability matrix in continuous time now depends on the elapsed time (starting from
the state onset) as well as the present state status. In general, we write the transition probability
matrix as a parameterized form P(θ), where θ = (θ0, θ1) characterizes the associated sojourn
time pdf parameters for the DOWN (0) and UP (1) states. As we will see, choosing different
probability density models for the sojourn time results in different formulations of the
continuous-time Markov or semi-Markov chain.

In modeling the neural spike train point processes, the CIF characterizes the instantaneous
firing probability of a discrete event (i.e., spike). Specifically, the product between the CIF λ
(t) and the time interval Δ tells approximately the probability of observing a spike within the
interval [t, t + Δ) (e.g., Brown et al., 2003):

For each spike train, we model the CIF in a parametric form,5

5Here we assume that the individual CIF λc(t) can be modeled as a GLM with log(·) as a link function (Truccolo et al., 2005; Paninski,
Pillow, & Lewi, 2007). One can also use other functions as the link function candidate, such as log(1 + exp(·)) or the sigmoidal (bell-
shaped) function, whichever better reflects the neuron's firing properties (e.g., Paninski, 2004). The choice of the functional form for the
CIF does not affect the inference principle or procedure described below.

Chen et al. Page 12

Neural Comput. Author manuscript; available in PMC 2009 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.3)

where exp(μc) denotes the baseline firing rate for the cth spike train and βc denotes an
exponential decaying parameter that takes into account the history dependence of firing from

time 0 upto time t. The nonnegative term  defines a convolution between
the exponential decaying window and the firing history of spike train c up to time t. Because
of digitalized recording devices, all continuous-time signals are sampled and recorded in digital
format with a very high sampling rate (32 kHz in our setup). Therefore, we still deal with the
“discretized” version of a continuous-time signal. In this case, we sometimes use St and Sk
interchangeably if no confusion occurs. However, as we see below, their technical treatments
are rather different. In the context of continuous-time observations (Δ = 1 ms), every time
interval has at most one spike from each spike train. For computational ease, we approximate
the integral in equation 3.3 with a finite discrete sum of firing history as follows:

(3.4)

where ñk is a vector containing the number of spike counts within the past intervals, and the
length of the vector defines a finite number of windows of spiking history. By assuming that
the spike trains are mutually independent, the observed data likelihood is given by (Brillinger,
1988; Brown et al., 2003)

(3.5)

The complete statistics of the continuous-time latent process may be characterized by a triplet:
 = (n, τ, χ), where τ = (τ0, τ1, …, τn) is a vector that contains the duration lengths of sojourn

times of , and χ = (χ0, χ1, …, χn) represents the states visited in these sojourns. Let ν0 = 0,

 and νn+1 = T. Alternatively, the complete data likelihood, equation
3.5, can be rewritten in another form,

(3.6)

where  denotes all of spike train observations during the sojourn time [νl−1, νl] for the
continuous-time (semi-)Markov process {S(t)}.

If we model each spike train as an inhomogeneous Poisson process with time-varying CIF
λc(t), the expected number of spike counts observed within the duration [νl−1, νl] in the cth
spike train is given by the integrated intensity (also referred to as cumulative hazard function):

(3.7)
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Correspondingly, the observed data likelihood function, equation 3.5, is given by (Daley &
Vere-Jones, 2002)

where  denotes the spike counts of the cth spike train during the interval (νl−1, νl], and ti
denotes the continuous-time index of the ith spike of a specific spike train during the interval
(νl−1, νl].

Ultimately, we can write the complete-data log likelihood in a compact form:6

(3.8)

where θj denotes the parameter(s) of the probability model of the sojourn time associated with
state j.

3.2 Continuous-Time Markov Chain
In a continuous-time Markov chain (i.e., Markov process), state transitions from one state to
another can occur at any instant of time. Due to the Markov property, the time that the system
spends in any given state is memoryless, and the distribution of the survival time depends on
the state (but not on the time already spent in the state); in other words, the sojourn time is
exponentially distributed,7 which can be characterized by a single rate parameter. The rate
parameter, also known as the continuous-time state transition rate, defines the probability per
time unit that the system makes a transition from one state to the other during an infinitesimal
time interval:

(3.9)

The total transition rate of state i satisfies the rate balance condition:

(3.10)

6In addition to the compact representation, another main reason for this reformulation is the efficiency and stability of numerical
computation in calculating the observed data likelihood or likelihood ratio.
7The exponential distribution with mean 1/λ is the maximum entropy distribution among all continuous distributions with nonnegative
support that have a mean 1/λ.
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The holding time of the sojourn for state i follows an exponential distribution exp(−riτ), or,
equivalently, the transition times of state i are generated by a homogeneous Poisson process
characterized by rate parameter ri. For a two-state Markov chain, the transition rate matrix may
be written as

(3.11)

For an exponential random variable z, its cdf is computed as ,
where re−rz is the pdf of the exponential distribution with a rate parameter r. The reciprocal of
the rate parameter, 1/r, is sometimes called the survival parameter in the sense that the
exponential random variable z that survives the duration of time has the mean [z] = 1/r. In
light of equations 3.1 and 3.2, at a given specific time t, the probability of remaining within

the current state sojourn is . Let r0 and r1 denote the
transition rate for states 0 and 1, respectively. Let τ = t − ν denote the elapsed time from the
state transition up to the current time instant t; then the parameterized transition probability
P = {Pij} is characterized by

(3.12)

Now, the transition probability, instead of being constant, is a probabilistic function of the time
after the Markov process makes a transition to or from a given state (the holding time from the
last transition or the survival time to the next transition).

3.2.1 Imposing Physiological Constraints—Due to biophysical or physiological
constraints, the sojourn time for a specific state might be subject to a certain range constraint,
reflected in terms of the pdf. Without loss of generality, let p(τ) denote the standard pdf for a
random variable τ, and let p̃(τ) denote the “censored” version of p(τ),8 which is defined by

where (·) is an indicator function and a > 0 and b ∈ (a, ∞) are the lower and upper bounds of
the constrained random variable τ (which is always positive for the duration of the sojourn
time), respectively. The scalar c is a normalized constant determined by c = F (b) − F (a), where
F (·) denotes the corresponding cdf of the standard pdf p(τ) and F (∞) = 1. Likewise, the

censored version of the cdf is computed by .

Suppose the sojourn time τ of a continuous-time Markov chain follows a censored version of
the exponential distribution; then we can write its censored pdf as

8Censoring is a term used in statistics that refers to the condition that the value of an observation is partially known or the condition that
a value occurs outside the range of measuring tool.
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(3.13)

where the normalizing constant is given by c = F(∞) − F(a) = 1 − [1 − exp(−ra)] = exp(−ra).

3.3 Continuous-Time Semi-Markov Chain
In contrast to the Markov process, the semi-Markov process is a continuous-time stochastic
process {St} that draws the sojourn time {νl} spent in specific discrete states from a
nonexponential distribution. In other words, the characterization of the sojourn time is no
longer an exponential pdf. Table 2 lists a few examples of continuous-time probability models
for characterizing the sojourn time duration for the interevent interval (Tuckwell, 1989). In
general, the nonexponential censored pdf with a lower bound gives the flexibility to model the
“refractory period” of the UP or DOWN state.

3.3.1 Two-Parameter Exponential Family of Distributions for the UP and DOWN
State—To characterize the nonexponential survival time behavior of semi-Markov processes,
here we restrict our attention to three probability distributions that belong to the two-parameter
exponential family of continuous probability distributions. We define the censored versions of
three pdfs as follows:

• The censored gamma distribution p̃(τ; s, κ):

where κ and s represent the scale and shape parameters, respectively. If s is an integer,
then the gamma distribution represents the sum of s exponentially distributed random
variables, each with a mean κ. Similarly, c is a normalized constant for the censored
pdf p̃(τ; s, κ): c = F(b) − F (a), and F (·) is the cdf of the standard gamma distribution.

• The censored log-normal distribution p̃(τ; μ, σ):

where the mean, median, and variance of the log-normal distribution are exp(μ +
σ2/2), exp(μ), and exp(2μ + σ2)[exp(σ2) − 1], respectively.

• The censored inverse gaussian distribution p̃(τ; μ, s):

where μ and s represent the mean and shape parameters, respectively.

The choice of the last two probability distributions is mainly motivated by the empirical data
analysis published earlier (Ji & Wilson, 2007). Typically, for a specific data set, a smoothed
histogram analysis is conducted to visualize the shape of the distribution, and the Kolmogorov-
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Smirnov (KS) test can be used to empirically evaluate the fit of specific probability
distributions. Mostly likely, none of parametric probability distribution candidate would fit
perfectly (i.e., within 95% confidence interval) for the real-world data; we often choose the
one that has the best fit.9 In the simulation data shown in Figure 1, we have used the following
constraints for the UP and DOWN states: [0.1, 3] (unit: second) for UP state and [0.05, 1] (unit:
second) for DOWN state. The lower and upper bounds of these constraints are chosen in light
of the results reported from Ji and Wilson (2007). Note that the shapes of the log-normal and
inverse gaussian pdfs and cdfs are very similar, except that inverse gaussian distribution is
slightly sharper when the value of the random variable is small (Takagi, Kumagai, Matsunaga,
& Kusaka, 1997). In addition, the tail behavior of these two distributions differs; however,
provided we consider only their censored versions (with finite duration range), the tail behavior
is not a major concern here.

3.4 EM Algorithm
In the continuous-time model, we treat the individual spike trains separately and aim to estimate
their own parameters. Let  denote the unknown
parameters of interest, where θup and θdown represent the parameters associated with the
parametric pdfs of the UP and DOWN states, respectively; the rest of the parameters are
associated with the CIF model for respective spike trains. For an unknown continuous-time
latent process {S(t); 0 ≤ t ≤ T} (where S(t) ∈ {0, 1}), let n be the number of jumps between
two distinct discrete states. Let  = (n, τ, χ) be a triplet of the Markov or semi-Markov process,
where τ = (τ0, τ1, …, τn) is a vector that contains the duration of the sojourn time of  and χ =
(χ0, χ1, …, χn) represents the states visited in these sojourns.

Let  denote all the spiking timing information of the observed spike trains. Similar to the
discrete-time HMM, we aim to maximize the Q-function, defined as follows:

(3.14)

The inference can be tackled in a similar fashion by the EM algorithm.

First, let us consider a simpler task where the transition time of the latent process is known and
the number of state jumps is given. In other words, the parameters n and τ are both available,
so the estimation goal becomes less demanding. We need to estimate only χ and θ.

Since the number of state transition, n, is known, p( ,  ∣ θ) is simplified to

(3.15)

Let ξl(i, j) = Pr( (χl−1) = i, (χl) = j) and γl(i) = Pr( (χl) = i). In the case of the continuous-
time Markov chain, the complete data log likelihood is given by

9Alternatively, one can use a discrete nonparametric probability model for the sojourn time, which is discussed in section 5.
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(3.16)

where θ = (r0, r1, μ1α1, β1, …, μC, αC, βC) denotes the augmented parameter vector that contains
all of the unknown parameters. In the case of the continuous-time semi-Markov chain where
the sojourn time is modeled by a nonexponential probability distribution, we can write the log-
likelihood function as

(3.17)

where F (·) denotes the cdf of the nonexponential probability distribution.

Conditioned on the parameter θ, the posterior probabilities ξl and γl (for l = 1, …, n) can be
similarly estimated by the forward-backward algorithm as in the E-step for the HMM, whereas
in the M-step, the new parameter θnew is obtained by

(3.18)

More specifically, for the parameters associated with the transition probability density model,
we might, for example, assume that the UP and DOWN state durations are both log normal
distributed with parameters θj = {μj, σj}(j = 0, 1), and they can be estimated by

(3.19)

In light of Table 2, setting the derivatives of μj and σj to zeros yields

where we have used  in light of Table 2. The above two equations can
be solved iteratively with the Newton-Ralphson algorithm.
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Once the state estimate Ŝ(t) is available from the E-step,10 the parameters associated with the
likelihood model can also be estimated by the Newton-Ralphson or the IWLS algorithm,

(3.20)

where λc(t) and  are defined by equations 3.3 (or 3.4) and 3.7, respectively.

Notably, the EM algorithm described above has a few obvious drawbacks. Basically, it assumes
that the information as to when and how many state transitions occur during the latent process
is given; once the number of state jumps (say, n) is determined, it does not allow the number
n to change, so it is incapable of online model selection. Furthermore, it is very likely that the
EM algorithm suffers from the local maximum problem, especially if the initial conditions of
the parameters are far from the true estimates. In the following, we present an alternative
inference method to overcome these two drawbacks, and the method can be regarded as a
generalization of the EM algorithm, except that the E-step state estimation is replaced by a
Monte Carlo sampling procedure. This method is often called the Monte Carlo EM (MCEM)
algorithm (Chan & Ledolter, 1995; McLachlan & Krishnan, 1996; Tanner, 1996; Stjernqvist,
Rydén, Sköld, & Staaf, 2007). The essence of MCEM is the theory of Markov chain Monte
Carlo (MCMC), which will be detailed below.

3.5 Monte Carlo EM Algorithm
The basic idea of MCMC sampler is to draw a large number of samples randomly from the
posterior distribution and then obtain a sample-based numerical approximation of the posterior
distribution. Unlike other Monte Carlo samplers (such as importance sampling and rejection
sampling), the MCMC method is well suited for sampling from a complex and high-
dimensional probability distribution. Instead of drawing independent samples from the
posterior distribution directly, MCMC constructs a Markov chain such that its equilibrium will
eventually approach the posterior distribution. The Markov chain theory states that given an
arbitrary initial value, the chain will ultimately converge to the equilibrium point provided the
chain is run sufficiently long. In practice, determining the convergence as well as the “burn-
in time” for MCMC samplers requires diagnostic tools (see Gilks, Richardson, & Spiegelhalter,
1995, for general discussions of the MCMC methods). Depending on the specific problem, the
MCMC method is typically computationally intensive, and the convergence process can be
very slow. Nevertheless, here we focus on methodology development, and therefore the
computational demand is not the main concern. Specifically, constructing problem-specific
MCMC proposal distributions (densities) is the key to obtain an efficient MCMC sampler that
has a fast convergence speed and a good mixing property (Brooks, Guidici, & Roberts,
2003). For the variable-dimension RJMCMC method, we present some detailed mathematical
treatments in appendix A.

The Monte Carlo EM (MCEM) algorithm works just like an ordinary EM algorithm, except
that in the E-step, the expectation operations (i.e., computation of sufficient statistics) are
replaced by Monte Carlo simulations of the missing data. Specifically, M realizations of the
latent process S(t) (0 ≤ t ≤ T) are simulated, and in this case the Q-function can be written as

10Note that Ŝ(t) is not the same as χl (l = 1, 2, …, n) in that the former is stochastic and the latter is deterministic.
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(3.21)

where (m) denotes the mth simulated latent process for the unknown state (missing data).

The M-step of MCEM is the same as the conventional M-step in the EM algorithm. Specifically,
the parameters of the CIF appearing in the likelihood model are estimated using equation 3.20.
However, the estimation of the parameters for the UP or DOWN state sojourn depends on the
type of probability distribution. Here we distinguish three different possible scenarios.

First, when the latent process is a continuous-time Markov chain and the sojourn time durations
for the UP and DOWN states are both exponentially distributed, then θup and θdown correspond
to the rate parameters r1 and r0, respectively. The Q-function for a single Monte Carlo
realization of  can be written as

(3.22)

where nij denotes the number of jumps from state i to state j during [0, T], and

 denote the total time or the sojourn length of {S(t)} spent in state i during

[0, T]. Let  denote the number of events that occur while {S(t)} is in state i;
then it is known that the transition rate matrix can be estimated by q̂ij = nij/Ti and ri = qii = ni/
Ti, where nij, ni, and Ti are the sufficient statistics (Rydén, 1996). In this case, ri corresponds
to the MLE. With M Monte Carlo realizations, the rate parameter will be estimated by

In the second scenario, when the latent process is a continuous-time semi-Markov chain where
the sojourn time durations for both UP and DOWN states are nonexponentially distributed, the
Q-function can be written as

(3.23)

where  is obtained from the Monte Carlo mean statistic of M simulated
latent processes. Similarly, the parameters of the nonexponential probability distributions can
be estimated by their MLE based on their Monte Carlo realizations. For instance, in the case
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of inverse gaussian distribution, the mean parameter is given by

, and the shape parameter is given by

. In the case of log-normal distribution, the

mean parameter is given by , and the SD parameter is

given by .

If, in the third scenario, one of the state sojourn time durations is exponentially distributed and
the other is nonexponential, then the resulting latent process is still a semi-Markov chain, and
the estimation procedure remains similar to that in the above two cases.

3.5.1 Initialization of the MCMC Sampler—It is important to choose sensible initial
values for the simulated (semi-) Markov chain since a poor choice of the initial (0) can lead
to a sampler that takes a very long time to converge or result in a poor mixing of the (semi-)
Markov chain. In our experiment, we typically use a discrete-time HMM model (with a 10 ms
bin size) to estimate the hidden state sequence and then interpolate it to obtain an initial estimate
of the continuous-time state process (with 1 ms bin size), from which we obtain the initial
values of {n, τ, χ}.

3.5.2 Algorithmic Procedure—In summary, the MCEM algorithm is run as follows:

• Initialize the MCMC sampler state for  = {n, τ, ν}.

• Iterate the MCEM algorithm's E and M steps until the log likelihood reaches a local
maximum or saddle point.

1. Monte Carlo E-step: Given an initial state (0), run the RJMCMC sampling

procedure to draw M Monte Carlo samples , based on which to
compute the necessary Monte Carlo sufficient statistics.

2. M-step: estimate the parameters {θup, θdown} with their MLE.

3. M-step: optimize the parameters  according to equation 3.20.

• Upon convergence, reconstruct the hidden state Ŝ(t) in the continuous-time domain.

• Compute λc(t) for each spike train c, and conduct goodness-of-fit tests (see below)
for all spike trains being modeled.

3.5.3 Reconstruction of Hidden State—There are two ways to reconstruct the hidden
state of the latent process. The first is to apply the Viterbi algorithm once the MCEM inference
is completed (when n and τ have been determined). In the second, and simpler, approach, we
can determine the state by the following rule (Ball et al., 1999). For m = 1, 2, …, M, let

(3.24)

and let , and the point estimate of the hidden state is

Chen et al. Page 21

Neural Comput. Author manuscript; available in PMC 2009 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.25)

Furthermore, the marginal prior probability of the hidden state is given by

(3.26)

3.5.4 Goodness-of-Fit Tests—Upon estimating the CIF model λc(t) for each spike train
(see equation 3.3), the goodness of fit of the estimated model is tested in light of the time-
rescaling theorem (Brown, Barbieri, Ventura, Kass, & Frank, 2002). Specifically, given a point
process specified by J discrete events: 0 < u1 < ⋯ < uJ < T, define the random variables

 for j = 1, 2, …, J − 1. Then the random variables zjs are independent, unit-
mean exponentially distributed. By introducing the variable of transformation vj = 1 − exp
(−zj), vjs are independent and uniformly distributed within the region [0, 1]. Let gj = Φ−1(vj)
(where Φ(·) denotes the cdf of the standard gaussian distribution); then gjs will be independent
standard gaussian random variables. Furthermore, the standard Kolmogorov-Smirnov (KS)
test is used to compare the cdf of vj against that of the random variables uniformly distributed
within [0, 1]. The KS statistic is the maximum deviation of the empirical cdf from the uniform
cdf. To compute it, the vjs are sorted from the smallest to the largest value; then we plot values

of the cdf of the uniform density defined as  against the ordered vj s. The points should
lie on the 45 degree line. In a Cartesian plot of the empirical cdf as the y-coordinate versus the

uniform cdf as the x-coordinate, the 95% confidence interval lines are . The
KS distance, defined as the maximum distance between the KS plot and the 45 degree line, is
used to measure the lack of fit between the model and the data.

Furthermore, we measure the independence of the time-rescaled time series by computing the

autocorrelation function of gjs: . Since gjs are normally
distributed, if they are independent, then they are also uncorrelated; hence, ACF(m) shall be

small for all values of m, and the associated 95% confidence interval is .

3.5.5 Implementation and Convergence—Let the triple  = (n, τ, χ) denote all the
information of the continuous-time latent process, which contains n state jumps and n + 1
durations of corresponding sojourn times, and the discrete states that are visited in the sojourns.

To simulate the Markov chain, we first obtain the initial conditions for both the state and
parameters { (0), θ(0)}. Next, we run the MCMC sampler (see appendix A for details) to
generate a sequence of Monte Carlo samplers { (k)} for k = 1, 2, …, M, and the realizations
{ (k)} can be viewed as the samples drawn from the conditional posterior p(  ∣ , θ). At each
MCEM step, the parameter vector θ is updated in the Monte Carlo M-step using the sufficient
statistics obtained from p(  ∣ , θ). Typically, to reduce the correlation of the simulated
samples, a “burn-in” period is discarded at the beginning of the simulated (semi-) Markov
chain. Even after the burn-in period, the successive realizations of { (k)} might still be highly
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correlated. This problem can be alleviated by using the “thinning” or subsampling technique:
every Np simulated samples in the chain is used. Although the thinning technique can increase
the Monte Carlo variance of the estimate (Geyer, 1992), it is widely used in practice to reduce
the correlation among the samples. In our experiment, we typically chose Np = 10.

At the end of each Monte Carlo sampling step, the sufficient statistics for computing the
acceptance probability and updating the parameter θ (in the M-step) need to be stored, and all
new information (n, τ, χ) needs to be updated each time  changes.

In terms of convergence, Markov chain theory tells us that when M → ∞, the samples are
asymptotically drawn from the desired target (equilibrium) distribution. However, choosing
the proper value of M is often problem dependent, and the convergence diagnosis of the MCMC
sampler remains an active research topic in the literature (e.g., Gelman & Rubin, 1992; Cowles
& Carlin, 1996).

4 Experimental Results
4.1 Synthetic Data

First, we simulate four spike trains with the time-rescaling theorem (see Figure 2 for a snapshot
of one realization). The latent state variable is assumed to be drawn from a two-state discrete
space: S(t) ∈ {0, 1}. The simulation is conducted with a 1 ms time bin size with the following
model:

where ñ(t) denotes the number of spike counts across all spike trains during the previous 100
ms prior to the current time index t, and the parameters of individual spike trains are set as
follows:

For the simulated hidden latent process, the total duration is T = 30 s, and the number of jumps
varies from 35 to 45, yielding an average occurrence rate of state transitions of about 80
min−1. Furthermore, we assume that the sojourn time durations for both UP and DOWN states
follow a log-normal distribution. For the UP state, the survival time length is randomly drawn
from logn(−0.4005, 0.8481) (such that the mean and median value of the duration are 0.67 s
and 0.96 s, respectively), with a lower bound of 0.15 s; and for the DOWN state, the survival
time length is randomly drawn from logn(−1.9661, 0.6231) (such that the mean and median
value of the duration are 0.14 s and 0.17 s, respectively), with a lower bound of 0.05 s.

To test the discrete-time HMM model, the spike trains are binned in 10 ms and collected by
spike counts. We employed the EM algorithm with the following initialization parameters:
π0 = π1 = 0.5, P00 = P11 = 0.9, P01 = P10 = 0.1. For the synthetic data, the EM algorithm typically
converges within 200 iterations. The forward-backward algorithm computes all necessary
sufficient statistics. Upon convergence, the Viterbi algorithm produced the ultimate state
sequence output, yielding an average decoding error rate of 1.52% (averaged over 10
independent runs). In this case, since the CIF model is given (no model mismatch issue is
involved), the decoding error rate is reasonably low even with the discrete-time HMM. As a
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comparison, we also employed the threshold-based method (Ji & Wilson, 2007; see appendix
B for brief descriptions) to classify the UP and DOWN states using the simulated spike trains.
It was found (see Table 3) that the discrete-time HMM method yields better performance than
the threshold-based method. Figure 3 plots a snapshot of hidden state estimation obtained from
the discrete-time HMM in our experiments.

Next, we applied the MCEM algorithm to refine the latent state estimation in the continuous-
time domain. Naturally, with a smaller bin size, the continuous-time model allows precisely
segmenting the UP and DOWN states for identifying the location of state transition. With the
initial conditions obtained from the discrete-time EM algorithm, we simulated the Markov
chains for 20,000 iterations and discarded the first 1000 iterations (“burn-in” period). For the
synthetic data, the MCEM algorithm converged after 20 to 30 iterations, and we were able to
further improve the decoding accuracy by reducing the average error rate to 1.26%. As seen
in Table 3, the continuous-time model outperformed the discrete-time HMM model in terms
of the lower estimation error. However, in terms of estimating the correct number of state
transitions, the HMM obtained nearly 100% accuracy in all 10 Monte Carlo trials (except for
two trials that miscount two more jumps); in this sense, the HMM estimation result can be
treated as a very good initial state as the input to the continuous-time semi-Markov chain model.
In addition, the continuous-time model yields a 10 times greater information transmission rate
(1 bit/ms) than the discrete-time model (1 bit/10 ms). We also computed the probability
distribution statistics of the UP and DOWN states from both estimation methods. In the
discrete-time HMM, we used the sample statistics of the UP and DOWN state durations as the
estimated results. These results were also used as the initial values for the continuous-time
semi-Markov process, where the MCEM algorithm was run to obtain the final estimate. The
results are summarized in Table 4.

Once the estimates of {S(t)} and {μc, αc, βc} become available, we compute λc(t) for the
simulated spike trains in continuous time (with Δ = 1 ms). Furthermore, the goodness-of-fit
tests are employed to the rescaled time series, and the KS plots and the autocorrelation plots
for the simulated spike trains are shown in Figure 4. As seen from the figure, these plots fall
almost within the 95% confidence bounds, indicating the model fit is sufficiently satisfactory.

Finally we also do extra simulation studies by examining the sensitivity of different methods
regarding the change of two factors: the modulation gains of the hidden state and the number
of observed spike trains. The first issue examines the impact of the global network activity
during the UP state, that is, the αc component appearing in λc(t). Specifically, we modify the
gain parameters of individual spike trains (while keeping remaining parameters unchanged) as
follows:

such that each λc is reduced about 20% during the UP state period. It appears that the average
performance of the threshold-based method degraded from the original 2.91% to 3.62% (with
a trial-and-error selected threshold), while the performance of the probabilistic models
remained almost unchanged. This is partly because of the fact that a correct generative model
is used and the uncertainties of the hidden state were taken into account during the final
estimation (see Figure 5). In the meantime, if αc is decreased more and more, the mean MUA
firing rate will be significantly decreased, the rate difference between UP and DOWN periods
is reduced, and therefore the ambiguity between them increases. At some point, it can be
imagined that all methods will break down unless the bin size is increased accordingly (at the
cost of loss of accuracy in the classification boundary). Due to space limitations, we do not
explore this issue further here.
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The second issue examines the estimation accuracy of the missing variable against the number
of observed variables. It is expected that as more and more observations are added, the resulting
discrepancy between the threshold-based method and the probabilistic models will also become
smaller, since the uncertainty of the hidden state is less (or the posterior of the hidden variable
is larger with more spike train observations). In our simulations, we did extra experiments by
either reducing or increasing the number of simulated spike trains, followed by rechecking the
results across different setups for different methods. The estimation error results are
summarized in Figure 6. Specifically, for the threshold-based method, as more and more spike
trains are added, its estimation error gradually improves. This is expected since the threshold
selection criterion (see appendix B) heavily depends on the number of the spike train
observations, and adding more spike train observations help to disambiguate the boundary
between the UP and DOWN states. Meanwhile, for the probabilistic models, the estimation
performance either slightly improves (in the discrete-time HMM) or remains roughly the same
(in the continuous-time model). This is partly because adding more observations will also
increase the number of parameters to be estimated in the continuous-time model, so the
difficulty of inference also increases; whereas the HMM performance is likely to saturate
quickly due to either the insufficiency of the model or the local minimum problem inherent in
the EM algorithm. This observation implies that the probabilistic models are particularly
valuable when the number of spike train observations is relatively small and that the simple
threshold-based method becomes more and more reliable in terms of estimation accuracy—
yet its performance is still worse than that of two probabilistic models. This is probably because
it is difficult to find an optimal kernel smoothing parameter or the two threshold values (see
appendix B). Moreover, the threshold-based method cannot produce the statistics of interest
(e.g., posterior probability, transition probability).

4.2 Real-World Spike Train Data
Next, we apply our models to validate some real-world simultaneously recorded spike trains
collected from one behaving rat (Vijayan, 2007), where the MUA, cortical and hippocampal
EEGs, and EMG have been simultaneously recorded (see Figure 7 for a snapshot). We
presented the spike train data of a single animal (in one day), recorded from the primary
somatosensory cortex (SI) during SWS. Neurophysiological studies of neural spike trains and
EEGs across different rats and different recording days, as well as the comparison between the
cortex and hippocampus, will be presented elsewhere. In this study, 20 clearly identified
cortical cells from eight tetrodes were recorded and sorted. All spiking activity from these eight
tetrodes was used to determine the UP and DOWN states.

For this study, we selected about 15.7 minutes of recordings from a total of 11 (interrupted)
SWS periods of one rat,11 where the mean ± SD length of SWS periods is 85.7 ± 35.8 s
(maximum 156.1 s, minimum 30.7 s). We pulled out the multiunit spikes from eight tetrodes
(no spike sorting is necessary here). For each spike train (from one tetrode), we empirically
chose the following CIF model, as defined in the continuous-time domain:12

11The sleep stage classification was based on the recordings of electromyography (EMG) and hippocampal and cortical EEGs (ripple
power, theta and delta power). SWS is characterized as having low EMG, high hippocampal ripple, low hippocampal theta (4–8 Hz),
and high cortical delta (2–4 Hz). In practice, we varied the cut-off thresholds of those parameters (via grid search) to obtain a suboptimal
SWS classification for a specific rat.
12The model was empirically verified by model selection based on the GLM fit of a small data set using the glmfit function in Matlab.
The model with the lowest deviance (defined by twofold negative log likelihood) or the smallest Akaike's information criterion (AIC)
value will be chosen.
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where the exponential decaying parameter βc is initially set to a value that lets e−βcτ ≈ 0 for τ
> τ̄ = 100 ms, which leads to the second line of approximation; the third line of approximation
appears when we replace the continuous convolution with a discrete vector product, in which
β denotes the vector containing 100 coefficients sampled from e−βcτ with a 1 ms temporal
resolution, and Nt−τ̄:t denotes the vector containing 100 0 or 1 elements that indicate,
respectively the absence or presence of spikes. For the initial values, we set γc = 0 01 for all
spike trains; μc and αc were hand-tuned based on a small data set.13

Since θ will be largely dependent on  in the MCEM algorithm, a sensible choice of initial
state (0) is important for the convergence of the MCMC sampler. We initialized the state with
the results obtained from the discrete-time HMM (10 ms bin size) and interpolated the
intermediate missing values in the continuous-time domain (1 ms bin size). The rate parameter
defined for the HMM (see equation 2.5) was assumed as follows:14

and nk−2:k−1 defines the number of spike counts (across all spike trains) within the previous 10
ms time interval prior to time index k or tk (with bin size 10 ms). Therefore, the spiking history
dependence is described by the number of spike counts in the past three history windows: 10–
20 ms, 20–40 ms, and 40–60 ms. The initial parameters were set as μ = −0.5, α = 1, β ≡ [β1,
β2, β3]T = 0. The discrete-time HMM converged after about 100 iterations when the log
likelihood stops to increase. After that, we ran the Viterbi algorithm to obtain an initial guess

of {n, τ, χ} for the continuous-time model. It is assumed that if , the same state spans

the region [kΔ, (k + 1)Δ] (Δ = 10 ms), while if , then a single jump occurs at time
(k + 0.5)Δ. Furthermore, we initialized the parameters of individual spike trains that were
obtained from a GLM fit (based on about 500 ms of empirical data analysis; see note 12). The
HMM estimation results are summarized in Tables 5 and 6. Since there is no ground truth about
the latent process for the real-world data, we compared the HMM's state estimate with that
obtained from the threshold-based method. It appears that the HMM tends to discover more
state transitions than the threshold-based method (see Table 5), some of which might be false
alarms. Figure 8 presents an illustrated example.15 In order to determine which estimation
result (from both methods) is correct, we might require other available information (such as
the cortical EEG or hippocampal EEG) to help determine the “true” state.16 Direct comparison
of different methods is difficult for real data since there is no single ground truth. Typically it
was found that the HMM method yields more frequent state jumps than the threshold method

13A sensible initial parameter value will be an important factor for obtaining a fast convergence of the simulated Markov chain. In
practice, one can fit a small spike train data set (with preidentified hidden state values) with a GLM.
14We computed the mean and variance of spike counts given all 10 ms time bins and obtained a mean 2.42 and a variance 4.45. The
deviance between the mean and variance statistics suggested that the inhomogeneous Poisson probability model is inaccurate, and this
fact motivated us to include history-dependent covariates in the rate parameter.
15A video demo file is provided online (https://neurostat.mit.edu/zhechen/UpDownDemo.avi) for readers interested in a detailed result
comparison for a selected 5 minute recording.
16The cortical EEG averages have special waveforms triggered by the start and the end times of the UP state; furthermore, ripple events
(150–300 Hz) occur much more frequently during the UP state (Ji & Wilson, 2007).
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(see Table 5); this is simply due to the fact that while estimating the hidden state, the algorithm
does not consider the neighboring state information and evaluates only the individual likelihood
within each single time interval (of 10 ms); this tends to yield many single-state jumps with
short durations. In contrast, the threshold-based method is designed to merge those short silent
intervals with their neighboring sojourns (see step 3 in appendix B). However, the selection of
the threshold is rather ad hoc, and the classification results require many hand-tuned parameter
setups (such as kernel smoothing, bin size, and minimum SWS cut-off length), which does not
offer a robust and consistent criterion across different data sets.

In order to choose a proper parametric model for the sojourn time duration for the UP and
DOWN states, we used the state classification result from the discrete-time HMM (see Figure
9). Based on the histogram data analysis, we chose the exponential pdf as the probability model
for the sojourn duration of the DOWN state and the log-normal pdf as the probability model
for the sojourn duration of the UP state. We also computed their sample statistics (mean, SD)
and used them as the initial parameters for the continuous-time probabilistic model. The lower
bounds for the UP and DOWN state duration lengths are both set as 40 ms.

Since the recording time of the real-world spike trains data is rather long (about 60 times longer
than the synthetic data), the computational overhead is much greater for the MCEM algorithm.
In RJMCMC sampling, 300,000 iterations were run to simulate the Markov chain,17 and the
first 3000 iterations were discarded as the burn-in period. After that, we fed the obtained
parameter estimates using the complete data set. After an additional 100 MCEM iterations, the
algorithm converged (when the iterative log-likelihood increase is sufficiently small), and we
obtained the final parameter estimates. With these estimates, we simulated another 1000
realizations of the semi-Markov chain  and used them for the final hidden state reconstruction
(see equations 3.22 and 3.23). The convergence plots of the semi-Markov chain and the MCEM
algorithm are shown in Figure 10.

Several noteworthy comments are in order:

• As a comparison, we also used the estimated hidden state {S(t)} to fit a GLM model
(using glmfit function in Matlab, Δ = 1 ms) by modeling the history dependence with
eight discrete windows (1–5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50 ms). Upon
fitting the GLM model, we obtained the estimated spiking history dependence
coefficients for the individual spike trains (see Figure 11); as seen from the results,
their curves all have an approximately exponential-decaying shape. Finally, the KS
plots and autocorrelation plots are shown in Figures 12 and 13, respectively. Overall,
the goodness of fit is quite satisfactory.

• In comparison with the discrete-time HMM-EM method (see Tables 5 and 6), the
continuous-time MCEM method yields less frequent state jumps. As a consequence,
the MCEM result is accompanied with less short sojourn durations since it allows a
potential merge of neighboring sojourns during the RJMCMC procedure (see move
type 3 in appendix A) that considers the joint likelihoods of the neighboring sojourns.
Furthermore, in comparison with the threshold-based method, the continuous-time
semi-Markov model is more powerful in representing the uncertainty as well as
inferring the underlying neural dynamics. Its estimated model parameters (the shape
of the transition and duration probability density) might reveal the some neural
mechanism or physiology behind the transitory dynamics (e.g., the inhibitory period
after the last transition event). In our experiments, the MCEM method obtained the
lowest estimate of the number of state transitions (see Table 5), yielding a transition

17In implementation by Matlab version 7.0, that roughly amounts to about 15 hours of CPU time in a personal computer equipped with
an Intel Core 2 Du processor.
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occurrence rate about 82 min−1 (slightly greater than the rate reported in visual cortex;
Ji & Wilson, 2007). Despite its flexibility, the MCEM method is much more
computationally intensive than the HMM-EM method. The implementation of HMM
is simpler and has a faster convergence speed (the EM algorithm typically converged
within 100–200 steps, although the local maximum problem remains). In contrast, the
MCEM method relies on simulation of state sequences at every iteration and is
required to evaluate the point-process joint likelihood (see equation 3.5) for each
possible move. The calculation of every single spike's likelihood contribution is time-
consuming and is a bottleneck in the computation. In addition, the convergence speed
of the MCEM algorithm becomes slower in the end. This is because when the Markov
chain gradually approaches the equilibrium, many moves are rejected and a small
modification of the hidden state  or the parameter θ would not change very much in
terms of the joint log likelihood of the data. This can be seen in the flat plateau of the
log-likelihood curve near the end of the convergence in Figure 10b. For the real-world
spike train data, the simulation of Markov chain needs to be very long in order to pass
through all of move possibilities, especially if the number of potential state transitions
is large (here, on the order of thousands). Even so, no optimum stop criterion can be
provided with a guarantee; hence, the trade-off between the computation cost and the
estimation accuracy remains in any Monte Carlo optimization problem.

• To compare these three classification methods, we also computed the cortical EEG
averages (mean ± standard error of mean) triggered by the their UP state starting and
ending time stamps, respectively (recall note 15). The results are compared in Figure
14. Although the figures all look similar (due to large timescale), on close examination
of the plots, it appears that the EEG averages from the MCEM method result in a more
accurate detection of the onset of the UP state.

• Given the MUA spike train data analyzed for the behaving rat, the latent process St
stays longer during the UP state than the DOWN state, indicating that the population
neurons remained dominantly active during SWS.18 Whether these neuronal firing
patterns contain any “memory replay” compared with the earlier firing pattern during
the RUN behavior will be the subject of future investigation.

4.3 Firing Pattern Analysis Within the UP States
As observed from the analysis of the recorded multiple spike trains, the somatosensory cortical
neurons undergo near-synchronous transitions between the UP and DOWN states, from every
tens of milliseconds to a few seconds or so. The neuronal firing activities inside the UP state
are mainly characterized by duration length and spiking rate. It would be interesting to see if
there are any firing “patterns” embedded in these UP-state periods, in either multiunit or single-
unit activity (e.g., Luczak et al., 2007; Ji & Wilson, 2007).

On estimating the latent state process, we obtain two features: one is the log (natural basis) of
duration, the other the number of spikes per second per tetrode. After collecting these two
features from the experimental data shown earlier, we resort to the clustering tool for feature
visualization. The soft-clustering algorithm we use here is a greedy clustering algorithm
(Verbeek, Vlassis, & Kröse, 2003) based on fitting a gaussian mixture model. In the greedy
learning algorithm, the optimal number of mixtures is automatically determined during the
learning process. The algorithm was run 20 times, and the best result (with the highest log
likelihood) was chosen (see Figure 15). Hence, the neuronal firing pattern can be characterized
by a finite number of parameters (mean and covariance), from which we can compare the
different neuronal firing across different animals, different days, different brain regions (cortex

18This is in contrast to the anesthetized animals, in which the DOWN states occupy a larger fraction of time than the UP states.

Chen et al. Page 28

Neural Comput. Author manuscript; available in PMC 2009 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



versus hippocampus), different sleep stages (Pre-RUN versus Post-RUN), and so on. Since
this article mainly focuses on the statistical modeling methodology, further quantitative data
analysis and its link to neurophysiology will be presented and discussed elsewhere.

5 Discussion
5.1 Model Mismatch or Misspecification for the Spike Train

When investigating the real-world recording spike trains data, an important task of
computational modeling is to identify the functional form of CIF (see equations 2.3 and 3.3 or
3.4). Unlike the simulated spike train data, the CIF of the real-world spike trains is not known
in advance and needs to be identified before the probabilistic inference is carried on. In this
article, for simplicity, we have presumed that the CIF can be approximated by a GLM
(McCullagh & Nelder, 1989; Truccolo et al., 2005) which includes the hidden state and firing
history as variables. We have also assumed that the spike trains across tetrodes are mutually
independent. Most likely, the neuronal spiking is influenced not only by its own firing history
but also by the other spike trains. Despite these simplifications, we think the models presented
here still serve as a valuable first step to represent the temporal dynamics of the observed MUA
spike trains. Above all, to quote George Box, “All models are wrong, but some are useful.” In
addition, theoretically, given sufficient data and under some regular conditions (Pawitan,
2001), the MLE for a GLM is consistent even when the model (e.g., the link function) is chosen
incorrectly (Paninski, 2004). From a practical point of view, we have ignored the possible
estimation bias here.

For the real-world spike train data, there is no ground truth available for . A common practice
is to select a small data set, and the UP and DOWN states are first identified by the threshold-
based or the HMM method and reconfirmed by human inspection (with extra help of EEG
measurements). Based on that information and the assumption that the CIF might be identified
by a GLM, we can use the GLM fit for model selection. The model fit would be shown by the
deviance and validated by the KS test. If the KS plot falls inside the 95% confidence intervals,
it indicates that the CIF model fits well with the given spike train data. Unfortunately, in
practice, this is not always the case given only a limited amount of the observed data and an
economical size of parameter space for the GLM, indicating a lack of discrepancy between the
model and the data.

5.2 Discrete Probability Model for the Sojourn Time
In this article, the sojourn time survival function for the UP and DOWN states is assumed and
modeled as being continuous and parametric. More generally, if the histogram analysis of the
data indicates that the true distribution is far away from any parametric (exponential or
nonexponential) probability density, we might also employ a discretized probability model for
the survival probability of the sojourn time. Specifically, let [a, b] denote the range for the
sojourn time; we may split the range evenly into L bins and model the discrete probability at
each piece as Pi(x) = Pr{a + (i − 1)(b − a)/L ≤ x < a + i(b − a)/L} (i = 1, 2, …, L). Then the
probabilistic model of the sojourn time will be fully characterized by two sets of the parameters,

 and , where  and . In this case, the inference algorithm
will be slightly different in that the M-step of the MCEM algorithm will be modified with a
reestimation procedure (see equation 3.18), but the E-step remains unchanged.

5.3 Adding Intermediate States
Although in this article, we have exclusively discussed a two-state (0 and 1) Markov model,
it is easy to extend the framework to a general N-state Markovian model. Indeed, it is quite
possible to add an intermediate state between DOWN and UP as the transitory state. The reason
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for this argument arises from the observation from the real-world MUA spike trains: in many
circumstances, there is no clear evidence that the MUA are either up-modulated or completely
silent. Nor does the EEG in any obvious fashion help to differentiate these ambiguous periods.
Unfortunately, how to define a transitory state presumably remains a nontrivial problem, and
no attempt was made to explore this direction here.

5.4 Fully Bayesian Inference
In the MCEM algorithm discussed above, we consider Monte Carlo sampling only in the E-
step, whereas the M-step uses a standard deterministic optimization procedure. Potentially we
can use the MCMC procedure for both state and parameter estimation { (k), θ(k)} for k = 1, 2,
…, M, from which we can obtain the full posterior distribution p( , θ ∣ ) instead of the
marginal p(  ∣ θ, ). Take, for example, the parameters associated with the sojourn time pdf;
we can define the gamma prior for the exponential distribution or a conjugate prior for the
inverse gaussian (Banerjee & Bhattacharyya, 1979); for the parameters associated with the CIF
model, we may define a gaussian prior. In this case, the M-step would be replaced by iterative
Gibbs sampling. The detailed exploration of such a fully Bayesian inference approach,
however, is beyond the scope of this article.

5.5 Limitation of Our Approach
There are several obvious assumptions used in our statistical modeling approach. First, the
statistical mutual independence is assumed across neural spike trains, without explicit
modeling of the recurrent network activity.19 Second, the observed data are assumed to be
stationary in the sense that the state transition and the CIF parameters are estimated from a
long period of spike train recordings when those parameters are assumed to remain constant.
Finally, an identical CIF model is also assumed across all neural spike trains. Nevertheless,
these limitations by no means diminish the value of the models and methods proposed here,
since this article can be treated as a pilot study toward the ultimate modeling goal.

5.6 Future Work
We have considered several future investigation efforts in the line with the work reported here.
From a computational modeling point of view, we can extend the model by including
continuous-valued observations (e.g., Srinivasan, Eden, Mitter, & Brown, 2007). For instance,
the LFP or EEG measurements have been simultaneously recorded from both cortical and
hippocampal regions. The detection of K-complexes from the cortical EEG and detection of
the sharp wave-ripple complexes (SPW-Rs) from the hippocampal EEG would be beneficial
to the identification of UP and DOWN states (Siriota et al., 2003; Battaglia et al., 2004; Ji &
Wilson, 2007). Furthermore, it is possible to build a more complex SSM by allowing both
continuous- and discrete-valued hidden variables—for instance, a switching SSM where the
two latent processes interact with each other (e.g., Ghahramani & Hinton, 2000; Srinivasan et
al., 2007).

From a neurophysiological point of view, we are also interested in studying the population
neuronal firing causality and latency between the cortex and hippocampus, as well as their
spike patterns relevant to the rat's RUN behavior. It is well known that sleep is a key factor
that may promote the transfer of memory from the hippocampus to the cortex, and during sleep,
replays in these two regions occur synchronously (Mehta, 2007; Ji & Wilson, 2007). Based on
the extracelluar recordings (MUA and LFP), it would be interesting to investigate the UP and
DOWN activities during multiple processing stages and sites in the cortico-hippocampal

19Recently, complementary work has been reported in modeling self-organized recurrent network model of excitatory and inhibitory
neurons for spontaneous UP and DOWN state transitions (Kang, Kitano, & Fukai, 2008).
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circuits, and the UP and DOWN state transitions can be used to quantify the functional
connectivity of the neural circuits. An in-depth exploration of the LFP (e.g., K-complexes,
SPW-Rs), with single- and multiunit firing activities in both cortical and hippocampal regions,
would be key to understanding memory consolidation during sleep.

6 Conclusion
We have developed both discrete- and continuous-time probabilistic models and inference
algorithms for inferring population neurons' UP and DOWN states, using the MUA spike trains.
Compared to the deterministic threshold-based method (see appendix B) used in the literature,
our probabilistic paradigms offer a stochastic approach to analyze the spike trains as well as
provide a generative model to simulate the spike trains. Furthermore, the hidden state estimate
is treated as a random variable with certain uncertainty (encoded by its posterior probability),
whereas the threshold-based method cannot represent such uncertainties.

The discrete-time HMM provides a reasonable state estimate with a rather fast computing
speed. However, the model is restricted to locate the UP and DOWN state transition with a
relatively large time bin size (here, 10 ms). Another drawback of the HMM is that it is prone
to get stuck in the local solution; in other words, the number of state transitions typically
remains unchanged after a few EM iterations. In contrast, one advantage of the continuous-
time probabilistic model is that it allows estimating the exact locations of state jumps. By using
the RJMCMC sampling technique, the number of jumps as well as the locations of the jumps
are allowed to be modified during the inference procedure, which offers a way to escape from
the local minimum and tackle the model selection problem. The only shortcoming of the
RJMCMC method is its greater computational complexity and the tremendous demand of
computational power. In practice, the number of steps required to reach equilibrium often
demands sensible initial conditions and diagnostic monitoring during the convergence process.
We found that the inference solution obtained from the discrete-time HMM yields a reasonable
initial state sequence to feed into the MCMC sampler. Once the number and the locations of
the state jumps are determined, we can use the Monte Carlo statistics to infer the latent process.
For practitioners who are more concerned about the processing speed than the accuracy of
hidden state estimation, the discrete-time HMM might offer a reasonable guess (depending on
the data characteristics). Nevertheless, no claim is made here that our proposed models and
algorithms could always produce a correct UP or DOWN state classification result. The final
justification might still rely on careful human inspection, but our estimation results certainly
provide a good starting point with high confidence for follow-up.

In analyzing the simultaneously recorded spike trains, identifying an accurate CIF model is
crucial to the probabilistic inference. However, there is no free-lunch-recipe to obtain the
ultimate answer. In practice, it often requires some empirical data analysis (Brown, Kass, &
Mitra, 2004; Kass, Ventura, & Brown, 2005), such as the interspike interval histogram, firing-
rate trend dependence analysis, or fitting a GLM (Truccolo et al., 2005) or a non-Poisson model
(Barbieri, Quirk, Frank, Wilson, & Brown, 2001; Brown et al., 2003).

Finally, we hope that our proposed statistical models can shed some light on developing
physiologically plausible mechanistic models. A better understanding of the transition
mechanism between the UP and DOWN states would also help to improve the statistical
description of the data.
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Appendix A: Reversible-Jump MCMC

A.1 Background
Reversible-jump MCMC (RJMCMC) is a Metropolis-Hastings-type sampling algorithm with
a transdimensional proposal. The term reversible jump refers to the ability of the Markov chain
to “jump” between two parameter spaces that have different dimensions. The sampler explores
the state spaces of variable dimensionality by various modifications through the Metropolis-
Hastings proposals. Each Metropolis-Hastings proposal has a respective reverse proposal. For
every proposal, the acceptance probability is computed according to a certain rule. The goal
of the RJMCMC algorithm is to design efficient moves that allow the simulated Markov chain
to reach the desired equilibrium (posterior) distribution within a reasonable amount of time.
Unlike the fixed-dimensional MCMC algorithms, RJMCMC allows the state transitions to
occur between spaces with different dimensions, say,  → ′, where dim( ) ≠ dim( ′).

In this appendix, we present a detailed elaboration of the RJMCMC algorithm in the context
of simulating a continuous-time (semi-) Markov chain for the problem. In the following, we
use similar notations and formulations of Ball et al. (1999).

A.2 Derivation
Let n denote the number of jumps between two distinct discrete states in the latent process {S
(t); 0 ≤ t ≤ T}, where S(t) ∈ {0,1}. Let  = (n, τ, χ) be a triplet of the (semi-) Markov process,
where τ = (τ0, τ1, …, τn) is a vector that contains the duration of the sojourn time of , and χ
= (χ0, χ1, …, χn) represents the states visited in these sojourns. Let ν0 = 0,

, and νn+1 = T. Furthermore, we assume that for both UP and
DOWN states, the sojourn time duration τ has a lower bound a (τ ≥ a > 0) but no upper bound;
consequently, the associated pdf has to be rectified accordingly.

The following seven types of moves are considered in the Metropolis-type proposal:

1. Move a boundary between two successive sojourns of . First, decide which boundary
to move by sampling j uniformly from {0, 1, …, n − 1}. Let χj = i1, χj+1 = i2, and then
we have two alternative sampling options:20

• Sample u from a uniform distribution (ai1, τj + τj+1 − ai2), where ai1, ai2
denote the lower-bound constraints of the sojourn time of states χj and χj+1,
respectively. The proposal ′ is obtained by moving the boundary between
the jth and (j + 1)st sojourns from νj+1 to νj + u. In this case, ′ = (n′, τ′, χ′),
where .

• Sample u from a gaussian distribution (0, σ2), where σ2 denotes the (user-
specified) variance parameter. The proposal ′ is obtained by moving the
boundary between the jth and (j + 1)st sojourns from νj+1 to νj+1 + u. In this
case, ′ = (n′, τ′, χ′), ,

For both sampling options, n′ = n, , and .

20Given a reasonably accurate initial state, the second sampling option would be more efficient since its rejection rate would be lower.
For the current continuous-time estimation problem, the SD parameter σ in the second sampling option is chosen to be 2 ms, twice that
of the bin size.
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2. Insert a sojourn in one of the existing sojourns of . First, sample l* uniformly from
{0, 1, …, n}, and let i = χl*. Determine the state for the inserted sojourn by sampling
j from the probability p̃1(j ∣ i, θ) (j ≠ i). In the two-state space, p̃1(j ∣ i) = 1 (i.e.,
deterministic). Sample u from a uniform distribution (ai, τl* − ai) (where ai denotes
the lower bound of the sojourn time for state i), and then sample v from the censored
version of the exponential (or log-normal or inverse gaussian) distribution with
parameters θj ≡ rj (or θj ≡ {μj, σj} for log normal, or θj ≡ {μj, sj} for the inverse
gaussian) truncated at τl* − u − ai, that is, from the distribution that has the following
conditional pdf p̃(v ∣ u)

(A.1)

where aj denotes the lower bound of the sojourn time for state j. Then a sojourn in
state j (j ≠ i) of length v is inserted in the l*th sojourn of . And the new proposal 
′ = (n′, τ′, χ′) is given by n′ = n + 2, , , ,

, , ,
. Note that if τl* − u − 2ai < aj, move 2 will not be executed.

3. Delete an intermediate sojourn of  whose two adjacent sojourns are in the same state
(namely, merge one sojourn with its neighboring sojourns). Sample l* uniformly from
{0, 1, …, n − 1}, and delete the l*th sojourn of . The new ′ is given by n′ = n − 2,

, ,
.

4. Split the first sojourn of . First, let i = χ0, and sample u from the uniform distribution
(aj, τ0 − ai), where ai and aj denote the lower-bound constraints of the sojourn time

for states i and j, respectively (j ≠ i; in the two-state case, the choice of j is
deterministic). The new proposal ′ is given by n′ = n + 1, , , ,

, . Note that if τ0 < ai + aj, move 4 will not
be executed.

5. Delete the first sojourn of . This move is deterministic. The new proposal ′ is given
by n′ = n − 1, , , .

6. Split the last sojourn of . First, let i = χn, and sample u from a uniform distribution
(ai, τn), where a denotes the lower-bound constraint of the sojourn time for state i.

Next, sample j from the distribution p̃3 (j ∣ i) (j ≠ i; in the two-state state space, the
choice of j is deterministic). The new proposal ′ is given by n′ = n − 1,

, , , , . Note that if τn
< ai, move 6 will not be executed.

7. Delete the last sojourn of . This move type is deterministic, and the new proposal 
′ is given by n′ = n − 1, , , .

Of the above moves, moves 2 to 7 are discrete and transdimensional, and move 1 is continuous.
For the convenience of technical treatment, we classify the seven moves into three classes: A
= {1}, B = {2, 4, 6}, C = {3, 5, 7}, which correspond to boundary move, insertion, and
deletion, respectively. Specifically, the individual moves in class B are the respective inverses
of those in class C.

The move types chosen for the  update are obtained by sampling independently from the
distribution of qi (i = 1, 2, …, 7) as follows. First, the class of move type is determined by
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sampling from the distribution (qA, qB, qC), where, for example, qB represents the probability
that a class B move is chosen. Second, if a class B or class C move is chosen, the specific
individual move is found by sampling j ̃from a distribution (q̃1, q̃2, q̃3). By this setup, the
probability of qi will be determined by q1 = qA, q2 = qBq̃1, q4 = qBq̃2, q6 = qBq̃3, q3 = qCq̃1,
q5 = qCq̃2, q7 =qCq̃3. For the problem here, we may use the following setup:

, and , , , such that the normalization

constraint  is satisfied. The q̃2 and q̃3 correspond to probabilities for selecting the
first and last sojourns, respectively, and q̃1 for the other sojourns.

To compute the acceptance probabilities: for i = 1, 2, …, 7, let R(i)(  → ′; θ) be the density
of the transition kernel associated with the proposal ′ for the move type (i) and let qi be the
probability of choosing the move type (i). Since moves 2 to 7 are discrete (unlike move type
1), their R(i) (  → ′; θ) are probabilities instead of probability densities. Hence, the density
of the transition kernel for a new proposal ′ is given by

Among the seven move proposals, move type 1 does not change the dimension of , and its
acceptance probability is  = min(1, ), where

(A.2)

On the other hand, move types 2 to 7 change the dimension of , and their acceptance
probabilities are given by  = min(1, ), where

(A.3)

where | | denotes the determinant of the Jacobian. The Jacobian measures the ratio of the
volume of two state spaces.

For presentation convenience, we often factorize the acceptance probability as  = 1 2 3
(prior ratio × likelihood ratio × proposal probability ratio),21 where

(A.4)

In the context of two-state continuous-time (semi-) Markov chain that is used in this article,
we compute these three probability ratios for these seven moves in the following.

21To avoid numerical problems, it is more convenient to calculate the ratios in the logarithm domain.
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A.3 Move Types
A.3.1 Move Type 1

For the first sampling option, let i1 = χj and i2 = χj+1, and let ,

, , and

, and let , , , and  denote the number of spike counts for
spike train c during the time intervals [νj, νj+1], [νj+1, νj+2], [νj, νj + u], and [νj + u, νj+2],
respectively. The probability ratios for move type 1 are calculated as follows

where p̃(θ; ·) is defined by the censored version of the parametric pdf of the sojourn time (for
either UP or DOWN state). The ratios for the second sampling option are conceptually similar,

and we show only  here:

A.3.2 Move Type 2

Let i1 = i, i2 = j, and let , , ,  denote the number of spike counts for spike train c during
the time intervals [νl*, νl*+1], [νl*, νl* + u], [νl* + u, νl* + u + v], and [νl* + u + v, νl*+1],

respectively. Let , ,

, and . Then

where in computing , we have used q2 = q3 and , and p̃(v ∣ u) is given by
equation A.1. Since move type 2 changes the dimension of the , we need to compute the
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associated Jacobian's determinant. Note that τ′ is obtained from τ from an invertible
deterministic function τ′ ← (τ, u, v) = (τ0, τ1, …, τl*−1, u, v, τl* − ai − u − v, τl*+1, τl*+2, …,
τn), whose Jacobian is then given by

A.3.3 Move Type 3
Moves 3 and 2 are inverses of each other. Let i1 = χl*−1 and i2 = χl*, and let

, , ,

, and let , , , and  denote the numbers of spike counts for
spike train c within the intervals [νl*−1, νl*], [νl*, νl*+1], [νl*+1, νl*+2], and [νl*−1, νl*+2],
respectively. It is noted that τ′ can be obtained from an invertible deterministic function (τ)
= (τ0, τ1, …, τl*−1, τl*+1, τl*+2, …, τn), and | | = 1. The probability ratios are given as

where q2 = q3, and p̃v(τl* ∣ τl*+1) is determined from

A.3.4 Move Type 4

Let i1 = j, i2 = i, and let , ,

, and let , , and  denote the number of spike counts for spike train
c observed within the intervals [0, ν1], [0, u], and [u, ν1], respectively. Let πi1 and πi2 denote
the prior probabilities of the initial sojourn in state i1 and i2, respectively. Then we have
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where q4 = qBq̃2 = qCq̃2 = q5. Note that τ′ is obtained from τ from an invertible deterministic
function τ′ ← (τ, u) = (u, τ0 − u, τ1, τ2, …, τn). Then it follows that

A.3.5 Move Type 5

Moves 5 and 4 are inverses of each other. Let i1 = χ0, i2 = χ1, ,

, , and let , , and  denote the observed
number of spike counts for spike train c within the intervals [0, ν1], [ν1, ν2], and [0, ν2],
respectively. Then we have

where q4 = q5. Similarly, τ′ ← (τ) = (τ0 + τ1, τ2, …, τn), and | | = 1.

A.3.6 Move Type 6

Let i1 = i, i2 = j, , ,

, and let , , and  denote the number of spike counts for
spike train c observed within the intervals [νn, νn+1], [νn, νn + u], and [νn + u, νn+1], respectively.
Then we have

where q6 = q7. Similarly τ′ ← (τ, u) = (τ0, τ1, …, τn−1, u, τn − u), and
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A.3.7 Move Type 7

Moves 7 and 6 are inverses of each other. Let i1 = χn−1, i2 = χn, ,

, , and let , , and  denote the
observed number of spike counts for spike train c within the intervals [νn−1, νn], [νn, νn+1], and
[νn−1, νn+1], respectively. Then we have

where q6 = q7. In addition, we have τ′ ← (τ) = (τ0, …, τn−2, τn−1 + τn) and | | = 1.

A.4 Heuristics for Efficient RJMCMC Sampling
The experimental recordings are relatively long (varying 15–30 minutes for different rats or
dates), and the MCMC sampling for the continuous-time model (with 1 ms bin size) is quite
time-consuming. We need to design an efficient (problem-specific) sampling procedure for
tackling this problem. One important issue is the initialization of state. As discussed earlier,
this will be obtained from the estimation result of the discrete-time HMM. Another issue is to
design data-driven MCMC proposals (e.g., Tu & Zhu, 2002) that “intelligently” select moves
that also satisfy the detailed balance condition. Specifically, we use a few heuristics in carrying
out RJMCMC sampling:

• Move type 1: Given a reasonably initialized state, use option 2 instead of option 1.

• Move type 2: Implement it favorably for those long sojourn time durations, and
execute it only for those sojourn time durations with at least four times the minimum
length.

• Move type 3: Implement it favorably for those short sojourn time durations.

• Move type 4: Execute it only when the initial sojourn time has at least four times the
minimum length.

• Move type 6: Execute it only when the final sojourn time has at least four times the
minimum length.

As far as the current UP and DOWN estimation problem is concerned, move types 1 and 3 are
the most important ones. When implementing move type 3, we employ a heuristic importance
sampling trick. Specifically, the probability of choosing a sojourn time to merge with its
neighboring sojourns is inversely proportional to the sojourn length: the shorter the duration,
the more likely to be picked out to be merged. Similarly, this trick can be utilized in move type
2 to determine where to split a DOWN state sojourn. The probability of the selected position
will be inversely proportional to the observed number of instantaneous MUA spike counts.
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A.5 Special Example
In what follows, we derive a special example, in which the sojourn time durations of both UP
and DOWN states are modeled by a censored exponential distribution as given in equation
3.12. This example can be viewed as a special case of the result from Ball et al. (1999) in which
no constraint was imposed for the pdf. Let r0 and r1 denote the rate parameters associated with
the exponential distribution for the DOWN and UP states, respectively. And let a0 > 0 and
a1 > 0 denote the lower bounds of the sojourn durations for the DOWN and UP states,
respectively. The probability ratios 1 and 3 for the seven move types are as follows:

• Move type 1:

where c1, c2, c3, c4, c5, c6 are the normalized coefficients (details are ignored here;
see the description after equation 3.13)

• Move type 2:

where c1, c2, c3, c4 are the normalized coefficients

• Move type 3:

where c1, c2, c3, c4 are the normalized coefficients

• Move type 4:

where c1, c2, c3 are the normalized coefficients

• Move type 5:
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where c1, c2, c3 are the normalized coefficients

• Move type 6:

where c1, c2, c3 are the normalized coefficients

• Move type 7:

where c1, c2, c3 are the normalized coefficients.

Appendix B: Threshold-Based Method for Classifying UP and DOWN States
The standard threshold-based method for determining the UP and DOWN states based on MUA
spike trains (Ji & Wilson, 2007) consists of three major steps.

First, we bin the spike trains into 10 ms windows and calculate the raw spike counts for all
time intervals. The raw count signal is smoothed by a gaussian window with an SD of 30 ms
to obtain the smoothed count signal over time. We then calculate the first minimum (count
threshold value) of the smoothed spike count histogram during SWS. As the spike count has
been smoothed, the count threshold value may be a noninteger value.

Second, based on the count threshold value, we determine the active and silent periods for all
10 ms bins. The active periods are set to 1, and silent periods are set to 0. Next, the duration
lengths of all silent periods are computed. We then calculate the first local minimum (gap
threshold) of the histogram of the silent period durations.

Third, based on the gap threshold value, we merge those active periods separated by silent
periods in duration less than the gap threshold. The resultant active and silent periods are
classified as the UP and DOWN states, respectively. Finally, we recalculate the duration lengths
of all UP and DOWN state periods and compute their respective histograms and sample
statistics (min, max, median, mean, SD).

In summary, the choices of the spike count threshold and the gap threshold will directly
influence the UP and DOWN state classification and their statistics (in terms of duration length
and occurrence frequency). However, the optimal choices of these two hand-tuned parameters
are rather ad hoc and dependent on several issues (e.g., kernel smoothing, bin size; see Figure
16 for an illustration). In some cases, no minimum can be found in the smoothed histogram,
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and then the choice of the threshold is problematic. Note that the procedure will need to be
repeated for different data sets such that the UP and DOWN states statistics can be compared.
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Figure 1.
(a) The duration histograms of the UP (mean 0.96, median 0.67, support [0.1, 3], unit: second)
and DOWN (mean 0.17, median 0.13, support [0.05, 1], unit: second) states of spiking data
recorded from four behaving rats' visual cortex during SWS. Note that the statistics used in b
are identical to those in (Ji & Wilson, 2007, Figure 2b). The y-axis in both plots shows the
count statistics of all cortical UP and DOWN durations. (b) Censored versions of the log-normal
and inverse gaussian pdfs for the UP (left panel) and DOWN (right panel) states. (c) Censored
versions of the log-normal and inverse gaussian survival functions (1-cdf) for the UP (left
panel) and DOWN (right panel) states. As comparison, the dashed lines in b and c show the
holding time probability for an exponential distribution. Note that in the UP state, the holding
time probability in both two-parameter distributions decays more slowly than that of the
exponential distribution, whereas in the DOWN state, the holding time probability of
exponential distribution decays more slowly than the others.
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Figure 2.
Synthetic data. (a) The simulated UP and DOWN hidden state process. (b) The simulated time-
varying traces of conditional intensity function (CIF) λc(t) (c = 1, …, 4). (c) The four simulated
spike trains. (d) The averaged firing rate across four spike trains (the solid gray curve
corresponds to the temporally smoothed firing rate using a 30 ms width gaussian kernel).
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Figure 3.
A snapshot of UP and DOWN state estimation obtained from the discrete-time HMM for the
simulated spike train data.
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Figure 4.
The fitted KS plots (top row) and autocorrelation plots (bottom row) for the four simulated
spike trains from one Monte Carlo experiment (dotted and dashed lines in the plots indicate
the 95% confidence bounds).
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Figure 5.
Snapshot illustrations of simulated synthetic spike trains and the estimated state posterior
probability from the (a) HMM and (b) continuous-time semi-Markov model (b). The shaded
area denotes the posterior probability of the hidden state being in an UP state. The estimation
error rates (compared with the ground truth) in these two cases are 1.9% and 1.4%, respectively.
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Figure 6.
The estimation error comparison of different methods by varying the number of spike train
observations (the statistics are computed based on five independent simulated trials). In all
conditions, the spike trains are generated using the same conditions: μc = −3.6, αc = 7.2, and
βc = 0.05.
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Figure 7.
A snapshot of recordings of cortical MUA, raw cortical EEG, cortical theta wave (4–8 Hz),
cortical delta wave (2–4 Hz), raw hippocampal EEG, hippocampal ripple power (more than
100 Hz), hippocampal theta wave, and EMG.
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Figure 8.
Real-world MUA spike trains of eight tetrodes recorded from the primary somatosensory
cortex of one rat (note that each tetrode might contain varying number of single cells). (a) A
selected 5 s segment of the MUA spike trains during SWS and its UP and DOWN state
classification via the threshold-based method (segmented by the thick solid line). (b) The
hidden state estimation result obtained from the discrete-time HMM (used as the initial state
for the continuous-time RJMCMC sampler). (c) The hidden state estimation obtained from the
MCEM algorithm. In this example, the MCEM algorithm merged several neighboring sojourns
that were decoded differently from the HMM.
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Figure 9.
Fitting the real-world sojourn-time duration length for the DOWN and UP states, where the
UP or DOWN state classification is obtained from the discrete-time HMM estimation result.
(Left panels) Histograms. (Right panels) Fitting the sojourn durations with exponential (for
the DOWN state) and log-normal (for the UP state) distributions. If the sample data fit the
tested probability density, the data points will approximately match the straight line in the plot.
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Figure 10.
Convergence plot of the simulated Markov chain. (a) Trajectory of the number of state jumps
(inset: the trajectory within the first 1000 iterations). (b) Trajectory of the log likelihood in
running the MCEM algorithm.
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Figure 11.
(Left panel) Estimated exponential decaying filters e−βcτ for the recorded spike trains shown
in Figure 8. (Right panel) Estimated history dependence coefficients estimated for the eight
spike trains (based on GLM fit using seven discrete windows of history spike counts: 1–5, 5–
10, 10–15, 15–20, 20–30, 30–40, 40–50 ms). The estimated history-dependent firing
coefficients exhibit an exponential-like decaying curve (for all eight spike trains).
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Figure 12.
Fitted KS plots of the real-world MUA spike trains (dotted lines along the diagonal indicate
the 95% confidence bounds).
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Figure 13.
Autocorrelation plots for the real-world MUA spike trains (dashed lines indicate the 95%
confidence bounds).
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Figure 14.
Cortical EEG averages (mean ± standard error of the mean, shown by trace width) triggered
by the classified UP state start and end time stamps (for visualization purposes, the standard
error of the mean in all plots is amplified by 10 times its original value). From top to bottom:
Results from the threshold-based method, the HMM method, and the MCEM method. The start
of the UP state is aligned with the K-complex signal that has a biphasic wave switching from
a negative dip to a positive peak, which lasts about 200 ms.
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Figure 15.
Gaussian mixture clustering for the two firing features (log of duration and number of spikes
per second). Here, the optimal number of mixtures is 3; the ellipses represent the two-
dimensional gaussian shapes with different covariance structures.
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Figure 16.
Threshold-based method for estimating the median duration length of the UP and DOWN states
(data from the same rat on a different day) in which two thresholds are chosen by grid search.
The abscissa represents the gap threshold (in millisecond), and the ordinate represents the
smoothed spike count threshold. The map's units are shown in seconds.
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Table 1

Summary of Notation.

c index of spike trains c = 1, 2, …, C

m index of simulated Markov chains m = 1, 2, …, M

t continuous-time index t ∈ [0, T]

ti spike timing of the ith spike in continuous time

Δ smallest time bin size

k discrete-time index k = 1, 2, …, K, KΔ = T

yk number of counts observed from discrete-time Markov chain, yk ∈ {0, ℕ}

Sk discrete-time first-order Markov state, Sk ∈ {1, …, L}

S0 initial Markov state at time 0

S0:T, S1:k history of the Markov state from time 0 to T (or 1 to k)

n number of state jumps within the latent process S0:T

l index of state jumps l = 1, 2, …, n

{S(t); 0 ≤ t ≤ T} realization of hidden Markov process

= (n, τ, χ) triplet that contains all information of continuous-time Markov chain {S(t)}

τ = (τ0, …, τn) (n + 1)-length vector of the sojourn times of {S(t)}

χ = (χ0, …, χn) (n + 1)-length vector of visited states in the sojourn times of {S(t)}

(0) initial state of MCMC sampler

νl
ν0 = 0, vl = ∑r=0

l−1 τr (l = 1, 2, … , n + 1)

0:T, 1:K history of point-process observations from time 0 to T (or 1 to k)

N(t), Nk counting process in continuous and discrete time, N(t), Nk ∈ {0, ℕ}

dN(t), dNk indicator of point-process observations, 0 or 1

Pij transition probability from state i to j for a discrete-time Markov chain, Σj Pij = 1

qij transition rate from state i to j for a continuous-time Markov chain, Σj qij = 0

ri = qii total transition rate of state i for a continuous-time Markov chain, ri = Σj≠i qij

πi initial prior probability Pr(S0 = i)

ak(i) forward message of state i at time k

bk(i) backward message of state i at time k

γk(i) marginal conditional probability Pr(Sk = i ∣ 0:T)

ξk(i, j) joint conditional probability Pr(Sk−1 = i, Sk = j ∣ 0:T)

log likelihood of the complete data

R(  → ′) proposal transition density from state  to ′

 = 1 2 3 prior ratio × likelihood ratio × proposal probability ratio

acceptance probability,  = min(1, )

Jacobian

λk conditional intensity function of the point process at time k

θ parameter vector that contains all unknown parameters

p(x) probability density function
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F(x)
cumulative distribution function, F (x) = ∫−∞

x p(z) dz

Φ(x) gaussian cumulative distribution function

erf(x) error function

(·) indicator function

(a, b) uniform distribution within the region (a, b)
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Table 3

Comparison of Experimental Results on the Simulation Data.

State Estimation Error Rate

Method Mean ± SD Best Worst

Threshold based 2.91 ± 0.31% 2.41% 3.48%

Discrete HMM-EM 1.52 ± 0.34 1.07 2.07

Continuous MCEM 1.26 ± 0.42 0.74 1.95

Note: Mean performance is averaged over 10 independent random trials.

Neural Comput. Author manuscript; available in PMC 2009 December 29.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 65

Table 4

Duration Length Statistics of the UP and DOWN States from the Simulation Data.

True
Sample Statistics

(from HMM)
Estimated

(from MCEM)

Mean (UP) −0.4005 −0.4468 −0.4212

SD (UP) 0.8481 0.6827 0.7735

Mean (DOWN) −1.9661 −2.1708 −2.0256

SD (DOWN) 0.6231 0.6335 0.6301
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Table 5

State Estimation Discrepancy Between the Proposed Algorithms and the Threshold-Based Method for the Real-
World Spike Trains Data.

Algorithm Discrepancy Percentage Number of Jumps, n Bin Size

Threshold-based — 2986 10 ms

Discrete HMM-EM 4.42% 3223 10 ms

Continuous MCEM 3.04% 2576 1 ms
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